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Abstract
Interval type-2 trapezoidal fuzzy sets, as a particular form of interval type-2 fuzzy sets, can precisely characterize the sub-
jective assessments and qualitative evaluations of a group of experts. In this paper, a novel likelihood-based interval type-2 
trapezoidal fuzzy multi-expert multi-criteria decision-making approach is proposed. To do so, the concepts of likelihood-
based performance index, likelihood-based comprehensive evaluation value, and signed distance-based evaluation value 
are adopted. The interval type-2 trapezoidal fuzzy Bonferroni aggregation operator is utilized to construct the likelihood-
based interval type-2 trapezoidal fuzzy preference relations. Then, the consistent lower and upper likelihoods are adopted to 
enhance the efficiency of the group decision making framework. The proposed multi-expert decision making approach works 
well when there is high degree of fluctuations in the number of criteria and experts. The practicability and feasibility of the 
proposed approach are validated by applications to four cases. Several comparative analyses are conducted to authenticate 
the dominancy of the proposed method over conventional interval type-2 trapezoidal fuzzy multi-criteria decision-making 
approaches.

Keywords Multi-expert multi-criteria decision making · Preference relations · Interval type-2 trapezoidal fuzzy sets · 
Bonferroni aggregation operator

1 Introduction

Multi-criteria decision making refers to selecting, from a set 
of alternatives, the one that best performs the criteria [1]. 
Uncertain and vague assessments of data frequently arise 
in practical multi-criteria decision-making problems [2], 
particularly following a lack of experience and knowledge, 
duality of opinions, intangible and imperceptible criteria, 
or a multifaceted environment [3, 4]. Consequently, how 
to model the uncertainty in subjective decision making of 
experts becomes increasingly imperative [2, 5, 6]. Hence, 
the development of models which are able to model uncer-
tainty based on the subjective preference of experts becomes 
a challenging issue.

The fuzzy set theory was introduced [7] and extended 
[8–10] owing to the unpredictability and fuzziness of data 
during years and with respect to the quiddity of different 
ambiguities. The fuzzy set theory can organize a system-
atic calculus by which experts are able to address linguistic 
information that improves the consistency of uncertain deci-
sion making. Type-2 fuzzy sets were generalized [11] as 
an extension of conventional fuzzy sets in which the mem-
bership function falls into a fuzzy set on the interval [0,1] 
[2]. The type-2 fuzzy sets were elaborated because of the 
incapability of conventional fuzzy sets in terms of covering 
all the imprecisions that currently exist in decision-making 
problems [12]. They are better than conventional type-1 
fuzzy sets especially in terms of handling uncertainties that 
are manipulated by linguistic terms [13]. Even though the 
type-2 fuzzy sets are prominent in organizing the uncertain-
ties in the cases with a high degree of ambiguity, these types 
of sets may involve inevitable large amounts of sophisticated 
computation [2, 14]. Given that the interval type-2 trapezoi-
dal fuzzy sets (IT2TrFS) can express complex information, 
they have been widely utilized in decision-making problems 
[14–16].
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A multi-expert decision making problem refers to 
selecting the alternative that best satisfies the criteria 
based on the judgements of more than one expert. It is 
reasonable that the alternatives chosen by group decision 
making approaches are more in line with real world’s 
optimal solutions because the group decision making 
approaches may remove some deficiencies of single per-
son decision-making, including the lack of knowledge, 
lack of experience and limited cognition on criteria. The 
likelihoods of interval type-2 trapezoidal fuzzy prefer-
ence relations was first presented by Chen [2] to develop 
a possibility-based approach for multiple criteria deci-
sion analysis under the IT2TrF environment. Even though 
there were various studies with the background of like-
lihood-based approaches under the IT2TrF environment 
[17–19], Chen [2] proposed an extended likelihood-based 
approach based on the possibilities and preference rela-
tions of IT2TrFSs with applications to multiple criteria 
decision analysis by specifying the consistent lower and 
upper likelihoods which were able to derive the range of 
possibilities of IT2TrF preference relations and mirror the 
whole uncertain information of IT2TrFSs as a crisp value. 
The proposed likelihood-based approach is useful since 
it reduces the computational complexity of conventional 
IT2TrF multi-criteria decision-making approaches such as 
the TOPSIS (technique for order preference by similarity 
to an ideal solution), TODIM (tomada de decisao intera-
tiva e multicrit’erio), ELECTRE (elicitation and choice 
translating reality), and AHP (analytic hierarchy process). 
Despite the dominancy of the likelihood-based approach 
over the conventional ones, as far as we know, it was only 
organized to handle single decision-making problems fol-
lowing the judgements of a single expert.

Overall, there are three challenges in the interval type-2 
fuzzy multi-criteria group decision making that motivate 
the authors for conducting this research, which are listed 
as follows:

1. The complex computational process of IT2TrFSs. The 
IT2TrFSs cover more uncertainty than the conventional 
fuzzy set [2, 20]. However, dealing with these types of 
fuzzy sets involves complex calculation, which reduces 
the desire of using IT2TrFSs in practice.

2. The existing MCGDM approaches with IT2TrFSs are 
almost vulnerable when facing a huge amount of evalu-
ation criteria. Because there are some operations such as 
pairwise comparisons, calculation of distances to ideal 
solutions, and aggregation of experts’ judgements, the 
efficiency of the existing approaches is low as a result of 
the complex computations process of IT2TrFSs. Also, 
the conventional IT2TrF MCGDM approaches are vul-
nerable to encounter the cases with high fluctuations in 
the number of experts and opinions.

3. The likelihood-based approach proposed by Chen [2] 
receives the judgments of a single expert for the whole 
process, which makes it undesirable for solving real 
world problems.

There might be still room for a multi-expert approach 
considering the above deficiencies. Given these three gaps, 
we utilize the concept of Bonferroni mean operator [21] to 
aggregate the judgements of a group of decision-makers 
whom are involved in determining the linguistic perfor-
mance ratings and the weights of criteria under the IT2TrF 
environment. The proposed interval type-2 fuzzy Bonfer-
roni aggregation operator (IT2FBAO) is unique in the sense 
that it combines the judgements of decision-makers based 
on their importance whilst capturing the interrelationships 
between evaluation criteria [22]. Once the aggregated values 
are all obtained, we utilize the likelihoods of IT2TrF prefer-
ence relations approach to rank the alternatives with respect 
to their performances on criteria. The likelihoods of IT2TrF 
contribute to establish a more facilitated approach which 
reduces the computational complexities involving with pre-
vious IT2TrF decision making approaches. In addition, due 
to an agile process, the likelihoods of IT2TrF preference 
relations enables decision makers to tackle the situations in 
which there is a high degree of fluctuation in terms of the 
number of evaluation criteria. The validation of the proposed 
MCGDM approach is confirmed by the applications to four 
cases including the supplier selection problem [15, 23, 24], 
food production problem [25–27], facility location selection 
problem [28], and facility site selection problem [29]. In the 
light of the proposed approach, decision-makers are able 
to: (1) determine the IT2TrF performance ratings and the 
weights of criteria based on the objectives of organization 
in format of linguistic variables, (2) aggregate the judge-
ments of decision-makers concerning the performance rat-
ings with the weights of criteria using the IT2FBM operator, 
(3) obtain the lower, upper and mean likelihoods of IT2TrF 
preference relations [2] for each alternative with respect to 
each criteria, (4) obtain the likelihood-based performance 
index for each alternative based on the obtained likelihoods, 
(5) calculate the likelihood-based comprehensive evaluation 
value to reveal a IT2TrF ranking level for each alternative 
and finally, (6) rank alternatives in descending order of the 
signed distance-based evaluation values [2, 30].

In this study, we try to make the following contributions 
and innovations:

1. A novel likelihood-based MCGDM approach is pro-
posed under the interval type-2 fuzzy environment. 
By adopting consistent lower and upper likelihoods of 
IT2TrF preference relations, the novel approach reduces 
the sophisticated computations of the previous multi-
criteria decision-making approaches.
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2. A systematic approach is formed by the properties of 
likelihoods of IT2TrF preference relations. The utiliza-
tion of IT2TrF preference relations gives the system-
atic approach the ability to cover more uncertainty than 
conventional fuzzy sets. Meanwhile, the systematic 
approach can handle the fluctuations regarding the num-
ber of criteria.

3. The IT2FBAO is employed to accumulate the prefer-
ences of decision-makers based on their importance 
and expertise. The Bonferroni aggregation operator is 
adopted because it has the privilege to consider interre-
lationships between the evaluation criteria whilst accu-
mulating the subjective preference of experts.

4. The practical effectiveness of the proposed likelihood-
based MCGDM method is validated by the applications 
to four different cases. The comparative analyses indi-
cate that the results obtained by the proposed approach 
match with the results obtained by original approaches.

The remainder of this paper is structured as follows: 
Sect. 2 introduces the concept of IT2TrFS, the properties of 
likelihoods of IT2TrF preference relations, the Bonferroni 
mean operator, and the terminology that is utilized through-
out the paper. In Sect. 3, we propose a novel likelihood-
based MCGDM method. In Sect. 4, the applications of the 
proposed approach to four case studies are explored. This 
study ends with conclusions in Sect. 5.

2  Basic concepts

In this section, the terminology and basic concepts which 
are utilized to develop the proposed group decision mak-
ing method are reviewed, including the definitions of inter-
val type-2 fuzzy sets, the lower and upper likelihoods of 
IT2TrF preference relations, and the Bonferroni aggregation 
operator.

