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Abstract
A reliable adaptive hybrid classifier (hAHC), which combines a posture-based adaptive signal segmentation algorithm with a 
multi-layer perceptron (MLP) classifier, together with a plurality voting approach, was proposed and evaluated in this study. 
The hAHC model was evaluated using a real-time posture recognition framework that sought to identify five behaviours 
(sitting, walking, standing, running, and lying) based on simulated crowd security scenarios. It was compared to a single 
MLP classifier (sMLP) and a static hybrid classifier (hSHC) from three perspectives (classification precision, recall and 
F1-score) that used the real-time dataset collected from unfamiliar subjects. Experimental results showed that the hAHC 
model improved the classification accuracy and robustness slightly more than the hSHC, and significantly more compared to 
the sMLP (hAHC 82%; hSHC 79%; sMLP 71%). Additionally, the hAHC approach displayed the real-time results as animated 
figures in an adaptive window, in contrast to the hSHC which used a fixed size-sliding temporal window that as our results 
demonstrated, was less suitable for presenting real-time results. The main research contribution from this study has been 
the development of an efficient software-only-based sensor calibration algorithm that can improve accelerometer precision, 
together with the design of a posture-based adaptive signal segmentation algorithm that cooperated with an adaptive hybrid 
classifier to improve the performance of real-time posture recognition.
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1 Introduction

Research on human posture recognition has made great pro-
gress in recent years having been applied to a wide range of 
applications, for example surveillance, healthcare, robotics, 
smart homes, smart cities and human computer interaction 
[1–4]. Posture recognition aims to automatically classify the 
physical status of the subject, so as to determine whether the 
user requires assistance or guidance whenever an abnormal 
activity is detected. To date, most, posture recognition sys-
tems operate by collecting sequential data obtained from 
cameras or wearable inertial sensors.

In a crowd environment, most existing human activity 
detection systems have been based on vision technologies 
[5]. Although vision-based systems have advantages (e.g. 
are easy to operate and don’t require collaboration with those 
being monitored), they incur various challenges such as the 
camera position, background clutter, limited coverage, etc. 
Wearable sensor technologies provide a way of overcom-
ing some of these shortcomings while enabling long-term 
recording. Wearable inertial sensors are often embedded into 
various wearable items or devices such as wristbands, shoes, 
smart phones, smart watches, and clothes [6, 7]. Wearable 
inertial sensors have a long history going back to the advent 
of microprocessors where, for example, they were used to 
create a guidance systems for poorly sighted people [8] to 
more recent times where advances in technology has made 
them more feasible and culturally acceptable, since they 
are unobtrusive, light-weight, low-cost and power-efficient 
mobile devices [9]. However, they have their own imita-
tions, such as sensor offset, drift, and sensitivity to location 
on the body.
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This study was aimed at designing and developing a 
real-time monitoring system that was suitable for potential 
security or health incidents. For example, it might be worn 
by hospital patients, care home residents, police personnel, 
night-club bouncers or event-stewards (e.g. sports or concert 
events at a stadium) to summon help should they fall or be 
knocked to the ground. In order to explore the feasibility 
of developing such a system, this work sought to identify 
suitable data pre-processing techniques and model selection 
approaches. Thus, the main contributions of the paper are:

• The design of an efficient accelerometer calibration algo-
rithm for improving the sensor precision, and reducing 
its offset and drift.

• The design of a reliable adaptive signal segmentation 
(ASS) algorithm for posture-based adaptive boundary 
point detection.

• The development of an adaptive hybrid classifier which 
combines the above ASS algorithm with an MLP classi-
fier incorporating a plurality voting approach which was 
evaluated using a real-time posture recognition frame-
work based on simulated crowd security incident sce-
narios.

The rest of the paper is organized as follows. Section 2 
reviews literature relating to data pre-processing and posture 
recognition algorithms. Section 3 explains the methodolo-
gies adopted for sensor calibration and hybrid model design 
in our prototype, along with an overview of the system archi-
tecture. Section 4 describes the experimental setup, proce-
dures and results. Section 5 contains the conclusions and our 
thoughts on future research directions for this work.

2  Related work

Researchers have proposed various daily activity recognition 
systems using different methods and based on different sen-
sors. For example, Cheok et al. [10] has provided a review 
of hand-gesture recognition techniques that split the process 
into different stages: data acquisition, pre-processing, feature 
extraction, signal segmentation and classification.

