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Abstract
Many kinds of real-world multi-way signal, like color images, videos, etc., are represented in tensor form and may often be 
corrupted by outliers. To recover an unknown signal tensor corrupted by outliers, tensor robust principal component analysis 
(TRPCA) serves as a robust tensorial modification of the fundamental PCA. Recently, a successful TRPCA model based 
on the tubal nuclear norm (TNN) (Lu et al. in IEEE Trans Pattern Anal Mach Intell 42:925–938, 2019) has attracted much 
attention thanks to its superiority in many applications. However, TNN is computationally expensive due to the requirement 
of full singular value decompositions, seriously limiting its scalability to large tensors. To address this issue, we propose a 
new TRPCA model which adopts a factorization strategy. Algorithmically, an algorithm based on the non-convex augmented 
Lagrangian method is developed with convergence guarantee. Theoretically, we rigorously establish the sub-optimality of 
the proposed algorithm. We also extend the proposed model to the robust tensor completion problem. Both the effectiveness 
and efficiency of the proposed algorithm is demonstrated through extensive experiments on both synthetic and real data sets.

1  Introduction

PCA is arguably the most broadly applied statistical 
approach for high-dimensional data analysis and dimension 
reduction. However, it regards each data instance as a vec-
tor, ignoring the rich intra-mode and inter-mode informa-
tion in the emerging multi-way data (tensor data). One the 
other hand, it is sensitive to outliers which are ubiquitous in 
real applications. By manipulating the tensor instance in its 
original multi-way form and attempting to work well against 
outliers, tensor robust PCA [7, 23] is a powerful extension 
of PCA which can overcome the above issues. TRPCA finds 
many real life applications likes image/video restoration, 
video surveillance, face recognition, to name a few [7, 23].

As shown in Fig. 1, an idealized version of TRPCA aims 
to recover an underlying tensor L∗ from measurements M 
corrupted by outliers represented by tensor S∗ , that is,

Obviously, the decomposition in Model (1) is impossible 
without additional assumptions on the underlying tensor L∗ 
and the outlier tensor S∗ . Thus, TRPCA further assumes L∗ 
is “low-rank” and S∗ sparse. Mathematically, TRPCA tries 
to solve a minimization problem as follows

where rank (⋅) denotes the “rank function” of a tensor, ‖⋅‖0 
is the tensor l0-norm (used as a sparsity measure), and 𝜆 > 0 
is a regularization parameter. Problem (2) is numerically 
very challenging, since both the tensor rank function and 
the tensor l0-norm are neither continuous nor convex, even 
in their simplest matrix versions.

A mainstream approach for tackling the numerical hard-
ness of Problem (2) is to respectively replace the rank func-
tion and l0-norm with their convex surrogates conv-rank(⋅) 
and l1-norm, leading to the following convex version of 
Problem (2)

(1)M = L∗ + S∗.

(2)
min
L,S

rank (L) + �‖S‖0
s.t. L + S = M,
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The l1-norm ‖⋅‖1 in Problem (3) is widely used as a convex 
envelop of the l0-norm in compressive sensing and sparse 
representation to impose sparsity [5, 14, 27, 41].

In the 2-way version of Problem (3) where L,S and M 
are matrices, tensor Robust PCA degenerates to the Robust 
PCA [2]. In RPCA, the matrix nuclear norm ‖⋅‖∗ [4] is 
often chosen as the convex surrogate of matrix rank. How-
ever, for general K−way (K ≥ 3) tensors, one may have 
multiple choices of conv-rank(⋅) , since a tensor has many 
definitions of rank function due to different extensions of 
the matrix singular value decomposition. The most direct 
tensor extension of matrix rank is the tensor CP rank [8, 
13] which is the smallest number of rank-one tensors that 
a tensor can be decomposed into. Nevertheless, both the 
CP rank and its corresponding version of nuclear norm are 
NP hard to compute [6, 9]. Thanks to its computational 
tractability, the Tucker rank [29] defined as a vector of 
ranks of the unfolding matrices along each mode, is the 
most widely used tensor rank. Its corresponding nuclear 
norm (denoted by SNN in this paper) [18] is defined as the 
(weighted) sum of nuclear norms of the unfolding matri-
ces along each mode, and has been used in TRPCA [7]. 
However, SNN is not a tight convex relaxation of sum of 
the Tucker rank [28], and it models the underlying tensor 
as low Tucker rank, which maybe too strong for some real 
data tensors.

Recently, the low tubal rank models have achieved bet-
ter performances than low Tucker rank models in many 
low rank tensor recovery tasks, like tensor completion [30, 
33, 44], tensor RPCA [23, 44], sample outlier robust ten-
sor PCA [45] and tensor low rank representation [36, 37], 
etc. At the core of these models is the tubal nuclear norm 
(TNN), a version of tensor nuclear norm defined within 
the framework of t-SVD [12]. Using TNN as the low-rank 
regularization in Problem (3), the recently proposed TNN-
based TRPCA model has shown better performances than 
traditional models [23, 24, 44]. The rationality behind the 
superior performance of TNN-based models lies in that 
TNN is the tight convex relaxation of the tensor average 

(3)
min
L,S

conv-rank(L) + �‖S‖1
s.t. L + S = M.

rank, and the low average rank assumption is weaker than 
the low Tucker rank and low CP rank assumption [24].

Despite its broad use, TNN is computationally expen-
sive since it requires full matrix singular value decom-
positions. The high computational complexity limits the 
application of TNN-based models to scale to emerging 
high-dimensional tensor data. By exploiting the orthogo-
nal invariance of TNN, we come up with a factorization 
based model for TRPCA which can powerfully accelerate 
the original TNN-based TRPCA model. Extensive experi-
ments show the superiority and efficiency of the proposed 
algorithm.

The main contributions of this paper are as follows: 

1.	 A new model for TRPCA named TriFac is proposed 
in Model (9) with an ALM algorithm (Algorithm 1) 
designed to efficiently solve it.

2.	 Convergence of the proposed algorithm is shown in 
Theorem 1.

3.	 Sub-optimality of the proposed algorithm is established 
in Theorems 2 and 3.

4.	 We also extend the proposed model to the robust tensor 
completion problem.

The remaining of this paper is organized as follows. In 
Sect. 2, the notations, some preliminaries of t-SVD, and 
some related works are introduced. The problem formulation 
and the algorithm are shown in Sect. 3. Theoretical analysis 
of the proposed algorithm is given in Sect. 4. Experimental 
results are shown in Sect. 6. Finally, we conclude this work 
in Sect. 7.

2 � Tensor SVD and related works

2.1 � Notations and tensor SVD

The main notations and abbreviations are listed in Table 1 
for convenience. For a 3-way tensor, a tube is a vector 
defined by fixing indices of the first two modes and varying 
the third one; A slice is a matrix defined by fixing all but 
two indices; fft3(⋅) denotes the fast discrete Fourier trans-
formation (FFT) along the third mode of a 3rd order tensor, 
i.e., the command fft(⋅, [], 3) in Matlab; similarly, ifft3(⋅) is 
defined. Let ⌈a⌉ denote the closest integer to a ∈ ℝ that is not 
smaller than a, and ⌊a⌋ denotes the closest integer to a ∈ ℝ 
that is not larger than a. Let 1(⋅) denote the indicator function 
which equals 1 if the condition is true and 0 otherwise. The 
spectral norm ‖⋅‖ and nuclear norm ‖⋅‖∗ of a matrix are the 
maximum and the sum of the singular values, respectively.

Then, we introduce the tensor SVD by defining some 
notions first.

Fig. 1   The observation model of TRPCA



2773International Journal of Machine Learning and Cybernetics (2020) 11:2771–2791	

1 3

Definition 1  (T-product [43]) Let T1 ∈ ℝ
d1×d2×d3 and 

T2 ∈ ℝ
d2×d4×d3 . The t-product of T1 and T2 is a tensor T  of 

size d1 × d4 × d3:

w h o s e  (i, j)th  t u b e  i s  g i v e n  b y 
T(i, j, ∶) =

∑d2
k=1

T1(i, k, ∶) ∙ T2(k, j, ∶) , where ∙ denotes the 
circular convolution between two fibers [12].

T-Product and FFT The t-product of T1 and T2 can be 
computed efficiently by performing the fast Fourier trans-
formation (FFT) along the tube fibers of T1 and T2 to get 
T̃1 and T̃2 , multiplying the each pair of the frontal slices 
of T̃1 and T̃2 to obtain T̃  , and then taking the inverse FFT 
along the third mode to get the result. For details, please 
refer to [12].

Definition 2  (Tensor transpose [43]) Let T  be a tensor of 
size d1 × d2 × d3 , then T⊤ is the d2 × d1 × d3 tensor obtained 
by transposing each of the frontal slices and then reversing 
the order of transposed frontal slices 2 through d3.

Definition 3  (Identity tensor [43]) The identity tensor 
I ∈ ℝ

d1×d1×d3 is a tensor whose first frontal slice is the 
d1 × d1 identity matrix and all other frontal slices are zero.

Definition 4  (F-diagonal tensor [43]) A tensor is called 
f-diagonal if each frontal slice of the tensor is a diagonal 
matrix.

Definition 5  (Orthogonal tensor [43]) A tensor Q ∈ ℝ
d1×d1×d3 

is orthogonal if Q⊤ ∗ Q = Q ∗ Q⊤ = I .

Based on the concepts of tensor transpose, f-diagonal 
tensor and orthogonal tensor, the tensor singular value 
decomposition (t-SVD) can be defined as follows. It is 
illustrated in Fig. 2.

