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Abstract
Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger 
cut criterion is used in p-spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, 
the original p-spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose 
a manifold p-spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function 
to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data 
pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low 
affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we 
propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p-Laplacian matrix are 
constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors 
of graph p-Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that 
our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has 
good clustering quality and robustness.

Keywords p-Laplacian matrix · Clustering · Manifold distance · Affinity measure

1 Introduction

In the field of data mining, clustering is one of the most 
widely used methods of exploratory data analysis. In many 
scientific field, when dealing with the collected data, people 
try to identify groups with similar behavior in the data. Clus-
tering analysis can discover the distribution structure among 
data objects.[1]. Based on a similarity measure, the cluster 
analysis method groups data by maximizing the similarity 
of data objects located in the same cluster and minimizing 

the similarity of data objects between different clusters. 
The final data clusters are structured such that data objects 
located in the same cluster have relatively high affinities, 
while objects between different clusters have low affinities 
[2]. Cluster analysis methods are widely used in many fields, 
including pattern recognition, market research, image seg-
mentation, etc. It can be used as an independent analysis 
tool, and can also be used as a preprocessing in other data 
analysis methods.

Traditional clustering analysis algorithms, such as 
k-means like clustering algorithms and hierarchical cluster-
ing algorithms, are all built on the convex spherical sample 
space [3]. These algorithms are suitable for clustering in 
convex sample space. But for non-convex data space, these 
algorithms are easy to fall into local optimum and cannot 
correctly identify clusters. In order to cluster in the sample 
space of arbitrary shape, a new clustering algorithm—spec-
tral clustering algorithm has begun to attract the attention 
of scholars. The theoretical basis of spectral clustering is 
spectral theory, which transforms data clustering into graph 
segmentation, especially for non-convex data sets [4–6]. It 
converts the clustering problem into the optimal partition-
ing problem of an undirected weighted graph [7]. Spectral 
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clustering regards the data samples as the vertices on the 
graph, and uses the similarities between the samples to rep-
resent the weight of the edge of the graph. Since the optimal 
solution of the solution graph partition is a NP hard prob-
lem, the spectral clustering method relaxes the problem to 
a continuous space to solve it. According to the spectral 
graph theory, this solution is essentially solving the spectral 
decomposition problem of the Laplacian matrix of the graph 
[8]. Therefore, the spectral clustering can be considered as 
a the continuous relaxation solution for the graph partition 
problem, which is an approximate clustering method.

Spectral clustering is a series of clustering algorithms 
based on different graph cut criteria. One of the graph cut 
criteria is Cheeger cut, which tends to segment the balanced 
subgraphs [9]. As mentioned above, the optimal partition of 
Cheeger cut is also a NP hard problem. We can use eigen-
vectors of p-Laplacian matrix to solve Cheeger cut problem 
and obtain the approximate optimal graph partition. This 
method is called p-spectral clustering [10]. The p-Laplacian 
matrix used in p-spectral clustering is a generalized version 
of normalized graph Laplacian matrix.

Manifold is a generalization of Euclidean space in the 
case of large-scale analysis. Euclidean space is its special 
case. The manifold has a homeomorphic mapping locally 
with the Euclidean space. Specifically, a one-dimensional 
manifold is a curve, and a two-dimensional manifold is a 
curved surface. High-dimensional manifolds are analogs 
of curves and surfaces in high-dimensional situations. The 
manifold can usually be considered a hyperplane in a small 
scale. A large number of high-dimensional data have lower-
dimensional manifold embedding, and scholars have stud-
ied the essential features of these massive data to reveal the 
inherent laws of things. Gaussian kernel is based on Euclid-
ean distance, but Euclidean distance is not a proper distance 
measure for manifold data [11, 12]. Although p-spectral 
clustering has a good theoretical basis, it doesn’t perform 
well on manifold data sets [10]. Because p-spectral cluster-
ing needs to calculate the affinities between data points and 
Gauss kernel function is a commonly used similarity meas-
ure. Gauss kernel function is based on Euclidean distance, 
which is only suit for the data points in Euclidean space. 
When dealing with the data set with manifold structures, 
Gauss kernel function is not a good affinity measure. Real 
world data sets often has complex structures. The affinities 
simply calculated by Euclidean distance may lose impor-
tant information about the data. As p-spectral clustering is 
based on the affinity matrix, improper affinity measure may 
reduce the clustering quality. The development of the mod-
ern society has put forward higher request on data analysis 
technology. Traditional p-spectral clustering algorithms are 
unable to meet these requirements and the Euclidean dis-
tance may cause bad clustering results. Therefore, designing 

and developing effective affinity measurement to describe 
the complex data has become a hotspot in p-spectral cluster-
ing research.