Data that is acquired from sensors usually contains errors 
which arise from various sources including, for example, 
an improper zero reference. Therefore it is essential to pre-
process the data (i.e. sensor calibration), by manufacturer 
or user, to negate the effects of these errors. Bonnet et al. 
[11] proposed a unified calibration framework to determine 
inertial sensor calibration parameters such as sensor sensi-
tivities, offsets, misalignment angles, and mounting frame 
rotation matrix. Feature extraction and feature selection aims 
to maximize the classification accuracy while minimize the 
number of features [12]. In this paper we proposed a new 

and efficient sensor calibration method that is performed 
based-only on six stationary positions.

The purpose of signal segmentation is to divide a signal 
into several epochs with the same statistical characteristics 
such as amplitude or frequency. Vari [13] introduced a Mod-
ified Varri method for signal segmentation, which includes 
three parameters affecting the accuracy. These parameters 
must be determined experimentally, meaning they may not 
be optimal for any arbitrary signal segmentation applica-
tion. Azami et al. [14] designed a genetic algorithm (GA) 
as a powerful search tool to look for appropriate parameters 
based on the Modified Varri approach. Later, Azami et al. 
[15] proposed an approach where the signal was initially 
filtered by a Moving Average or a Savitzky-Golar filter to 
reduce short-term signal noise aimed at improving the reli-
ability of the method. Novosadová et al. [16] described a 
polynomial model for signal segmentation that assumes 
every segment is a polynomial of certain degree. Segment 
borders correspond to positons in the signal where the model 
changes its polynomial representation. They also demon-
strated that using orthogonal polynomials, instead of the 
standard polynomial in the model, is beneficial when the 
segmenting signals are corrupted by noise. Laguna et al. [17] 
demonstrated a dynamic window method based on events for 
the signal segmentation. Their approach adjusts dynamically 
the window size and the shift for each step. This means a 
new window is generated only when a new event is detected 
in contrast to the fixed-size sliding window approach. In this 
paper, we have proposed a hybrid ASS algorithm that com-
bines both the adaptive window and the bottom-up methods 
for improving the segmentation accuracy.

Human activity classification accuracy is determined by 
a number of factors such as optimal classifier selection, the 
data sensing approach, and the data sensing frequency. The 
work of Gao et al. [18] investigated how the sampling fre-
quency impacted the performance of classifiers, by increas-
ing the sampling rate from 10 to 200 Hz (in 10 Hz incre-
ments). They demonstrated that the recognition accuracy 
was not sensitive to the sampling rate (only a 1% increase 
above 20 Hz which stabilized beyond 50 Hz). However, the 
high sampling rate could lead to greater computing load and 
power requirements. Saini et al. [19] presented a two-person 
interaction monitoring framework for analysing individual 
activities in people who may be suffering from some form 
of psychological disorder, based on the Kinect sensor. They 
used BLSTM-NN classifier to recognize each individual’s 
activities, and applied a lexicon approach to improve the 
performance. Their testing achieved a maximum accuracy 
of 70.72% for 24 different activities. Hegde et al. [20] com-
pared insole-worn and wrist-worn sensors used for daily 
activities classification, and demonstrated that the recog-
nition accuracy was 81% for an insole-worn sensor alone, 
69% for the wrist-worn sensor alone, and 89% for the two 
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sensors combined. Thus, insole-worn sensors present a 
compelling alternative or companion to wrist-worn devices. 
Macron et al. [21] proposed a human gesture recognition 
system based on volumetric data sequences, and used the 
HMMs classifier to identify a set of key postures, classify-
ing their sequences over a set of possible actions. They also 
presented a simple method to identify the number of hidden 
states of the HMMs for improving the gesture classifica-
tion performance. Finally, they achieved a 96% accuracy for 
ten different actions. Naveed et al. [22] introduced method-
ologies of heterogeneous features fusion for improving the 
performance of human activity recognition. They employed 
the time efficiency and optimality of SMO to train an SVM 
that was tested by a single person and multi-human dataset, 
achieving an accuracy of 91.99% and 86.48% respectively.

