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Abstract
Many real-world datasets nowadays are of regression type, while only a few dimensionality reduction methods have been 
developed for regression problems. On the other hand, most existing regression methods are based on the computation of 
the covariance matrix, rendering them inefficient in the reduction process. Therefore, a BMA-based multi-objective feature 
selection method, GBMA, is introduced by incorporating the Nash equilibrium approach. GBMA is intended to maximize 
model accuracy and minimize the number of features through a less complex procedure. The proposed method is composed 
of four steps. The first step involves defining three players, each of which is trying to improve its objective function (i.e., 
model error, number of features, and precision adjustment). The second step includes clustering features based on the cor-
relation therebetween and detecting the most appropriate ordering of features to enhance cluster efficiency. The third step 
comprises extracting a new feature from each cluster based on various weighting methods (i.e., moderate, strict, and hybrid). 
Finally, the fourth step encompasses updating players based on stochastic search operators. The proposed GBMA strategy 
explores the search space and finds optimal solutions in an acceptable amount of time without examining every possible 
solution. The experimental results and statistical tests based on ten well-known datasets from the UCI repository proved the 
high performance of GBMA in selecting features for solving regression problems.

Keywords Feature selection · Nash equilibrium · Multi-objective optimization · Biology migration algorithm · Game 
theory

1 Introduction

Datasets are almost constantly generated in different areas, 
such as industry, social networking, and business. They can 
be represented in the form of networks to gain insights from 
many perspectives, including patterns of information diffu-
sion. Nowadays, a lot of attention is being paid to the study 
of network analysis technologies because of their consider-
able impact on many fields, such as classification [1], clus-
tering [2], and link prediction [3]. For example, sociologists 
classify individuals into various social media groups [4], 

and biologists predict protein–protein links in interaction 
networks and discover missing relations between proteins 
[5]. However, real-world networks have grown to such a 
large-scale, so researchers are trying to embed them into a 
low-dimensional space while preserving the useful features 
[6]. Shi et al. [7, 8] proposed two network embedding (NE) 
procedures for node classification and a multi-label network 
embedding (MLNE) to learn feature representations where 
each node contains some feature values and a set of class 
labels. These large datasets indeed contain irrelevant, redun-
dant, or erroneous features. Computational burden, increas-
ing storage requirements, overfitting, decreasing prediction 
performance, and poor output comprehensibility are some 
of the disadvantages engendered by applying large-scale 
datasets with misleading features. Dimensionality reduc-
tion is a crucial preprocessing step in the analysis of high-
dimensional datasets, generally including two strategies: fea-
ture extraction and feature selection [8]. Feature extraction 
tries to define new features by transforming or combining 
the original features. Two conventional feature extraction 
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techniques are principal component analysis (PCA) and 
independent component analysis (ICA) [9]. Feature selec-
tion tries to eliminate redundant or unnecessary features and 
selects only those features that are sufficient for solving a 
problem. Hence, it makes the model simpler and compre-
hensible by removing insignificant features.

However, finding the best-performing feature subset is a 
complicated process, especially for a high-dimensional prob-
lem due to the large search space. In the last few decades, 
many traditional feature selection algorithms like sequen-
tial forward selection (SFS) [10] and sequential backward 
selection (SBS) [11] have been utilized to provide promising 
results in dealing with feature selection problems. Neverthe-
less, they suffer several issues, such as computational com-
plexity [12] and nesting effects [13]. We can consider the 
feature selection challenge as a multi-objective optimization 
(MOO) problem. There is a trade-off between some objec-
tives (e.g., the minimum number of features and minimum 
error value); thus, optimization techniques can be used to 
strike the right balance between objectives. In some datasets, 
the error rate of the classifier can be reduced by removing 
irrelevant and redundant features.

Nonetheless, if a dataset only consists of key features 
required by the classifier, removing any feature may reduce 
the accuracy of this classifier and so the two objectives con-
flict with each other. Notably, investigating the importance 
of different features requires various levels of costs like time, 
storage, or other resources. That is, too many features entail 
higher costs.

Today, the metaheuristic method is becoming increas-
ingly popular in feature selection and machine intelligence 
[14, 15]. Several metaheuristic based feature selection strate-
gies have been developed over the years. The basic process 
of such methods is to optimize an objective function that 
is defined for feature selection to find the optimal feature 
subset. The metaheuristic-based feature selection algorithms 
randomly generate new solutions and compute their fitness 
values. In subsequent iterations, new solutions are created by 
the best agents of the current iteration. Hence, these methods 
prevent the creation of a solution similar to the previous one, 
thereby reducing the computational time in determining the 
best subset of features. A majority of feature selection meth-
ods have been developed to handle classification problems, 
and there has been less focus on regression problems [16]. 
Regression involves predicting a real value of output param-
eter (i.e., continuous target variable) for the given values of 
other parameters, which is based on previous input–output 
observations. The focus of this study is to adopt Biology 
Migration Algorithm (BMA) in a feature selection method 
to solve regression problems. The experimental results in 
[17] with several test functions and four real-life engineering 
problems proved that BMA is more effective compared with 
other related optimization techniques. These include Whale 

Optimization Algorithm (WOA) [18], Bat Algorithm (BA) 
[19], Animal Migration Optimization (AMO) [20], Cuckoo 
Search (CS) [21], Gravitational Search Algorithm (GSA) 
[22], Biogeography-Based Optimization (BBO) [23], and 
Particle Swarm Optimization (PSO) [24].

The proposed strategy applies BMA for solving the 
dimensionality reduction problem to minimize the number 
of features and errors. It also introduces a new approach 
for feature clustering based on the correlation between fea-
tures and game theory. Game theory is a branch of modern 
mathematics that has recently received much attention from 
researchers in the study of cross-discipline [25]. It quantifies 
interactions among incentive structures or various players 
for strategic interdependence. When there is more than one 
agent who independently performs their own behavior in the 
process, game theory can present a suitable framework for 
the analysis of interactions between these decisions [26]. In 
this paper, we apply game theory to deal with the conflict 
and competition among multiple objectives in the feature 
selection problem.

The remainder of the paper is structured as follows. Sec-
tion 2 briefly reviews some related works. Section 3 lists the 
main contributions of the paper. Section 4 illustrates basic 
concepts about multi-objective optimization and the Nash 
heuristic method. Section 5 presents the proposed dimen-
sionality reduction strategy. Section 6 focuses on reducing 
the computational complexity of the proposed algorithm. 
Section 7 reports the experimental results based on UCI 
datasets and some discussions. Section 8 concludes the 
paper and presents future work.

2  Related works

Although much research has been conducted on dimen-
sionality reduction, regression problems are rarely studied 
compared with classification problems. One of the reasons 
may be a simple formulation for feature selection criteria 
like the broad margin framework with considering class dis-
criminability [27, 28]. Some feature selection algorithms for 
classification can be extended for regression problems, while 
others may not. Straightforward adaptation by discretizing 
(or binning) the output variable into several classes is not 
always a suitable solution since this can lead to the loss of 
important information [16]. Moreover, most feature cluster-
ing techniques compute the conditional probability of a fea-
ture belonging to a particular class. Thus such probabilities 
cannot be defined for the regression problem.

Consequently, these algorithms cannot be used directly 
for reducing dimensions of regression problems. On the 
other hand, most existing methods of regression are based 
on the computation of the covariance matrix, eigenval-
ues, and eigenvectors, rendering them inefficient for large 



305International Journal of Machine Learning and Cybernetics (2021) 12:303–342 

1 3

problems. For example, the mRmR [29], relief [30], and 
LDA [31] methods can be used for classification and with 
some changes for regression problems. These methods are 
explained in detail as follows.

• Linear discriminant analysis (LDA): It is originally intro-
duced for supervised learning, especially classification 
problems, applicable for finding the optimal linear dis-
criminant functions (OLDFs) [31]. LDA attempts to pro-
vide linear combinations of features in such a way that 
the ratio of between-class scatter and within-class scatter 
be maximized. Unlike classification problems that have 
discrete output or classes, it is challenging to consider 
between- and within-class scatter matrices in regression 
applications because the continuous target variable is 
defined. One solution for presenting a regressional ver-
sion of LDA is that we segment the given dataset into 
several intervals (i.e., virtual classes) according to the 
output values with the fixed boundaries. The original 
LDA for classification problems can now be used, yet 
the results will depend on the number of intervals and the 
boundary approach. Moreover, this modified LDA strat-
egy does not consider the degrees of similarity among 
various classes. Kwak and Lee [32] proposed a regres-
sional version of LDA and extended ICA-FX for regres-
sion problems [33].

• Relief: The original version of the Relief method [30] is 
used only for binary problems. It ranks features accord-
ing to the determination of feature value differences 
between  the nearest neighbor  example pairs. Then, 
Sikonja and Kononenko [34] proposed a new modified 
version (ReliefF) for regression problems. Neverthe-
less, the nearest cannot be used for regression problems 
because the predicted variable (i.e., class) is continuous. 
Therefore, Relief-F [35] for regression is introduced. 
It defines a probability based on the relative distance 
between the predicted and actual values to determine 
whether or not the predicted values of two objects are 
different.

• Minimum redundancy, maximum relevance (mRmR): 
The mRmR method [29] tries to choose some features 
that show the highest correlation with a class, and there 
is the least correlation between themselves. Obviously, 
the relevance and redundancy measures for classifica-
tion and regression must be different. For the calcula-
tion of relevance, "F-statistic" and "mutual information 
(MI)" are suitable for continuous features and discrete 
features, respectively. To calculate redundancy, Pearson’s 
correlation coefficient and MI are applied for continuous 
features and discrete features, respectively [36].