T ∶= T1 ∗ T2,

Definition 6  (T-SVD, Tensor tubal-rank [43]) For any 
T ∈ ℝ

d1×d2×d3 , the tensor singular value decomposition 
(t-SVD) of T  is given as follows

where U ∈ ℝ
d1×d1×d3 , � ∈ ℝ

d1×d2×d3 , V ∈ ℝ
d2×d2×d3 , U and V 

are orthogonal tensors, � is a rectangular f-diagonal tensor.
The tensor tubal rank of T  is defined to be the number of 

non-zero tubes of � in the t-SVD factorization, i.e.,

Definition 7  (Block diagonal matrix [43]) For any 
T ∈ ℝ

d1×d2×d3 , let T  (or � ) denote the block-diagonal matrix 
of the tensor T̃ ∶= fft3(T) , i.e.,

According to the relationships between the tensor 
t-product and FFT, the inner product of two 3-D tensors 
T1, T2 ∈ ℝ

d1×d2×d3 and the inner product of their correspond-
ing block diagonal matrices T1, T2 ∈ ℂ

d1d3×d2d3 satisfy

When T1 = T2 = T  , one has

T = U ∗ 𝛴 ∗ V⊤,

r t (T) ∶=
∑
i

1(�(i, i, ∶) ≠ �).

T ∶=

⎡⎢⎢⎣

T̃(∶, ∶, 1)

⋱

T̃(∶, ∶, d3)

⎤⎥⎥⎦
∈ ℂ

d1d3×d2d3 .

⟨T1, T2⟩ = 1

d3

�
T̃1, T̃2

�
=

1

d3

�
T1, T2

�
.

Table 1   List of notations and 
abbreviations

Notations Descriptions Notations Descriptions

� A matrix L∗ True low-rank tensor
T A tensor S∗ Outlier tensor

T̃ fft3(T) ‖T‖ ∶= ‖�‖ Tensor spectral norm

� or T Block-diagonal matrix of T̃ ‖T‖⋆ ∶= ‖�‖∗∕d3 Tubal nuclear norm

Tijk (i, j, k)th entry of T ‖T‖F ∶=
�∑

ijk T
2
ijk

Tensor Frobenous norm

T(i, j, k) Tijk ‖T‖1 ∶= ∑
ijk �Tijk� Tensor l1-norm

T(i, j, ∶) (i, j)th Tube of T ‖T‖∞ ∶= maxijk �Tijk� Tensor l∞-norm
T(∶, ∶, k) kth Frontal slice of T ‖T‖0 ∶= ∑

ijk 1(Tijk ≠ 0) Tensor l0-norm
r t (⋅) Tensor tubal rank ⟨A,B⟩ ∶= ∑

ijk AijkBijk Tensor inner product

Fig. 2   Illustration of t-SVD



2774	 International Journal of Machine Learning and Cybernetics (2020) 11:2771–2791

1 3

Definition 8  (Tensor average rank [43]) The tensor average 
rank ra(T) of T ∈ ℝ

d1×d2×d3 is the rescaled matrix rank of T  , 
i.e.,

Definition 9  (Tensor operator norm [24, 43]) The tensor 
operator norm ‖T‖ of a 3-D tensor T ∈ ℝ

d1×d2×d3 is defined 
as follows

The relationship between t-product and FFT indicates that

Definition 10  (Tensor spectral norm [43]) The tensor spec-
tral norm ‖T‖ of a 3-D tensor T  is defined as the matrix 
spectral norm (i.e. the largest singular value) of � , i.e.,

The tubal nuclear norm is further defined.

Definition 11  (Tubal nuclear norm [24]) For any 
T ∈ ℝ

d1×d2×d3 having t-SVD T = U ∗ 𝛬 ∗ V⊤ , the tubal 
nuclear norm of T  is defined as

where r = r t (T).

The property of FFT also indicates the relationship as 
follows

As can be seen from Eq. (4), TNN indeed models low-rank-
ness in spectral domain.

‖T‖F =
1√
d3

‖T‖F.

ra(T) ∶=
rank(T)

d3
.

‖T‖ ∶= sup
‖V‖F≤1

‖T ∗ V‖F.

‖T‖ ∶= sup
‖V‖F≤1

‖T ∗ V‖F
= sup

‖V‖F≤
√
d3

‖T ⋅ V‖F

=‖T‖.

‖T‖ ∶= ‖�‖.

‖T‖⋆ ∶=
�
𝛬, I

�
=

r�
i=1

𝛬(i, i, 1),

(4)

‖T‖⋆ =

r�
i=1

𝛬(i, i, 1) =

d3�
k=1

r�
i=1

�𝛬(i, i, k)

=
1

d3

d3�
k=1

‖�T(∶, ∶, k)‖∗ = 1

d3
‖�T‖∗.

As shown in [24], tensor spectral norm is the dual norm 
of TNN. Besides, TNN is the tightest convex relaxation of 
the average rank in the unit ball of tensor spectral norm 
{T ∈ ℝ

d1×d2×d3 �‖T‖ ≤ 1} [24].

2.2 � Related works

In this subsection, only the most relevant works are intro-
duced.1 Limited to the focus of this paper, we only introduce 
related works of TRPCA based on different variants of ten-
sor nuclear norms.

RPCA can be seen as TRPCA in the 2-way case. It tries to 
separate a low rank matrix �∗ ∈ ℝ

d1×d2 and a sparse matrix 
�∗ ∈ ℝ

d1×d2 from their sum � = �∗ + �∗ . As shown in [2], 
when the underlying tensor �∗ satisfies the matrix incoher-
ence conditions, the solution of the following problem

can exactly recover �∗ and �∗ with high probability with 
parameter � = 1∕

√
max{d1, d2} . Problem (5) uses the 

matrix nuclear norm ‖⋅‖∗ as the low rank regularization term 
conv-rank(⋅) in Problem (3).

For general K-way tensors, many variants of ten-
sor nuclear norms are proposed as the low rank term 
conv-rank(⋅) in Problem (3). The most typical is the 
Tucker rank based tensor nuclear norm (SNN), defined 
as ‖T‖SNN ∶=

∑K

i=1
�k‖�(k)‖∗, where 𝜆k > 0 and �(k) is the 

mode-k unfolding of T  [13]. The SNN-based TRPCA is 
given as follows

SNN inherently assumes the underlying tensor to be low 
Tucker rank, i.e., simultaneously low rank along each mode. 
However, this assumption may be too strong for some real 
tensor data. At the same time, the low average rank assump-
tion has been shown to be weaker than low Tucker rank 
assumption [24]. As shown in Theorem 3.1 in [24], TNN is 
a convex envelop of the tensor average rank. The TNN-based 
TRPCA model adopts TNN as a low rank item in Problem 3, 
formulated as follows

(5)
min
�,�

‖�‖∗ + �‖�‖1
s.t. � + � = �,

(6)
min
L,S

‖T‖SNN + �‖S‖1
s.t. L + S = M.

(7)
min
L,S

‖L‖⋆ + 𝜆‖S‖1
s.t. L + S = M.

1  Although the problem of tensor RPCA is related to the RPCA [3] 
and tensor completion (TC) [18], we do not give further reviews of 
related works on variants of RPCA and TC.
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In [23, 24], it is proved that when the underlying tensor L∗ 
satisfy the tensor incoherent conditions, by solving Problem 
(7), one can exactly recover the underlying tensor L∗ and S∗ 
with high probability with parameter � = 1∕

√
max{d1, d2}d3

.

3 � TriFac for tensor robust PCA

3.1 � Model formulation

To solve the TNN-based TRPCA in Eq. (7), an algorithm 
based on the alternating directions methods of multipliers 
(ADMM) is proposed [23]. In each iteration, it computes a 
proximity operator of TNN, which requires FFT/IFFT, and 
d3 full SVDs of d1-by-d2 matrices when the observed tensor 
M is in ℝd1×d2×d3 . The one-iteration computation complexity 
of the ADMM-based algorithm is

which is very expensive for large tensors.
To reduce the cost of computing TNN in Problem (7), we 

come up with the following lemma, indicating that TNN is 
an orthogonal invariant norm.

Lemma 1  (Orthogonal invariance of TNN) Given a ten-
sor X ∈ ℝ

r×r×d3 , let P ∈ ℝ
d1×r×d3 and Q ∈ ℝ

d2×r×d3 be two 
semi-orthogonal tensors, i.e., P⊤ ∗ P = I ∈ ℝ

r×r×d3 and 
Q⊤ ∗ Q = I ∈ ℝ

r×r×d3 , and r ≤ min{d1, d2} . Then, we have 
the following relationship:

Proof  Let the full t-SVD of X  be X = U ∗ 𝛬 ∗ V⊤ , where 
U,V ∈ ℝ

r×r×d3 are orthogonal tensors and � ∈ ℝ
r×r×d3 is 

f-diagonal. Then

Then P ∗ X ∗ Q⊤ = (P ∗ U) ∗ 𝛬 ∗ (Q ∗ V)⊤ . Since

we obtain that

Thus, ‖P ∗ X ∗ Q⊤‖⋆ = ‖X‖⋆ . 	�  ◻

(8)O
(
d1d2d3(log d3 +min{d1, d2})

)
,

‖P ∗ X ∗ Q⊤‖⋆ = ‖X‖⋆.

‖X‖⋆ = ��U ∗ 𝛬 ∗ V⊤��∗ = ��U ⋅ 𝛬 ⋅ V⊤��∗ = ��𝛬��∗.