Suppose a good clustering should reflect the local and 
global structure of clustering. Under this assumption, we 
design a path-based affinity measure for manifold data. In 
affinity measurement, we design a density-adjustable length 
and use the shortest path to describe the affinities. In this 
way, the internal affinities of the manifold are high, while 
the external affinities of different manifold are low. Then we 
apply the manifold affinity measure to p-spectral clustering 
to improve its clustering quality, and present a M-pSC algo-
rithm using path-based affinity measure (M-pSC). M-pSC 
algorithm can correctly describe the complex relationship 
of manifold data, and use graph p-Laplacian solve Cheeger 
cut problem. The effectiveness of the proposed algorithm is 
verified through a lot of experiments.

The paper structures are: Sect. 2 introduces the related 
works of p-spectral clustering and affinity measure; Sect. 3 
presents a manifold p-spectral clustering (M-pSC) method 
using path-based affinity measure; Sect. 4 gives the theo-
retical analysis of the proposed M-pSC algorithm; Sect. 5 
utilizes benchmark data sets to test the performance of the 
proposed algorithm; the last section is conclusion.

2  Related work

The graph partitioning criteria of p-spectral clustering is 
Cheeger cut, Cheeger cut considers the connections within 
the cluster and the connections outside clusters at the same 
time, so it can produce balanced clusters. Because of the 
good theoretical support, there are a lot of research works 
about p-spectral clustering. We summarize these related 
works from three aspects: eigen-decomposition, affinity 
measure, manifold learning, as shown in Table 1.

p-Spectral clustering needs to calculate the eigenvectors 
of p-Laplacian matrix, but this process is very time-con-
suming. In order to reduce the complexity of eigen-decom-
position, Frederix and Van Barel [13] use the approximate 
Laplacian matrix and sparse method in spectral clustering. 
Binkiewicz et al. [14] study the potential clusters in a graph 
with the covariates of vertex and propose a node-contex-
tualized randomized block model in spectral clustering. 
Ariascastro et al. [15] construct a weighted graph using the 
local principal components analysis to solve the intersection 
problems of spectral clustering. Law et al. [16] develop a 
new deep metric learning model for spectral clustering, in 
which the clustering complexity is reduced by linear gradi-
ent method.

The affinity measure plays an important role for p-spec-
tral clustering. Nie et al. [17] measure the affinity relation-
ship by searching the appropriate neighbors for every point 
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based on the local distance of data. Tasdemir et al. [18] 
propose a hybrid geodesic affinity measure, in which the 
geodesic relationships is formed by data topology, dis-
tance and density information at the same time. To deal 
with noise-contaminated images, Goyal et  al. [19] add 
local spatial information to the fuzzy similarity measure 
to remove noise in the image and improve the quality of 
image segmentation.

In order to improve the performance of p-spectral clus-
tering on manifold data, Wang et al. [20] design a multi-
view clustering model, which utilize multiple geometric 
information to describe the manifold structure of data. 
Langone et al. [21] improve the kernel spectral clustering 
algorithm to detect outliers in manifold data and apply 
the proposed algorithm in health monitoring applications. 
Zhi et al. [22] use pairwise constraints and balanced con-
straints to describe the relations of manifold data, and then 
use random projection method to optimize the objective 
function of constrained clustering to obtain clustering 
results.

Although many research results of p-spectral cluster-
ing have been achieved, it still has many problems worth 
studying. In traditional p-spectral clustering, the affinity 
matrix is usually formed by radial basis function, which 
cannot describe complex data structures very well, espe-
cially the manifold data structure. To enhance the clus-
tering quality of p-spectral clustering on manifold data, 
we design a path-based affinity function to measure the 
affinity relationship between data objects. The proposed 
affinity measure will assign high affinities for adjacent data 
objects and the objects with the same manifold structures. 
Then the affinity function is combined with p-spectral 
clustering to process the data set with complex structures. 
This method is insensitive to parameters and can recognize 
non-linear distribution of data points or overlapping areas. 
Experimental results demonstrate that our algorithm has 
good performance on synthetic datasets and benchmark 
datasets.