Now, we present a brief literature review on the new 
feature selection and feature clustering approaches. Xu and 

Lee [16] developed a feature clustering method to reduce 
the dimensionality of regression problems. The proposed 
algorithm creates a group of clusters based on similarity 
tests such that similar items fall into the same cluster. Then, 
it constructs a new feature from each cluster using three 
weighting methods, namely hard, soft, and mixed, which 
are based on the weighted combination of training samples. 
One strength of this method is that the number of clusters is 
automatically obtained during the process without requiring 
to be adjusted by the user. By providing the experimental 
result, they demonstrated that the proposed algorithm could 
significantly reduce dimensionality while the main proper-
ties of the primary dataset are retained. The main disadvan-
tage of this method is that it shows the high computational 
complexity for high-dimensional datasets.

Rao et al. [37] presented a feature selection algorithm by 
using the bee colony and gradient boosting decision tree. 
The proposed algorithm preprocesses and reduces the irrele-
vant features of the original dataset by the bee colony. Then, 
it tries to forcibly reduce the initial feature set and create 
a decision tree for determining the weight of features and 
supporting the accuracy of the model. The experiments indi-
cated that the proposed algorithm could reduce dimensional-
ity without sacrificing classification accuracy. However, the 
employment of a decision tree in the weighting process is 
time-consuming and computationally expensive.

Zhang et al. [38] modified the firefly optimization algo-
rithm for feature selection. In population initialization, it 
uses a chaotic logistic map to increase swarm diversity. In 
the search process, it applies Simulated Annealing (SA) and 
optimal global signals. To improve convergence, the pro-
posed algorithm diverts weak solutions to optimal regions 
by swarm leaders. The experiments based on several classi-
fication and regression problems indicated that the proposed 
firefly model outperforms other classical methods. However, 
they did not consider outlier detection.

Ghimatgar et al. [39] proposed a new feature selection 
strategy, i.e., Modified Graph Clustering based Ant Colony 
Optimization (MGCACO), according to the graph clustering 
and ant colony optimization. The MGCACO algorithm con-
sists of three main steps. The first step involves investigating 
the relevance of features to classes to improving pheromone 
initialization and assigning a higher priority to the more rel-
evant features. The second step includes finding the redun-
dancy of feature subsets based on the multiple discriminant 
analysis (MDA). Finally, the third step comprises arranging 
features according to relevance and redundancy analysis by 
applying a cost function. The experimental results indicated 
the superior performance of MGCACO in terms of accuracy. 
However, the main weakness of MGCACO is that there is no 
specific way of determining the number of clusters.

Table 1 compares general characteristics, main idea, 
and limitations of the methods reviewed previously. Most 
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dimensionality reduction techniques presented in the litera-
ture are feature selection methods, and a few feature extrac-
tion approaches are considered. Based on theoretical and 
empirical results [40], traditional algorithms suffer from 
three problems. Firstly, they have problems with overhead 
memory space for large datasets and discovering the rela-
tionship between features that significantly affect the effi-
ciency and accuracy of the model. The second drawback 
of previous feature selection methods is that they are eas-
ily get trapped into local optima during search processes. 
Therefore, these behaviors cause substantial growth in fea-
ture selection delay in exploiting the correlation among lots 
of relevant features. Thirdly, traditional algorithms may not 
be efficient and robust for high-dimensional heterogeneous 
datasets with low quality and noisy points. Nevertheless, 
robustness is an essential characteristic of satisfactory fea-
ture selection methods (SFSMs) because the presence of 
noise in big data is inevitable, and the processing time may 
increase by high noise levels. Consequently, an effective fea-
ture selection algorithm is necessary to overcome several 
issues in existing algorithms, such as problems of algorithm 
implementation, convergence, and computational complex-
ity for regression applications.

Although there has been a lot of research on feature selec-
tion based on metaheuristics as well as simultaneous fea-
ture selection and clustering, little attention has been paid to 
using game theory in feature selection. The main reason is 
that metaheuristic techniques have performed remarkably in 
solving complex problems, thanks to flexibility, faster con-
vergence by focusing on intensification, and local optima 

avoidance by emphasizing diversification. Furthermore, 
game theory can help determine an efficient solution by ana-
lyzing conflict and cooperation among various objectives. 
To the best of our knowledge, most game-theoretic feature 
selection algorithms are proposed for use in classification 
problems. Consequently, it would be meaningful to investi-
gate the issue of metaheuristic based game theoretic feature 
selection for identifying the best subset of features, substan-
tially affecting target prediction. In this paper, we propose a 
new game theory-based dimensionality reduction algorithm 
to deal with conflict and competition among multiple objec-
tives of data regression. Thanks to its versatility and robust-
ness, game theory has been applied to solve some complex 
problems in different research areas like task scheduling and 
resource management [41]. Moreover, algorithms, according 
to game theory, show low computational complexity and 
high computational speed.

3  Contributions

Below is a list of some issues raised in Table 1 that require 
further attention:

• Feature selection strategies presented in the literature have 
been focused on classification problems, and these algo-
rithms cannot be used quickly and efficiently to reduce 
the dimensionality of regression problems. However, the 
proposed algorithm can be used for both regression and 
classification problems with a small modification.

Table 1  Summary of dimension reduction methods

References [16] [37] [38] [39]
Year 2015 2019 2018 2018
Classification/regression Regression Regression Classification/regression Classification
Datasets 4 UCI datasets 8 UCI datasets 33 UCI datasets 7 UCI datasets
Single/multi-objectives Single objective Single objective Multi-objective Single objective
Feature selection/extrac-

tion
Feature selection and 

extraction
Feature selection Feature selection Feature selection

Main idea Design three feature 
weighting approaches

Apply gradient boosting 
and decision tree

Utilize a chaotic map func-
tion and update agents’ 
positions with SA and 
firefly algorithm

Apply  graph clustering and 
ant colony optimization

Weakness (1) High computational 
complexity

(2) Avoiding the order 
of features during the 
clustering process

(1) The artificial bee col-
ony has some drawbacks 
such as: (I) lack of use of 
secondary information; 
(II) The population of 
solutions increases the 
computational cost

(2) Boosting approaches 
are from empirical 
evidence and particularly 
vulnerable to noises

(1) Lack of method for 
outliers detection

(2) High computational 
complexity

(3) Sensitive to noise

(1) Consume a lot of time to 
generate clusters

(2) Lack of method for outli-
ers detection

(3) Filter_based approach 
may increase the error rate 
of classifier



307International Journal of Machine Learning and Cybernetics (2021) 12:303–342 

1 3

• All studies have referred to the multi-objective nature of 
the feature selection problem, though they have indeed 
dealt with it as single-objective. To address this issue, 
the proposed algorithm solves the feature selection prob-
lem to realize three objectives. These are minimizing the 
regression error rate, minimizing feature cardinality, and 
adjusting method precision. For this purpose, it takes 
advantage of BMA, which is a new metaheuristic method 
inspired by the biology migration phenomenon.

• The sequence of features, weighting methods for feature 
extraction, and fitness values are used as heuristic infor-
mation for the BMA method. Less important features are 
suppressed based on the information they contribute to 
decision-making using the BMA algorithm.

• In the proposed algorithm, a coalitional game occurs 
between features to generate appropriate clusters. Put dif-
ferently, features are considered as players, each of which 
wants to join a group of features and generate a cluster 
with high correlation among players (i.e., the correla-
tion coefficient is considered as a coalitional function). 
The majority of previous strategies have user-defined 
parameters (e.g., number of clusters and threshold value). 
However, in the proposed method, clusters are gener-
ated automatically without determining the number of 
clusters by the user. Furthermore, three populations are 
defined as players to play a non-cooperative game, and 
each of which aims to improve its own fitness function 
(i.e., model error, number of features, and Mallows’ Cp).

• Most feature selection strategies are extremely time-con-
suming, rendering them inefficient for large problems. 
Therefore, the proposed method uses MapReduce and 
space reduction techniques to reduce time complex-
ity. It is also used to perform preprocessing (i.e., han-
dling missing values and detecting outliers) to improve 
data quality and increase overall productivity.

• We have performed extensive experiments based on 
ten regression datasets. The proposed algorithm (i.e., 
GBMA) is compared with conventional state-of-the-
art methods in two parts. Firstly, various swarm-based 
techniques, including MGWO, ABCoDT, and CPSOS, 
are evaluated. Secondly, the non-swarm intelligence-
based techniques, including well-known feature extrac-
tion algorithms (e.g., LDAr, WPCA, and FC-C-S), are 
compared. Moreover, a statistical analysis validates the 
efficacy and superiority of the proposed method.

4  Preliminaries

In this section, we briefly review the basic information about 
BMA, MOO, and Nash equilibria that are used in the pro-
posed algorithm (i.e., GBMA).

4.1  Biology Migration Algorithm (BMA)

One of the major techniques for solving complex optimiza-
tion problems is nature-inspired metaheuristic algorithms. 
Zhang et al. [17] proposed a metaheuristic algorithm called 
Biology Migration Algorithm (BMA) that is based on the 
biology migration behavior in nature. BMA consists of three 
steps as follows:

• Population generation: This step models the movement 
of different biotic species to a new location. Population 
P with N search agents is randomly generated from the 
problem space [17].

• Migration phase: It contains two rules: (1) The positions 
of agents are modified based on the best position of the 
solution space, and (2) The agent moves to a new loca-
tion according to its neighborhood solutions.

• Updating phase: If a solution cannot be improved dur-
ing a pre-defined number of cycles (Max_C), it will be 
replaced by a new one in the solution space. The pseudo-
code of this phase is presented by Algorithm 1 [17], 
where Xi (t) indicates the i-th search agent of the popula-
tion at the t-th iteration.

4.2  Multi‑Objective Optimization (MOO)

Generally, MOO is defined as finding a vector of variables 
to minimize (or maximize) a vector of objective functions 
in a feasible region. Thus, it can be modeled as Eq. (1) [42]:

where x indicates the vector of variables, fd(x) shows the d-
th objective function, and q(x) indicates the constraint vector.