(P ∗ U)⊤ ∗ (P ∗ U) = U⊤ ∗ P⊤ ∗ P ∗ U = I,

(Q ∗ V)⊤ ∗ (Q ∗ V) = V⊤ ∗ Q⊤ ∗ Q ∗ V = I,

‖P ∗ X ∗ Q⊤‖⋆ = ��P ∗ X ∗ Q⊤��∗
= ��(P ∗ U) ∗ 𝛬 ∗ (Q ∗ V)⊤��∗
= ��(P ∗ U) ⋅ 𝛬 ⋅ (Q ∗ V)⊤��∗
= ��𝛬��∗.

Equipped with Lemma 1, we decompose the low rank 
component in Problem 7 as follows:

where Ir ∈ ℝ
r×r×d3 is an identity tensor. Inspired by [17, 20], 

the tensors P and Q can be seen as “active tensor spaces”. 
Further, we propose the following model based on triple 
factorization (TriFac) for tensor robust PCA

where Ir ∶= I ∈ ℝ
r×r×d3 , r is an upper estimate of the true 

tubal rank of the underlying tensor r∗ = r t (L
∗) and we set 

parameter � = 1∕
√
max{d1, d2}d3 as suggested by [24]. Not 

that, different from Problem 7, the proposed TriFac is a non-
convex model which may have many local minima.

3.2 � Optimization algorithm

The partial augmented Lagrangian of Problem (9) is as 
follows:

where 𝜇 > 0 is a penalty parameter, and Y ∈ ℝ
d1×d2×d3 is the 

Lagrangian multiplier.
Based on the Lagrangian in Eq. (10), we update each 

variable by fixing others as follows:

Solutions to each sub-problem in Problem (11) will be given 
next. The algorithm is summarized in Algorithm 1.

The P-subproblem We update P by fixing other variables 
and minimize L�(⋅) as follows

L = P ∗ C ∗ Q⊤, s.t. P⊤ ∗ P = Ir, Q
⊤ ∗ Q = Ir,

(9)

min
P,Q,C,S

‖C‖⋆ + 𝜆‖S‖1
s.t. P ∗ C ∗ Q⊤ + S = M,

P⊤ ∗ P = Ir, Q
⊤ ∗ Q = Ir,

(10)

L𝜇(P, C,Q,S,Y)

= ‖C‖⋆ + 𝜆‖S‖1 +
�
Y,P ∗ C ∗ Q⊤ + S −M

�

+
𝜇

2
‖P ∗ C ∗ Q⊤ + S −M‖2

F
,

s.t. P⊤ ∗ P = Ir, Q
⊤ ∗ Q = Ir,

(11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P = argmin
P

L𝜇(P, C,Q,S,Y), s.t. P⊤ ∗ P = Ir,

Q = argmin
Q

L𝜇(P, C,Q,S,Y), s.t. Q⊤ ∗ Q = Ir,

C = argmin
C

L𝜇(P, C,Q,S,Y),

S = argmin
S

L𝜇(P, C,Q,S,Y).

(12)

Pt+1 = argmin
P⊤∗P=Ir

L𝜇t
(P, Ct,Qt,St,Yt)

= argmin
P⊤∗P=Ir

𝜇t

2
‖P ∗ A − B‖2

F
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where A = Ct ∗ Q⊤
t
 and B = M − St − Yt∕�t . We need the 

following lemma to solve Problem (12).

Lemma 2  Given any tensors A ∈ ℝ
r×d2×d3 ,B ∈ ℝ

d1×d2×d3 , 
suppose tensor B ∗ A⊤ has t-SVD B ∗ A⊤ = U ∗ 𝛬 ∗ V⊤ , 
where U ∈ ℝ

d1×r×d3 and V ∈ ℝ
r×r×d3 . Then, the problem

has a closed-form solution as

Proof 
Since P⊤ ∗ P = Ir , we have that

Also, we have

where X = B ∗ A⊤ and X̃ = fft3(X).
According to the trace inequality of Von Neuman, the ine-

quality reaches its maximum when matrices P̃
(k)

∈ ℂ
d1×r and 

X̃
(k)

∈ ℂ
d1×r have the same right and left singular vectors.

We perform SVD on its first ⌈ d3+1

2
⌉ frontal slices 

X̃
(k)

∈ ℂ
d1× as follows

w h e r e  �(k) ∈ ℂ
d3×r  i s  a  c o l u m n - o r t h o g o -

nal matr ix,�(k) ∈ ℂ
r×r  is an or thogonal matr ix, 

�(k) = diag(�
(k)

1
,… , �(k)

r
) , and �(k)

1
≥ �

(k)

2
≥ ⋯ ≥ �(k)

r
≥ 0 are 

the singular values of X̃
(k) . Using the relationships between 

FFT and t-SVD [24], we have that for all k > ⌈ d3+1

2
⌉ , the 

frontal slice X̃
(k) also has an SVD as

(13)min
P⊤∗P=Ir

‖P ∗ A − B‖2
F

(14)P = �(B ∗ A⊤) ∶= U ∗ V⊤.

(15)
‖P ∗ A − B‖2

F
= ‖P ∗ A − B‖2

F

= ‖P ∗ A‖2
F
+ ‖B‖2

F
− 2⟨P ∗ A,B⟩

‖P ∗ A‖2
F
=

1

d3
‖P ∗ A‖2

F
=

1

d3
‖P ⋅A‖2

F

=
1

d3
Tr
�
(P ⋅A)�(P ⋅A)

�
=

1

d3
Tr
�
A�A

�

=
1

d3
‖A‖2

F
= ‖A‖2

F

(16)

⟨P ∗ A,B⟩ = 1

d3

�
P ∗ A,B

�
=

1

d3

�
P ⋅A,B

�

=
1

d3

�
P,B ⋅A�

�
=

1

d3

d3�
k=1

�
P̃
(k)
, X̃

(k)
�
,

X̃
(k)

= �(k)�(k)(�(k))�, ∀k = 1,… ,

⌈
d3 + 1

2

⌉
,

X̃
(k)

= conj
(
X̃

(d3−k+2))

= conj
(
�(d3−k+2)

)
�(d3−k+2)conj

(
�(d3−k+2)

)
�.

Then, we construct a semi-orthogonal tensor U ∈ ℝ
d1×r×d3 

and orthogonal tensor V ∈ ℝ
r×r×d3 as a pair of “singular vec-

tor tensors” of X :

and

Further, we construct P ∈ ℝ
d1×r×d3 by

Thus we have P⊤ ∗ P = I  . Also, according to the trace 
inequality of Von Neuman, the left hand side of Eq. (16) get 
its maximum and thus Problem (13) get its minimum. 	
� ◻

The Q-subproblem By fixing other variables, we update Q 
as follows

where A� = Pt+1 ∗ Ct and B = M − St − Yt∕�t , and �(⋅) 
is defined in Lemma 2. The last equality holds because of 
Eq. (14) in Lemma 2.

The C-subproblem We update C as follows

where ��(⋅) is the proximity operator of TNN. In [30], a 
closed-form expression of ��(⋅) is given as follows:

�U
(k)

=

⎧
⎪⎪⎨⎪⎪⎩

�(k), k ≤

�
d3 + 1

2

�

conj(�(d3−k+2)), k >

�
d3 + 1

2

�

�V
(k)

=

⎧
⎪⎪⎨⎪⎪⎩

�(k), k ≤

�
d3 + 1

2

�

conj(�(d3−k+2)), k >

�
d3 + 1

2

� .

P̃
(k)

= Ũ
(k)
(Ṽ

(k)
)�, ∀k ≤ d3.

(17)

Qt+1 = argmin
Q⊤∗Q=Ir

L𝜇t
(Pt+1, Ct,Q,St,Yt)

= argmin
Q⊤∗Q=Ir

𝜇t

2
‖A� ∗ Q⊤ − B‖2

F

= argmin
Q⊤∗Q=Ir

𝜇t

2
‖(Q ∗ A�⊤) − B⊤‖2

F

=
�
�(B⊤ ∗ A�)

�
⊤,

(18)

Ct+1

= argmin
C

L𝜇t
(Pt+1, C,Qt+1,St,Yt)

= argmin
C

‖C‖⋆ +
𝜇t

2
‖Pt+1 ∗ C ∗ Q⊤

t
+ St −M +

Y

𝜇t

‖2
F

= argmin
C

‖C‖⋆ +
𝜇t

2
‖C − P⊤

t+1
∗ (M − St −

Y

𝜇t

) ∗ Qt+1‖2F
= �1∕𝜇t

(Pt+1
⊤ ∗

�
M − St − Y∕𝜇t

�
∗ Qt+1),
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Lemma 3  (Proximity operator of TNN [30]) For any 3D 
tensorA ∈ ℝ

d1×d2×d3 with reduced t-SVDA = U ∗ 𝛬 ∗ V⊤ , 
whereU ∈ ℝ

d1×r×d3 andV ∈ ℝ
d2×r×d3 are orthogonal tensors 

and� ∈ ℝ
r×r×d3 is the f-diagonal tensor of singular tubes, the 

proximity operator ��(A) at A can be computed by:

The S-subproblem We update S as follows

where B� = Pt+1 ∗ Ct+1 ∗ Q⊤
t+1

 , and ��(⋅) is the proximity 
operator of tensor l1-norm whose closed-from solution is 
given as follows:

where ⊛ denotes the element-wise tensor product. 

�𝜏(A) ∶ = argmin
X

𝜏‖X‖⋆ +
1

2
‖X −A‖2

F

= U ∗ ifft3(max(fft3(𝛬) − 𝜏, 0)) ∗ V⊤.