Definition 1 [31]. Let X be the universe of discourse. A 
type-2 fuzzy set (T2FS) ̃̃A defined on X can be denoted as:

or

where x is the primary variable, Jx ⊆ [0, 1] is the primary 
membership function, and u is the secondary variable. 
∫

u∈Jx

�A(x, u)∕u is the second membership at x . If �A(x, u) = 1 

(1)̃̃A =
{(

(x, u),𝜇A(x, u)
)|||∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]

}

(2)̃̃A = ∫
x∈X

∫
u∈Jx

𝜇A(x, u)∕(x, u) = ∫
x∈X

⎛⎜⎜⎝∫u∈Jx
𝜇A(x, u)∕u

⎞⎟⎟⎠
∕x

is true, then ̃̃A is called an interval type-2 fuzzy set (IT2FS), 
which is defined as:

The footprint of uncertainty (FOU) is defined as the area 
enclosed by the primary membership function of the IT2FS 
̃̃A , which can be mathematically defined as:

The FOU is the area enclosed by the lower membership 
function 𝜇L

Ã
(x) (LMF) and the upper membership function 

𝜇U

Ã
(x) (UMF) as Fig. 1 indicates [20].

Definition 2 [32]. Let a−
1
, a−

2
, a−

3
, a−

4
, a+

1
, a+

2
, a+

3
, and a+

4
 be 

non-negative real values where 0 ≤ a−
1
≤ a−

2
≤ a−

3
≤ a−

4
 , 

0 ≤ a+
1
≤ a+

2
≤ a+

3
≤ a+

4
 , a+

1
≤ a−

1
 , and a−

4
≤ a+

4
 . Also let h−

A
 

and h+
A
 denote the heights of A− and A+ , respectively, and 

0 ≤ h−
A
≤ h+

A
≤ 1 . The lower and upper membership func-

tions A− and A+ of ̃̃A can be defined as follows:

(3)̃̃A = ∫
x∈X

∫
u∈Jx

1∕(x, u) = ∫
x∈X

⎛
⎜⎜⎝∫u∈Jx

1∕u

⎞
⎟⎟⎠
∕x

(4)FOU
(
Ã
)
=
⋃
x∈X

Jx =
⋃
x∈X

{
(x, u)|u ∈ Jx ⊆ [0, 1]

}

(5)A− =

⎧
⎪⎪⎨⎪⎪⎩

h−
A(x−a

−
1 )

a−
2
−a−

1

, if a−
1
< x < a−

2

h−
A
, if a−

1
≤ x ≤ a−

2
h−
A(a

−
4
−x)

a−
4
−a−

3

, if a−
1
< x < a−

2

0, otherwise

(6)A+ =

⎧
⎪⎪⎨⎪⎪⎩

h+
A(x−a

+
1 )

a+
2
−a+

1

, if a+
1
< x < a+

2

h+
A
, if a+

1
≤ x ≤ a+

2
h+
A(a

+
4
−x)

a+
4
−a+

3

, if a+
1
< x < a+

2

0, otherwise

Fig. 1  The FOU of an IT2FS A 
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For two non-negative IT2TrF numbers �� =
[(

�−
1�
,�−

2�
,

�−
3�
,�−

4�
;h

−
��

)
,

(
�+
1�
,�+

2�
,�+

3�
,�+

4�
;h

+
��

)]
 and �� =

[(
�−
1�
,

�−
2�
,�−

3�
,�−

4�
;h

−
��

)
,

(
�+
1�
,�+

2�
,�+

3�
,�+

4�
;h

+
��

)]
 , the operations 

are defined as follows [2]:

The likelihood L
(
�� ≥ ��

)
 indicates the possibility that 

�� is not larger than �� and is computed by [2] 

where

(1) 𝛷𝜌 ⊕ 𝛷𝛽 =

⎡
⎢⎢⎣

�
𝜑−
1𝜌
+ 𝜑−

1𝛽
,𝜑−

2𝜌
+ 𝜑−

2𝛽
,𝜑−

3𝜌
+ 𝜑−

3𝛽
,𝜑−

4𝜌
+ 𝜑−

4𝛽
; min

�
h−
𝛷𝜌

, h−
𝛷𝛽

��
,�

𝜑+
1𝜌
+ 𝜑+

1𝛽
,𝜑+

2𝜌
+ 𝜑+

2𝛽
,𝜑+

3𝜌
+ 𝜑+

3𝛽
,𝜑+

4𝜌
+ 𝜑+

4𝛽
; min

�
h+
𝛷𝜌

, h+
𝛷𝛽

��
⎤
⎥⎥⎦
;

(2) 𝛷𝜌 ⊖ 𝛷𝛽 =

⎡
⎢⎢⎣

�
𝜑−
1𝜌
− 𝜑−

4𝛽
,𝜑−

2𝜌
− 𝜑−

3𝛽
,𝜑−

3𝜌
− 𝜑−

2𝛽
,𝜑−

4𝜌
− 𝜑−

1𝛽
; min

�
h−
𝛷𝜌

, h−
𝛷𝛽

��
,�

𝜑+
1𝜌
− 𝜑+

4𝛽
,𝜑+

2𝜌
− 𝜑+

3𝛽
,𝜑+

3𝜌
− 𝜑+

2𝛽
,𝜑+

4𝜌
− 𝜑+

1𝛽
; min

�
h+
𝛷𝜌

, h+
𝛷𝛽

��
⎤
⎥⎥⎦
;

(3) 𝛷𝜌 ⊗ 𝛷𝛽 =

⎡⎢⎢⎣

�
𝜑−
1𝜌
.𝜑−

1𝛽
,𝜑−

2𝜌
.𝜑−

2𝛽
,𝜑−

3𝜌
.𝜑−

3𝛽
,𝜑−

4𝜌
.𝜑−

4𝛽
; min

�
h−
𝛷𝜌

, h−
𝛷𝛽

��
,�

𝜑+
1𝜌
.𝜑+

1𝛽
,𝜑+

2𝜌
.𝜑+

2𝛽
,𝜑+

3𝜌
.𝜑+

3𝛽
,𝜑+

4𝜌
.𝜑+

4𝛽
; min

�
h+
𝛷𝜌

, h+
𝛷𝛽

��
⎤⎥⎥⎦
;

(4)
��

��

=

⎡⎢⎢⎢⎣

�
�−
1�

�−
4�

,
�−
2�

�−
3�

,
�−
3�

�−
2�

,
�−
4�

�−
1�

; min
�
h−
��

, h−
��

��
,

�
�+
1�

�+
4�

,
�+
2�

�+
3�

,
�+
3�

�+
2�

,
�+
4�

�+
1�

; min
�
h+
��

, h+
��

��
⎤⎥⎥⎥⎦
;

(5) ��� =
[(

��−
1�
, ��−

2�
, ��−

3�
, ��−

4�
; h−

��

)
,
(
��+

1�
, ��+

2�
, ��+

3�
, ��+

4�
; h+

��

)]
,

(7)L
(
�� ≥ ��

)
=

L−
(
�� ≥ ��

)
+ L+

(
�� ≥ ��

)
2

(8)L−
�
�� ≥ ��

�
= max

⎧⎪⎨⎪⎩
1 −max

⎡⎢⎢⎢⎣

∑4

�=1
max

�
�+
��

− �−
��
, 0
�
+
�
�+
4�

− �−
1�

�
+ 2max

�
h+
��

− h−
��

, 0
�

∑4

�=1

����
+
��

− �−
��

��� +
�
�−
4�
− �−

1�

�
+
�
�+
4�

− �+
1�

�
+ 2

���h
+
��

− h−
��

���
, 0

⎤⎥⎥⎥⎦
, 0

⎫⎪⎬⎪⎭

(9)L+
�
�� ≥ ��

�
= max

⎧⎪⎨⎪⎩
1 −max

⎡⎢⎢⎢⎣

∑4

�=1
max

�
�−
��

− �+
��
, 0
�
+
�
�−
4�

− �+
1�

�
+ 2max

�
h−
��

− h+
��

, 0
�

∑4

�=1

����−
��

− �+
��

��� +
�
�+
4�
− �+

1�

�
+
�
�−
4�

− �−
1�

�
+ 2

���h−��

− h+
��

���
, 0

⎤⎥⎥⎥⎦
, 0

⎫⎪⎬⎪⎭

The lower and upper likelihoods L−
(
�� ≥ ��

)
 and 

L+
(
�� ≥ ��

)
 of the preference relation �� ≥ �� fulfills the 

following properties: (1) 0 ≤ L−
(
�� ≥ ��

) ≤ 1 ; (2) 
0 ≤ L+

(
�� ≥ ��

) ≤ 1 ; (3) L−
(
�� ≥ ��

)
+ L

+
(
�� ≥ ��

)
= 1 ; (4) If �+

4�
≤ �+

1�
 and h−

��

≤ h+
��

 , then, L−
(
�� ≥ ��

)
= 0 

and L+
(
�� ≥ ��

)
= 1 ; (5) If �−

1�
− �+

4�
≥ 2max

(
h
+
��

− h
−
��
, 0

)
, 

then, L+
(
�� ≥ ��

)
= 0 and L−

(
�� ≥ ��

)
= 1 . The likeli-

hood L
(
�� ≥ ��

)
 of the preference relation �� ≥ �� satis-

fies the following properties: (1) 0 ≤ L
(
�� ≥ ��

) ≤ 1 ; (2) 

L
(
�� ≥ ��

)
+ L

(
�� ≥ ��

)
= 1 ; (3) If L

(
�� ≥ ��

)
= L(

�� ≥ ��

)
 , then, L

(
�� ≥ ��

)
= L

(
�� ≥ ��

)
= 0.5 ; (4) 

L
(
�� ≥ ��

)
= 0.5.