(1)
Minimize F(x) = [f1(x), f2(x),… , fd(x)] , Subject to q(x) ≤ 0,
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One of the main challenges in MOO is the conflicting 
objectives (i.e., a trade-off between objectives). In other 
words, one objective is achieved only by making conces-
sions to another objective; thus, the optimal solution cannot 
be found for all m objective functions simultaneously. Con-
sequently, a "compromise solution" is acceptable for these 
problems.

One of the primary ways to deal with the multi-objective 
problem is to consider scalar objectives and define the lin-
ear combination of weighted objectives [43]. However, this 
method will be applicable and efficient once the weights 
can be determined correctly. This method also has some 
weaknesses, such as sensitivity to weights and sometimes 
engendering the loss of information [43]. Two obvious con-
tradictory objectives in the feature selection problem are 
minimizing the number of features and minimizing the error 
rate. The feature selection process attempts to select a few 
significant features to obtain similar or even better regression 
performance, rather than considering all features. Hence, 
we consider feature selection as a bi-objective minimization 
problem. In this paper, we apply a non-cooperative schema 
with the notion of a player to solve the multi-objective fea-
ture selection problem.

4.3  Nash heuristic method

In 1950, Nash introduced the fundamental concept of deter-
mining equilibria in cases where several competing players 
seek to optimize their objective functions [43]. If an opti-
mization problem consists of d objectives, the Nash strategy 
will define d players, each of which with its own optimiza-
tion criterion. Each player seeks to optimize its own crite-
rion by assuming that the criteria of the other players are 
fixed. When none of the players can improve their criteria, 
the system reaches a state of equilibrium called the Nash 
equilibrium [39]. The idea of combining Nash with heuris-
tic methods is to bring together a heuristic method and the 
Nash strategy to find the Nash equilibrium as a solution for 
MOO problems.

5  The proposed method

This paper proposes a novel dimensionality reduction tech-
nique based on BMA and game strategies, i.e., GBMA. 
GBMA is hybridized with two specific game strategies, i.e., 
the Nash strategy and coalitional game, to find the best solu-
tion and solve the multi-objective feature selection problem. 
Firstly, the preprocessing steps are taken to transform the 
original dataset into a format that is easily and more effec-
tively applicable to future processing phases. The main pro-
cesses taking place here handle the missing values and detect 
outliers [44, 45]. Using interquartile range (IQR) [43], we 

attempted to detect and remove outliers to provide a model 
that fits well the reality and undeviated by outliers. IQR indi-
cates how the data spreads about the median and is used 
for outlier detection. In other words, outliers are defined as 
objects that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR 
[46]. Handling the missing values is an essential step during 
model development since they affect conclusions derived 
from the data. Missing data can be removed when it is lim-
ited to a small number of objects, followed by processing 
the remaining objects. This method is called listwise dele-
tion and considered as a default option in most statistical 
software packages [47].

5.1  GBMA framework

Figure 1 shows the framework of the proposed method that 
consists of four major steps as follows:

• In the first step, the population of agents is initialized as 
players (see Sect. 5.2).

• In the second step, the features corresponding to each 
agent are clustered based on their correlation coefficients. 
That is, these features are considered as players that play 
a coalitional game, each of which desires to join the fea-
tures that increase the correlation coefficient of extracted 
features (see Sect. 5.3).

• In the third step, the new features are extracted from each 
cluster based on the weighting methods (see Sect. 5.4).

• In the fourth step, the best agent of each population is 
determined, followed by updating the agents of two pop-
ulations (see Sect. 5.5).

Moreover, steps 2–4 are repeated until the stopping cri-
terion is satisfied; otherwise, the algorithm is stopped, and 
the best feature set is reported.

5.2  Definition of populations as players

This section initially defines the fitness function and then 
introduces the agent representation. For each objective in the 
fitness function, players (i.e., populations) are defined that 
participate in a game, each of which attempting to improve 
their objective. This game is continued until none of the 
players can improve its objective.

5.2.1  Fitness function

The proposed algorithm deals with the feature selection 
problem as a MOO problem. We attempt to optimize three 
different objectives with three players by computing the 
population of agents for each criterion. The fitness function 
is calculated by Eq. (2):
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where Er(R) is the regression error rate, |L| indicates the 
length of the feature, |T| is the total number of features, 
MSEFULL is the MSE for the full model (i.e., the model 
containing all features). SSEh indicates the residual sum of 
squares (RSS) for the subset model containing h features 
(i.e., h is the number of features after the feature selection 
process). Moreover, All_s is the sample size. In Eq. (2), Wr , 
Wf  , and Wp are three parameters corresponding to the impor-
tance of regression quality, subset length, and model preci-
sion, respectively, where Wr, Wf , Wp ∈ [0, 1][0, 1].

Figure 2 presents the attempts made to optimize three dif-
ferent objectives participating in fitness calculation (Eq. 2) 
and how such merging can be achieved with three players. 
We show the candidate solution for a triple objective func-
tion by Eq. (3):

where X X′ , and X′′ show the first, second, and third criteria.
The optimization processes of X,X′ , and X′′ are assigned 

to Player1, Player2, and Player3, respectively. Based on the 
Nash theory, Player1 tries to optimize S according to the 
first criterion by changing X , while X′ and X′′ are fixed by 
Player2 and Player3, respectively. Similarly, Player2 seeks 
to optimize S according to the second criterion by chang-
ing X′ , while X and X′′ are fixed by Player1 and Player3, 
respectively. In this paper, a population is created for each 
player (i.e., three populations). Player 1’s optimization pro-
cess is carried out by the first population, whereas Player2’s 

(2)

fitness = Wr × Er(R) +Wf ×
|L|
|T| +Wp ×

(
SSEp

MSEFULL

− All_s + 2h

)
,

(3)S = XX�X��

and Player3’s optimization processes are performed by the 
second and third populations, respectively.

Let Xk−1 be the best value found by Player1 at generation 
k − 1, X�

k−1
 and X��

k−1
 be the best values found by Player2 and 

Player3, respectively, at generation k − 1. At generation k, 
Player1 optimizes X using X�

k−1
 and X��

k−1
 to evaluate S (i.e., 

S = XkX
�
k−1

 ). Likewise, Player2 optimizes X′
k
 using Xk−1 and 

X��
k−1

 (i.e., S = Xk−1X
�
k
X��
k−1

).
After the optimization process, Player1 forwards the best 

value Xk to Player2 and Player3, which will apply it at gen-
eration k + 1. Likewise, Player2 forwards the best value X′

k
 

to Player1 and Player3, which will apply it at generation 
k + 1. This process is repeated for X′′

k
 as the best value for 

Player3. Nash equilibrium is reached when the three players 
(i.e., Player1, Player2, Player3) cannot improve their criteria.

5.2.2  Agent representation

In our schema, each agent in a population consists of two 
parts. The first part is named Sequencing, whose size is 
equal to the number of features in a dataset. Each agent rep-
resents the order of features affecting clustering. The second 
part determines the weighting method used to extract new 
features. Each cell of agents in the first part consists of a 
constant value between [0, M1], where M1 shows the total 
number of features. In the second part, each cell consists of 
a constant value between [0, M2], where M2 indicates the 
total number of weighting methods. Therefore, the problem 
dimension in this paper is equal to M, which is the sum of 
M1 and M2. Each cell is rounded to the next highest integer, 
after which the index of intended features and weighting 
method is determined.

Fig. 1  The framework of 
GBMA
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Figure 3 shows an example of a population and its agents. 
Here, we can see the agent coding and decoding for a dataset 
with four features. For example, in the first agent, the indices 
of Feature1, Feature2, Feature3, and Feature4 are indicated 
by 0.75, 1.33, 2.76, and 3.1, respectively. At the end of this 
section, two populations are generated, similar to Fig. 3.

5.3  Cluster generation

This section illustrates the correlation measure and explains 
how clusters are generated based on coalitional games.

Fig. 2  A block diagram of Nash strategy for three objectives

Fig. 3  An example of a population and its agents
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5.3.1  Correlation coefficients of features

The proposed algorithm seeks to group the most similar 
features in the same cluster by a coalitional game. In our 
method, clustering mainly aims at finding relationships 
between features where the most distinct and informative 
features are used in feature extraction. Pearson’s correlation 
coefficient is applied to estimate the correlation between dif-
ferent features. Hence, the correlation coefficient between 
two features fei and fej is obtained using Eq. (4) [48]. The 
features in each agent are taken as players, where they col-
laborate to attain a higher correlation coefficient:

where xi(l) and xj(l) are values of feature vector fei and fej for 
the l-th sample, respectively. xi is the mean of xi and xj is the 
mean of xj over all All_S samples. According to Eq. (4), high 
Cp values indicate high similarity between the two features.

Upon determining correlation coefficients between fea-
tures, the correlation value for feature i can be defined by 
Eq. (5) [48]:

where T denotes the total number of features. The low value 
of this parameter for a feature suggests a low similarity 
between this feature and other features (i.e., this is a distinc-
tive feature among other features).

5.3.2  A coalitional game among features

This section explains a coalitional game among features. 
Each feature is considered as a player in the game. A payoff 
function is defined by Eq. (6):

It is assumed that vi(i) = 0 ∀i.
There is a preference relation ( ≻i ) between each feature 

and the feature subsets based on Eq. (7):

where K1 and K2 are two features, C1 and C2 are two clusters, 
T denotes the total number of features, and vi is a payoff 
function.

(4)Cpij =

All_S∑
l=1

(xi(l) − xi)(xj(l) − xj)

�
All_S∑
l=1

(xi(l) − xi)
2

�
All_S∑
l=1

(xj(l) − xj)
2

,

(5)
Corri =

T∑
j=1

���Cpij
���

T − 1
i ≠ j,

(6)vi(j) =
|||Cpij

||| ∀i, j ∈ N.

(7)

K1 ≻i K2 ⇔

∑
j∈C1

vi(j) ≥
∑
j∈C2

vi(j) ∀K1,K2 ∈ fei i = 1, 2,… , T ,

While forming a coalition, each feature wants to join the 
feature group that maximizes its payoff function.