(19)

St+1

= argmin
S

L�t
(Pt+1, Ct+1,Qt+1,S,Yt)

= argmin
S

‖S‖1 + �

2�
‖B� + S −M +

Yt

�t

‖2
F

= ��∕�(M − B� −
Yt

�t

),

�𝜏(A) ∶ = argmin
X

𝜏‖X‖1 + 1

2
‖X −A‖2

F

= sign(A)⊛max{(�A� − 𝜏, 0},

Complexity analysis In a single iteration, the main cost of 
Algorithm 1 lies in updating the primal variables P, C,Q,S 
(using operators �(⋅) , ��(⋅) , �(⋅) , ��(⋅) respectively) and 
the dual variables Y,Yi, i ≤ 3.

Note that, we have to compute many intermediate t-prod-
ucts like B ∗ A⊤ , P ∗ C ∗ Q⊤ before directly updating the 
primal and dual variables. These t-products can be effi-
ciently computed using FFT/IFFT with a total cost at most 
O(d1d2d3 log d3) , since the intermediate tensors to conduct 
FFT/IFFT have sizes at most d1 × d2 × d3.

Then, the direct update of P using operator �(⋅) involves 
computing FFT, IFFT and d3 SVDs of r × d2 matrices, 
having complexity O

(
rd2d3 log d3 + r2d2d3

)
 . Similarly, 

the direct update of Q using operator �(⋅) has complexity 
O
(
rd1d3 log d3 + r2d1d3

)
 . Directly updating C using opera-

tor ��(⋅) involves complexity O
(
r2d3(r + log d3)

)
 . Directly 

updating S using operator ��(⋅) costs O
(
d1d2d3

)
 . Directly 

updating Y,Yi, i ≤ 3 costs O(d1d2d3) . Thus, the one iteration 
cost of Algorithm 1 is as follows

where d̃ = d1 + d2. When r ≪ min{d1, d2} , the above cost 
is significantly lower than the one-iteration cost of ADMM-
based TRPCA [24] in Eq. (8).

Consider an extreme case in high dimensional settings 
where r t (L

∗) = O(1) , that is the tubal rank of the underly-
ing tensor L∗ scales like a small constant. By choosing the 
initialized rank r = 2r t (L

∗) = O(1) , the one-iteration cost 
of Algorithm 1 scales like

much cheaper than O(d1d2d3 min{d1, d2}) of ADMM-based 
algorithm in high dimensional settings.

4 � Theoretical analysis

In this section, some theoretical properties of Algorithm 1 
is discussed. Specifically, we first analyze the convergence 
behavior of Algorithm 1, and then establish the sub-opti-
mality of it.

4.1 � Convergence analysis of Algorithm 1

We will show in the following theorem that Algorithm 1 is 
convergent.

Theorem 1  Letting (Pt, Ct,Qt,St) be any sequence generated 
by Algorithm 1, the following statements hold

O
(
d3
(
d1d2 log d3 + r2(r + d̃ + log d3) + rd̃ log d3

))
,

(20)O(d1d2d3 log d3),
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	 (I).	 The sequences (Ct,Pt ∗ Ct ∗ Qt
⊤,St) are Cauchy 

sequences respectively.
	 (II).	 (Pt, Ct,Qt,St) is a feasible solution to Problem (9) in 

a sense that

Before proving Theorem  1, we need the following 
lemmas.

Lemma 4  [16] Let ‖⋅‖ denote any norm with dual norm ‖⋅‖∗ . 
If � ∈ �‖�‖ , then it holds that ‖�‖∗ ≤ 1.

Lemma 5  The sequence {Yt}, {Y
1
t
}, {Y2

t+1
}, {Y3

t+1
} in Algo-

rithm 1 are bounded.

Proof  First, according to the optimality of St+1 in Prob-
lem 19, we have that

which means

Thus, {Yt} is a bounded sequence.
Then, according to the optimality of Qt+1 to Problem 17, 

we obtain ‖Y2
t+1

‖F ≤ ‖Y3
t+1

‖F.
Next, the optimality of Pt+1 to Problem (12) yields

Since the boundedness of {Yt} leads to the boundedness of 
{Y3

t
} . Then {Y2

t
} is also bounded.

The optimality of Ct+1 to Problem (18) yields

which means

Let P⟂
t+1

= I − Pt+1 and Q⟂
t+1

= I −Qt+1 . Then,

Thus, {(P⟂
t+1

)⊤Y1
t+1

Qt+1} is bounded. Similarly, sequences 
{(P⟂

t+1
)⊤Y1

t+1
Q⟂

t+1
} and {Pt+1

⊤Y1
t+1

Q⟂
t+1

} are also bounded.
In this way, {Y1

t
} is also bounded. 	�  ◻

Equipped with the above two lemmas, we are able to 
prove Theorem 1.

lim
t→∞

‖Pt ∗ Ct ∗ Q⊤
t
+ St −M‖∞ ≤ 𝜀.

� ∈ 𝜆𝜕‖St+1‖1
+ 𝜇t(Pt+1 ∗ Ct+1 ∗ Qt+1

⊤ + St+1 −M + Yt∕𝜇t),

−Yt+1 ∈ ��‖St+1‖1 ⇒ ‖Yt+1‖∞ ≤ �.

‖Y3
t+1

‖F ≤ ‖Pt ∗ Ct ∗ Qt
⊤ + St −M + Yt∕𝜇t‖F

= ‖Yt∕𝜇t−1 − Yt−1∕𝜇t−1 + Yt∕𝜇t‖F.

� ∈ 𝜕‖Ct+1‖⋆
+ 𝜇t

�
Ct+1 + P⊤

t+1
∗ (St −M + Yt∕𝜇t) ∗ Qt+1

�
,

− P⊤
t+1

Y1
t+1

Qt+1 ∈ 𝜕‖Ct+1‖⋆ ⇒ ‖P⊤
t+1

Y1
t+1

Qt+1‖ ≤ 1.

‖(P⟂
t+1

)⊤Y1
t+1

Qt+1‖ = ‖(P⟂
t+1

)⊤Y3
t+1

Qt+1‖ ≤ ‖Y3
t+1

‖.

Proof of Theorem 1  First, according to the process of Algo-
rithm 1, we have the following chain of inequalities of the 
Lagrangian:

Note that the quantity maxs ‖Ys − Ys−1‖2F in the above ine-
quality is bounded, since {Yt} is bounded. Recall the update 
of �t in Algorithm 1 �t = ��t−1 = �t�0 , then we show the 
quantity 

∑∞

t=1

�t+�t−1

2�2
t−1

 is also bounded, since

Thus, L�t−1
(Pt, Ct,Qt,St,Yt−1) is bounded. Note that

Then, the sequence 
�‖Ct‖⋆ + 𝜆‖St‖1

�
 is bounded.

According to the orthogonal invariance of TNN given in 
Lemma 1, we have

Then, we obtain that (Ct,Pt ∗ Ct ∗ Q⊤
t
,St) is bounded.

According to the process of Algorithm 1, we have

and the following relationships

L�t
(Pt+1, Ct+1,Qt+1,St+1,Yt)

≤ L�t
(Pt+1, Ct+1,Qt+1,St,Yt)

≤ L�t
(Pt+1, Ct,Qt+1,St,Yt)

≤ L�t
(Pt+1, Ct,Qt,St,Yt)

≤ L�t
(Pt, Ct,Qt,St,Yt)

≤ L�t−1
(Pt, Ct,Qt,St,Yt−1) +

�t + �t−1

2�2
t−1

‖Yt − Yt−1‖2F

≤ L�0
(P1, C1,Q1,S1,Y0) +

t�
s=1

�s + �s−1

2�2
s−1

‖Ys − Ys−1‖2F
≤ L�0

(P1, C1,Q1,S1,Y0)

+ (max
s

‖Ys − Ys−1‖2F)
t�

s=1

�s + �s−1

2�2
s−1

∞∑
t=1

�t + �t−1

2�2
t−1

=
� + 1

2�0

∞∑
t=1

1

�t−1
=

�(� + 1)

2�0(� − 1)
.

L𝜇t
(Pt+1, Ct+1,Qt+1,St+1,Yt)

= ‖Ct‖⋆ + 𝜆‖St‖1 +
�
Yt−1,Pt ∗ Ct ∗ Q⊤

t
+ St −M

�

+
𝜇t−1

2
‖Pt ∗ Ct ∗ Q⊤

t
+ St −M‖2

F

= ‖Ct‖⋆ + 𝜆‖St‖1 +
�
Yt−1,

Yt − Yt−1

𝜇t−1

�
𝜇t−1

2
‖Yt − Yt−1

𝜇t−1

‖2
F

= ‖Ct‖⋆ + 𝜆‖St‖1 + 1

2𝜇t−1

‖Yt − Yt−1‖2F.

‖Pt ∗ Ct ∗ Q⊤
t
‖⋆ = ‖Ct‖⋆.

St+1 − St = 𝜇−1
t
(Yt+1 − Y1

t+1
)

Ct+1 − Ct = 𝜇−1
t
(Pt+1 ∗ (Y1

t+1
− Y2

t+1
) ∗ Q⊤

t+1
)
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and

By the update of �t = ��t−1 with � = 1.1 in Algorithm 1, we 
have the fact that limt→∞ �t = +∞ . Combing the above with 
the boundedness of Yt and Yi

t
, i = 1, 2, 3 , we have

Then {St}, {Ct}, {Pt ∗ Ct ∗ Q⊤
t
} are Cauchy sequences, and

	�  ◻

4.2 � Sub‑optimality of Algorithm 1

In this subsection, we will establish the sub-optimality of 
Algorithm 1 by upper bounding the gap in objective value 
produced by Algorithm 1 and the optimal value of TNN-
based TRPCA [24] in Problem (7).

4.2.1 � Connection between Algorithm 1 and TRPCA

We first build a connection between the proposed model 
TriFac in Problem (9) with the TNN-based TRPCA model 
[24] in Problem (7) in the following theorem.