Motivated by the classical Bonferroni mean (BM) opera-
tor, the IT2 Trapezoidal Fuzzy Bonferroni Aggregation 
Operator (IT2TrFBAO) is defined as follows:
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Definition 3 [33]. Let ̃̃𝛷
i
=
[
�̃�−

i
, �̃�+

i

]
=
[(
𝜑−
i1
,𝜑−

i2
,𝜑−

i3
,𝜑−

i4
;h

−
i

)
,(

�+

i1
,�+

i2
,�+

i3
,�+

i4
;h

+

i

)]
 , (i = 1, 2,… ,m) be a set of interval type-2 

trapezoidal fuzzy variables and p, q ≥ 0 . An IT2TrFBAO is 
defined as:

where

3  A likelihood‑based MCGDM method using 
IT2TrFBAO and IT2TrF preference relations

This section presents an effective method that utilizes the 
IT2TrFBAO to aggregate the judgements in group decision 
making. The likelihoods of IT2TrF preference relations are 
then employed to facilitate the complex computations of the 
previous approaches.

Consider an MCGDM problem in which the performance 
ratings of alternatives and the weights of criteria are speci-
fied as IT2TrFSs. Let the set of alternatives be 
Z =

{
z1, z2,… , zn

}
 where n is the number of alternatives. 

The set of criteria is C =
{
c1, c2,… , cm

}
 , where m is the 

number of criteria. The set of criteria C consists of two sub-
sets including Cb and Cc , where Cb denotes the collection of 
benefit criteria, and Cc denotes the collection of cost criteria. 
It is noted that Cb ∩ Cc = � and Cb ∪ Cc = C . Then, the set 
of experts E =

{
e1, e2,… , el

}
 are responsible for stating the 

performance of alternatives Z =
{
z1, z2,… , zn

}
 with respect 

to each criterion in C =
{
c1, c2,… , cm

}
 in IT2TrFSs. The 

importance of experts might not be equal in all cases. The 
weight vector of experts is defined as � =

(
�1, �2,… , �l

)
 , 

where �k ∈ [0, 1] and 
l∑

k=1

�k = 1.

(10)IT2TFBAOp,q
(
̃̃𝛷1,

̃̃𝛷2,… , ̃̃𝛷m

)
=

(
1

m(m − 1)

m∑
i,j=1,i≠j

𝛷
p

i
𝛷

q

j

) 1

p+q

=
[
�̃�−, �̃�+

]

(11)�̃�− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑−
i1

�p�
𝜑−
j1

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑−
i2

�p�
𝜑−
j2

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑−
i3

�p�
𝜑−
j3

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑−
i4

�p�
𝜑−
j4

�q

� 1

p+q

;

min
�
h−
1
, h−

2
,… , h−

m

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)�̃�+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑+
i1

�p�
𝜑+
j1

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑+
i2

�p�
𝜑+
j2

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑+
i3

�p�
𝜑+
j3

�q

� 1

p+q

,

�
1

m(m−1)

m∑
i,j=1,i≠j

�
𝜑+
i4

�p�
𝜑+
j4

�q

� 1

p+q

;

min
�
h+
1
, h+

2
,… , h+

m

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Let a non-negative IT2TrFS ̃̃𝛷k
ij
 be the performance rating 

of an alternative zj ∈ Z regarding a specific criterion cj ∈ C 
provided by ek ∈ E . The lower and upper membership 
functions of ̃̃𝛷k

ij
 are denoted as the IT2TrFSs �k−

i

(
xj
)
 and 

�k+
i

(
xj
)
 , respectively. Then, ̃̃𝛷k

ij
 is characterized as follows 

[2]:

where  0 ≤ �k−
ij1

≤ �k−
ij2

≤ �k−
ij3

≤ �k−
ij4

 ,  0 ≤ �k+
ij1

≤ �k+
ij2

≤
�k+
ij3

≤ �k+
ij4

 , �k+
ij1

≤ �k−
ij1

 , �k−
ij4

≤ �k+
ij4

 , 0 ≤ hk−
�ij

≤ hk+
�ij

≤ 1 and 
𝛷k−

ij
⊂ 𝛷k+

ij
.

The IT2TrF characteristics of alternative zj ∈ Z  for 
ek ∈ E can be denoted as follows:

Let a non-negative IT2TrFS ̃̃𝛷ij denote the aggregated 
performance rating of alternative zj ∈ Z  with respect to 
criterion cj ∈ C . The IT2TrFS ̃̃𝛷ij can be obtained by uti-
lizing the Bonferroni mean operator based on the IT2TrF 
judgements of experts. In the Bonferroni aggregation 
operator, the fusion of the judgements of experts depends 

(13)

̃̃𝛷k
ij
=
[
𝛷k−

ij
,𝛷k+

ij

]
=
[(

𝜑k−
ij1
,𝜑k−

ij2
,𝜑k−

ij3
,𝜑k−

ij4
;hk−

𝛷ij

)
,

(
𝜑k+
ij1
,𝜑k+

ij2
,𝜑k+

ij3
,𝜑k+

ij4
;hk+

𝛷ij

)]

(14)̃̃Φk
i
=

{⟨[
Φk−

ij
,Φk+

ij

]⟩|||| j = 1, 2,… ,m

}
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on the importance of each expert. Under this perspective, 
the weighted performance rating is

where l is the number of experts and is a positive integer 
which plays the role of a balancing coefficient. �k is the 
weight of the k th expert. Suppose that the weight vector of 
experts is � = (1∕l, 1∕l,… , 1∕l) where all experts have equal 
importance in decision making process. Then, the weighted 
p e r f o r m a n c e  v e c t o r (
̃̂̃
𝛷1

ij
,
̃̂̃
𝛷2

ij
,… ,

̃̂̃
𝛷l

ij

)
=

(
l𝜆

1
.
̃̃𝛷1

ij
, l𝜆

2
.
̃̃𝛷2

ij
,… , l𝜆l.

̃̃𝛷l
ij

)
 is equal to (

̃̃𝛷1
ij
, ̃̃𝛷2

ij
,… , ̃̃𝛷l

ij

)
.

After that, these weighted performance ratings are 
aggregated by the IT2TrFBAO as:

By Eqs. (11) and (12), the above equation can be elabo-
rated as follows:

and

(15)̃̂̃
𝛷k

ij
= l𝜆k ∗

̃̃𝛷k
i

(16)
IT2TFBMp,q

(
̃̃𝛷1
ij
, ̃̃𝛷2

ij
,… , ̃̃𝛷l

ij

)
= ̃̃𝛷aggregated =

̃̂̃
𝛷ij =

[
̃̂̃
𝛷−

ij
,
̃̂̃
𝛷+

ij

]

(17)

̃̂̃
𝛷−

ij
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij1

�p�
l.𝜆k� .𝜑

k�−
ij1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij2

�p�
l.𝜆k� .𝜑

k�−
ij2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij3

�p�
𝜆k� .𝜑

k�−
ij3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij4

�p�
l.𝜆k� .𝜑

k�−
ij4

�q

� 1

p+q

;

min
�
h−
1
, h−

2
,… , h−

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

̃̂̃
𝛷+

ij
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij1

�p�
l.𝜆k� .𝜑

k�+
ij1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij2

�p�
l.𝜆k� .𝜑

k�+
ij2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij3

�p�
l.𝜆k� .𝜑

k�+
ij3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij4

�p�
l.𝜆k� .𝜑

k�+
ij4

�q

� 1

p+q

;

min
�
h+
1
, h+

2
,… , h+

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where  0 ≤ �k−
ij1

≤ �k−
ij2

≤ �k−
ij3

≤ �k−
ij4

 ,  0 ≤ �k+
ij1

≤ �k+
ij2

≤
�k+
ij3

≤ �k+
ij4

 , �k+
ij1

≤ �k−
ij1

 , �k−
ij4

≤ �k+
ij4

 , 0 ≤ h−
�ij

≤ h+
�ij

≤ 1 and 
𝛷−

ij
⊂ 𝛷+

ij
.