This process is regarded as a coalitional game. Each fea-
ture seeks to find a cluster contributing to its high correlation 
with the features of that cluster while decreasing the correla-
tion between feature and output. Figure 4 depicts an example 
of a coalitional game envisaged in the proposed method. In 
this type of game, players try to improve the payoff function. 
For example, consider a dataset with four original features 
(i.e., four participating players) and one target. There is an 
agent with five cells, the first four cells of which indicate the 
order of features for clustering, and the last one indicates the 
weighting method for feature extraction. First, a cluster (G1) 
with Feature4 that is the first feature number in the agent is 
generated. Then, the relation (i.e., correlation) between the 
next feature in the solution (i.e., Feature2 in Fig. 4) with the 
generated cluster and other remaining features are examined.

If the correlation is not improved with joining this fea-
ture to cluster G1, the aforesaid feature (i.e., Feature2) and 
feature with the highest correlation (i.e., Feature3 with a 
correlation value of 0.8) generate a new cluster called G2. So 
far, the state of three features is determined (i.e., Feature4 is 
in cluster G1, and Feature2 and Feature3 are in cluster G2). 
Now, the correlation of the last feature in the agent (i.e., 
Feature1) with cluster G1 and cluster G2 is checked. Since 
there is more than one feature in cluster G2, the average 
correlation between these two features and Feature1 should 
be determined. Ultimately, the final feature is placed in the 
cluster with the highest degree of correlation with its mem-
bers. In other words, cluster G2 with 0.68 is selected for 
Feature1 in Fig. 4.

5.4  New feature extraction

Upon cluster generation, a new feature is extracted 
from each cluster. If T original features are grouped 
into C clusters, they can be represented by C new fea-
tures since all features within a cluster are quite simi-
lar. Let us assume that original features are represented 
with vector fej =< fe1j, fe2j,… , feAll_sj >

T , 1 ≤ j ≤ T  , 
where All_s denotes the total number of samples in the 
dataset. Then, the new features are shown with vector 
D�

h
=< D�

1h
, D�

2h
,… ,D�

All_sh
>

T , 1 ≤ h ≤ Number_new_features 
and defined as follows:

where

(8)D� = Z ∗ Fe,

(9)D� = [D�
1
D�

2
…D�

h
]

(10)Fe = [fe1 fe2 … feT ]
T
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Thus, Z shows the weighting matrix. From Eq. (8), we 
have:

The proposed method assumes three weighting methods 
as strict, moderate, and hybrid as follows:

Strict method: Here, each feature only affects the creation 
of a new feature for its own cluster. Hence, for 1 ≤ j ≤ T  , it 
is defined as follows [24]:

(11)Z =

⎡⎢⎢⎣

S11 … S1T
… ⋱ …

Sh1 … ShT

⎤⎥⎥⎦
.

(12)
D�

h
= Sh1fe1 + Sh2fe2 +⋯ + ShT feT , 1 ≤ h ≤ Number_new_features.

(13)

Sst
hj
=

{
1, if h = arg max

1≤h≤number_clusters
Corrst(fej,Gh)

0, otherwise
,

where Corrst represents the correlation in the strict weighting 
method. According to Eq. (13), if fej belongs to cluster Gh

,Sst
hj

 is 1, and Sst
vj

 is 0 for v ≠ h . However, in this method, a 
feature cannot contribute to constructing more than one new 
feature.

Moderate method: Here, each original feature contributes 
to extracting features according to its correlation value. For 
moderate method, we have:

where Corrmo denotes correlation in the moderate weighting 
method for generating new features, and T denotes the total 
number of features.

Based on Eq. (14), feature fej has the greatest effect on 
the construction of feature D′

h
 when it has the most strong 

correlation with cluster Gh , while other features are less 
effective.

(14)
Sm
hj
= Corrmo(fej,Gh) 1 ≤ j ≤ T , 1 ≤ h ≤ number_clusters,

Fig. 4  An example for coalitional game among features
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Hybrid method: It is a combination of the two methods 
above. Thus, it can be represented as follows:

where Sst
hj

 and Sm
hj

 are determined based on Eqs. (13) and (14), 
respectively. The value of � is set by the user in the range 
[0–1]. According to Eq. (15), the hybrid method operates as 
a strict method when � is set to 1. Likewise, the hybrid 
method is identical to a moderate method when � is set to 0.

Once D′ is calculated, the new dataset can be obtained 
as follows:

(15)Shj = � × Sst
hj
+ (1 − �) × Sm

hj
,

(16)X�
i
=< D�

i1
, D�

i2
,… ,D�

ih
>, 1 ≤ i ≤ All_s, 1 ≤ h ≤ Number_new_features.

Fig. 5  An example for the hybrid method

As indicated, the dimension of the input vector for each 
sample is reduced to h (h < T). Therefore, the new dataset 
may be stated as follows:

Using the previous example, a new feature generation 
procedure can be illustrated. In Fig. 4, the hybrid weighting 
method used for extracting new features is selected based on 
the rounded value of the last cell. Now, S

hj
 value is calcu-

lated based on Eq. (15). Figure 5 shows an example of the 
hybrid method. Figure 6 indicates the hybrid values and the 
newly constructed features.

From Fig. 4, it can be observed that the last agent cell is 
2.1. Upon rounding up, the third method (i.e., hybrid method) 
is used for generating new features. The hybrid weighting 

(17)d�
i
= (X�

i
, y), 1 ≤ i ≤ All_s.

method is obtained by Eq. (15). It combines strict and moder-
ate weighting methods (Eqs. 13, 14). Hence, it is necessary 
to calculate the strict and moderate weights of each feature in 
all clusters. For example, the moderate weight for Feature1 
based on cluster G1 is equal to − 0.13 that is calculated based 
on Eq. (14). Its strict weight is 0 since Feature1 is not in clus-
ter G1. The moderate and strict weights based on cluster G2 
for Feature1 are equal to 1; hence, the hybrid weight is set to 
1. This process is repeated for each feature. Upon obtaining 
the weighting matrix for all features in each cluster, the new 
features are calculated based on Eq. (12). In Fig. 6, a new 
feature D1 based on cluster G1 is calculated as follows:

This process is repeated for cluster G2 like D1.

5.5  Updating players and populations

In this work, there are three populations, each of which with 
different objectives for optimization. The first and second 
populations seek to minimize the number of features and 
model errors, respectively. The third one attempts to find a 
good trade-off between a model with all features and a model 
with selected features in terms of precision value. Thus, the 
fitness of each agent is evaluated based on its population 
objective. Three phases for fitness evaluation are presented 
in Fig. 7. In summary, steps one and two involve agent ini-
tialization and the generation of new features based on the 
agents in populations, respectively. New features are evalu-
ated in step three.

(−0.06 × Feature1) + (−0.13 × Feature3) + (0.09 × Feature3) + (1 × Feature4).
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Evaluation of the first population: To evaluate the agents 
in the first population, the number of generated features is 
considered as a basic metric. Since the number of features 
affects the cost of acquiring sample values and model train-
ing, the agent with the lowest number of features is deter-
mined as the best agent.

Evaluation of the second population: To evaluate the 
agents in the second population, the obtained dataset with 
new features from the second population is trained and 
tested through Support Vector Regression (SVR). A regres-
sion version of SVM with a surrogate loss function is com-
monly used to solve regression problems. Structural risk 

minimization (SRM) aims at establishing SVR and mini-
mizing the upper bound on the generalization error. SVR 
is an effective technique in real-valued function estimation. 
It applies a nonlinear mapping to map input data x into a 
high-dimensional feature space Fe and then solves a linear 
regression problem in the new space.

Regression approximation tries to predict the output value 
based on a given dataset such as G =

{(
xi, yi

)}n

i
 , where xi is 

the input vector (containing n features {fe1, fe2,..., fen}),yi is 
the output value, and tot_s is the total number of samples. We 
seek to find a regression function like y = f (x) to estimate the 
outputs 

{
yi
}
 based on a new set of input–output samples like 

Fig. 6  The new generated features

Fig. 7  The general schema for evaluating populations
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{(
xi, yi

)}
 . In the second population, an agent with the lowest 

regression error is considered as the best agent.
Evaluation of the third population: To evaluate the agents 

in the third population, before the clustering procedure, the 
MSE of features in each agent is calculated using SVR. Once 
new features are generated, their RSS is calculated by SVR. 
Finally, the trade-off between the precision of the model with 
all features and model with selected features is calculated by 
Mallows Cp, and the agent with the lowest value is taken as the 
best agent. After evaluating the fitness of each agent, the best 
agents of the three populations are exchanged for the next itera-
tion. In a situation with two players (i.e., two populations), this 
process has occurred with the best agents of two populations.

Upon determining the best agents for the two popula-
tions and exchanging their places, the process of updating 
agents is triggered. In BMA, the updating process of agents 
consists of two main phases: the migration phase and the 
updating phase.

(1) Migration phase: It has two stochastic search operators, 
namely Rule 1 and Rule 2. In Rule 1, each agent moves to the 
best agent, and thus the optimal solution is found as quickly 
as possible. In Rule 2, each agent randomly moves to other 
positions, and hence exploration ability is improved. Two 
examples of the migration phase are shown in Figs. 8 and 9.

In Fig. 8, attempts have been made to update agent with 
number one ( X1(t) ) based on Rule 1 in the 20-th iteration, 
where the maximum number of iterations is set to 100. Fur-
thermore, Rand and Pr values are assumed as 0.2 and 0.5, 
respectively. Firstly, the best agent (i.e., Best-agent in Fig. 8) 

must be determined from the previous iteration. For exam-
ple, in Fig. 8, Best-agent equals 0.65, 2.45, 1.92, and 3.33 in 
the Sequencing part and 1.44 in the last part. Once updated, 
it would be 0.85, 1.53, 3.32, and 3.66 for the Sequencing part 
and 0.68 for the last part of the best agent.