Theorem 2  (Connection between TriFac and TRPCA) Let 
(P∗, C∗,Q∗,S∗) be a global optimal solution to TriFac in 
Problem (9). And let (L⋆,S⋆) be the solution to TRPCA in 
Problem (7), and r t (L

⋆) ≤ r , where r is the initialized tubal 
rank. Then (P∗ ∗ C∗ ∗ Q⊤

∗
,S∗) is also the optimal solution 

to Problem (7).

Theorem 2 asserts that the global optimal point of TriFac 
coincides with the solution of TNN-based TRPCA, which 
is guaranteed to exactly recover the underlying tensor L∗ 
under certain conditions. That means that the accuracy of 
the proposed model cannot exceed TPRCA, which will be 
shown numerically in the experiment section. The proof of 
Theorem 2 is given as follows.

Proof of Theorem 2  Note that (P∗ ∗ C∗ ∗ Q⊤
∗
,S∗) is a feasible 

point of Problem (7), then we have

Pt+1 ∗ Ct+1 ∗ Q⊤
t+1

− Pt ∗ Ct ∗ Q⊤
t

= 𝜇−1
t

(
Y1
t+1

+ Yt−1 − (1 + 𝜌)Yt

)

Pt+1 ∗ Ct+1 ∗ Q⊤
t+1

+ St+1 −M = 𝜇−1
t
(Yt+1 − Yt).

�−1
t
(Yt+1 − Y1

t+1
) → �

�−1
t
(Y1

t+1
− Y2

t+1
) → �

�t
−1
(
Y1
t+1

+ Yt−1 − (1 + �)Yt

)
→ �

�−1
t
(Yt+1 − Yt) → �.

‖Pt+1 ∗ Ct+1 ∗ Q⊤
t+1

+ St+1 −M‖∞ ≤ 𝜀.

By the assumption that r t (L
⋆) ≤ r , there exists a decompo-

sition L⋆ = P⋆ ∗ C⋆ ∗ (Q⋆)⊤ , such that (P⋆, C⋆,Q⋆,S⋆) is 
also a feasible point of Problem (9).

Moreover, since (C∗,S∗) is a global optimal solution to 
Problem (9), then we have that

By L⋆ = P⋆ ∗ C⋆ ∗ (Q⋆)⊤ , we have

Thus, we deduce

According to Eqs. (21) and (22), we further have

In this way, (P∗ ∗ C∗ ∗ Q⊤
∗
,S∗) is also the optimal solution 

to the TRPCA Problem (7). 	�  ◻

Next, we further establish the sub-optimality of Algo-
rithm 1. Let t∗ be the iteration number that Algorithm 1 stops 
at, then we have the following result.

Theorem  3  (The sub-optimality of Algorithm  1 with 
respect to TriFac) Let (Pg, Cg,Qg,Sg) be a global optimal 
solution to Problem (9). Denote fg = ‖Cg‖⋆ + 𝜆‖Sg‖1 and 
ft∗+1 = ‖Ct∗+1‖⋆ + 𝜆‖St∗+1‖1 . Then, we have

where

Theorem 3 gives an upper bound on the gap between the 
global optimal value of TriFac and the objective value of 
Algorithm 1. Since TriFac shares the global optima with 
TRPCA, the gap between objective values of Algorithm 1 
and TRPCA is upper bounded by

Now, we are in a position to give the proof of Theorem 3 in 
the following subsection.

4.2.2 � Proof of Theorem 3

To prove Theorem 3, we should be equipped with the fol-
lowing lemmas.

(21)
‖L⋆‖⋆ + 𝜆‖S⋆‖1 ≤ ‖P∗ ∗ C∗ ∗ Q⊤

∗
‖⋆ + 𝜆‖S∗‖1

= ‖C∗‖⋆ + 𝜆‖S∗‖1

‖C∗‖⋆ + 𝜆‖S∗‖1 ≤ ‖C⋆‖⋆ + 𝜆‖S⋆‖1.

‖L⋆‖⋆ = ‖P⋆ ∗ C⋆ ∗ (Q⋆)⊤‖⋆ = ‖C⋆‖⋆.

(22)‖C∗‖⋆ + 𝜆‖S∗‖1 ≤ ‖L⋆‖⋆ + 𝜆‖S⋆‖1.

‖C∗‖⋆ + 𝜆‖S∗‖1 = ‖L⋆‖⋆ + 𝜆‖S⋆‖1.

ft∗+1 − fg ≤ (� + 1)c1 + d1d2d3�,

c1 = d1d2d3�
2‖M‖

�
�(� + 1)

�0(� − 1)
+

1

2�t
∗

�
+ ‖M‖1.

(� + 1)c1 + d1d2d3�.
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Lemma 6  (Subgradient of TNN [23]) Let X ∈ ℝ
m×n×k with 

tubal rank r and its skinny t-SVD be X = U ∗ S ∗ V⊤ . The 
subdifferential (the set of subgradients) of 𝜕‖X‖⋆ is

Lemma 7  Let X,Y  and Q are tensors of compatible 
dimensions. If P,Q obeys P⊤ ∗ P = Ir,Q

⊤ ∗ Q = Ir and 
Y ∈ 𝜕‖X‖⋆ , then

Proof  Let the skinny t-SVD of X  be X = U ∗ S ∗ V⊤ . By 
Y ∈ ‖X‖⋆ and Lemma 6, we have

where U⊤ ∗ W = �,W ∗ V = �, ‖W‖ ≤ 1 . Since P is col-
umn-orthogonal, then P ∗ X  has a skinny t-SVD as

where (P ∗ U)⊤ ∗ (P ∗ U) = U⊤ ∗ P⊤ ∗ P ∗ U = Ir . Then, 
it yields to

where U⊤ ∗ P⊤ ∗ W1 = �,W1 ∗ V = �, ‖W1‖ ≤ 1 . With the 
above notations, it can be verified that P ∗ Y ∈ 𝜕‖P ∗ X‖⋆ . 
Similarly, the remaining two relationships can be proved. 	
� ◻

Lemma 8  For any tensor X  , we have ‖X‖∞ ≤ ‖X‖.

Proof  It is obvious that ‖X‖∞ = ‖bcirc(X)‖∞ , where 
bcirc(⋅) is the block-circulant operator [24]. It is also known 
that ‖X‖ = ‖X‖ = ‖bcirc(X)‖ . Note that for any matrix 
� ∈ ℝ

m×n , we have

 Thus, we have the following relationship

	�  ◻

Based on the above three lemmas, we give the following 
proposition which is key to the proof of Theorem 3.

𝜕‖X‖⋆
= {U ∗ V⊤ +W�U⊤ ∗ W = �,W ∗ V = �, ‖W‖ ≤ 1}.

P ∗ Y ∈𝜕‖P ∗ X‖⋆
Y ∗ Q⊤ ∈𝜕‖X ∗ Q⊤‖⋆

P ∗ Y ∗ Q⊤ ∈𝜕‖P ∗ X ∗ Q⊤‖⋆.

Y = U ∗ V⊤ +W,

P ∗ X = (P ∗ U) ∗ S ∗ V⊤,

𝜕‖P ∗ X‖⋆ = {P ∗ U ∗ V⊤ +W1},

‖�‖∞ = max
(i,j)∈[m]×[n]

�i
⊤��j

≤ inf
�∈�m−1,�∈�n−1

�⊤��

= ‖X‖.

‖X‖∞ = ‖bcirc(X)‖∞ ≤ ‖bcirc(X)‖ ≤ ‖X‖.

Proposition 1  Let (Pt∗+1, Ct∗+1,Qt∗+1,St∗+1) denote the the 
solution generated by Algorithm 1, we have that

for any feasible point (P, C,Q,S) of Problem (9).

Proof  Recall the update of Pt∗+1 that

Let the skinny t-SVD of (M − St∗ − Yt∗∕�t∗ ) is Ut ∗ 𝛬
t
∗ V⊤

t
 . 

Also let the full t-SVD of 𝛬
t
∗ V⊤

t
∗ (Ct∗Q

⊤
t∗
)⊤ be U ∗ 𝛬 ∗ V⊤ , 

then we have

which further leads to

Similarly, one has

Recall the definition of Y1
t∗+1

 in Algorithm 1 that

Performing left t-product of Pt∗+1 ∗ P⊤
t∗+1

 and right t-product 
Qt∗+1 ∗ Q⊤

t∗+1
 on both sides of the above equation, we get

Thus, we have

The update of Ct∗+1 indicates that

Then, we have the relationship P
t∗+1 ∗ P⊤

t∗+1
∗ Y1

t∗+1

∗ Q
t∗+1 ∗ Q⊤

t∗+1
∈ 𝜕‖P

t∗+1 ∗ C
t∗+1 ∗ Q⊤

t∗+1
‖⋆.

According to the update St∗+1 , we get ‖Yt∗+1‖1 ≤ � . Then 
using the property of convex functions, we have for any fea-
sible solution (P, C,Q,S)

‖C‖⋆ + 𝜆‖S‖1 − (‖Ct∗+1‖⋆ + 𝜆‖St∗+1‖1)
≥
�
Yt∗+1 − Y1

t∗+1
,S − St∗+1

�
− d1d2d3𝜀,

Pt∗+1 = argmin
P⊤∗P=Ir

‖P ∗ (Ct∗Q
⊤
t∗
) − (M − St∗ − Yt∗∕𝜇t∗ )‖2F.

Pt∗+1 = Ut ∗ U ∗ V⊤,

Pt∗+1 ∗ P⊤
t∗+1

= Ut ∗ U⊤
t
,

Qt∗+1 ∗ Q⊤
t∗+1

= Vt ∗ V⊤
t
.