Let a non-negative IT2TrFS ̃̃Wk
j
 denote the weight of cri-

terion cj ∈ C provided by expert ek ∈ E . The lower and 
upper membership functions of ̃̃Wk

j
 are then designated as 

IT2TrFSs Wk−
(
xj
)
 and Wk+

(
xj
)
 , respectively. Then, ̃̃Wk

j
 is 

characterized as follows [2]:

w h e r e  0 ≤ wk−
j1

≤ wk−
j2

≤ wk−
j3

≤ wk−
j4

, 0 ≤ wk+
j1

≤ wk+
j2≤ wk+

j3
≤ wk+

j4
 , wk+

j1
≤ wk−

j1
 , wk−

j4
≤ wk+

j4
 , 0 ≤ hk−

Wj
≤ hk+

Wj
≤ 1 and 

Wk−
j

⊂ Wk+
j

An IT2TrFS ̃̃Wk is a set of IT2TrF weights defined by 
ek ∈ E . ̃̃Wk is characterized as:

By Eqs. (15) to (18), the IT2TrF weights are obtained 
for every single criterion by aggregating the subjective 
preference of each expert regarding the corresponding cri-
terion. The aggregated weight of each criterion is shown 
as follows:

and

(19)

̃̃Wk
j
=
[
Wk−

j
,Wk+

j

]
=
[(

wk−
j1
,wk−

j2
,wk−

j3
,wk−

j4
;hk−

Wj

)
,

(
wk+
j1
,wk+

j2
,wk+

j3
,wk+

j4
;hk+

Wj

)]

(20)

̃̃Wk =

{[
Wk−

j
,Wk+

j

]||||j = 1, 2,… ,m

}
for k = 1, 2,… , l

(21)

̃̂̃
W−

j
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k−
j1

�p�
l.𝜆k� .w

k�−
j1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k−
j2

�p�
l.𝜆k� .w

k�−
j2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k−
j3

�p�
l.𝜆k� .w

k�−
j3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k−
j4

�p�
l.𝜆k� .w

k�−
j4

�q

� 1

p+q

;

min
�
h−
1
, h−

2
,… , h−

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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on the importance of each expert. Under this perspective, 
the weighted performance rating is

where l is the number of experts and is a positive integer 
which plays the role of a balancing coefficient. �k is the 
weight of the k th expert. Suppose that the weight vector of 
experts is � = (1∕l, 1∕l,… , 1∕l) where all experts have equal 
importance in decision making process. Then, the weighted 
p e r f o r m a n c e  v e c t o r (
̃̂̃
𝛷1

ij
,
̃̂̃
𝛷2

ij
,… ,

̃̂̃
𝛷l

ij

)
=

(
l𝜆

1
.
̃̃𝛷1

ij
, l𝜆

2
.
̃̃𝛷2

ij
,… , l𝜆l.

̃̃𝛷l
ij

)
 is equal to (

̃̃𝛷1
ij
, ̃̃𝛷2

ij
,… , ̃̃𝛷l

ij

)
.

After that, these weighted performance ratings are 
aggregated by the IT2TrFBAO as:

By Eqs. (11) and (12), the above equation can be elabo-
rated as follows:

and

(15)̃̂̃
𝛷k

ij
= l𝜆k ∗

̃̃𝛷k
i

(16)
IT2TFBMp,q

(
̃̃𝛷1
ij
, ̃̃𝛷2

ij
,… , ̃̃𝛷l

ij

)
= ̃̃𝛷aggregated =

̃̂̃
𝛷ij =

[
̃̂̃
𝛷−

ij
,
̃̂̃
𝛷+

ij

]

(17)

̃̂̃
𝛷−

ij
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij1

�p�
l.𝜆k� .𝜑

k�−
ij1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij2

�p�
l.𝜆k� .𝜑

k�−
ij2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij3

�p�
𝜆k� .𝜑

k�−
ij3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k−
ij4

�p�
l.𝜆k� .𝜑

k�−
ij4

�q

� 1

p+q

;

min
�
h−
1
, h−

2
,… , h−

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

̃̂̃
𝛷+

ij
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij1

�p�
l.𝜆k� .𝜑

k�+
ij1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij2

�p�
l.𝜆k� .𝜑

k�+
ij2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij3

�p�
l.𝜆k� .𝜑

k�+
ij3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.𝜑

k+
ij4

�p�
l.𝜆k� .𝜑

k�+
ij4

�q

� 1

p+q

;

min
�
h+
1
, h+

2
,… , h+

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 0 ≤ wk−
j1

≤ wk−
j2

≤ wk−
j3

≤ wk−
j4

 , 0 ≤ wk+
j1

≤ wk+
j2

≤ wk+
j3

≤ wk+
j4

 , 
wk+
j1

≤ wk−
j1

 , wk−
j4

≤ wk+
j4

 , 0 ≤ hk−
Wj

≤ hk+
Wj

≤ 1 and Wk−
j

⊂ Wk+
j

.
Once the aggregated performance ratings and weights 

are obtained, the likelihoods of IT2TrF preference relations 
approach [2, 19, 34] can be adopted to determine the domi-
nancy of each criterion over other criteria.

As mentioned prior, the likelihood L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 indicates 

the possibility that ̃̂̃𝛷i′j is not larger than ̃̂̃𝛷ij . For two aggre-
gated performance ratings ̃̂̃𝛷ij and ̃̂̃𝛷i′j where i, i� = 1, 2,… ,m 
and i ≠ i′ , we firstly calculate the lower likelihood 
L−

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , upper likelihood L+

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 and overall 

likelihood L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 of an IT2TrF preference relation 

̃̂̃
𝛷ij ≥ ̃̃𝛷i′j in terms of each criterion cj ∈ C . The alternative 
zi ∈ Z performs better in a benefit criterion cj ∈ CI if the 
IT2TrF performance rating ̃̂̃𝛷ij has a high possibility of being 
greater than or equal to the IT2TrF performance rating ̃̂̃𝛷i′j for 
other m − 1 alternatives, i.e. i� = 1, 2,… ,m − 1 and i ≠ i′ . In 
contrast, the alternative zi ∈ Z performs better in a cost 
criterion cj ∈ CII if the IT2TrF performance rating ̃̂̃𝛷ij has a 
high possibility of being less than or equal to the IT2TrF 
performance rating ̃̂̃𝛷i′j for other m − 1 alternatives. With 
respect to the justifications discussed, the likelihood-based 
performance index of ̃̂̃𝛷ij is obtained by [2]:

Since L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
+ L

(
̃̂̃
𝛷i�j ≥ ̃̂̃

𝛷ij

)
= 1 , Eq. (23) can be 

rewritten as Eq. (24) [2]:

(22)

̃̂̃
W+

j
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k+
j1

�p�
l.𝜆k� .w

k�+
j1

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k+
j2

�p�
l.𝜆k� .w

k�+
j2

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k+
j3

�p�
l.𝜆k� .w

k�+
j3

�q

� 1

p+q

,

�
1

l(l − 1)

l�
k,k�=1,k≠k�

�
l.𝜆k.w

k+
j4

�p�
l.𝜆k� .w

k�+
j4

�q

� 1

p+q

;

min
�
h+
1
, h+

2
,… , h+

l

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)P
�
̃̂̃
𝛷ij

�
=

⎧⎪⎨⎪⎩

m∑
i�=1,i�≠i

L
�
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

�
if cj ∈ CI

m∑
i�=1,i�≠i

L
�
̃̂̃
𝛷i�j ≥ ̃̂̃

𝛷ij

�
if cj ∈ CII

(24)P
�
̃̂̃
𝛷ij

�
=

⎧⎪⎨⎪⎩

m∑
i�=1,i�≠i

L
�
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

�
if cj ∈ CI

m − 1 −
m∑

i�=1,i�≠i
L
�
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

�
if cj ∈ CII

Due to the fact that each criterion has individual priority, 
the importance weight of each criteria is multiplied by its 
relative likelihood-based performance index P

(
̃̂̃
𝛷ij

)
 to obtain 

an overall evaluation of each alternative zi ∈ Z . These 
importance weights are determined based on the objectives of 
decision making.

Let �̂�i represent a likelihood-based overall evaluation 
value of each alternative zi ∈ Z . Specifically, �̂�i is obtained 
by multiplying the likelihood-based performance indices 
regarding each criterion by the corresponding weight assigned 
to the criterion. Then, �̂�i is got by summing these products 
over all criteria, which is shown as [2]:

The obtained results are denoted as h−
�i
= minh−

Wj
 , 

h+
�i
= minh+

Wj
 , 𝜐−

𝜁 i
=

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w−

𝜁 j
 and 𝜐+

𝜁 i
=

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w+

𝜁 j
 

for � = 1, 2, 3, 4 . Hence, the brief likelihood-based overall 
evaluation value of alternative zi ∈ Z can be defined as [2]:

where 0 ≤ �−
1i
≤ �−

2i
≤ �−

3i
≤ �−

4i
,0 ≤ �+

1i
≤ �+

2i
≤ �+

3i
≤ �+

4i
 , 

�+
1i
≤ �−

1i
 , �−

4i
≤ �+

4i
 , 0 ≤ h−

�i
≤ h+

�i
≤ 1 and 𝛶 −

i
⊂ 𝛶 +

i
.

Since it is hard to compare the likelihood-based 
overall evaluation values in IT2TrF form, the signed 
distance-based method, introduced by Chen [2, 3, 16, 32] 
and expanded by Chen et al. [14], is utilized to obtain 
a comparable value for each alternative. The signed 
distance approaches including oriented distances and 
direct distances were also adopted to rank fuzzy numbers 
[32] and developed for IT2TrFSs with the applications in 
several studies [2, 3, 14, 16]. The signed distance method 
simultaneously considers both lower and upper intervals 
of an IT2TrFS which differs from conventional distance 
measures [2]. Since the IT2TrF signed distances satisfy 
the law of trichotomy and linear ordering, these types 
of distances are suggested for obtaining the comparable 
values of ̃̃𝛶i for every single alternative zi ∈ Z.