3  Proposed approach

3.1  p‑Spectral clustering

The theoretical basis of spectral clustering is algebraic graph 
theory. In spectral clustering, we generally use the graph 
G = (V, E) to describe the data set X. The data points in X 
are viewed as the vertices of graph G. These vertices form 
set V and the edges connecting any two vertices in V form 
set E. In graph G, each edge has a weight that represents the 
affinity between the two vertices of the edge. Suppose V1 and 
V2 are two subsets of V, and V1 ∪ V2 = V  . The graph cut of 
set V is given by Eq. (1):

where wij is the affinity between vertex i and vertex j.
In p-spectral clustering, wij is usually calculated by radial 

basis function:

where ‖‖‖xi − xj
‖‖‖ is the Euclidean distance between point xi 

and point xj, σ is the scale parameter, controlling the changes 
of distances.

A graph partition can be obtained by minimizing 
Eq. (1). However, it may separates a single point from the 
others in some cases and result in bad graph partitions. 
Since clusters should be reasonably large groups of points, 
one way to avoid this problem is to explicitly request that 
the sets V1, …, Vk are “reasonably large”. Cheeger cut cri-
terion is designed to encode this. Cheeger cut is denoted 
as Ccut [23]:

(1)cut(V1,V2) =
∑

i∈V1,j∈V2

wij

(2)wij = exp

⎛⎜⎜⎜⎝
−

���xi − xj
���
2

2�2

⎞⎟⎟⎟⎠

Table 1  Related works about p-spectral clustering

Research theme Algorithm Author

Eigen-decomposition Sparse spectral clustering algorithm based on the incomplete Cholesky decomposition Frederix and Van Barel [13]
Covariate-assisted spectral clustering algorithm Binkiewicz et al. [14]
Spectral clustering algorithm based on local PCA Ariascastro et al. [15]
Deep spectral clustering algorithm Law et al. [16]

Affinity measure Projected clustering algorithm with adaptive neighbors Nie et al. [17]
Approximate spectral clustering algorithm with utilized similarity information Tasdemir et al. [18]
Fuzzy similarity measure based spectral clustering algorithm Goyal et al. [19]

Manifold learning Spectral clustering algorithm for multiple manifolds Wang et al. [20]
Adaptive kernel spectral clustering algorithm Langone et al. [21]
Constrained spectral clustering algorithm via the randomized projected power method Zhi et al. [22]



544 International Journal of Machine Learning and Cybernetics (2021) 12:541–553

1 3

where |V1| is the number of data points in set V1, 
min{||V1

||, ||V2
||} is used to measure the size of subset V1 and 

V2 to get more balanced clusters.
Minimizing Eq. (3) will lead to the optimal graph parti-

tion that the similarities within a cluster are as large as pos-
sible, while the similarities between clusters are as small 
as possible. But calculating the optimal Cheeger cut is an 
NP-hard problem because of the balancing conditions. Wag-
ner and Wagner [24] point out that “the more balanced the 
partition, the harder the problem". Relaxation is a way to 
solve the Cheeger cut problem. We will see that relaxing 
Ccut leads to p-spectral clustering,

According to the Rayleigh quotient principle, the relaxed 
solution of Cheeger cut is related to the eigenvectors of 
p-Laplacian matrix. Liu et al. [25] define the inner product 
form of graph p-Laplacian Δp as follows:

where p ∈ (1,2], f is the eigenvector of p-Laplacian matrix.
The Rayleigh quotient shows that we can obtain the 

eigenvalues of p-Laplacian Δp as local minima of the func-
tional Fp:

where ‖f‖p
p
=

n∑
i=1

��fi��p.
Theorem 1 in Sect. 4.2 gives the mathematical connection 

between Fp(f) and Cheeger cut objective function, which 
indicate that Cheeger cut problem can be converted to the 
eigenvalue problem of function Fp(f). Therefore, we can 
get a relaxed approximate solution of Ccut(V1,V2) by mini-
mizing Fp(f), and the best partition is obtained when Fp(f) 
reaches the minimum value:

where λp is the eigenvalue of graph p-Laplacian correspond-
ing to vector f.

p-Spectral clustering provides an effective way to solve 
Cheeger cut problem in polynomial time using p-Laplacian 
operator. Specifically, if we set an appropriate threshold, the 
second eigenvector v(2)

p
 of p-Laplacian matrix will lead to 

a good bipartition of the graph. The optimal threshold is 
determined by minimizing the corresponding Cheeger cut. 
For each partition V1 and V2, the threshold t should satisfy