Our review of related work has demonstrated that each 
algorithm has its advantages and drawbacks. No one clas-
sifier works best for every problem as there are several 
practical factors to consider such as the size and structure 
of the dataset. Thus, for our machine learning work, it was 
necessary to employ many different algorithms in order to 
identify the most appropriate classifier. Hence, for this study, 
we designed a hybrid classifier (hAHC) for real-time posture 
recognition, which utilizes different algorithms for different 
tasks.

3  Methodologies

Our experimental data collection platform was constructed 
around ultra-wide band (UWB) anchors and tags. Anchors 
are fixed UWB hardware nodes, containing at least one so-
called Master Anchor responsible for collecting all the data 
from the other anchors. Anchors send/receive messages to/
from mobile tags.

3.1  The system infrastructure

The infrastructure consisted of a number of components as 
illustrated in Fig. 1.

The sensing and communication hardware comprised 
a set of openRTLS UWB master anchors, with UWB tags 
[23], which were used for data collection in this study.

Fig. 1  The system configuration and the tag coordinate system

The tag was housed in a small belt-worn bag on  
the subjects’ waist, as shown on the right side of Fig. 1. 
Each tag contained several sensors and actuators such 
as light, IR proximity, pressure, temperature, and a 9- 
axes inertial measurement unit (IMU) that included 
accelerometers (ACCs), gyroscopes (gyros) and, a 
magnetometer.

The tag communicated with the master anchor wirelessly 
using a UWB radio. The real-time posture recognition sys-
tem (ARS) was executed on a laptop which received the tag 
datasets from the master anchor via UDP messages. Based 
on our previous work [24], we had determined that the sub-
feature set (Ax,Ay, Az, Axyz, ΔA) had better performance 
and fewer features compared to other sub-feature sets such 
as a combination of acceleration data along with associated 
gyros angles hence, for this study only, the ARS was based 
on the ACCs datasheet.

3.2  Tri‑axial ACCs calibration

The IMU, in our tags, had not been factory-calibrated. 
The raw measurements ACCs were not specified in ± g 
(g = 9.8067 m/s2) level. As a consequence, it was necessary 
to perform ACCs calibration before the IMU could be used 
so as to estimate misalignment errors, scale factors, and off-
sets [25].

The ACCs calibration utilizes the fact that ACCs are 
affected by gravity when they are under static conditions. 
The calibrated acceleration Ai (i = x, y, z) and the ACC raw 
measurements Âi (i = x, y, z) can be expressed as in (1).
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where Am is the 3 by 3 misalignment matrix between the 
non-orthogonal device body axes and the orthogonal ACCs 
sensing axes; Asc is the scale factor, and b is the offset.

The goal of ACCs calibration is to resolve 12 parameters 
from X10 to X33. Thus, with any given raw measurements Âi, 
the Ai can be calculated based on (1). In order to obtain the 
12 parameters, Eq. (1) can be rewritten equally as (2).

Based on (2), calibration can be performed at 6 station-
ary positions that include two directions, up and down, for 
each of the three axes X, Y and Z, based on the tag coordi-
nate system. In theory, an accelerometer will measure the 
vertical-axis value in ± 1 g, and along the other two axes, 
with values of 0 if the unit remains stationary relative to the 
earth’s surface. Hence, there are 6 ideal outputs Ag known as 
(± 1 g, 0, 0); (0, ± 1 g, 0); (0, 0, ± 1 g) for the 6 static condi-
tions, shown in (3).

Meanwhile, the sensor’s raw data can be collected, for a 
given period of time (e.g. 10 s), at each of the 6 stationary 
positions and averaged for each position thereby reducing 
the influence of random noise. Thus, there are six meas-
ured averaging raw datasets obtained which are shown in 
(4). Finally, the calibration parameters vector X can be cal-
culated using (5), according to (2), (3) and (4). Here we 
apply the least square method in (5). After the calibration 
parameters matrix X were determined, the ACCs raw data 
were calibrated using (2).

where 
−

Âxi is the average raw acceleration along the X-axis 
at each of the 6 positions, ÂT means matrix transpose, and 
Â−1 means matrix inverse.

Compared to existing IMU calibration approaches, our 
method is efficient and easy to implement. The parameters 
matrix X was calculated offline, then each measured raw 
ACCs 
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tage of this approach is that it required only a software-based 
calibration phase avoiding the need for special mechanical 
platforms that feature in many other IMU calibration proce-
dures [26, 27]. In addition, there are fewer calibration param-
eters (12 vs.18) in our method than in other methods, such as 
in [28]. These differences result in our approach having a 
lower calibration cost than most other methods.