In Fig. 9, it is attempted to update agent with number 
one ( X1(t) ) based on Rule 2 in the 20-th iteration, where the 
maximum number of iterations is set to 100. Additionally, 
Rand and Pr values are set to 0.2 and 0.5, respectively. First, 
two random agents must be specified. For example, in Fig. 9, 
an agent with number two ( X2(t) ) and an agent with number 
forty ( X40(t) ) are randomly selected.

Consider an agent with number one equal 0.75, 1.33, 
2.76, and 3.1 in the Sequencing part and 0.28 in the last 
part. Then, it is updated with updating formulas based on 
X2(t) and X40(t) . Finally, the values in the Sequencing and 
the last part are replaced with new values. Hence, it is equal 
to 1.49, 1.4, 3.36, and 3.42 in the Sequencing part and 0.51 
in the last part of the agent with number one.

(2) Updating phase: The updating phase can be used 
to enhance the diversity of populations. If an agent cannot 
be improved after a certain number of iterations, it must 
be replaced by another. Once updated, the validation form 
of the agents of the two populations must be checked. An 
agent has a valid form if (1) all integral part of the value in 
the Sequencing part falls within the range (0, T), where T 
denotes the total number of original features, (2) the value 
of No. Weighting falls within the range (0, 3), and (3) the 

Fig. 8  The process of updating with Rule 1
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integral part of the value in the Sequencing part is different 
from each other.

An invalid agent is transformed into a valid form in two 
steps as follows:

Step 1: The values in Sequencing and No.weighting parts 
outside the range are modified based on Eq. (18):

(18)fixed_x =

{
mod(x,N) if x ∈ Sequencing part

mod(x, 3) if x ∈ No.weighting part
.

where fixed_x shows the corrected form of value x and func-
tion mod(a, b) returns the remainder after a is divided by b.

Step 2: First, the values with the same (i.e., repeated) 
integral parts and the values with missing integral parts are 
identified. Then, one of the values with the repeated inte-
gral part is randomly replaced with the value with missing 
integral part.

Algorithm  2 shows the main steps of the proposed 
method.
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agents, updating a swarm can be formulated as a MapReduce 
operation. Once mapped, an agent receives a new position, 
value, and information of its right and left neighbors. In 
the reduction phase, it incorporates information from other 
agents into the swarm to update its global best. In the paral-
lel version of BMA, the global best is communicated only 
between right and left neighbors rather than all the agents, 
rendering MapReduce more efficient.

6.2  Dynamic varying search area (DVSA)

The complexity of the optimization problem is not only 
linked to its objective functions but also the search space is 
one of the essential factors [49]. To accelerate the processing 
of the algorithm, the search area of each population is modi-
fied or reduced dynamically. In each population, assume that 
there are N cooperative agents in the search space. When 
the minimal distances between agents of each population 
(i.e., first and second populations) reach a threshold, the real 
optimal solution should be found in the region around these 
agents based on the maximum likelihood estimation (MLE). 
Therefore, the previous search area S is reduced to S′ . Now, 
there are two new populations with the same number of 
agents, and the search space is reduced. Figure 11 indicates 
the case in which four cooperative agents reduce their search 
spaces in the second population. First, they search the solu-
tion in S and get the best agents R∗

1
 , R∗

2
 , R∗

3
 , and R∗

4
 included 

Fig. 9  The process of updating with Rule 2

6  Complexity reduction

The high computational complexity of an evolutionary algo-
rithm is attributed to two issues: (1) the scale of the popula-
tion in the swarm and (2) the size of the search space [49]. 
This section initially illustrates how a swarm population can 
be scaled by a parallel technique (i.e., MapReduce). Obvi-
ously, the more agents evaluated, the more computation time 
will be needed, and so the population of the swarm should be 
cut down. Then, the space reduction is explained.

6.1  GBMA based on MapReduce

A parallel model is designed for BMA using the MapReduce 
technique. There are two dependencies between agents in the 
migration phase as follows:

(1) Exchanging the global best.
(2) Moving toward the direction of neighbors.

Now, we explain how GBMA is parallelized (see Fig. 10). 
In each iteration of GBMA, there are two main phases (i.e., 
migration and updating). It evaluates the agent at the new 
point and updates its global best after being compared with 
its neighbors. Each agent operates independently of the rest 
of the swarm, except for updating its global best and moving 
toward neighbors. Due to the limited communication among 
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in S′ . Accordingly, the search area becomes S′ . The same 
procedure applies to the subsequent reductions to S′′.

6.3  Complexity analysis

In GBMA, assume a dataset with N features, and each popu-
lation with M agents. Since GBMA is implemented in par-
allel form (e.g., like Fig. 10), the time complexity of the 
whole method is equal to maximum time complexity for the 
execution of one agent. The time complexity of the proposed 
algorithm is estimated based on the pseudo-code (i.e., Algo-
rithm 2) as follows:

Step 1. Generate populations and check agents—lines: 
4–9:

For N features and M agents: O(3 × 2 ×M(N + 1)),
Step 2. Calculate MSE—line 10:
For N features and p training samples: O(N2p + N3),
Step 3. Cluster features—line 11:
For N features: O(N logN),
Step 4. Extract new features (calculate weights and gener-

ate new features)—line 12:
For N features and d clusters: O(2Nd),
Step 5. Calculate RMSE—line 13:
For k extracted features and p training sample: O(k2p + k3),
Step 6. Calculate fitness—line 14:

For M agents, in population one: O(M) and in populations 
two and three: O(M × (k2p + k3)).

Step 7. Find the best agent: O(M).
These six main steps are repeated from line 22 until the 

end. Consequently, the total computational complexity of the 
proposed algorithm is O(MM + N3 + Nd +MN3 + N logN).

7  Experimental results and comparisons

The structure of the experimental results is divided into 
three main subsections. The first subsection (8.1) describes 
the characteristics of the regression datasets (all datasets 
are accessible from the UCI data repository [50]) and the 
parameter setting of the compared algorithms. The second 
subsection (8.2) investigates the performance of the pro-
posed method in terms of the feature evaluation criteria in 
three parts (i.e., swarm-based methods, non-swarm based 
methods, and statistical tests). The third subsection (8.3) 
studies the appropriate values for parameter L that adjusts 
the exploration and exploitation in GBMA for different types 
of datasets. The applicability of the proposed method is also 
investigated for classification problems. The details of clas-
sification datasets and the comparison results are given in 
Appendix 1.

Fig. 10  Diagram of parallel BMA based on MapReduce
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7.1  Datasets and parameter setting

The proposed method is evaluated using ten regression data-
sets. Table 2 shows the details of these regression datasets. 
Table 3 demonstrates the parameter setting procedure of the 
compared methods.

7.2  Performance evaluation of the compared 
methods

7.2.1  Swarm‑based methods

This section evaluates the convergence and efficiency of the 
proposed algorithm (i.e., GBMA) using three swarm-based 
feature selection methods as follows:

• Artificial bee colony and gradient boosting decision tree 
(ABCoDT) [37]: It combines bee colony and decision tree 
to enhance the quality of the selected features.

• Modified chaotic particle swarm optimization (CPSOS) 
[51]: It tries to solve feature selection problems by cha-

otic particle swarm optimization and strikes a balance 
between exploration and exploitation by the sigmoid-
based acceleration coefficients.

• Modified grey wolf optimization (MGWO) [52]): It modi-
fies the GWO algorithm to set its parameters and control 
the exploration and exploitation capabilities.

They are compared in terms of the number of selected 
features (NSF), regression error (RMSE), and fitness value 
by ten regression datasets. RMSE and the average NSF are 
two important criteria to identify how well a feature selec-
tion method can choose the most relevant features. Gener-
ally, a suitable method obtains a low number of features 
along with a low RMSE value. In our study, SVR with ten-
fold cross-validation is used as a regression model to predict 
the observed value. The RMSE of each method is calculated 
by the subset of selected features using Eq. (19) as follows:

where pi and oi indicate the predicted and observed values 
of sample i, respectively. The total number of samples in the 
training set is represented by tot_s.

Figure 12 shows the RMSE value along with the number 
of selected features for four metaheuristic methods based on 
the Bh dataset. As seen, the proposed method (i.e., GBMA) 
has outperformed other methods and achieved a lower 
number of features. For 30 iterations, the proposed method 
selects, on average, 4.4 features, outperforming CPSOS, 
MGWO, and ABCoDT by 32%, 38%, and 50%. Moreover, 
it shows, on average, 3.2 for RMSE and so reduces the error 
rate by 33%, 41%, and 51% compared to CPSOS, MGWO, 
and ABCoDT, respectively. This improvement can be attrib-
uted mainly to the fact that GBMA considers the order of 
features during clustering and then extracts the new features. 
Therefore, the proposed method can investigate different 

(19)
RMSE =

�����
n∑
i=1

(pi − oi)

tot_s
,

Fig. 11  An example for search space reduction

Table 2  Regression datasets details

Dataset #Instances #Features Class

Boston housing (Bh) 506 13 Median value of owner-occupied homes in $1000s
Airfoil self-noise (Af) 1503 6 Scaled sound pressure level in decibels
Breast cancer Wisconsin (Bc) 569 32 Diagnosis value
Communities and crime (Cc) 1994 128 Total number of violent crimes per 100 K population
Relative location of CT slices on axial axis (Rct) 53,500 386 Location of a CT slice on the axial axis of the human body
Compressive strength of concrete (Cs) 1030 9 Concrete compressive strength
YearPredictionMSD (Yp) 515,345 90 Prediction of the release year of a song from audio features
Computer hardware (Ch) 209 9 Relative CPU performance
Real estate valuation (Re) 414 7 House price of unit area
Orange juice (Oj) 218 700 Determination of saccharose concentration on orange juice
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arrangements of features and appropriately clusters all 
features.