Y1
t∗+1

= Yt∗ + 𝜇t∗ (Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

+ St∗ −M)

= 𝜇t∗

(
Pt∗+1 ∗ Ct∗+1 ∗ Q⊤

t∗+1
− (M − St∗ − Yt∗∕𝜇t∗ )

)

Pt∗+1 ∗ P⊤
t∗+1

∗ Y1
t∗+1

∗ Qt∗+1 ∗ Q⊤
t∗+1

= 𝜇t∗

(
Pt∗+1 ∗ Ct∗+1 ∗ Q⊤

t∗+1
− (M − St∗ − Yt∗∕𝜇t∗ )

)
,

Y1
t∗+1

= Pt∗+1 ∗ P⊤
t∗+1

∗ Y1
t∗+1

∗ Qt∗+1 ∗ Q⊤
t∗+1

.

� ∈ 𝜕‖Ct∗+1‖⋆ + P⊤
t∗+1

∗ Y1
t∗+1

∗ Qt∗+1

⇒ −Y1
t∗+1

∈ 𝜕‖Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

‖⋆
⇒ ‖Y1

t∗+1
‖ ≤ 1.
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Note that the feasibility of (P, C,Q,S) indicates 
P ∗ C ∗ Q⊤ + S = M. Then, we have

Note that for any tensor X  , we have ‖X‖∞ ≤ ‖X‖ according 
to Lemma 8. Then, it holds that

 Thus, the statement of this proposition is proved. 	�  ◻

Then, we are able to prove Theorem  3 based on 
Proposition 1.

Proof of Theorem 3  Let (Pg, Cg,Qg,Sg) be a global solution 
to Problem (9). Since (Pt∗+1, �,Qt∗+1,M) is feasible to Prob-
lem (9). Then, we have

Also, we have

Since ‖Yt‖∞ ≤ �,∀t ∈ ℕ+ , we have

‖C‖⋆ + 𝜆‖S‖1
= ‖P ∗ C ∗ Q⊤‖⋆ + 𝜆‖S‖1
≥ ‖Pt∗+1 ∗ Ct∗+1 ∗ Q⊤

t∗+1
‖⋆ + 𝜆‖St∗+1‖1 +

�
Yt∗+1,S − St∗+1

�

+
�
Y1
t∗+1

,P ∗ C ∗ Q⊤ − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

�

= ‖Ct∗+1‖⋆ + 𝜆‖St∗+1‖1 +
�
Yt∗+1 − Y1

t∗+1
,S − St∗+1

�

+
�
Y1
t∗+1

,P ∗ C ∗ Q⊤ + S − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

− St∗+1

�
.

‖P ∗ C ∗ Q⊤ + S − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

− St∗+1‖∞
= ‖M − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤

t∗+1
− St∗+1‖∞

= ‖𝜇−1
t∗
(Yt∗+1 − Yt∗ )‖∞ ≤ 𝜀.

���
�
Y1
t∗+1

,P ∗ C ∗ Q⊤ + S − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

− St∗+1

����
≤ ‖Y1

t∗+1
‖∞‖P ∗ C ∗ Q⊤ + S − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤

t∗+1
− St∗+1‖1

≤ ‖Y1
t∗+1

‖ ⋅ d1d2d3‖M − Pt∗+1 ∗ Ct∗+1 ∗ Q⊤
t∗+1

− St∗+1‖∞
≤ d1d2d3𝜀.

𝜆‖Eg‖1 ≤ ‖Cg‖⋆ + 𝜆‖Eg‖1 ≤ 𝜆‖M‖1.

𝜆‖St∗+1‖1
≤ ‖Ct∗+1‖⋆ + 𝜆‖St∗+1‖1
= L𝜇t∗

(Pt∗+1, Ct∗+1,Qt∗+1,St∗+1,Yt∗ )

−
1

2𝜇t∗

�
‖Yt∗+1‖2F − ‖Yt∗‖2F

�

= L𝜇t∗
(Pt∗+1, Ct∗+1,Qt∗+1,St∗+1,Yt∗ ) +

1

2𝜇t∗
‖Yt∗‖2F

≤ L𝜇0
(P1, C1,Q1,S1,Y0)

+

t∗+1�
s=1

𝜇s + 𝜇s−1

2𝜇2
s−1

‖Ys − Ys−1‖2F + 1

2𝜇t∗
‖Yt∗‖2F

≤
𝜌(𝜌 + 1)

2𝜇0(𝜌 − 1)
max

s
‖Ys − Ys−1‖2F + 1

2𝜇t∗
‖Yt∗‖2F

Thus we have maxs ‖Ys − Ys−1‖2F ≤ 4d1d2d3�
2  and 

‖Yt∗‖2F ≤ �2 . Then, it yields

Hence,

where

Also note that ‖Y
t∗
− Y1

t∗
‖∞ ≤ ‖Y

t∗
‖∞ + ‖Y1

t∗
‖∞ ≤ ‖Y

t∗
‖∞

+‖Y1

t∗
‖ ≤ 1 + � . Thus, we have

which completes the proof. 	�  ◻

5 � Extensions and differences with prior 
works

In this section, we first consider an extension where the 
observation also suffers from missing values, known as 
robust tensor completion [11], and then explain the differ-
ences from this work and prior works.

5.1 � Extensions to robust tensor completion

Besides corruptions, the observation M may also suffer 
from missing entries in many scenarios [11]. Thus, it is also 
practical to consider robust tensor completion which aims 
to recover L∗ against outliers S∗ and missing entries shown 
in the following observation model

where tensor B ∈ ℝ
d1×d2×d3 denote the missing mask where 

Bijk = 1 , if the (i, j, k)th entry of L is observed and Bijk = 0 
otherwise.

‖Ys − Ys−1‖∞ ≤ ‖Ys‖∞ + ‖Ys−1‖∞ ≤ 2�.

�‖St∗+1‖1 ≤
d1d2d3�

2

2�0

�
2�(� + 1)

�0(� − 1)
+

1

�t
∗

�

= d1d2d3�
2‖M‖

�
�(� + 1)

�0(� − 1)
+

1

2�t
∗

�
.

‖Sg − St∗+1‖1 ≤ ‖Sg‖1 + ‖St∗+1‖1 ≤ c1,

c1 = d1d2d3�
2‖M‖

�
�(� + 1)

�0(� − 1)
+

1

2�t
∗

�
+ ‖M‖1.

fg = ‖Cg‖⋆ + 𝜆‖Sg‖1
≥ ‖Ct∗+1‖⋆ + 𝜆‖St∗+1‖1
+
�
Yt∗ − Y1

t∗
,Sg − St∗+1

�
− d1d2d3𝜀

≥ ft∗+1 − ‖Yt∗ − Y1
t∗
‖∞‖Sg − St∗+1‖1 − d1d2d3𝜀

≥ ft∗+1 − (𝜆 + 1)c1 − d1d2d3𝜀,

(23)M = B⊛ (L∗ + S∗),
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In [11], a TNN-based robust tensor completion model is 
proposed as follows

For Model (24), the ADMM algorithm proposed in [11] also 
requires full SVDs in each iteration, and thus can be accel-
erated by the factorized strategy in this paper. Taking into 
consideration of missing entries, we simply modify Model 
(9) as:

Model (25) can be optimized by ADMM [1] and we omit it 
due to the focus of this paper.

It is easy to build a connection between the proposed 
Model (25) with Model (24) in the following theorem.

Theorem 4  (Connection between Model (25) and Model 
(24)) Let (P∗, C∗,Q∗,S∗) be a global optimal solution Prob-
lem (25). And let (L⋆,S⋆) be the solution Problem (24), 
and r t (L

⋆) ≤ r , where r is the initialized tubal rank. Then 
(P∗ ∗ C∗ ∗ Q⊤

∗
,S∗) is also the optimal solution to Problem 

(24).

5.2 � Differences with prior works

First, we explain the differences between this paper and the 
TNN-based TRPCA [24]. 

1.	 [24] recovers the underlying tensor using a convex 
model whereas our factorization-based model is non-
convex.

2.	 The theoretical results in [24] guarantee exact recovery 
of the underlying tensor whereas our theoretical analysis 
focus on the sub-optimality of the proposed algorithm.

Then, since our work is motivated by the “active space” 
model [17], we compare them as follows. 

1.	 The objectives are different: Our method is for tensor 
recovery and [17] is for matrix RPCA. Our model is 
based on the algebraic framework t-SVD and it can be 
viewed as a non-trivial multi-linear extension of [17].

2.	 In our model, we adopts a triple tensor factorization 
L = P ∗ C ∗ Q⊤ whereas [17] considers bipartite matrix 
factorization � = �� . Thus, our results cannot be trivi-
ally obtained from the analysis of [17].

(24)
min
L,S

, ‖L‖⋆ + 𝜆‖S‖1
s.t. B⊛ (L + S) = M.

(25)

min
P,Q,C,S

‖C‖⋆ + 𝜆‖S‖1
s.t. B⊛ (P ∗ C ∗ Q⊤ + S) = M,

P⊤ ∗ P = Ir, Q
⊤ ∗ Q = Ir.

Finally, we extend the conference version of this work [32] 
in the following aspects. 

1.	 We analyze the sub-optimality of the proposed Algo-
rithm which is a main technical contribution of this 
paper. Besides, all proofs of lemmas and theorems in the 
conference version can be found directly in this paper.