3.3  Data collection and feature extraction

A calibrated raw dataset was organized as (t, Ax, Ay, Az) fol-
lowed by extracting more features using (6) and (7).

where Axyz is the three-dimensional acceleration, ΔA is 
the absolute Axyz change between time points t and (t–1).

Since the feature t is only used to record the time points, 
there are 5 features (Ax, Ay, Az, Axyz, ΔA) in the dataset used 
for further processing.

3.4  Adaptive signal segmentation (ASS)

The signal segmentation aims to divide a signal into several 
periods with similar statistical features. There are two main 
methods used to do this, static and adaptive segmentation.

The static method divides the signal into fixed periods 
and is simple and easy to implement. However, it is less 
reliable, since the duration of the activities are not always 
equal so, for our work, we chose to use a posture-based 
adaptive approach to improve the reliability and clarity of 
the real-time posture recognition. Details of the method are 
described by the following steps.

1) Define a sliding window size w = 2f (f is the sampling 
frequency) as shown in (8);

2) Calculate the difference of average 
−

ΔA between the front 
half and the rear half sliding window, which is greater 
than an empirical threshold th1 as shown in (9);

3) Calculate the time difference Δt between the middle 
point of the sliding window and the previous boundary 
point, which is greater than 2 s as shown in (10).

4) Define a boundary point array bp[], If the sliding win-
dow satisfies both (9) and (10) at the same time, the 
middle point of the sliding window is determined as the 
boundary point and saved to the array bp[].

(6)Axyz(t) =

√
Ax(t)

2 + Ay(t)
2 + Az(t)

2

(7)ΔA(t) =
|||Axyz(t) − Axyz(t − 1)

|||
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where th1 is a threshold defined empirically based on the 
calculated and mixed dataset (∆A) as shown in Fig. 2. Here 
th1 = 0.02; i = 1,…n, n is the length of ΔA signal; j = 1,…,m, 
m is the length of bp[] array.

Based on (9), the signal segmentation will be correct 
only for motionless postures, but there are many redundant 

bp[j] = i + f ,

⎧⎪⎨⎪⎩

∀w[i, i + 2f ] ∈ signalΔA (8)

ΔA[i] =
���
∑i+f

i
ΔA−

∑i+2f

i+f
ΔA

���
f

≥ th1 (9)

Δt[i] = t[bp[j]] − t[bp[j − 1]] > 2s (10)

boundary points for motion postures as shown in Fig. 3. 
Based on (10), the redundant points are eliminated from 
the motion actions as shown in Fig. 4, since in the short 
time concerned (less than 2 s) rhythmic posture transition 
is ignored during a period of the same motion posture (e.g. 
walking or running period). 

Note that for an easy understanding of the procedure, 
the signal segmentation results shown in Figs. 3 and 4 use 
the whole signal. However, in the real-time application, the 
signal was classified every 5 s. This means the signal seg-
mentation was performed for every 100 samples in this study 
(f = 20 Hz) rather than the whole dataset.

In comparison to existing signal segmentation methods, 
such as [13, 17], the signals we use (ΔA and Axyz) are not 
sensitive to the sensor’s position and orientation, thus mak-
ing the system configuration more flexible. For example, 
the tag can be located on the waist, back or pocket, and its 
direction can be horizontal or vertical, the only restriction 
being that it remains in the same position for the duration 
of the session.

3.5  Single classifier vs. hybrid classifier

Three classifiers were designed and compared allowing us 
to determine the best classifier for our system as well as 
providing a benchmark to wider work. Their details are pre-
sented below.

1. Single multi-layer perceptron (MLP) classifier 
selection

MLP Neural Networks use a gradient descent with back-
propagation techniques to learn one or more non-linear hid-
den layers between the input layer X =

{
Xi|x1, x2,… , xd

}
 

and output layer Y =
{
Yi|y1, y2,… , yn

}
 . In this study, the 

input X = {Xi| Ax, Ay, Az, Axyz, ∆A}. The output defines 5 
classes Y = {Yi| sitting, standing, walking, running, lying}.