Tables 4 and 5 show the average RMSE values and the 
NSF for different methods based on various datasets, respec-
tively. From Table 4, it can be seen that the GBMA method 
outperforms the three other approaches for all test datasets, 
except for two datasets on which MGWO and CPSOS out-
perform the other methods with a slight performance differ-
ence from the proposed approach. GBMA realizes a much 
lower RMSE value than other similar methods in almost all 
regression problems. It shows an average RMSE of ≈ 2.9, 
while the closest method (i.e., CPSOS) indicates an RMSE 
of 3.2. Tables 4 and 5 show that CPSOS has better perfor-
mance in terms of the NSF and RMSE value compared with 
ABCoDT (on average, CPSOS selects 10% smaller num-
ber of features and shows 12% lower RMSE value). This is 
because CPSOS possesses improved global and local search 
capabilities thanks to its chaotic function and searches the 
potential high-performance regions of the feature space.

For subsequent experiments, we consider R-squared ( R2 ), 
a statistical measure for a regression model that investigates 
the scattering pattern of data points along the fitted regres-
sion line. Once the regression model (e.g., SVR) has been fit, 
we must investigate how well the model fits the data. One of 
the goodness-of-fit (GoF) statistics is R-squared for regres-
sion analysis. R-squared is defined as Eq. (20) ranging from 
0 and 100%:

If a model can explain all the variability of response data 
around its mean, R2 is 100%. For the same dataset, high 
values of this criterion would indicate a small difference 

(20)R2 =
Explained variation

Total variation
.

between actual and predicted data. Figure 13 illustrates the 
performance of the compared methods in terms of R-squared 
for the Bh dataset. We can see from Fig. 13 that GBMA 
performs well for the Bh dataset and improves R-squared 
about 7%, 12%, and 5% compared to MGWO, ABCoDT, 
and CPSOS, respectively. When a feature selection method 
achieves the high value for R-squared compared to other 
methods means that it can find more influential independent 
variables. We try to determine features that are independent 
of each other, each of which with highly dependent on the 
output variable.

Table 6 demonstrates the R-squared values achieved by 
different methods for nine datasets. Here, we can see that 
GBMA and CPSOS approaches obtain higher R-squared 
values (18% and 13%, on average) compared to the other 
methods. In other words, there is a slight difference between 
the actual and predicted values, and thus a regression model 
fits the data well. The advantageousness of GBMA can 
be mainly attributed to the updating phase. The solution 
is checked in terms of improvement. If a solution cannot 
achieve better results (i.e., lower error regression in the 
regression problem), it is removed from the population and 
replaced with another one. Hence, the wide areas of search 
space have been investigated to find the best features. The 
good performance (behavior) of the CPSOS method is asso-
ciated with its chaotic function that improves the search pro-
cess and contributes to escape from local optimum.

The objective function that is defined based on Eq. (3), is 
applied to evaluate the fitness of each selected feature subset. 
The individual (i.e., agent) with low regression error and 
the small number of features and low Mallows’ Cp value 
shows a better fitness value. The results of fitness for dif-
ferent metaheuristic methods based on various datasets are 
shown in Fig. 14. It can be observed that the fitness charac-
teristics are almost the same for GBMA and CPSOS from 
35 to 85 iterations for the Af dataset. However, afterward, 
the fitness of GBMA suddenly reduced since GBMA sud-
denly jumped out of the local optimal where CPSOS was 
trapped. From Fig. 14, the best performance is achieved by 
the proposed algorithm (i.e., GBMA) in the fitness value 
obtained. Thus, it proves the capability of GBMA in adap-
tively searching the feature space. GBMA shows 19%, 17%, 
and 11% improvement in terms of fitness value compared 
to ABCoDT, MGWO, and CPSOS, respectively. As shown 
in Fig. 14, GBMA outperforms CPSOS on 9 datasets i.e., 
Af, Bh, Bc, Rct, Ch, Cc, Re, and Oj, with improved fitness 
values of about 6.7%, 5.2%, 2.7%, 3.1%, 13%, 17%, 2.3%, 
and 9%, respectively. One of the disadvantages of CSPSO 
is that it may not reach global optima and improve its best 
solution regularly. This is because its mutation update pro-
cedure for both local best and global best lacks a mecha-
nism to maintain the best previous solution of each firefly. 
Thus, they move regardless of their previous best situation. 

Table 3  Parameter setting of the compared algorithms

Method Parameter Value

GA Crossover rate 0.6
Mutation rate 0.2

PSO c1 2
c2 2
Inertia weight 0.7

FA Absorption coefficient 1
Leves index 1.5

GBMA Cycleup 80
L Linearly 

decrease from 
2 to 0.3

Pr 0.2
General Population size 50

Number of iterations 100
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Nonetheless, BMA accepts the new (i.e., the updated) posi-
tion of an individual when the previous fitness improved by 
changing its position. If fitness does not improve, a new indi-
vidual is generated; thus, BMA can escape local optimum.

From Table 7, we can see that GBMA has the best per-
formance in most cases (bold numbers). For instance, it has 
an average fitness value of 4.5, the lowest among the four 
algorithms on the Re dataset. MGWO also has an acceptable 

Fig. 12  RMSE and NSF for different methods

Table 4  Average of RMSE for different methods

The lowest average RMSE value among different methods is indi-
cated in bold values

Method
Dataset GBMA CPSOS MGWO ABCoDT

Af 1.82 1.95 1.93 2.13
Bh 3.2 5.2 6.0 6.6
Bc 4.7 4.95 5.1 5.5
Rct 1.56 1.94 2.05 1.83
Ch 2.01 2.07 2.28 2.5
Cs 3.56 3.42 3.71 3.71
Cc 4.3 4.5 6.12 5.09
Re 4.62 4.62 4.27 4.94
Yp 2.11 2.44 2.35 2.26
Oj 1.42 1.8 1.76 1.5

Table 5  Average of NSF for different methods

The lowest average NSF value among different methods is indicated 
in bold values

Method
Dataset GBMA CPSOS MGWO ABCoDT

Af 3.5 4.5 4.9 5.8
Bh 4.4 7.1 8.3 9.6
Bc 13.5 15.1 18.3 10.8
Rct 85 103.7 99.4 113.7
Ch 4.5 6.4 6.1 5.6
Cs 2.3 4.64 4.25 5.87
Cc 41.6 57.1 49.3 45
Re 2.4 4.5 4.6 5.2
Yp 24.5 54.6 43.7 74.5
Oj 252.3 280.6 285 311.4
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fitness value, 3.7. It is also indicated that ABCoDT and 
CPSOS are fairly similar in performance on the Ch dataset. 
Their average fitness values are nearly the same (8 and 8.1, 
respectively). Having the highest fitness values, ABCoDT 
does not exhibit excellent performance compared to other 
algorithms on Oj, Re, Cc, Bh, and Af datasets.

7.2.2  Non‑swarm‑based methods

This section compares the proposed method with non-
swarm-based methods (i.e., methods without heuristic 
search algorithms like BMA). The feature reduction meth-
ods are divided into two types: filter methods and feature 
extraction methods. To show the generality of the proposed 
method, it was also compared with some filter methods. 

Fig. 13  R-squared of different methods based on Bh dataset

Table 6  R-squared of different methods

The highest R-squared value among different methods is indicated in 
bold values

Method
Dataset GBMA CPSOS MGWO ABCoDT

Af 0.976 0.95 0.94 0.93
Bh 0.97 0.93 0.916 0.86
Bc 0.955 0.92 0.89 0.93
Rct 0.975 0.94 0.91 0.9
Ch 0.87 0.83 0.825 0.82
Cs 0.88 0.93 0.83 0.83
Cc 0.95 0.9 0.85 0.87
Re 0.88 0.85 0.93 0.83
Yp 0.982 0.94 0.945 0.95
Oj 0.94 0.91 0.9 0.88
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Filter methods, along with their performance results in clas-
sification datasets, are explained in detail in Appendix 2. 
The three basic feature extraction algorithms consist of three 
methods, namely FC-C-S [16], weighted principal compo-
nent analysis (WPCA) [16], and linear discriminant analysis 
for regression (LDAr) [16].

In this section, the compared methods are evaluated 
in terms of average R-squared, average NSF, and aver-
age RMSE. The performance of the compared methods 
on different regression datasets can be seen from Fig. 15. 
As reflected, the proposed method achieves better results 
in most of the datasets. For example, GBMA improves 
R-squared and NSF by 18% and 28%, respectively, com-
pared to FC-C-S. Furthermore, GBMA achieves high 
R-squared value in comparison with other methods since 
it can find independent variables that are more influential. 

This advantage can be attributed partly to the fact that the 
proposed method applies BMA as a search method to detect 
the appropriate order of features for generating clusters such 
that features in the same cluster have a high correlation.

In Fig. 15, GBMA improves R-squared and RMSE by 
35% and 38%, respectively, in comparison with LDAr. Since 
GBMA defines three weighting methods (i.e., moderate, 
strict, and hybrid) for generating new features, it can obtain 
the information of features from other clusters through these 
weighting methods. While LDAr transforms the input space 
into a high-dimensional feature space by a kernel trick and 
tries to maximize the ratio of distances of samples with sig-
nificant differences in the output variable, it does not con-
sider the relativeness between features.

Fig. 14  Fitness values for different datasets
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Fig. 14  (continued)

7.2.3  Statistical tests

In this section, several statistical tests are applied to pro-
vide a comparative analysis of the proposed method. The 
Friedman test is a nonparametric statistical test that func-
tions based on the average rank ( ranki ) of each strategy [53]. 