Let �i denote the signed distance correspond to �̂�i for 
alternative zi ∈ Z . �i can be obtained by [2, 3, 14, 16]:

(25)

�̂�i =

n�
j=1

P
�
̃̂̃
𝛷ij

�
.
̃̂̃
Wj =

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w−

1j
,

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w−

2j
,

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w−

3j
,

n∑
j=1

P
�
̃̂̃
𝛷ij

�
.w−

4j
;minh−

Wj

⎞
⎟⎟⎟⎟⎠
,

⎤
⎥⎥⎥⎥⎦

(26)

̃̃𝛶i =
[
𝛶 −
i
,𝛶 +

i

]
=
[(

𝜐−
1i
, 𝜐−

2i
, 𝜐−

3i
, 𝜐−

4i
;h−

𝛶i

)
,
(
𝜐+
1i
, 𝜐+

2i
, 𝜐+

3i
, 𝜐+

4i
;h+

𝛶i

)]

(27)

�
i
=

1

8

[
�−
1i
+ �−

2i
+ �−

3i
+ �−

4i
+ 4.�+

1i
+ 2.�+

2i
+ 2.�+

3i

+4.�+
4i
+ 3

(
�+
2i
+ �+

3i
− �+

1i
− �+

4i

)h−�
i

h
+
�
i

]
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The signed distance �i indicates a comprehensive per-
formance of alternative zi ∈ Z that can be easily compared 
for ranking alternatives. A large value of �i specifies a 
good preference of the alternative zi ∈ Z . Hence, the best 
alternative z∗ ∈ Z can be determined as [2]:

Besides, other alternatives can be prioritized according 
to their �i values. This study adopts the signed distance-
based approach [2, 3, 15, 16, 30] to rank IT2TrFNs. This 
approach is unique in the sense that it considers both 
positive and negative values to determine the ranking of 
IT2TrFSs.

This study aims at proposing an MCGDM model which 
employs the Bonferroni mean to combine the subjective 
preferences of a group of experts. To fulfill this objective, 
we propose an integrated algorithm which is established 
considering the basic concepts that are defined in Sect. 2 
and also the properties of IT2TrF preference relations. The 
proposed algorithm simplifies the complex computations 
of the previous approaches such as IT2F TOPSIS [35, 36], 
IT2F TODIM [37, 38], IT2F PROMETHEE [16, 39], and 
IT2F DEMATEL [40–42]. We hereby propose the steps of 
this algorithm as follows:

Step 1. Clarify the set of alternatives Z =
{
z1, z2,… , zn

}
 , 

the set of criteria C =
{
c1, c2,… , cm

}
 , and also the set of 

experts E =
{
e1, e2,… , el

}
 . The criteria are divided into 

the benefit set Cb and cost set Cc.
Step 2. Select suitable IT2F linguistic variables or other 

data collection tools to form the IT2TrFN rating ̃̃𝛷ij for 
alternative zi ∈ Z  with respect to criterion cj ∈ C . The 
weight ̃̃Wk

j
 of criterion cj ∈ C is provided by expert ek ∈ E

.
Step 3. Use Eq.  (15) to incorporate the weights 

�k(k = 1, 2,… , l) of experts. Then, obtain the weighted 
IT2TrFN rating ̃̂̃𝛷k

ij
 for each zi ∈ Z , cj ∈ C and ek ∈ E , and 

the weight ̃̂̃Wk
j
 for each cj ∈ C and ek ∈ E.

Step 4. Calculate the aggregated performance rating 
̃̂̃
𝛷ij using the IT2F Bonferroni aggregation operator that 
is shown in Eqs.  (17) and (18) for each zi ∈ Z  , cj ∈ C 
and ek ∈ E . At the same time, work out the aggregated 
importance weight ̃̂̃Wj using Eqs. (21) and (22) for each 
cj ∈ C and ek ∈ E.

Step 5. Calculate the lower, upper and mean likelihoods 
by Eqs. (7)–(9), respectively.

Step 6. Compute the likelihood-based performance index 
P
(
̃̂̃
𝛷ij

)
 using Eq. (23) for each aggregated performance rat-

ing ̃̂̃𝛷ij for zi ∈ Z and cj ∈ C . Calculate the likelihood-based 
comprehensive evaluation value �i by combining P

(
̃̂̃
𝛷ij

)
 and 

(28)z∗ =
{
zi ∈ Z||max�i, i = 1, 2,… , n

}

corresponding aggregated importance weight ̃̂̃Wj using 
Eq. (25) for each alternative zi ∈ Z.

Step 7. Compute the signed distance-based evaluation 
value �i for each alternative zi ∈ Z using Eq. (27) and even-
tually, rank the alternatives in descending order of �i and 
determine the best alternative by Eq. (28).

In the above algorithm, Steps 1 and 2 are the problem 
formulation stage. Steps 3 and 4 are the Bonferroni aggrega-
tion stage. Steps 5 to 7 are the likelihood-based computation 
stage.

4  Applications

This section implements the proposed IT2TrF likelihood-
based MCGDM approach to four pre-existent problems 
including a suitable material supplier problem [24], the 
food production company [25], the textile companies’ facil-
ity location problem [28], and the facility site selection prob-
lem [29].

4.1  Application to the material supplier selection

This subsection exemplifies the effectiveness of the proposed 
approach by resolving the material supplier selection 
problem that has been studied by Chen et al. [24], Hatami-
Marbini and Tavana [23], and Chen [15].

In this case, a high-technology manufacturing company 
has to select a reliable supplier to provide the basic mate-
rial components of new products. After an initial screening, 
five potential suppliers Z =

{
z1, z2,… , z5

}
 are selected for 

further assessments. The evaluation process is undergoing 
with three experts E =

{
e1, e2, e3

}
 who have different opin-

ions about the performance of suppliers and the weight of 
criteria. There are also five benefit criteria considered for 
the further evaluations, which includes the profitability of 
the supplier 

(
c1
)
 , relationship closeness 

(
c2
)
 , technological 

capability 
(
c3
)
 , conformance quality 

(
c4
)
 , and conflict reso-

lution 
(
c5
)
.

The seven-point linguistic rating scale was utilized by 
Chen et al. [24] and Hatami-Marbini and Tavana [23]. Both 
studies utilized type-1 trapezoidal fuzzy membership func-
tion to arrange the decision matrix and to determine the 
weights of criteria. However, in Ref. [15], the transformation 
standard of the studies [18, 36, 43] was adopted to convert 
linguistic terms into interval type-2 fuzzy sets. We employ 
the seven-point IT2TrF linguistic scales proposed by Chen 
[15] to prepare the inputs for the likelihood-based group 
decision making approach. The computational steps of the 
proposed approach are summarized as follows:
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Step 1. Following Refs. [24], [23], and [15], we 
define the set of experts as E =

{
e1, e2, e3

}
 and the set 

of suppliers (alternatives) Z =
{
z1, z2,… , z5

}
 . Also, 

the opinions of three experts are equally important 
[15, 23, 24]. Given this, the weight vector of experts is 
� =

(
�1, �2, �3

)
= (1∕3, 1∕3, 1∕3) . The set of criteria is 

denoted by Cb =
{
c1, c2,… , c5

}
 and Cc = �.

Step 2. The seven-point linguistic scale utilized for 
this case include the following terms for determining the 
performance ratings: Very Poor (VP), Poor (P), Medium 
Poor (MP), Fair (F), Medium Good (MG), Good (G), and 
Very Good (VG). The importance weights of criteria are 
also characterized using the following seven-point linguis-
tic scale: Very Low (VL), Low (L), Medium Low (ML), 
Medium (M), Medium High (MH), High (H), and Very High 
(VH). Three experts determine the performance ratings and 
importance weights of criteria using the IT2TrF linguistic 
scale mentioned above, which are shown in Table 18 of 
“Appendix A” [15].

Step 3. The weighted performance rating ̃̂̃𝛷k
ij
 and impor-

tance weight ̃̂̃Wk
j
 are obtained according to the importance 

of each expert. Because the weight vector of experts 
� = (1∕3, 1∕3, 1∕3) , we have ̃̂̃𝛷k

ij
= 3(1∕3) ̃̃𝛷k

ij
 where ̃̂̃𝛷k

ij
= ̃̃𝛷k

ij
 

for each zi ∈ Z , cj ∈ C and ek ∈ E based on Eq. (15). Simi-
larly, the importance weights are ̃̂̃Wk

j
= 3(1∕3) ̃̃Wk

j
 where 

̃̂̃
Wk

j
= ̃̃Wk

j
 for each cj ∈ C and ek ∈ E.

Step 4. Let p, q = 1 . Then, we obtain the aggre-
gated performance rate ̃̂̃𝛷ij by Bonferroni mean opera-
tor using Eqs. (17) and (18) for each zi ∈

{
z1, z2,… , z5

}
 , 

cj ∈
{
c1, c2,… , c5

}
 and ek ∈

{
e1, e2, e3

}
 . Aggregated 

the weights ̃̂̃Wj by Eqs. (21) and (22) for each cj ∈ C and 
ek ∈

{
e1, e2, e3

}
 . The values of these aggregated variables 

are shown in Table 1.
Step 5. In this step, the lower, upper and mean likelihoods 

L−
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , L+

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , and L

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 , respec-

tively, are calculated following Eqs. (7) to (9). The obtained 
results of the likelihoods are shown in Table 2.

Step 6. We calculate the likelihood-based performance 
index P

(
̃̂̃
𝛷ij

)
 for each aggregated performance rating ̃̂̃𝛷ij for 

zi ∈
{
z1, z2,… , z5

}
 , cj ∈

{
c1, c2,… , c5

}
 by Eq.  (23). The 

results are shown in Table 3.
As the likelihood-based performance indices are all 

obtained, the likelihood-based comprehensive evaluation 
value �i can be computed by combining P

(
̃̂̃
𝛷ij

)
 and the cor-

responding weight ̃̂̃Wj based on Eq. (25) for each alternative 
zi ∈

{
z1, z2,… , z5

}
 . The results are shown in Table 4.

Step 7. We compute signed distance-based evalua-
tion value �i for each alternative zi ∈

{
z1, z2,… , z5

}
 fol-

lowing Eq.  (27). The best supplier is determined by 
ranking the alternatives in descending order of �i using 

Eq. (28). The results are shown in Table 4, which indicate 
𝜀2 > 𝜀3 > 𝜀4 > 𝜀1 > 𝜀5 and thus z2 ≻ z3 ≻ z4 ≻ z1 ≻ z5 . In 
this case, the best alternative is z∗ = z2.