A model selection experiment was designed to determine 
how many hidden layers and how many neurons for each of 
the hidden layers should be created, where the training and 
testing dataset were collected separately from the same sub-
ject. In doing this a total of 30 models were trained using the 
same training set. The models varied from 1 to 3 hidden lay-
ers, and the number of neurons varied from 6 to 15 at each 
of the layers. Following this, the 30 models were evaluated 

Fig. 2  The experimental threshold th1 based on calculated and mixed −

ΔA dataset (from all subjects). Note: the label on the figure: 4-run; 
2-walk; 1-motionless (sit, stand and lying)

Fig. 3  Based on Eq. (9), the segmentation is correct only for motion-
less postures. There remain many redundant boundary points for 
motion postures

Fig. 4  Based on Eqs.  (9) and (10), the segmentation is correct for 
both motionless and motion postures

Table 1  Comparison of 
classification accuracy for a 
new dataset, via 30 models with 
different neuron numbers in 
each of 3 hidden layers

Bold values indicate higher accuracy and fewer neurons

Neurons (n) 6 7 8 9 10 11 12 13 14 15

Acc (%)
MLP(n) 69 67 68 70 70 71 69 61 72 71
MLP(n,n) 71 66 68 70 71 71 73 63 73 73
MLP(n,n,n) 56 58 56 70 68 54 72 67 72 67
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using the same testing set. Finally, two hidden layers single 
classifier sMLP (12,12) were selected based on the compari-
son of experimental results (higher accuracy 73% and fewer 
neurons) as shown in Table 1, where MLP(n), MLP (n, n) 
and MLP (n, n, n) represent one, two and three hidden layers 
respectively. n is the number of neurons in each of the layers. 
Here we only utilise a common hidden layer configuration 
setting which sets the same size for the hidden layers.

During the model training stage, sMLP (n, n) learns an 
activation function y = f (x,w) using (11).

where n is number of neurons in layer l; d is the dimen-
sion of inputs; wl

i,j
 is the weights, which represents the rela-

tionship between two nodes ( i , j ); b is the bias.
The softmax function [29] is selected as the activation 

function (f1 and f2), which calculates the probabilities that 
sample xi belongs to each of the classes yj . The output is the 
class with highest probability.

2. Two hybrid classifiers design
The adaptive hybrid classifier (hAHC) and a static hybrid 

classifier (hSHC) design are explained in this section.
The hAHC combines the adaptive signal segmentation 

(ASS) (posture-based dynamic window) with the single clas-
sifier sMLP and plurality voting (PV) approach. The hSHC 
combines the static sliding window (SSW) (fixed-size) with 
the sMLP and PV approach. Here, the SSW uses a 1-s win-
dow (with a size of 20 samples, in this study). The three 
classifiers can be summarized as follows:

sMLP = a single MLP (12, 12).
hAHC = ASS + sMLP + PV.
hSHC = SSW + sMLP + PV.
The difference between hAHC and hSHC is their signal 

segmentation method. Their hybrid implementation proce-
dure is similar and is described below:

• First, the signal was divided into a multiple sub-segments 
using the ASS or SSW algorithm.

• Then, each of the sub-segments was classified using 
sMLP, with the classification result being saved as an 
array P =

[
p1,… , pn

]
 , where n is the sample number 

within a sub-segment, pi is the class label for each sam-
ple.

• Finally, for each classification result array, P was revised 
using the PV algorithm, which involved counting the 
number of each class for the array P =

[
p1,… , pn

]
 and 

obtaining the relevant majority class label (maxL[i]). 
Then each sample within the array P was set to the same 
class label, using their maxL[i].

(11)

yj =

n∑
k=1

w2
k,j
∙ f2

(
n∑

k=1

w1
k,j
∙ f1

(
d∑
i=1

w0
i,j
∙ xi + b0

)
+ b1

)
+ b2

Obviously, the hAHC and hSHC classifiers can reduce 
the number of possible misclassified samples for each seg-
mented signal. For example, 20 samples of walking action 
were observed for a sub-segment, out of which 12 samples 
were classified as walking but 8 samples were classified as 
standing by the sMLP. However, all samples in this seg-
mented signal were labelled as walking by the PV algo-
rithm. Thus, the hAHC and hSHC classifiers have potential 
to improve the robustness of the classification process by 
handling misclassified data.