Nonparametric testing means that no particular distribution 
is assumed for the data. Moreover, it can evaluate the results 
of N different strategies for M datasets. The null hypothesis 
(i.e., there is no statistical difference in the performance of 
each strategy) is accepted or rejected according to the P 
value that is determined by chi-square distribution. Holm’s 
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sequential Bonferroni posthoc test [54] is a step-down pro-
cedure that applies a minimum rank strategy to specify 
whether its performance is statistically significant based on 
other strategies. The test is performed by pairwise compari-
sons as follows:

where N is the number of strategies, and the strategy with 
minimum Friedman rank is defined as a control strategy. 
The P value is obtained based on the value of z and normal 
distribution. In Holm’s test, in case the smallest P value 
is lower than �

N−1
 , the hypothesis is rejected, and the next 

higher value is checked with �

N−2
 . This process continues 

(21)z =
(ranki − rankj)√

N(N+1)

6M

,

Table 7  Average the best fitness value for the compared methods

The lowest average fitness value among different methods is indicated 
in bold values

Method
Dataset GBMA CPSOS MGWO ABCoDT

Af 1.3 1.6 2.8 2.88
Bh 1.1 2.43 4.2 4.78
Bc 2.4 3.78 4.33 3.2
Rct 1.7 3.03 4.8 4.17
Ch 6.1 8.1 7.75 8
Cs 4.58 2.61 9.5 8.75
Cc 1.83 3.78 4.41 6.03
Re 4.5 4.7 3.7 5.3
Yp 0.7 2 2.4 2.3
Oj 2.28 5.63 5.78 6.6

Fig. 15  Spider web diagrams for different regression datasets
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until the hypothesis is accepted or all P values are checked. 
Statistic tests are performed for the results of the compared 
methods based on two evaluation parameters (i.e., RMSE, 
and NSF). The statistical tests for classification accuracy are 
given in Appendix 3.

The compared methods (i.e., CPSOS, MGWO, ABCoDT, 
WPCA, FC-C-S, and LDAr) are ranked based on their 
RMSE. Consequently, the method with the lowest rank 
would perform best. Figure 16 displays the ranking of the 
compared feature selection methods based on the Friedman 
test. As seen, GBMA, FC-C-S, and CPSOS ranked first 
(1.5), second (2.61), and third, respectively, among all the 
methods. According to Fig. 17, the P values for the error 
rate values of all feature reduction methods are less than 
0.05 (i.e., 0.04, 0.03, 0.001, 0.0003, 0.00004, and 0.00002 
for GBMA vs. FC-C-S, GBMA vs. CPSOS, GBMA vs. 
MGWO, GBMA vs. ABCoDT, GBMA vs. WPCA and 
GBMA vs. LDAr, respectively). Hence, these results are 
statistically significant.

For subsequent experiments, the Friedman and Holm tests 
are investigated for the NSF of all the compared methods 
(i.e., GBMA, LDA, FC-C-S, WPCA, CPSOS, MGWO, and 
ABCoDT). Each of the compared methods is run 30 times; 

the average NSF of each is calculated. Figure 18 shows the 
Friedman ranks of the 13 methods based on NSF. From 
Fig. 18, we can see that the NSF through all strategies is 
significantly different since the attained P value of the test 
is 3.33E−07, which is lower than the desired significance 
level (i.e., α = 0.05). The proposed feature selection method 
(i.e., the highest-ranking method) is considered as a control 
strategy in Holm’s test to check if its performance statis-
tically differs from other strategies. The results of Fig. 19 
demonstrate that the GBMA strategy is significantly better 
than LDA, FC-C-S, WPCA, CPSOS, and ABCoDT.

7.3  Studying GBMA parameters

A set of extensive experiments have been performed to study 
the impact of the standard parameters of the GBMA. We 
test different values for the main parameters in the algo-
rithm (i.e., number of search agents, the maximum num-
ber of iterations, and L that indicates the step size at each 
iteration in the migration phase (see Fig. 8). In this sec-
tion, the datasets are divided into three groups (i.e., small, 
medium, and large) based on the size of the dimension. The 
small dataset includes Af, Ch, Re, Cs. The medium dataset 

Fig. 15  (continued)
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includes Bh, Bc, Yp, and the large dataset includes Cc and 
Rct. To carry out the experiments, two datasets are randomly 
selected (i.e., two small datasets, two medium datasets, and 
two large datasets) to evaluate the different combinations of 
these parameters.

The parameter “number of search agents (i.e., popula-
tion size)” is allowed to take five different values (i.e., 30, 
40, 50, 60, and 70). Furthermore, the number of iterations 
is allowed to take four different values (i.e., 30, 50, 70, and 
100). The last parameter (i.e., vector L) is linearly changed 
in three different intervals, namely [0.3, 1], [0.3, 2], and 

[0.3, 4]. A set of independent experiments are performed 
for each dataset by varying the number of population sizes, 
number of iterations, and L simultaneously to illustrate the 
effect of these parameters on the performance of the GBMA 
algorithm. A total of 60 parameter combinations are adopted 
for each dataset. The algorithm was run ten times for every 
set of parameter values and each dataset. Then, we calcu-
late the average RMSE and fitness value and compare the 
results. Figures 20a–f shows RMSE values in terms of the 
number of iteration and population size for AF and Cs as 
two small datasets. Figures 21a–f illustrates RMSE values 
in terms of the number of iterations and population size for 
Bh and Bc as two medium-sized datasets. Figures 22a–f 
depicts RMSE values in terms of the number of iterations 
and population size for Cc and Rct as two large datasets. 
Figures 20, 21 and 22 show how the performance of GBMA 
is changed by setting different population sizes while vary-
ing other parameters (i.e., number of iteration and vector L) 
for small, medium, and large datasets. The study of main 
parameters for GBMA on different types of datasets shows 
that 100 iterations are sufficient to obtain the best results in 
most cases. Moreover, GBMA with a medium number of 
agents, between 50 and 60, and the parameter L in [0.3, 2] 
can obtain the lowest RMSE value for most datasets.

All the source codes developed in this research are avail-
able via a GitLab repository [55].

8  Conclusions

Dimensionality reduction is a primary data-preprocessing 
technique in statistics, machine learning, and related fields. 
Since selecting a compact subset of features can reduce the 
computational cost and achieve good generalization abilities. 
Feature selection seeks to minimize two conflicting objec-
tives, namely error rate and the number of features. Many 
feature selection strategies have been developed to deal 
with this problem, but the focus is less on regression than 
on classification. Motivated by this, we presented a novel 
game-theoretic feature selection strategy, which obtains the 
optimal solution via BMA optimization in less time. The 
proposed method puts the most correlated features in one 
cluster and considers the appropriate order for checking cor-
relations among input vectors. Moreover, three weighting 
methods (i.e., moderate, strict, and hybrid) were applied to 
extract new features based on the generated clusters. We 
tested the performance of the proposed multi-objective algo-
rithm with several well-known datasets and recent feature 

Fig. 16  Friedman ranks for RMSE

Fig. 17  Holm test for RMSE
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selection methods. In almost all cases, the proposed method 
achieves better performance than all the other strategies both 
in terms of accuracy and the number of features. In other 
words, it provides a compact subset of features with a high 
predictive capability. Future work may focus on exploring 
feature selection issues for an imbalanced and noisy dataset. 
The proposed feature selection can be tested by some real 
industry applications, such as the fault diagnosis.

Appendix 1: The performance 
of swarm‑based methods on classification 
datasets

To evaluate the performance of GBMA for classification 
problems, ten classification datasets are assumed that are 
described in Table 8.

GBMA is compared with three swarm-based feature 
selection strategies for classification datasets as follows:

Fig. 18  Friedman ranks for NSF

Fig. 19  Holm test for NSF
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• Hybrid genetic algorithm (HGA) [56]: It integrates the 
exploration capability of a genetic algorithm into the 
exploitation capability of neighborhood local search.

• Graph clustering-based ant colony optimization 
(GCACO) [39]: It represents the feature space by divid-
ing the features into some clusters based on a commu-
nity detection strategy. It then determines the appropri-
ate subset of features using the ant colony-based search 
approach.

• Modified firefly algorithm (MFA) [38]): It improves the 
firefly algorithm by Simulated Annealing (SA) and cha-

otic diversified search approach to select optimal feature 
subsets.

They are compared in terms of classification accuracy 
(CA), the number of selected features (NSF), F-measure, 
and area under curve (AUC) by ten classification datasets. 
In this evaluation, the fitness function includes two objec-
tives: (1) the accuracy that is selected by the support vector 
machine (SVM) and the number of selected features. The 
fitness function is determined using Eq. (22):

Fig. 20  Small datasets investigation
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where w1 and w2 denote the weights of classification accu-
racy and w1 + w2 = 1. Likewise, NSF represents the number 
of selected features. Since the classification accuracy is more 
important than the NSF, we assign w1 = 0.9 and w2 = 0.1 as 
recommended in related studies [57].

We must modify players and the fitness function of 
GBMA to use it for classification problems. Since the 
original proposed algorithm (i.e., GBMA) is introduced for 
regression datasets, the number of players is reduced to two. 
Equation (22) is used as a fitness function. Figure 

23 indicates the comparison of the classification per-
formance between GBMA with three feature selection 

(22)Fitness(x) = w1 × accuracy + w2 × NSF, algorithms based on accuracy and the number of features. 
The horizontal axis and vertical axis show the number of 
features in rectangular coordinates and accuracy, respectively. 
The top-left points are the best results since they have higher 
accuracy and a smaller number of features. The comparison 
of GBMA with three methods is categorized into three parts. 
The first part is excellent results obtained for Ionosphere, 
SpectEW, Madelon, and KrvskpEW datasets as GBMA 
obtains higher accuracy and a smaller number of features. 
On these datasets, several solutions of GBMA are located at 
the upper and upper-left of optimal solutions of other algo-
rithms. For the KrvskpEW dataset, the optimal solution is the 
point with 0.925 accuracy and six features created by GBMA. 
We can see several black points at the upper, meaning the 

Fig. 21  Medium datasets investigation
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better results of GBMA in comparison with other feature 
selection algorithms. Put differently, GBMA has better con-
vergence ability for the first objective and better diversity 
searching process for the second objective. There is one red 
point belonging to MFA locating under the left part of the 
figure with an accuracy of 0.85 and 5 number of features.