(3)Ccut(V1,V2) =
cut(V1,V2)

min{||V1
||, ||V2

||}

(4)
⟨
f ,Δpf

⟩
=

1

2

n∑
i,j=1

wij(fi − fj)
p

(5)Fp(f ) =

�
f ,Δpf

�
‖f‖p

p

(6)�p = argmin
p→1

Fp(f )

3.2  Path‑based affinity measure

The standard p-spectral clustering algorithm uses Radial 
basis function to measure the affinity between data points. 
Gaussian kernel is based on Euclidean distance which 
describes the absolute distance of each point in space, and 
it is connected with the position coordinates of data points. 
However, in practice, the distribution of data usually has an 
unpredictable complex structure, and the global consistency 
of the data set cannot be reflected by the Euclidean distance 
affinity [26], that is, the data points on the same manifold 
should have high affinity.

Figure 1 is an example to illustrate the shortcomings of 
Euclidean distance. It can be seen from Fig. 1 that point b 
and point c are on the same manifold, point a and point b 
are on different manifolds. We hope that the affinity between 
point b and point c is greater than the affinity between point 
a and point b, so that it is possible to group b and c into the 
same cluster. However, the Euclidean distance between point 
a and point b is significantly smaller than the Euclidean dis-
tance between point b and point c. If we use Euclidean dis-
tance to measure the similarities between data points, point 
b is more similar to point a instead of point c, which means 
that point a and point b has higher probability to be grouped 
together than that of point b and point c. In other words, 
Euclidean distance is insufficient to represent the global 
consistency of the data shown in the figure. Therefore, if 
we simply use Euclidean distance to measure affinity, it can 
cause bad performance for complex clustering problems in 
the real world.

(7)
t = argmin

V1={i∈V|v(2)p (i)>t}

Ccut(V1,V2)
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Fig. 1  Euclidean distance for manifold data
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The global clustering assumption requires high similari-
ties of data pairs in the same manifold structure, and low 
similarities of data pairs in different manifold structures [27, 
28]. In order to keep the global consistency of the clustering, 
this paper presents a new affinity measurement—the path-
based affinity function to evaluate the relationship of data 
points on manifold data sets. Its concrete form is described 
as follows.

Definition 1 The length of line segment on manifold:

where d(xi, xj) =||xi – xj|| is the Euclidean distance between 
the data points xi and xj; ρ is called the scaling factor. We 
can enlarge or shorten the length of line segment between 
two points by adjusting the density factor ρ, and enhance the 
adaptability of the algorithm to different data sets. Figure 2 
below shows the advantages of such definition.

In Fig. 2, the value outside the parentheses is the Euclid-
ean distance between the two points, and the value in 
parentheses is its corresponding segment length on mani-
fold (when the density factor ρ = 2). From Definition 1, it 
is known that the length of line segment on manifold is 
exponentially related to the Euclidean distance, and it has 
the effect of enlarging Euclidean distance. Observing the 
distance between the seven points a, b, c, d, e, f, g, when 
the Euclidean distance between two points is small, the cor-
responding segment length is also small; if two points have 
large Euclidean distance, their segment length will be signif-
icantly larger. This indicates that the defined segment length 
is sensitive to large distance changes. Although the Euclid-
ean distance d(a, c) + d(c, d) + d(d, e) + d(e, f) + d(f, g) + d(g, 
b) > d(a, b), the length of the line segment on manifold L(a, 
c) + L(c, d) + L(d, e) + L(e, f) + L(f, g) + L(g, b) < L(a, b). 
Therefore, if two points are on the same manifold, assuming 

(8)L(xi, xj) = e�d(xi,xj) − 1

that there is a path inside the manifold to connect the two 
points, we can use the length of the path as the manifold 
high-density region. According to the length of line segment 
on manifold, a new distance measure—path-based distance 
is further defined.