4  Experiments

Nineteen subjects attended the experiments. The subjects per-
formed all or part of the predefined 5 test behaviours [sitting, 
walking, standing, running, lying] and data was collected from 
a waist-worn tag. The experimental results were shown as an 
animated figure in real-time and validated against synchro-
nized videos that were recorded using a camcorder.

4.1  Experimental protocols

The experimental protocols were designed and performed 
as follows:

1) The training dataset collection: Six subjects (Sub1-
Sub6) performed the 5 actions, described above, in a 

Fig. 5  Screen-shot showing the synchronized video with classified 
real-time Ax (collected from the steward) animated figures. The stew-
ard’s actions were standing, walking, running and lying down. The 
top and bottom figures show the dynamic real-time posture recogni-
tion results
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stated order within a laboratory environment. The col-
lected datasets were saved as trainSet.

2) The testing dataset collection: All the 19 subjects were 
divided into 3 groups. Each group was assigned 1 stew-
ard with 5 or 6 visitors, and performed 5 actions ran-
domly based on simulated a security scenario on an 
outdoor grass field in a public space. Datasets collected 
from each group were classified in real-time as shown 
in Fig. 5. Concurrently, the 19 datasets were saved as 
testSet separately.

3) A simulated security scenario: The ’visitors’ playing 
together on the grass field, a ’steward’ was standing or 
walking. Suddenly, one of the visitors complains he/she 
had a headache and laid down on the ground, resulting 
in the remaining visitors summoning the steward with a 
loud cry of “Help!” In response, the steward ran quickly 
towards the visitors (the top left of Fig. 5), kneeling 
(face down lying) to help the unwell visitor (the bottom 
left of Fig. 5).

4) Models training, testing and comparison: Three models 
sMLP, hAHC, and hSHC were trained using the trainset, 
tested using all the 19 testSet, and compared using inte-
grated datasets from 13 unfamiliar subjects.

4.2  Experimental results and discussion

The experiments were focused mainly on the adaptive signal 
segmentation (ASS) algorithm evaluation and comparison 
of the performance among the three classifiers. In addition, 
we conducted one other experiment to evaluate the signal 
calibration algorithm.

1. Acceleration calibration algorithm evaluation

First, one subject performed the 5 specified actions in 
the order walk-stand-run-sit-walk-lying, while collecting 
a raw dataset along with the calibrated dataset. Given this 
sequence of activities, we evaluated the classification per-
formance (using the hAHC) by considering the raw and cali-
brated signal.

The classification results are presented in Fig. 6, which 
shows that the acceleration calibration algorithm contributed 
to reducing the measurement noise, thereby improving the 
classification accuracy. For example, considering the raw 
dataset, all samples that were erroneously classified as run-
ning, could be linked to the large amount of noise present in 
the sensed data. Additionally, the sample numbers required 
were reduced by calculating the average value for each ’data 
sensing’ packet during the calibration processing phase. 
The ’data sensing’ packets from the IMU were arranged in 
the TLV (type-length-value) format. The size of each TLV 
packet differs, from 6 to 13 values, thus the calibration also 
contributed to reducing the overall data load.

2. Adaptive signal segmentation algorithm evaluation
The experimental results (see in Fig. 7) indicated that the 

ASS algorithm was able to obtain the boundary points (bps) 
correctly for most of the different subjects.

Fig. 6  Classification results based on the calibrated dataset (top of the 
figure) and the raw dataset (bottom of the figure)

Fig. 7  The ASS algorithm works well for most of the different sub-
jects. Here the Ax signal collected from Sub1 and Sub3 is presented

Fig. 8  The ASS algorithm resulted in some incorrect or missed bps 
for Sub8 and Sub9
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Figure 7 illustrates that the ASS algorithm separated sig-
nals for Sub1 and Sub3 correctly. The human test subjects 
performed the same actions (walking, running, sitting, lying, 
and standing) for different periods of time, and with their 
natural (and different) characteristics. Additionally, Sub3 
undertook a short period of standing before walking, shown 
within the red circle at the beginning of Fig. 7.

Figure 8 shows that the ASS algorithm missed some bps 
for signals collected from Sub8 and Sub9, as well as shift-
ing a bp position for the Sub9. While the problem can be 
reduced by increasing the number of human subjects used to 
learn the parameter th1, it can never be 100% correct for all 
subjects, so it needs to operate within an agreed ’acceptable 
error’ for the parameters selection.