The second part of competitive results represents that 
GBMA only achieves higher accuracy value with the same 
number of features. Zoo, Satellite, and Musk datasets yield 
these results. For the Musk dataset, GBMA finds the optimal 
solution (i.e., black point) with a 0.96 accuracy and 62 gen-
erated features. It can be seen that three black points located 
at the upper part of blue and red points in the left part of the 
rectangle, where they are not on the upper left. It proves that 

Fig. 22  Large datasets investigation

Table 8  Classification datasets details [50]

Dataset #Instances #Features #Classes

Zoo 101 16 7
WDBC 569 30 2
KrvskpEW 3196 36 2
Musk version 1 476 166 2
SpectEW 267 22 2
Ionosphere 351 34 2
Satellite 6435 36 6
Madelon 2000 500 2
SonarEW 208 60 2
WaveformEW 5000 40 3
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GBMA has three solutions better than GCACO and MFA. 
Although GBMA cannot indicate the solutions with lower 
dimensions and higher accuracy, it still can search higher 
accuracy solutions with the same dimensions by the power-
ful diversity capability.

The third part of the analysis describes the failure results of 
GBMA. For the SonarEW and WaveformEW datasets, GBMA 
has lower accuracy and a larger number of features. This can 
be mainly ascribed to its inability to conduct a comprehensive 
evaluation in limited iteration times due to its computation. In 

Fig. 23  Plots of the number of the selected features and the corresponding accuracy
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short, GBMA presents better results than other feature selec-
tion algorithms through an analysis of this section.

In the next experiment, we depict the areas under ROC 
curves (AUCs) and F-measure of four methods for ten data-
sets by the boxes in Fig. 

24. AUC is one of the main evaluation metrics for clas-
sification problems that shows AUCs. Moreover, F-measure 
is a commonly used performance metric obtained by the 
weighted harmonic mean (WHM) of the precision (i.e., 
positive predictive value or PPV) and recall (i.e., sensitiv-
ity). F-measure with value 1 and 0 indicate the best and 
worst results, respectively. Box plots are used to provide a 
stability analysis of the proposed feature selection method 
(i.e., GBMA) and other compared methods. The empirical 
distribution, variation information, median, symmetry, and 
skewness on the dataset can be easily represented by box 
plots.

From Fig. 24, we can observe that the proposed algo-
rithm gives superior and consistent results for all the evalu-
ated datasets except SonarEW and WaveformEW, where 

GCACO has better performance. GCACO improves AUC 
and F-measure by 7% and 8%, respectively, compared to 
GBMA. This is because the migration phase after two ran-
dom neighbors is used for updating the solution. Then, the 
positions of solutions (sequencing and weighting parts) are 
close to each other, and a new solution has not been practi-
cally produced. Hence, the probability of being trapped in 
local optimum has been increased.

The proposed algorithm (i.e., GBMA) outperforms HGA 
on all datasets and improves AUC and F-measure by 34% 
and 38%, respectively. The main reason is that HGA cannot 
determine near-optimal solutions and cannot perform exploi-
tation very well, and it may get stuck in local optima. The 
results obtained from Fig. 24 are listed as follows:

• The median of F-measure and AUC for GBMA is often 
higher than the other feature selection algorithms.

• The AUC and F-measure of GBMA are higher than 85% 
for all evaluated datasets.

Fig. 23  (continued)
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• The difference between the minimum and maximum 
AUC and F-measure for GBMA is very insignificant (less 
than 10%) in most datasets.

• These results prove the superiority of GBMA in selecting 
the prominent feature set.

Table 9 presents the average computation times of four 
algorithms (i.e., GBMA, GCACO, MFA, and HGA) over 30 
independent runs to indicate how fast an algorithm imple-
ments the search process. As indicated, GBMA has the 
lowest average computation time (bold numbers) compared 
to the other methods for seven datasets. On two of the ten 
datasets, HGA requires less computation time than the other 
methods, and MFA requires less time for one dataset.

Additionally, Table 9 ranks the performance of the 
methods based on their average computation times. We 
can observe that GBMA exhibits the lowest average 
computation time overall, followed by MFA, HGA, and 
GCACO. Table 9 represents the results of three groups of 

Wilcoxon rank-sum tests to compare two related methods. 
Frank Wilcoxon [58] introduced the Wilcoxon rank-sum 
test that assigns ranks to all the scores of one set and then 
sums the ranks in each set. This test is defined as the 
nonparametric version of the t test for two independent 
sets, and any difference in the two rank sums appears due 
to sampling error.

According to Table 9, GBMA outperforms GCACO, 
MFA, and HGA. The proposed method has superiority 
over all other methods on all datasets except for MFA on 
KrvskEW and HGA on SpectEW at a significance level 
of 0.05 and similar results for HGA on the Zoo dataset. 
Moreover, the results of Table 9 are obtained over 30 runs 
for each evaluated strategy. While the number of runs in 
which GBMA outperforms GCACO, MFA, and HGA in 
terms of CA is 12, 14, and 19, respectively, these results 
are represented in the last row of the Wilcoxon rank-sum 
table.

Fig. 24  AUC and F-measure for classification datasets
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Appendix 2: The performance of filter 
methods on classification datasets

The proposed method is compared with three filter methods 
for classification datasets as follows:

• Cooperative game theory with relief approach (CGTR ) 
[59]: It combines the game theory with a relief method 
to evaluate the contribution of features.

• Fisher-score (F-score) [60]: It selects a feature subset 
such that the between-class scatter is maximized while 
the within-class scatter is minimized.

Fig. 24  (continued)



336 International Journal of Machine Learning and Cybernetics (2021) 12:303–342

1 3

• Correlation-based feature selection (CFC) [61]: It 
applies a correlation-based strategy with less computa-
tion to evaluate the importance of features.

The proposed algorithm is evaluated in terms of clas-
sification accuracy (CA), the number of selected features 
(NSF), F-measure, and area under curve (AUC). The perfor-
mance of the compared methods on different classification 
datasets can be seen from Fig. 

25. For most datasets, the proposed method (i.e., GBMA) 
achieves better results. For example, on KrvspEW, GBMA 
obtains 0.98, 13.2, 0.976, and 0.982 for CA, NSF, F-meas-
ure, and AUC, respectively. While CGTR obtains 0.91, 18.2, 
0.92, and 0.915. Thus, GBMA improves CA and NSF by 
8% and 30%, respectively, compared to CGTR. The main 
weakness of the CGTR algorithm is that it uses the infor-
mation gain as an evaluation parameter of the correlation 
between features. Hence, the relevant features cannot be 

Fig. 24  (continued)
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specified correctly on datasets that have features with a 
large number of distinct values such as Musk and Krvsk-
pEW. Besides, GBMA improves AUC and F-measure by 
22% and 25%, respectively, in comparison with F-score. 
The disadvantage of the F-score is that it does not reveal 

the mutual information among features. In other words, it 
considers the discriminative power of each feature inde-
pendently rather than together, rendering it unable to select 
appropriate features.

Fig. 24  (continued)

Table 9  Average computation 
time and Wilcoxon rank-sum for 
results of methods

Method Computational time (s) Wilcoxon rank-sum

nnDataset GBMA GCACO MFA HGA GCACO MFA HGA

Zoo 2.50 2.73 3.00 2.50 + + =
WDBC 3.1 3.15 3.22 3.18 + + +
KrvskpEW 38.31 52.7 37.50 48.64 + − +
Musk version1 6.08 6.28 6.84 6.5 + + +
SpectEW 2.72 2.78 2.81 2.64 + + −
Ionosphere 3.03 3.1 3.14 3.22 + + +
Satellite 170.50 198.20 191.60 175.70 + + +
Madelon 240.4 339.7 250.2 258.7 + + +
SonarEW 76.3 78.2 78.23 79.4 + + +
WaveformEW 32.78 37.82 35.1 34.25 + + +
Average 57.58 72.46 61.16 61.47 + + +
Rank 1 4 2 3 19 14 12
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Appendix 3: Statistical tests 
for swarm‑based and filter methods

The Friedman and Holm tests are performed for swarm-
based classification methods (i.e., GBMA, HGA, GCACO, 

and MFA) and filter methods (i.e., GBMA, CGTR, and 
F-score) in terms of classification accuracy (CA) and the 
number of selected features (NSF). Each compared method 
is run 30 times, and the average classification accuracy for 
each method is calculated.

Fig. 25  Spider web diagrams for different classification datasets
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Fig. 25  (continued)

Fig. 26  Friedman ranks based on CA Fig. 27  Holm test based on CA
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Figure 26 depicts Friedman’s ranks (i.e., the vertical 
axis) of seven methods to analyze the outcomes of experi-
ments. There are significant differences between the clas-
sification accuracies of the methods since the obtained P 
value is 8.70E−8, which is lower than the desired signifi-
cance level (i.e., α = 0.05). The GBMA strategy achieves the 
highest rank with a difference of 0.95 from the subsequent 
strategy. Figure 27 displays Holm’s sequential Bonferroni 
posthoc test, revealing that the method with the best perfor-
mance (i.e., GBMA) performs as a control method. Notably, 
GBMA has yielded significantly better results than CGTR, 
HGO, GCACO, MFO, F-score, and CFC.

Furthermore, Friedman and Holm’s sequential Bonfer-
roni posthoc tests are applied for the NSF in Fig. 25. Fig-
ure 28 exhibits Friedman ranks of the seven methods. The 
results show that GBMA has a minimum number of features, 
whereas CFC has a maximum NSF. The proposed method 
selects a lower number of features by 36% compared to CFC. 
This significant difference in selected features could play a 
vital role in the running time of these methods. The P value 
obtained for the test is 4.13E−08, which is less than the 
presumed significance level, i.e., α = 0.05. Thus, the NSF 
by all methods is significantly different. Obtaining the best 
rank, GBMA generally acts as a control method in Holm’s 

Fig. 28  Friedman ranks based 
on NSF

Fig. 29  Holm test based on NSF
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sequential Bonferroni posthoc test. The results in Fig. 29 
suggest that the proposed method is significantly better than 
all methods save for CGTR.
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