Definition 2 Path-based distance: Given an undirected 
weighted graph G = (V, E), let path = {v1, v2, …, vm} ∈ Vpath 
denote the path between vertex v1 and vm, where m is the 
number of vertices contained in path, the edge (vk, vk+1) ∈ E, 
1 ≤ k < m. Let Ωi,j represent the set of all paths connecting 
the point pair {xi, xj} (1 ≤ i, j < n), then the path-based dis-
tance between xi and xj is

where dsp(xi, xj) = min
path⊂Ωi,j

∑m−1

k=1
L(vk, vk+1) is the distance of 

the shortest path between nodes xi and xj on graph G; L(vk, 
vk+1) is the length of line segment of two adjacent points on 
the shortest path from xi to xj on graph G. It is easy to see 
that the path-based distance satisfies the four constraints of 
distance measure:

1 Reflexivity: D(xi, xj) = 0 , if and only if xi = xj.
2 Symmetry: D(xi, xj) = D(xj, xi).
3 Non-negative: D(xi, xj) ≥ 0.
4 Triangular inequality: D(xi, xj) ≤ D(xi, xk) + D(xk, xj).

Definition 3 According to the above path-based distance 
measure, the manifold affinity of data points xi and xj is 
defined as

where the scale parameter �i = d(xi, xil) =
‖‖xi − xil

‖‖ , xil is 
the lth neighbor node of xi. Equation (10) uses the adaptive 
adjustment method [29] to determine the manifold distance 
kernel parameter σ. σi adaptively changes with the neighbor-
hood distribution to ensure that the affinity within the same 
cluster increases and the affinity between different clusters 
decreases. It is not difficult to see that this distance kernel 
also satisfies the positive definite condition.

3.3  The proposed manifold p‑SC algorithm

Calculating the similarities between data points and con-
structing the weight matrix W is a key step in p-spectral clus-
tering. Traditional p-spectral clustering algorithms measures 
the similarities of data based on the Euclidean distance, but 
Euclidean distance cannot describe the manifold structure 

(9)D(xi, xj) =
1

�2
ln
(
1 + dsp(xi, xj)

)2

(10)wij = exp

(
−
D(xi, xj)

2�i�j

)
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Fig. 2  Euclidean distance and the segment length on manifold
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of data sets [30]. Therefore, the clustering performance of 
p-spectral clustering algorithm are not good on manifold 
data sets. In addition, real data sets usually contain noise and 
irrelevant features that interfere with clustering processes 
and affect the accuracy of clustering results. To solve the 
above problems, we design a path-based affinity measure for 
the data sets with manifold structures in Sect. 3.2. This affin-
ity measurement can well describe the spatial distribution of 
complex data, increasing the similarities between data points 
on the same manifold, and reducing the similarities of data 
pairs located on different manifolds.

Then we use the manifold affinity measure to improve 
p-spectral clustering, and use path-based affinity measure-
ment (M-pSC) to propose M-pSC. The main idea of M-pSC 
algorithm is: first, compute the path-based distance between 
data points; measure the manifold similarities of data points 
using the path-based distance to construct the weight matrix; 
then calculate the p-Laplacian matrix based on the weight 
matrix; finally, divide the graph into multiple sub-graphs 
with the eigenvectors of p-Laplacian matrix. When the 
Cheeger cut criterion is minimized. we can get high quality 
clustering results. The detailed steps of the M-pSC algo-
rithm are given in Algorithm 1.

4  Theoretical analysis

4.1  Feasibility of the path‑based affinity measure

The distance measure given by Definition 2 uses the short-
est path on the manifold, which can well reflect the inner 
manifold structure of the dataset. On the same manifold, 
we can use many short edges to connect two data points, 
while two data points from different manifolds need to be 
connected by a long edge passing through the low density 
region. Since the manifold distance of the short-edge combi-
nations is small and the manifold distance of the single long 

edge is usually large, it is possible to reduce the distance 
of data points on the same manifold and enlarge the space 
between data points on different manifolds. As can be seen 
from the above definition, this distance measure is able to 
describe the local density characteristics of the data.

Consider the two extreme cases of Eq. (9):

1 When ρ → 0, using the equivalent infinitesimal theorem, 
we get the limit:

which is the shortest path between nodes based on 
Euclidean distance. According to the triangular inequal-
ity of distance measure, the minimum path is the Euclid-
ean distance between two points, namely ‖‖‖xi − xj

‖‖‖ . 
Therefore the derived affinity measure cannot reflect the 
global consistency of the manifold structure. For the 
sparse connection matrix, this distance measure takes 
full consideration of the path length, so it can prevent 
the influence of the noise data on the boundary. But 
because of the limitations of Euclidean distance, the 
result distance is not suitable for describing the affinity 
of manifold data.