Additionally, the proposed ASS algorithm was compared 
to the bottom-up and sliding-window methods included 
within the Ruptures package, which is a Python library for 
offline change point detection [30]. The comparison results, 
based on signals collected from Sub3 and Sub9, are pre-
sented in Fig. 9.

Figure 9 demonstrated that the bottom-up approach had 
similar performance to the ASS algorithm (the lower graphic 
in Fig. 7 for Sub3 and Fig. 8 for Sub9). They were both 
better than the sliding-window method. For example, ASS 
performed better for Sub3, and the bottom-up approach did 
better for Sub9, but sliding-window obtained missed bp for 
Sub3 and shifted bp for Sub3 and Sub9.

The main advantages of the ASS algorithm were found 
to be:

• The combination of the adaptive window method 
(divided as motionless/motion windows) and the bottom-
up approach (where the redundant points were deleted 
from the motion windows) improved the segmentation 
accuracy. This was particularly evident for brief periods 
of posture, such as the short motionless signal from Sub3 
at the beginning of Fig. 7.

• It should also be noted that ASS was ran online, for real-
time applications, rather than offline.

3. Comparison of the three classifiers’ performance
The three classifiers were evaluated in real-time using 

an animated figure as shown in Fig. 10. This was able to 
show immediately how many action sections were classified 
correctly or incorrectly, but could not provide a numerical 
count, since there were no class labels included in the real-
time dataset. Therefore, their performance was compared in 
two steps: (1) viewing the animated figures in real-time; (2) 
using classification accuracy gathered from the ’all subjects’ 
offline dataset with manually marked class labels.

Figure 10 illustrated the real-time classification results 
based on data collected from subject-1. The left side figure 
was classified using the hAHC model, and the right side 
figure was classified using the hSHC model. From these 
results, it is evident that both classifiers did well. The hAHC 
predicted correct actions for each of the adaptive windows 
(although some window boundaries shifted slightly). The 
hSHC predicted incorrect actions for only a few sliding 
windows (e.g. the walking action appeared in the running 
action period of time). Nevertheless, the hSHC showed the 
results in an overlapping manner that was less clear com-
pared to the results shown via the hAHC. In addition, Fig. 10 
did not include the result from the sMLP classifier, since it 
shows, for each of the samples, more overlap than the hSHC 
classifier.

Fig. 9  Signal segmentation results from the bottom-up and sliding-
window methods based on signals collected from Sub3 & Sub9

Fig. 10  Real-time classification results for subject-1 using hAHC and 
hSHC classifiers respectively

Fig. 11  Real-time classification result using the hAHC classifier for 
subject-9. Note that part of walking action was recognized as stand-
ing since a boundary point was missed by the ASS algorithm.
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The hAHC performance was susceptible to significant 
influence from the ASS result so, in some cases, the ASS 
algorithm resulted in a shifted bp, or missed some bp that 
will decrease the classification accuracy dramatically as 
shown in Fig. 11, where part of the walking action was clas-
sified as standing, since a boundary point was missed by the 
ASS algorithm, as is shown in the lower part of Fig. 8.

Three classifiers were compared using their classifica-
tion report based on integrated datasets from 13 unfamil-
iar human subjects. The experimental results are shown in 
Table 2 using the ’precision’, ’recall’, and ’ F1-score’ for 
each class.

The ’precision’ (also called the positive predictive value), 
provides a measure of the ability of the classifier not to label 
as positive, a sample that is negative. The ’recall’ (also 
known as ’sensitivity’), illustrates the ability of the classifier 
to find all the positive samples. The ’F1 score’ is a weighted 
average of the ’precision’ and ’recall’, with the best score 
being 1 and worst 0.

Table 2 indicates that the hAHC model improved the aver-
age ’recall’ slightly more than the hSHC, and significantly 
more than the sMLP (hAHC 82%; hSHC 79%; sMLP 71%) 
when used with the unseen datasets. The reason is that the 
three classifiers all classified the signal samples using the 
single model sMLP, but both hybrid models hAHC and the 
hSHC combined the sliding window segmentation with 
sMLP and PV algorithms to revise the results from the sMLP 
for each of the sliding windows, using the PV approach as 
shown in Fig. 12.