2.	 We also extend the proposed model to the robust tensor 
completion problem [11] in this paper.

3.	 A large number of additional experiments are performed 
in this paper.

6 � Experiments

In this section, we experiment on both synthetic and real 
datasets to verify the effectiveness and the efficiency of the 
proposed algorithm. All codes are written in Matlab and all 
experiments are performed in Windows 10 based on Intel(R) 
Core(TM) i7-8565U 1.80-1.99 GHz CPU with 8G RAM.

6.1 � Synthetic data experiments

In this subsection, we compare Algorithm 1 (TriFac) with 
the TNN-based TRPCA [23] in accuracy and speed on syn-
thetic datasets. Given tensor size d1 × d2 × d3 and tubal rank 
r∗ ≪ min{d1, d2} , we first generate a tensor L0 ∈ ℝ

d1×d2×d3 
by L0 = A ∗ B, where the elements of tensors A ∈ ℝ

d1×r
∗×d3 

and B ∈ ℝ
r∗×d2×d3 are sampled from independent and iden-

tically distributed (i.i.d.) standard Gaussian distribution. 
We then form L∗ by L∗ =

√
d1d2d3L0∕‖L0‖F . Next, the 

support of S∗ is uniformly sampled at random. For any 
(i, j, k) ∈ supp

(
S∗

)
 , we set S∗

ijk
= Bijk , where B is a tensor 

with independent Bernoulli ±1 entries. Finally, we form the 
observation tensor M = L∗ + S∗ . In the experiments, we set 
parameter � = 1∕

√
d3 max{d1, d2} . For an estimation L̂ of 

the underlying tensor L∗ , the relative squared error (RSE) is 
used to evaluate the quality of L̂ , that is,

6.1.1 � Effectiveness and efficiency of TriFac

We first show that TriFac can exactly recover the underlying 
tensor L∗ from corruptions with fast speed than TRPCA. 
We first test the recovery performance of different tensor 
sizes by setting d1 = d2 ∈ {100, 160, 200} and d3 = 30 , with 
(r t (L

∗), ‖S∗‖0) = (0.05d, 0.05d2d3) . Then, a more difficult 
setting (r t (L

∗), ‖S∗‖0) = (0.15d, 0.1d2d3) is tested. The 
results are shown in Table 2. It can be seen that TriFac can 

RSE(L̂,L∗) ∶=
‖L̂ − L∗‖F
‖L∗‖F

.
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perform as well as TRPCA in the sense that both of them 
can exactly recover the underlying tensor. However, TriFac 
is much faster than TRPCA.

To test whether the distribution of outliers affects the per-
formance of TriFac. We also test the cases where elements of 
the outlier tensor S∗ are drawn from i.i.d. Gaussian distribution 
N(0, 1) , or uniform distribution U[0, 1] . The corresponding 

results are shown in Tables 3 and 4, respectively. As can be 
seen, the performance and speed of TriFac and TRPCA has 
not been significantly affected by the distribution of outliers. 
This can be explained by Theorem 4.1 in [24] that the under-
lying tensor L∗ can be exactly recovered by TRPCA under 
some mild conditions if the support of the outlier tensor S∗ is 
uniformly distributed. For the outlier tensor S∗ , Theorem 4.1 

Table 2   Comparison with TRPCA [24] in both accuracy and speed for different tensor sizes when the outliers follow i.i.d. Bernoulli distribution

Bold values are highlighted in the records of shorter running time

Outliers from Bin(1,−1) , observation tensor M ∈ ℝ
d×d×d3 , d3 = 30 r t (L

∗) = 0.05d , ‖S∗‖1 = 0.05d2d3 , r = max
�⌊2r t (L

∗)⌋, 15�

d r t (L
∗) ‖S∗‖0 Algorithm r t (L̂)

‖L̂−L∗‖
F

‖L∗‖
F

‖Ŝ−S∗‖
F

‖S∗‖
F

Time

100 5 1.5e4 TRPCA 5 8.39e−9 3.75e−8 20.45
TriFac 5 1.10e−8 2.44e−8 2.37

160 8 3.84e4 TRPCA 8 8.06e−9 3.58e−8 53.88
TriFac 8 1.26e−8 2.82e−8 6.65

200 10 6e4 TRPCA 10 7.97e−9 3.56e−8 103.14
TriFac 10 1.81e−8 3.99e−8 9.16

Outliers from Bin(1,−1) , observation tensor M ∈ ℝ
d×d×d3 , d3 = 30 r t (L

∗) = 0.15d , ‖S∗‖1 = 0.1d2d3 , r = ⌊1.5r t (L
∗)⌋

d r t (L
∗) ‖S∗‖0 Algorithm r t (L̂)

‖L̂−L∗‖
F

‖L∗‖
F

‖Ŝ−S∗‖
F

‖S∗‖
F

Time

100 15 3e4 TRPCA 15 1.08e−7 7.28e−8 23.46
TriFac 15 9.56e−8 4.87e−8 7.16

160 24 7.68e4 TRPCA 24 1.06e−7 6.85e−8 63.64
TriFac 24 6.12e−8 4.97e−8 21.86

200 30 1.2e5 TRPCA 30 1.02e−7 6.30e−8 106.14
TriFac 30 1.21e−8 6.01e−10 34.57

Table 3   Comparison with 
TRPCA [24] in both accuracy 
and speed for with the outliers 
from N(0, 1) , observation 
tensor M ∈ ℝ

d×d×d3 , 
d3 = 30 , r t (L

∗) = 0.15d , 
‖S∗‖1 = 0.1d2d3 , 
r = ⌊1.5r t (L

∗)⌋

Bold values are highlighted in the records of shorter running time

d r t (L
∗) ‖S∗‖0 Algorithm r t (L̂)

‖L̂−L∗‖
F

‖L∗‖
F

‖Ŝ−S∗‖
F

‖S∗‖
F

Time

100 15 3e4 TRPCA 15 9.67e−8 6.73e−8 28.73
TriFac 15 3.86e−8 1.96e−8 8.54

160 24 7.68e4 TRPCA 24 1.01e−7 2.85e−8 68.64
TriFac 24 4.12e−8 2.42e−8 24.86

200 30 1.2e5 TRPCA 30 1.32e−8 7.68e−9 153.78
TriFac 30 4.87e−9 2.29e−9 45.61

Table 4   Comparison with 
TRPCA [24] in both accuracy 
and speed for with the outliers 
from U[0, 1] , observation 
tensor M ∈ ℝ

d×d×d3 , 
d3 = 30 , r t (L

∗) = 0.15d , 
‖S∗‖1 = 0.1d2d3 , 
r = ⌊1.5r t (L

∗)⌋

Bold values are highlighted in the records of shorter running time

d r t (L
∗) ‖S∗‖0 Algorithm r t (L̂)

‖L̂−L∗‖
F

‖L∗‖
F

‖Ŝ−S∗‖
F

‖S∗‖
F

Time

100 15 3e4 TRPCA 15 9.40e−8 8.73e−8 31.98
TriFac 15 2.58e−8 3.87e−8 10.43

160 24 7.68e4 TRPCA 24 9.61e−7 9.69e−8 93.18
TriFac 24 2.14e−8 5.50e−8 33.19

200 30 1.2e5 TRPCA 30 9.49e−8 8.73e−8 149.28
TriFac 30 6.71e−8 1.24e−7 55.61
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in [24] only makes one assumption on the random location 
distribution, but no assumption about the magnitudes or signs 
of the nonzero entries. Since the proposed TriFac can well 
mimic TRPCA for low-tubal-rank tensors, it is not surprising 
that TriFac is robust to different outliers.

To further show the efficiency of the proposed TriFac, 
we consider a special case where the size of the under-
lying tensor L∗ increases while the tubal rank is fixed 
as a constant. Specifically, we fix r t (L

∗) = 5 , and vary 
d ∈ {100, 150, 200,… , 500} with d3 = 20 . We set the 
parameter of initialized rank r of TriFac in Algorithm 1 
by r = 30 . We test each setting 10 times and compute the 
averaged time. In all the runs, both TRPCA and TriFac can 
recover the underling tensor with RSE smaller than 1e−6 . 
The plot of averaged time versus the tensor size (shown in d) 
is given in Fig. 3. We can see that the time cost of TRPCA 
scales super-linearly with respect to d, whereas the proposed 
TriFac has approximately linear scaling.

6.1.2 � Effects of the initialized tubal rank r

The performance of TriFac heavily rely on the choice of 
initialized tubal rank r in Model (9). Here, we explore 
the effects of initialized tubal rank on the accuracy 
and speed of TriFac. Specifically, we consider ten-
sors of size 100 × 100 × 30 with four different settings 
of tubal rank r∗ = r t (L

∗) and sparsity s∗ = ‖S∗‖0 as 
(r∗, s∗) ∈ {(10, 1.5e4), (10, 3e4), (15, 1.5e4), (10, 3e4)}   , 
where the elements outliers follow i.i.d. N(0, 1) . By vary-
ing the initialized r ∈ {5, 10, 15,… , 50} , we show the effects 
of the initialized tubal rank r on the accuracy and speed of 
TriFac.

We first report the effects of initialized tubal rank r on the 
recovery accuracy of the underlying tensor L∗ , in terms of 
RSE and tubal rank of the final solution L̂ . The results are 
shown in Fig. 4. As can be seen, there exists a phrase transi-
tion point rpt that once the initialized rank r is larger than it, 
the RSE of L̂ will decrease rapidly.

Then, the effects of initialized tubal rank r on the estima-
tion performance of the outlier tensor S∗ , in terms of RSE 
and l0-norm of the final solution Ŝ are shown in Fig. 5. We 
can also see that when the initialized rank r gets larger than 
the same phrase transition point rpt , the RSE of Ŝ will soon 
vanish.