2 When ρ → ∞, with the Lobida law, we get the situation:

D(xi, xj) is called the connection distance, which is the 
minimum value among the maximum lengths between two 
adjacent points on all paths. The kernel matrix calculated 
by Eq. (12) is the connection kernel. It should be noted that 
this distance measure only considers the maximum distance 
between two neighbors in the connection path. It takes full 
account of the influence of local density to ensure the global 
consistency, but not considers the length of the path. So the 
affinity may be disturbed by the manifold boundary points.

Therefore, the scaling factor ρ is very important for the 
distance measure of Definition 2. By controlling the scal-
ing factor ρ, we may consider the manifold structure of the 
data, and prevent the influence of boundary noise at the 
same time, thus ensure the global consistency of the mani-
fold distance. Figure 3 shows the Euclidean distance and 
the path-based distance of ab and bc when ρ = 2. The value 
outside brackets (d1) is Euclidean distance, and the value 
inside brackets (d2) is the path-based distance.

We assume that the shortest path from point b to point c 
only passes point d. According to the calculation equation 
of manifold distance in Definition 2, the manifold distance 
of bc is the sum of two adjacent line segments bd and dc 
on manifold in the shortest path of bc. It can be seen from 

(11)D(xi, xj) = min
path⊂Ωi,j

m−1∑
k=1

d(vk, vk+1)

(12)D(xi, xj) = min
path∈Ωi,j

max
k<m

d(vk, vk+1)
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Fig. 3 that the Euclidean distance of ab is less than that 
of bc (0.6941 < 0.7337). But in the case where the scaling 
factor is set to 2, the manifold distance of ab is larger than 
that of bc (0.3254 > 0.2485). This is because point a and 
point b are on different manifolds, while point b and point 
c are on the same manifold. The manifold distance defined 
in this paper can increase the distance between two points 
on different manifolds and reduce the distance between two 
points on the same manifold. The above results are based on 
the assumption that there is only one intermediate node d in 
the shortest path from b to c. From Fig. 4, it is not difficult 
to find that the shortest path of bc may have many nodes. In 
this case, using the manifold distance method defined in this 
paper, the distance of bc will be far less than the distance 
of ab, and thus increasing the affinity between point b and 
point c, reducing the affinity between point a and point b, 
and ensuring the global consistency of manifold.

In addition, by adjusting the proportional factor ρ, the 
manifold distance between two points on different mani-
folds can be extended. When ρ is set to ∞, it can be seen 
from Eq. (12) that the distance between two points is the 
maximum Euclidean distance between any two nodes in the 
shortest path. Figure 3 presents an intuitive example that 
the distance of bc in high-density region will be far less 
than the distance of ab connected through the low density 
area. Therefore, the proposed path-based affinity measure 
can shorten the distance between two points on the manifold, 
which fully reflects the internal manifold structure of the 
data set. It effectively solves the problem that the Euclidean 
distance as the affinity measure cannot embody the global 
consistency of data.

4.2  Feasibility of the graph p‑Laplacian

The proposed M-pSC algorithm minimizes Cheeger cut by 
graph p-Laplacian. Theorem 1 analyzes the relationship 
between Cheeger cut and graph p-Laplacian.

Theorem 1 Assume the bipartition of V are V1 and V2. For 
p > 1, there exists a indicate vector f(p) such that the func-
tional Fp(f) associated to the p-Laplacian satisfies:

Equation (13) has a special case that can be viewed as a 
balanced graph partition criterion:

Proof First we define a function f(p) to describe the parti-
tion (V1, V2) of V:

(13)Fp(f ) = cut(V1,V2)
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Bring Eq. (15) into 
⟨
f ,Δpf

⟩
 and ‖f‖p

p
 , we have

Then, replace the numerator and denominator of Eq. (5) 
using the above two equations respectively:

Comparing the above inequality and the objective func-
tion of Cheeger cut, we can see that if p approaches 1, the 
special case of Fp(f) is Ccut(V1,V2):

M-pSC algorithm computes the global minimizer of the 
second eigenvector v(2)

p
 of p-Laplacian matrix. Since the 

functional Fp(f) is continuous in p, if two values p1 and p2 
are close, the global minimizer of v(2)

p1
 and v(2)

p2
 are also close. 