The difference between both is that the hAHC used the 
posture-based adaptive window (top of Fig. 12), in contrast 
to the hSHC which used the 1-s static window (bottom of 
Fig. 12), with both obtaining a similar classification accu-
racy, however the hSHC had an overlap issue for results 
displaying in a real-time animated figure. Thus, is why we 
selected only the adaptive hybrid classifier hAHC for our 
real-time system.

All three classifiers obtained a higher average ’recall’ for 
datasets collected from the training subjects but their aver-
age recall was lower for unseen subjects, since different sub-
jects have different behaviour for the same action as shown 
in Fig. 13. As is evident from these results, it is challenging 
to train a suitable common model for all subjects.

In terms of how our work has advanced the state of the 
art, while the deep learning methods proposed in [31, 32], 
have unified the feature learning and classification into one 
model as a way of enhancing the performance of posture 
recognition, the convolutional neural network (CNN) used 
requires significant data and time for training the model. For 
example, Yang et al. [31] used 136,869 and 32,466 samples 
for training and testing respectively, and spent around 1 h 
for the CNN training, while spending 8 min for testing. In 
contrast, the hAHC model presented in this study provides 
a more computationally efficient real-time human posture 
classification method, which displays better performance 
with unfamiliar subjects.

Table 2  Comparison of 
classification reports from the 
three classifiers evaluated using 
the same testing set collected 
from unseen subjects

Classes sMLP hAHC hSHC Support number

prec recall f1score prec recall f1score prec recall f1score

Sit 46 84 59 53 91 67 50 84 63 2310
Walk 72 78 75 89 91 90 81 95 87 4629
Stand 71 64 67 81 71 76 78 64 70 3406
Run 92 74 82 94 1 97 99 92 95 3403
Lying 90 60 72 99 61 75 1 60 75 3886
avg/total 76 71 72 86 82 82 84 79 80 17,634

Fig. 12  Comparison of the difference between the model hAHC and 
hSHC. The top figure shows the hAHC which used a posture-based 
adaptive widow segmentation with the PV approach; the bottom fig-
ure shows the hSHC which used a static sliding window segmentation 
with the PV method Fig. 13  Different people have different walking gaits, which poses a 

challenge for developing training models
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5  Conclusion and future work

This study was motivated by the need to devise better real-
time human posture classification methods for monitoring 
health incidents at home or monitoring security situations 
in a crowd environment.

Data-driven models are becoming popular for activity 
recognition, since their built in error terms quantify the 
generalization error [33]. However, previous research has 
used only a single model which has limitations for some 
situations. Thus, this work has investigated the potential for 
combining multiple models with the aim of achieving better 
performance than using any one of them alone.

In order to improve the posture recognition accuracy and 
the reliability for use with unseen datasets, three types of 
classifiers (one single model sMLP and two hybrid models: 
hAHC & hSHC) were designed and evaluated using a dataset 
collected from unseen subjects. Experimental results demon-
strated that the hAHC model performed best when compared 
to others, since it not only obtained the desired accuracy, but 
also displayed the real-time results clearly using the posture-
based adaptive window that avoids the overlapping issue. 
In this way the work has advanced the state-of-the-art in 
classification and posture recognition. Thus, from this work, 
and supported by the literature review findings, the novelty 
of this study can be summarized as follows:

• The development of a novel software-only-based sen-
sor calibration algorithm that can improve accelerometer 
precision efficiently compared to earlier hardware-based 
methods.

• The creation of an innovative hybrid model hAHC which 
combines three complementary classifiers in three layers 
(ASS + sMLP + PV), that are able to reduce the number 
of misclassified samples from the sMLP classifier by 
using the PV approach within each posture-based adap-
tive sliding window, that have each been separated via 
the ASS algorithm, as shown in Fig. 12.

• The adoption of a creative visualization method whereby 
posture classification that was performed in real-time, is 
visualized clearly in an animated format.

Additionally, like many other systems, the output of the 
analysis can provide real-time reminders when an abnormal 
activity occurs (eg. falls).

Finally, by way of future plans, we aim to investigate the 
development of a sub-function that will automatically train 
an individual model for each new user as this would provide 
a very efficient way for improving the classification system’s 
robustness and reliability.
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