4.2  Application to the food production company

In this subsection, we utilize the proposed IT2TrF likeli-
hood-based MCGDM approach for choosing the best food 
product, presented by Chen [25], Li [26], and Chen and Niou 
[27].

Assume that a company tends to produce a new food 
product based on the considerations of three experts 
E =

{
e1, e2, e3

}
 whom are invited to choose the best food 

product among three types of food that are the alternatives of 
this case Z =

{
z1, z2, z3

}
 . Three experts are reach an agree-

ment to consider five benefit criteria including colorful 
(
c1
)
 , 

taste 
(
c2
)
 , smell 

(
c3
)
 , profit 

(
c4
)
 , and expiration date 

(
c5
)
 . 

The weight of these criteria and the performance of each 
alternative under the criteria are determined by these three 
experts.

The seven-point linguistic rating scale with type-1 
trapezoidal fuzzy membership functions were utilized 
to establish decision matrix and the weights of cri-
teria in previous studies [25–27] which are general-
ized to IT2TrFSs in this study. A type-1 trapezoidal 
fuzzy number Ã =

[
a1, a2, a3, a4;h

−
A
, h+

A

]
 can be char-

acterized as an interval type-2 trapezoidal fuzzy set 
̃̃A =

[(
a−
1
, a−

2
, a−

3
, a−

4
;h−

A
, h+

A

)
,
(
a+
1
, a+

2
, a+

3
, a+

4
;h−

A
, h+

A

)]
 i n 

which a−
i
= a+

i
= ai (i = 1, 2, 3, 4) [44]. In this way, we 

change the type-1 trapezoidal fuzzy sets into IT2TrFSs 
for this particular case. The detailed steps of implementing 
the proposed approach are explained as follows:

Step 1. Regarding Refs. [25], [26] and [27], the set 
of experts and the set of alternatives are defined as 
E =

{
e1, e2, e3

}
 , and Z =

{
z1, z2, z3

}
 , respectively. The set 

of criteria is denoted by Cb =
{
c1, c2,… , c5

}
 and Cc = � . 

In this case, the estimations of three experts are equally 
important. Given this, the weight vector of experts is 
� =

(
�1, �2, �3

)
= (1∕3, 1∕3, 1∕3).

Step 2. The linguistic scales used for this case include the 
following terms for determining the performance ratings: 
Very Poor (VP), Poor (P), Medium Poor (MP), Fair (F), 
Medium Good (MG), Good (G), and Very Good (VG). The 
importance weights of criteria are also characterized using 
the following seven-point linguistic scale: Very Low (VL), 
Low (L), Medium Low (ML), Medium (M), Medium High 
(MH), High (H), and Very High (VH). The three experts 
describe the performance ratings and importance weights of 
criteria using the IT2TrF linguistic scale mentioned above, 
which are shown in Table 19 of “Appendix A” [27].

Step 3. The weighted performance ratings ̃̂̃𝛷k
ij
 and impor-

tance weights ̃̂̃Wk
j
 are computed considering the importance 
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of each expert. Because the weight vector of experts 
� = (1∕3, 1∕3, 1∕3) , we have ̃̂̃𝛷k

ij
= 3(1∕3) ̃̃𝛷k

ij
 where ̃̂̃𝛷k

ij
= ̃̃𝛷k

ij
 

for every zi ∈ Z , cj ∈ C and ek ∈ E by Eq. (15). Similarly, 

the importance weights are ̃̂̃Wk
j
= 3(1∕3) ̃̃Wk

j
 where ̃̂̃Wk

j
= ̃̃Wk

j
 

for each cj ∈ C and ek ∈ E.
Step 4. The Bonferroni mean operator is employed 

fo r  each  zi ∈
{
z1, z2, z3

}
 ,  cj ∈

{
c1, c2,… , c5

}
 and 

Table 1  Aggregated 
performance ratings and 
importance weights of the 
criteria for the supplier selection 
problem

z
1

̃̂̃
𝛷

11

[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

̃̂̃
𝛷

12

[(0.707, 0.794, 0.794, 0.864;0.9, 0.9), (0.619, 0.794, 0.794, 0.933;1, 1)]

̃̂̃
𝛷

13

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
𝛷

14

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
𝛷

15

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

z
2

̃̂̃
𝛷

21

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
𝛷

22

[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

̃̂̃
𝛷

23

[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

̃̂̃
𝛷

24

[(0.899, 0.966, 0.966, 0.983;0.9, 0.9), (0.831, 0.966, 0.966, 1;1, 1)]

̃̂̃
𝛷

25

[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

z
3

̃̂̃
𝛷

31

[(0.899, 0.966, 0.966, 0.983;0.9, 0.9), (0.831, 0.966, 0.966, 1;1, 1)]

̃̂̃
𝛷

32

[(0.849, 0.933, 0.933, 0.967;0.9, 0.9), (0.764, 0.933, 0.933, 1;1, 1)]

̃̂̃
𝛷

33

[(0.899, 0.966, 0.966, 0.983;0.9, 0.9), (0.831, 0.966, 0.966, 1;1, 1)]

̃̂̃
𝛷

34

[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

̃̂̃
𝛷

35

[(0.849, 0.933, 0.933, 0.967;0.9, 0.9), (0.764, 0.933, 0.933, 1;1, 1)]

z
4

̃̂̃
𝛷

41

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
𝛷

42

[(0.73, 0.831, 0.831, 0.899;0.9, 0.9), (0.63, 0.831, 0.831, 0.966;1, 1)]

̃̂̃
𝛷

43

[(0.663, 0.764, 0.764, 0.849;0.9, 0.9), (0.563, 0.764, 0.764, 0.933;1, 1)]

̃̂̃
𝛷

44

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
𝛷

45

[(0.849, 0.933, 0.933, 0.967;0.9, 0.9), (0.764, 0.933, 0.933, 1;1, 1)]

z
5

̃̂̃
𝛷

51

[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

̃̂̃
𝛷

52

[(0.73, 0.831, 0.831, 0.899;0.9, 0.9), (0.63, 0.831, 0.831, 0.966;1, 1)]

̃̂̃
𝛷

53

[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

̃̂̃
𝛷

54

[(0.663, 0.764, 0.764, 0.849;0.9, 0.9), (0.563, 0.764, 0.764, 0.933;1, 1)]

̃̂̃
𝛷

55

[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

̃̂̃
W

1

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
W

2

[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

̃̂̃
W

3

[(0.899, 0.966, 0.966, 0.983;0.9, 0.9), (0.831, 0.966, 0.966, 1;1, 1)]

̃̂̃
W

4

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

̃̂̃
W

5

[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]
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ek ∈
{
e1, e2, e3

}
 to aggregate the performance ratings and 

importance weights of the criteria by Eqs. (17) and (18). 
By considering p, q = 1 , The results of this step are shown 
in Table 5.

Step 5. The lower, upper and mean likelihoods 
L−

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , L+

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , and L

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 , are cal-

culated respectively by Eqs. (7) to (9). The obtained results 
of likelihoods are shown in Table 6.

Step 6. In this step, we obtain the likelihood-based per-
formance index P

(
̃̂̃
𝛷ij

)
 for each aggregated performance 

rating ̃̂̃
𝛷ij for zi ∈

{
z1, z2, z3

}
 , cj ∈

{
c1, c2,… , c5

}
 by 

Eq. (23), The results are shown in Table 7.
The likelihood-based comprehensive evaluation values �i 

are computed in this step based on Eq. (25) for each alterna-
tive zi ∈

{
z1, z2, z3

}
 . The obtained results of �i are shown in 

Table 8.
Step 7. We obtain the signed distance-based evaluation 

value �i for each alternative by Eq. (27) and rank the alterna-
tives in descending order of �i . The best alternative is deter-
mined by Eq. (28). The results are shown in Table 8. The 
results indicate 𝜀2 > 𝜀3 > 𝜀1 , which makes the ranking order 
of the three alternatives as z2 ≻ z3 ≻ z1 . In this case, the best 
alternative is z∗ = z2.