M-pSC algorithm uses a mixture of gradient and Newton 
steps to minimize the functional Fp(f), because Newton-like 
methods have super-linear convergence close to the global 
optima.
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5  Experimental analysis

5.1  Clustering on synthetic datasets

In the experiments, the clustering performances of spectral 
clustering algorithm (SC) [31], p-spectral clustering algo-
rithm (p-SC) [23] and M-pSC algorithm are compared on 
three challenging synthetic datasets: “two circles”, “two 
moons” and “two spirals”. These datasets are illustrated in 
Fig. 4. The clusters in these datasets are distributed on mani-
fold data structures and they are not easy to be separated by 
linear partition method.

The clustering results of SC algorithm, p-SC algorithm 
and M-pSC algorithm on these three synthetic data sets 
are presented in Fig. 5. The scale parameter σ of SC algo-
rithm is 0.5; the maximum iteration of p-SC algorithm is 
maxit = 100; the density factor of M-pSC algorithm is ρ = 2 
and the number of nearest neighbors is l = 5, which is used 
to calculate the scale factor σ.

Form Fig. 5, we can see that SC algorithm can recognize 
’two circles’ data set, but it doesn’t perform well on ’two 
moons’ and ’two spirals’ data sets. p-SC algorithm can gen-
erate balanced clusters on ’two moons’ data set. But simi-
lar to SC algorithm, p-SC algorithm measures the affinity 
between points based on Euclidean distance and it cannot 
recognize complex manifold structure of the data set, such 
as ’two spirals’. In contrast, the performance of the proposed 
M-pSC algorithm is much better. M-pSC algorithm inher-
its the advantage of p-SC algorithm that using Cheeger cut 
criterion to find clusters. With the help of manifold affinity 
measurement, M-pSC algorithm is applicable to the cluster-
ing problem of various datasets. For M-pSC algorithm, the 
data points on the same manifold have high affinity and the 
data points on different manifolds are dissimilar with each 
other. Therefore M-pSC algorithm can find the appropriate 
exemplars for each data point and assign the corresponding 
data points to the right clusters.

5.2  Clustering on real world datasets

1 Data sets
  In order to test the effectiveness of the proposed 

M-pSC algorithm, six benchmark datasets are used 
for experiments.The information of these data sets are 
shown in Table 2. Ionosphere, WDBC, Madelon, Gisette 
are come from UCI machine learning repository.1 Colon 
cancer, leukemia are all cancer data sets, which are 
available on the LIBSVM data page.2

1 https ://archi ve.ics.uci.edu/ml/.
2 https ://www.csie.ntu.edu.tw/~cjlin /libsv mtool s/datas ets/.

https://archive.ics.uci.edu/ml/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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2 Evaluation metric
  There are a lot of methods to measure the merits of 

clustering results [32]. The F measure and normalized 
mutual information (NMI) are commonly used evalua-
tion metrics in clustering analysis.

F measure [33] F measure comes from the field of infor-
mation retrieval. The F value contains the accuracy and 
recall rate. These two indicators describe the difference 
between cluster results and actual classes from different 
perspectives. Assuming there are k classes in the data set, 
class i is associated with cluster i* in the cluster results. We 
may compute the F-score of class i using the following three 
equations:

where P(i) = Nii∗∕Ni∗ is the accuracy rate and R(i) = Nii∗∕Ni 
is the recovery rate; Nii* is the size of the intersection of 
class i and cluster i*; Ni is the size of class i; Ni* is the size 
of cluster i*.

The F-index of the clustering result is the weighted aver-
age of the F values for each class:

where n is the number of sample points; k is the class num-
ber of data set; Ni is the size of class i. F ∈ [0, 1], the larger 

(16)F(i) =
2 × P(i) × R(i)

P(i) + R(i)

(17)F =
1

n

k∑
i=1

[Ni × F(i)]
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Fig. 5  Clustering results of different algorithms on synthetic datasets
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the F index, means that the clustering results of the algo-
rithm closer to the real data category.

NMI [34] NMI is a normalization of the mutual informa-
tion (MI). Let Uc be the membership matrix of clustering 
results and Ut be the membership matrix of true data labels. 
The NMI of Uc and Ut is:

where I(Uc, Ut) is the mutual information, H(Uc) and H(Ut) 
are information entropies used to normalize the mutual 
information. Usually, NMI is estimated by Eq. (19):

where nc
i
 is the size of cluster i, nt

j
 is the size of class j, and 

n
c,t

i,j
 is the size of the intersection between class j and cluster 

i. If the clustering results and the true data labels are the 
same, their NMI is 1; if the data points are grouped ran-
domly, their NMI tends to be 0. A higher NMI corresponds 
to better clustering results.