Finally, we show the effects of initialized tubal rank r on 
the running time of TriFac in Fig. 6. We can see that the run-
ning time increases as the initialized rank r gets larger, the 
underlying tensor gets more complex (i.e., r∗ gets higher), 
and the corruption gets heavier (i.e., s∗ gets larger). That is 
consistent with our intuition.

6.2 � Real data experiments

In this section, the efficiency of the proposed TriFac com-
pared with TRPCA [24] is evaluated on real-world datasets. 
Specifically, we carry out tensor restoration experiments on 

Fig. 3   Computation time of TRPCA [24] and the proposed TriFac 
versus d ∈ {100, 150, 200,… , 500} with d3 = 20 , when the tubal 
rank of the underlying tensor is 5. The RSEs of TNN and TriFac in 
all the setting are smaller than 1e−6

Fig. 4   Effects of initialized tubal rank r in Algorithm 1 on the recov-
ery performance of the underlying tensor L∗ ∈ ℝ

100×100×30 . a RSE of 
L̂ versus r in log scale; b tubal rank of L̂ versus r 
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point cloud data, color images and brain MRI data. For an 
estimation L̂ of the underlying tensor L∗ , the peak signal-
to-noise ratio (PSNR) is applied to evaluate the quality of 
L̂ , that is,

PSNR ∶= 10 log10

�
d1d2d3‖L∗‖2

∞

‖L̂ − L∗‖2
F

�
.

6.2.1 � Robust recovery point cloud data

We conduct experiments on a point cloud data set acquired 
by a vehicle-mounted Velodyne HDL-64E LiDAR2 which 
is used for moving object tracking [25]. We extract the first 
32 frames, transform and upsample the data to form two 
tensors in ℝ512×800×32 representing the distance data and the 
intensity data, respectively. Given a data tensor, we uni-
formly choose its indices with probability �s ∈ {0.2, 0.4} . 
We then corrupt the chosen positions with element-wise 
outliers from i.i.i.  symmetric Bernoulli Bin(−1,+1) or 
N(0, 1) . The proposed algorithm is also compared with SNN 
[10] and RPCA [2]. RPCA works on each frontal slice indi-
vidually.  The parameters of RPCA is set  by 
� = 1∕

√
max{d1, d2} [2]. The weight parameters � of SNN 

are chosen by �k =
�

max{dk,
∏

k�≠k dk� }∕3 . We set the 
parameter � = 1∕

√
d3 max{d1, d2} [23] for TRPCA and the 

proposed TriFac. We choose the initialized tubal rank 
r = 196.

We report the PSNR value and running time of each algo-
rithm on the distance and intensity data in Fig. 7. It can be 
seen that TNN-based TRPCA has the highest PSNR values 
in all the settings, which is consistent with the results of 
tensor completion on this data that TNN outperforms SNN 
[33]. The proposed TriFac algorithm performs slightly worse 
than TNN, but it has the lowest running time. As is shown 
in Theorem 2, the proposed model in Eq. 9 can not outper-
form TNN-based RPCA model in Eq. (7) since they have 
the same global optimal solutions but the proposed model is 
non-convex. This explains why TriFac cannot achieve better 
performances than TRPCA.

6.2.2 � Robust recovery of color images

We conduct image restoration on color images, which 
have natural 3-way tensor formats. The image restora-
tion task aims at recovering an image from its corrupted 
observation. In this experiment, we test on 20 images of 
size 512 × 512 × 3 shown in Fig. 8. Given a color image 
M ∈ ℝ

m×m×3 , we first choose 10% of is entries uniformly at 
random, and then corrupt them by i.i.d. outliers from U[0, 1].

We also compare the proposed TriFac with SNN [10] 
and RPCA [2]. The weight parameters � of SNN are set by 
two different choices [�1, �2, �3] = [15, 15, 1.5] as suggested 
by [24] or [�1, �2, �3] = [

√
3m,

√
3m,m]∕3 , and we use the 

result with higher PSNR. The parameter � of NN is set by 
� = 1∕

√
m [2]. We set the parameter � = 1∕

√
3m [23] for 

TRPCA and the proposed TriFac. We choose the initialized 
tubal rank r = 226 . Given a color image and a corruption 

Fig. 5   Effects of initialized tubal rank r in Algorithm 1 on the estima-
tion performance of the outlier tensor S∗ ∈ ℝ

100×100×30 . a RSE of Ŝ 
in log scale versus r; b l0-norm of Ŝ versus r 

Fig. 6   Effects of initialized tubal rank r on the running time of TriFac 
for problem size 100 × 100 × 30

2  http://www.mrt.kit.edu/z/publ/downl​oad/velod​ynetr​ackin​g/datas​
et.html.

http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html


2786	 International Journal of Machine Learning and Cybernetics (2020) 11:2771–2791

1 3

Fig. 7   Quantitative comparison of algorithms in PSNR and run-
ning time on point cloud data. a PSNR values of algorithms on the 
distance data; b running time of algorithms on the distance data; c 
PSNR values of algorithms on the intensity data; d running time of 

algorithms on the intensity data. (‘0.2,B’ means 20% of the positions 
are corrupted by Ber(−1,+1 ) outliers, and ‘0.4,G’ means 40% of the 
positions are corrupted by N(0, 1) outliers)

Fig. 8   Tested color images
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level, we test 10 times and report the averaged PSNR and 
time.

Examples of the recovered images are shown in Fig. 9 
for qualitative comparison. For quantitative comparison, the 
PSNR values and running time are reported in Fig. 10. We 
can see that TRPCA also performs best in most cases, con-
sistent with the results in [24]. The proposed TriFac algo-
rithm has the shortest running time and only slightly lower 
PSNRs than TRPCA.

6.2.3 � Robust recovery of brain MRI data

To show the efficiency of the proposed TriFac, we also use 
the 3-way MRI data set analyzed in [38] which has good 
low-rank property. We extract the first 15 slices, each having 

a size of 181 × 217 . To further show the efficiency of TriFac, 
we resize the data with scale parameter � ∈ {1, 1.5, 2, 2.5, 3} 
to form tensors in ℝ⌈181�⌉×⌈217�⌉×15 . Then, we randomly 
choose 20% of the elements in the rescaled tensor, and cor-
rupts them by elements from i.i.d. Bernoulli distribution 
Bin(−1,+1) . We compare TriFac with TRPCA in both run-
ning time and recovery performance with respect to different 
sizes. The results are shown in Table 5. It can be seen that 
the proposed TriFac works almost as well as TRPCA but 
has faster speed.

6.2.4 � Robust completion of color images

To evaluate the factorization strategy in its extension to 
robust tensor completion, we also conduct robust image 

Fig. 9   Qualitative comparison of algorithms for robust image recov-
ery with 10% entries corrupted by i.i.d. U[0, 1] outliers. a The cor-
rupted image; b–e the images recovered by RPCA [2], SNN [10], 

TRPCA [24], and the proposed TriFac; e PSNR values of each algo-
rithm. Best viewed in color pdf with 400% zooming-in
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completion on the test images in Fig. 8. In the experiment, 
we aim to restore a color image when 60% of its entries 
are missing uniformly at random and 10% of the observed 

entries are randomly corrupted by Bin(−1,+1) outliers. 
The SSIM (Structural Similarity Index) [35] is also used 
to measure the quality of a restored image. The higher the 
SSIM value is, the higher the quality of a restored image 
is.

The proposed model (RTC-Fac) is compared with 
robust image completion models based on matrix nuclear 
norm (NN), SNN, and TNN, respectively. We also com-
pare with a double l1−2 metric based image completion 
model (DL1-2) inspired by [42]. The PSNR values, SSIM 
values, and running time are shown in Fig. 11. According 
to the results in Fig. 11, we can find that the proposed 
model has the least running time and achieves second 
highest PSNR and SSIM values in most cases.

Fig. 10   Quantitative comparison of algorithms in PSNR and time on color images with 10% entries corrupted by i.i.d. U[0, 1] outliers. a PSNR 
values; b running time

Table 5   Comparison of TriFac with TRPCA in both PSNR values 
and running time on rescaled MRI data in ℝ⌈181�⌉× ⌈217�⌉ ×15 with 
� ∈ {1, 1.5, 2, 2.5, 3}

Algorithm � = 1 � = 1.5 � = 2 � = 2.5 � = 3

TRPCA [24]
   PSNR 44.31 50.11 54.62 57.83 59.82
   Time/s 20.02 42.86 106.97 174.12 262.53

TriFac
   PSNR 44.31 50.09 54.62 57.76 59.77
   Time/s 11.14 22.1 52.33 88.57 121.41
   Initial r 70 70 120 220 300
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7 � Conclusion

In this paper, a factorization-based TRPCA model (TriFac) 
is first proposed to recover a 3-way data tensor from its 

observation corrupted by sparse outliers. Then, we come up 
with a non-convex ALM algorithm (Algorithm 1) to effi-
ciently solve it. Further, the convergence and sub-optimal-
ity of the proposed algorithm are analyzed in Theorems 1 

Fig. 11   Quantitative compari-
son of models for robust image 
completion in PSNR, SSIM and 
running time where 60% of the 
entries are missing uniformly 
at random and the observed 
entries are corrupted by i.i.d. 
Bin(−1,+1) outliers. a PSNR 
values; b SSIM values; c run-
ning time
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and 3, respectively. The effectiveness and efficiency of the 
proposed algorithm are demonstrated in experiments on both 
synthetic and real data sets.

It is interesting to study the statistical performance of 
the proposed model like [19, 31, 34], and consider sparse 
tensor discriminant analysis like [15, 21, 22, 26] as future 
works. It is also interesting to use non-convex tensor rank 
minimization [39, 40].
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