Table 2  Results of L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′ j

)
 for the supplier selection problem

L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

4j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

5j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

3j

)

c1 0.13 0.05 0.13 0.5 0.87 0.25
c2 0.06 0.16 0.4 0.4 0.94 0.79
c3 0.15 0.25 0.78 0.87 0.85 0.7
c4 0.25 0.15 0.5 0.78 0.75 0.3
c5 0.15 0.37 0.37 0.87 0.85 0.79

L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

4j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

5j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

4j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

5j

)

c1 0.5 0.87 0.95 0.75 0.75 0.95
c2 0.91 0.91 0.84 0.21 0.78 0.78
c3 0.94 0.54 0.75 0.3 0.91 0.95
c4 0.75 0.91 0.85 0.7 0.85 0.94
c5 0.79 0.54 0.63 0.21 0.5 0.9

L
(
̃̂̃
𝛷

4j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

4j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

4j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

4j ≥ ̃̂̃
𝛷

5j

)
L
(
̃̂̃
𝛷

5j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

5j ≥ ̃̂̃
𝛷

2j

)

c1 0.87 0.5 0.25 0.87 0.5 0.13
c2 0.6 0.09 0.22 0.5 0.6 0.09
c3 0.22 0.06 0.09 0.78 0.13 0.46
c4 0.5 0.25 0.15 0.78 0.22 0.09
c5 0.63 0.21 0.5 0.9 0.13 0.46

L
(
̃̂̃
𝛷

5j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

5j ≥ ̃̂̃
𝛷

4j

)

c1 0.05 0.13
c2 0.22 0.5
c3 0.05 0.22
c4 0.06 0.22
c5 0.1 0.1

Table 3  Results of P
(
̃̂̃
𝛷ij

)
 for the supplier selection problem

c1 c2 c3 c4 c5

P

(
̃̂̃
𝛷

1j

) 0.81 1.02 2.05 1.68 1.76

P

(
̃̂̃
𝛷

2j

) 2.49 3.55 3.03 2.71 2.97

P

(
̃̂̃
𝛷

3j

) 3.4 2.61 2.91 3.34 2.24

P

(
̃̂̃
𝛷

4j

) 2.49 1.41 1.15 1.68 2.24

P

(
̃̂̃
𝛷

5j

) 0.81 1.41 0.86 0.59 0.79
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Table 4  Results of Υi for the 
supplier selection problem

Likelihood-based comprehensive evaluation value �i ɛi Final ranking

z1 [(6.209, 6.825, 6.825, 7.072;0.9, 0.9), (5.594, 6.825, 6.825, 7.32;1, 1)] 13.48 4
z2 [(12.629, 13.829, 13.829, 13.289;0.9, 0.9), (11.428, 13.829, 13.829, 14.75;1, 1)] 27.32 1
z3 [(12.276, 13.503, 13.503, 14.001;0.9, 0.9), (11.05, 13.829, 13.829, 14.5;1, 1)] 26.73 2
z4 [(7.5, 8.289, 8.289, 8.629;0.9, 0.9), (6.71, 8.289, 8.289, 8.97;1, 1)] 16.37 3
z5 [(3.863, 4.211, 4.211, 4.335;0.9, 0.9), (3.515, 4.211, 4.211, 4.46;1, 1)] 8.33 5

Table 5  Aggregated 
performance ratings ̃̂̃𝛷ij and 
importance weights of criteria 
̃̂̃
Wj for the food production 
company

z1
̃̂̃
𝛷

11

[(5.627, 7.638, 7.638, 9.327;1, 1), (5.627, 7.638, 7.638, 9.327;1, 1)]

̃̂̃
𝛷

12

[(4.865, 6.904, 6.904, 8.662;1, 1), (4.865, 6.904, 6.904, 8.662;1, 1)]

̃̂̃
𝛷

13

[(5.508, 7.550, 7.550, 8.944;1, 1), (5.508, 7.550, 7.550, 8.944;1, 1)]

̃̂̃
𝛷

14

[(8.307, 9.661, 9.661, 10;1, 1), (8.307, 9.661, 9.661, 10;1, 1)]

̃̂̃
𝛷

15

[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

z
2

̃̂̃
𝛷

21

[(6.298, 8.307, 8.307, 9.661;1, 1), (6.298, 8.307, 8.307, 9.661;1, 1)]

̃̂̃
𝛷

22

[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

̃̂̃
𝛷

23

[(8.307, 9.661, 9.661, 10;1, 1), (8.307, 9.661, 9.661, 10;1, 1)]

̃̂̃
𝛷

24

[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

̃̂̃
𝛷

25

[(6.904, 8.662, 8.662, 9.661;1, 1), (6.904, 8.662, 8.662, 9.661;1, 1)]

z
3

̃̂̃
𝛷

31

[(6.083, 7.853, 7.853, 8.944;1, 1), (6.083, 7.853, 7.853, 8.944;1, 1)]

̃̂̃
𝛷

32

[(6.904, 8.662, 8.662, 9.661;1, 1), (6.904, 8.662, 8.662, 9.661;1, 1)]

̃̂̃
𝛷

33

[(6.904, 8.662, 8.662, 9.661;1, 1), (6.904, 8.662, 8.662, 9.661;1, 1)]

̃̂̃
𝛷

34

[(6.904, 8.662, 8.662, 9.661;1, 1), (6.904, 8.662, 8.662, 9.661;1, 1)]

̃̂̃
𝛷

35

[(6.298, 8.307, 8.307, 9.661;1, 1), (6.298, 8.307, 8.307, 9.661;1, 1)]

̃̂̃
W

1

[(0.69, 0.862, 0.862, 0.966;1, 1), (0.69, 0.862, 0.862, 0.966;1, 1)]

̃̂̃
W

2

[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

̃̂̃
W

3

[(0.764, 0.933, 0.933, 1;1, 1), (0.764, 0.933, 0.933, 1;1, 1)]

̃̂̃
W

4

[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

̃̂̃
W

5

[(0.428, 0.63, 0.63, 0.831;1, 1), (0.428, 0.63, 0.63, 0.831;1, 1)]

Table 6  Results of 
L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′ j

)
 for the food 

production company
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

2j

)

c1 0.322 0.463 0.678 0.671 0.537 0.329
c2 0 0.134 1 0.925 0.866 0.075
c3 0.048 0.193 0.952 0.834 0.807 0.166
c4 0.246 0.834 0.754 0.925 0.166 0.075
c5 0.004 0.035 0.996 0.629 0.965 0.371
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4.3  Application to the facility location selection

In this subsection, we adopt the proposed approach to 
resolve the facility location selection problem of a Turk-
ish textile company presented by Ertuğrul and Karakaşoğlu 
[28]. They resolved this problem with both fuzzy AHP and 
fuzzy TOPSIS, and compared the results. Here, we resolve 
the case to compare the results with both approaches in Ref 
[28] and validate the likelihood-based MCGDM approach.

The proposed application is related to the facility location 
problem of a Turkish Textile Company which is deduced in 
home-textile. This company encountered a huge growth in 
the demand for its products while there is no enough loca-
tion space to respond to all needs [28]. Hence, the com-
pany tends to find a new location among three potential 
alternatives Z =

{
z1, z2, z3

}
 . A committee of three experts 

E =
{
e1, e2, e3

}
 are also formed to evaluate five criteria for 

those alternatives. These five criteria are chosen as: favora-
ble labor climate 

(
c1
)
 , proximity to markets 

(
c2
)
 , community 

considerations 
(
c3
)
 , quality of life 

(
c4
)
 , and proximity to sup-

pliers and resources 
(
c5
)
.

Ertuğrul and Karakaşoğlu [28] considered the seven-
point linguistic rating scale with triangular fuzzy 
membership functions to determine the performance 
ratings and weight of criteria. We change these triangular 
fuzzy numbers to IT2TrFNs by adopting the approach used 
in Ref. [44]. A triangular fuzzy number Ã =

[
a1, a2, a3;hA

]
 

can be characterized as an interval type-2 trapezoidal fuzzy 
set ̃̃A =

[(
a−
1
, a−

2
, a−

2
, a−

3
;h−

A
, h+

A

)
,
(
a+
1
, a+

2
, a+

2
, a+

3
;h−

A
, h+

A

)]
 in 

which a−
i
= a+

i
= ai (i = 1, 2, 3) , and h−

A
= h+

A
= hA [44]. 

We applied the T2TrFS to the performance ratings and 
the weights of criteria presented in Ref. [28]. The steps 
of implementing the proposed approach are summarized 
as follows:

Step 1. According to Ref. [28], the set of experts and 
the set of alternatives are defined as E =

{
e1, e2, e3

}
 , and 

Z =
{
z1, z2, z3

}
 , respectively. The set of benefit criteria 

is also denoted by Cb =
{
c1, c2,… , c5

}
 and Cc = � . The 

approximations of three experts are equally important fol-
lowing their equal weights. Given this, the weight vector 
of the experts is � =

(
�1, �2, �3

)
= (1∕3, 1∕3, 1∕3).

Step 2. The linguistic terms utilized for this case include 
the following axioms for determining the performance rat-
ings: Very Poor (VP), Poor (P), Medium Poor (MP), Fair 
(F), Medium Good (MG), Good (G), and Very Good (VG). 
The importance weights of criteria are also characterized 
using following seven-point linguistic scale: Very Low 
(VL), Low (L), Medium Low (ML), Medium (M), Medium 
High (MH), High (H), and Very High (VH). Three experts 
determine the performance ratings and the weight of cri-
teria using the IT2TrF linguistic scales mentioned above 
as shown in Table 20 of “Appendix A” [28].

Step 3. The weighted performance ratings ̃̂̃𝛷k
ij
 and 

importance weights ̃̂̃Wk
j
 are computed considering the 

importance of each expert. Because of the weight vector 
of experts � = (1∕3, 1∕3, 1∕3) , we have ̃̂̃𝛷k

ij
= 3(1∕3) ̃̃𝛷k

ij
 

where ̃̂̃
𝛷k

ij
= ̃̃𝛷k

ij
 for each zi ∈ Z  , cj ∈ C and ek ∈ E by 

Eq.  (15). Similarly, the importance weights are 
̃̂̃
Wk

j
= 3(1∕3) ̃̃Wk

j
 where ̃̂̃Wk

j
= ̃̃Wk

j
 for each cj ∈ C and ek ∈ E

.
Step 4. The Bonferroni mean operator is utilized 

for obtaining the aggregated performance ratings 
and the weights of criteria for each zi ∈

{
z1, z2, z3

}
 , 

cj ∈
{
c1, c2,… , c5

}
 and ek ∈

{
e1, e2, e3

}
 by Eqs. (17) and 

(18). By considering p, q = 1 , the results are shown in 
Table 9.