3. Clustering results
  In the experiments, M-pSC algorithm is compared 

with the spectral clustering algorithm (SC) [31], den-
sity adaptive spectral clustering algorithm (DSC) [35], 
p-spectral clustering algorithm (p-SC) [23] and the 
density peaks clustering algorithm (DPC) [36]. All 
algorithms are implemented by MATLAB, running on 
a high-performance workstation with 3.20 GHz CPU. 
The clustering F-score of these five algorithms on each 
data set are shown in Fig. 6. The horizontal axis of the 
graph is the cluster label, and the vertical axis is the 
F-score for each cluster.
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From Fig. 6 we can see that the performance of SC algo-
rithm is close to that of p-SC algorithm. This is mainly 
because that their affinity matrix is based on Euclidean dis-
tance. DSC algorithm uses local density adaptive affinity 
measure to calculate the similarities between data points, so 
its clustering results are better than SC algorithm on most 
data sets. p-SC algorithm turns the clustering problem into 
a graph partitioning problem with the balanced Cheeger cut 
criterion and it works well on Ionosphere and WDBC data 
sets. However, for multi-cluster problems, their F-values 
are lower than the DPC algorithm and the proposed M-pSC 
algorithm. Because the information in each attribute of the 
instance is different, and they also have different contribu-
tions to the cluster. Inappropriate affinity metrics can have 
a negative impact on cluster results. Traditional p-spectral 
clustering algorithms are susceptible to interference from 
noise and extraneous properties, so it is not suitable to clus-
ter data sets with complex structures. DPC algorithm groups 
data points according to the local density of data, but the 
global consistency of data is ignored. In contrast, the pro-
posed M-pSC algorithm is able to handle manifold cluster-
ing problems and recognize more complex data structures 
with the help of path-based affinity measure.

For further comparison, Table 3 lists the F index, NMI 
index and clustering time of each algorithm. Table 3 shows 
that M-pSC algorithm can handle the data sets with differ-
ent structures well. It can generate more accurate cluster-
ing results compared with the p-SC and other clustering 
algorithms. In M-pSC algorithm, the affinities between 
data points are measured by the path-based affinity func-
tion, which can well describe the manifold structure of data. 
Therefore, the data points within the same cluster are more 
compact, while the data points between different clusters 
are more separate. Therefore, in most cases, M-pSC algo-
rithm has higher clustering accuracy. The M-pSC algorithm 
is applicable to data sets distributed on manifolds. It has 
good robustness and strong generalization ability. However, 
the path-based affinity measure also increases the clustering 
time of M-pSC. How to improve the efficiency of M-pSC 
algorithm needs further study.

6  Conclusions

When dealing with manifold data, traditional p-spectral clus-
tering does not perform well. In this paper, we design a path-
based affinity measure to evaluate the relationship between 
data points with manifold structures. In this method, we first 
define the segment length of two points on manifold. Then 
we use the shortest path between two points to represent 
their distance. The path-based distance is used to calculate 
the manifold similarities of pairwise points. Then we use 
the path-based affinity measure to improve the performance 

Table 2  Data sets used in the experiments

Data set Instance 
number

Condition 
attribute 
number

Decision 
attribute 
number

Class 
number

Ionosphere 351 34 1 2
WDBC 569 30 1 2
Colon cancer 62 2000 1 2
Leukemia 72 7129 1 2
Madelon 2600 500 1 2
Gisette 7000 5000 1 2
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of p-spectral clustering on manifold data and propose the 
M-pSC algorithm.

The advantages of M-pSC are: (1) the affinity matrix con-
structed by path-based affinity measure in M-pSC can better 
describe the distribution of manifold data; (2) M-pSC will 

enlarge the similarities within the manifold and reduce the 
similarities between manifolds. The drawbacks of M-pSC 
are: (1) the computation of the shortest path between two 
nodes will increase the time cost of affinity measure; (2) the 

(a) Ionosphere (b) WDBC

(c) Colon Cancer (d) Leukemia

(e) Madelon (f) Gisette
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Fig. 6  Clustering F-score on different datasets
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n × n affinity matrix will occupy a lot of memory space when 
the number of data points n is very large.

Experiments on benchmark data sets show that the clus-
tering quality of M-pSC algorithm is superior to that of the 
original p-spectral clustering algorithm. In the future, we 
will study how to apply M-pSC algorithm to network data 
mining, information retrieval, social network analysis, and 
other scenarios.
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