Step 5. The lower, upper and mean likelihoods 
L−

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , L+

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , and L

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 , are 

obtained by Eqs. (7) to (9). The obtained results are shown 
in Table 10.

Step 6. The likelihood-based performance index P
(
̃̂̃
𝛷ij

)
 

for each aggregated performance rating ̃̂̃
𝛷ij  for 

zi ∈
{
z1, z2, z3

}
 , cj ∈

{
c1, c2,… , c5

}
 by Eq. (23). The results 

are shown in Table 11.
The likelihood-based comprehensive evaluation 

values are computed by Eq.  (25) for each alternative 

Table 7  Results of P
(
̃̂̃
𝛷ij

)
 for the food production company

c1 c2 c3 c4 c5

P

(
̃̂̃
𝛷

1j

) 0.785 0.134 0.241 1.08 0.039

P

(
̃̂̃
𝛷

2j

) 1.349 1.925 1.786 1.679 1.625

P

(
̃̂̃
𝛷

3j

) 0.866 0.941 0.973 0.241 1.336

Table 8  Results of �i and �i for 
food production company

Likelihood-based comprehensive evaluation value �i �i Final rank

z1 [(1.835, 2.14, 2.14, 2.24;1, 1), (1.835, 2.14, 2.14, 2.24;1, 1)] 4.23 3
z2 [(6.234, 7.456, 7.456, 8.043 ∶ 1, 1), (6.234, 7.456, 7.456, 8.043 ∶ 1, 1)] 14.75 1
z3 [(2.976, 3.677, 3.677, 4.101;1, 1), (2.976, 3.677, 3.677, 4.101;1, 1)] 7.28 2
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zi ∈
{
z1, z2, z3

}
 . Given this, the obtained �i are shown in 

Table 12.
Step 7. The signed distance-based evaluation value �i is 

obtained for each alternative zi ∈
{
z1, z2, z3

}
 by Eq. (27). 

To determine the best alternative, the alternatives are 
ranked in descending order of �i by Eq. (28). The results 
are also shown in Table 12, which indicate 𝜀1 > 𝜀2 > 𝜀3 and 
z1 ≻ z2 ≻ z3 . In this case, the best alternative is z∗ = z1.

Table 9  Aggregated 
performance ratings and the 
weights of the criteria for the 
textile facility location problem

z
1

̃̂̃
𝛷

11

[(7.659, 9.309, 9.309, 9.661;1, 1), (7.659, 9.309, 9.309, 9.661;1, 1)]

̃̂̃
𝛷

12

[(7.659, 9.309, 9.309, 9.661;1, 1), (7.659, 9.309, 9.309, 9.661;1, 1)]

̃̂̃
𝛷

13

[(4.655, 5.979, 5.979, 7.303;1, 1), (4.655, 5.979, 5.979, 7.303;1, 1)]

̃̂̃
𝛷

14

[(7.326, 8.641, 8.641, 9.327;1, 1), (7.326, 8.641, 8.641, 9.327;1, 1)]

̃̂̃
𝛷

15

[(7.326, 8.641, 8.641, 9.327;1, 1), (7.326, 8.641, 8.641, 9.327;1, 1)]

z
2

̃̂̃
𝛷

21

[(7.326, 8.641, 8.641, 9.327;1, 1), (7.326, 8.641, 8.641, 9.327;1, 1)]

̃̂̃
𝛷

22

[(4.320, 5.477, 5.477, 6.633;1, 1), (4.320, 5.477, 5.477, 6.633;1, 1)]

̃̂̃
𝛷

23

[(7.659, 9.309, 9.309, 9.661;1, 1), (7.659, 9.309, 9.309, 9.661;1, 1)]

̃̂̃
𝛷

24

[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

̃̂̃
𝛷

25

[(6.298, 7.483, 7.483, 8.660;1, 1), (6.298, 7.483, 7.483, 8.660;1, 1)]

z
3

̃̂̃
𝛷

31

[(5.627, 6.982, 6.982, 8.327;1, 1), (5.627, 6.982, 6.982, 8.327;1, 1)]

̃̂̃
𝛷

32

[(4.655, 5.979, 5.979, 7.303;1, 1), (4.655, 5.979, 5.979, 7.303;1, 1)]

̃̂̃
𝛷

33

[(7.659, 9.309, 9.309, 9.661;1, 1), (7.659, 9.309, 9.309, 9.661;1, 1)]

̃̂̃
𝛷

34

[(4.320, 5.477, 5.477, 6.633;1, 1), (4.320, 5.477, 5.477, 6.633;1, 1)]

̃̂̃
𝛷

35

[(5.627, 6.982, 6.982, 8.327;1, 1), (5.627, 6.982, 6.982, 8.327;1, 1)]

̃̂̃
W

1

[(6.298, 8.30, 8.30, 9.66;1, 1), (6.298, 8.30, 8.30, 9.66;1, 1)]

̃̂̃
W

2

[(4.898, 6.838, 6.838, 8.64;1, 1), (4.898, 6.838, 6.838, 8.64;1, 1)]

̃̂̃
W

3

[(5.916, 8.144, 8.144, 9.309;1, 1), (5.916, 8.144, 8.144, 9.309;1, 1)]

̃̂̃
W

4

[(5.259, 7.016, 7.016, 8.64;1, 1), (5.259, 7.016, 7.016, 8.64;1, 1)]

̃̂̃
W

5

[(5.627, 7.707, 7.707, 9.327;1, 1), (5.627, 7.707, 7.707, 9.327;1, 1)]

Table 10  Results of 
L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′ j

)
 for the facility 

location problem
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

2j

)

c1 0.722 0.947 0.278 0.906 0.053 0.094
c2 1 1 0 0.283 0 0.717
c3 0 0 1 0.5 1 0.5
c4 0.947 1 0.053 0.826 0 0.174
c5 0.84 0.906 0.16 0.712 0.094 0.288

Table 11  Results of P
(
̃̂̃
𝛷ij

)
 for the facility location problem

c1 c2 c3 c4 c5

P

(
̃̂̃
𝛷

1j

) 1.669 2 0 1.947 1.746

P

(
̃̂̃
𝛷

2j

) 1.184 0.283 1.5 0.879 0.872

P

(
̃̂̃
𝛷

3j

) 0.147 0.717 1.5 0.174 0.382
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4.4  Application to the facility site selection

In this subsection, we apply the proposed approach to resolve 
a hypothetical facility site selection problem presented by 
Chu and Lin [29]. They proposed an interval arithmetic 
based fuzzy TOPSIS model and validated their approach by 
solving the hypothetical facility site selection problem. The 
results obtained by the proposed likelihood-based MCGDM 
approach are then compared with the results obtained by 
interval arithmetic based fuzzy TOPSIS approach proposed 
in [29].

According to Ref. [29], assume that a high technology 
company must select a site to build a new plant. After 
a preliminary screening, three potential sites z1, z2 and 
z3 remain for further evaluations. A committee of three 
experts E =

{
e1, e2, e3

}
 are formed to assess these three 

alternatives with respect to three benefit criteria including 
climate 

(
c1
)
 , labor force quality 

(
c2
)
 and transportation 

availability 
(
c3
)
 . The steps of implementing the proposed 

approach are summarized as follows:
Step 1. Regarding to Chu and Lin [29], the set of experts 

and the set of alternatives are defined as E =
{
e1, e2, e3

}
 , and 

Z =
{
z1, z2, z3

}
 , respectively. The set of criteria is denoted 

by Cb =
{
c1, c2, c3

}
 and Cc = � . In this case, the estimations 

of three experts are equally important, namely, the weight 
vector of experts is � =

(
�1, �2, �3

)
= (1∕3, 1∕3, 1∕3).

Step 2. The linguistic scales used for this case include the 
following terms for determining the performance ratings: 
Very Poor (VP), Poor (P), Medium Poor (MP), Fair (F), 
Medium Good (MG), Good (G), and Very Good (VG). The 
importance weights of criteria are also characterized using 
following seven-point linguistic scale: Very Low (VL), Low 

Table 12  Results of �i and �i for 
facility location problem

Likelihood-based comprehensive evaluation value �i �i Final rank

z
1

[(40.375, 54.656, 54.656, 66.515;1, 1), (40.375, 54.656, 54.656, 66.515;1, 1)] 108.7 1
z2 [(27.248, 36.873, 36.873, 43.577;1, 1), (27.248, 36.873, 36.873, 43.577;1, 1)] 73.01 2
z3 [(16.377, 22.506, 22.506, 26.646;1, 1), (16.377, 22.506, 22.506, 26.646;1, 1)] 44.51 3

Table 13  Aggregated 
performance ratings and the 
weights of criteria for the textile 
facility site selection

z
1

̃̂̃
𝛷

11

[(5.627, 7.638, 7.638, 9.327;1, 1), (5.627, 7.638, 7.638, 9.327;1, 1)]

̃̂̃
𝛷

12

[(5.508, 7.550, 7.550, 8.944;1, 1), (5.508, 7.550, 7.550, 8.944;1, 1)]

̃̂̃
𝛷

13

[(8.307, 9.661, 9.661, 10;1, 1), (8.307, 9.661, 9.661, 10;1, 1)]

z
2

̃̂̃
𝛷

21

[(8.307, 9.661, 9.661, 10;1, 1), (8.307, 9.661, 9.661, 10;1, 1)]

̃̂̃
𝛷

22

[(8.307, 9.661, 9.661, 10;1, 1), (8.307, 9.661, 9.661, 101, 1)]

̃̂̃
𝛷

23

[(7.550, 8.944, 8.944, 9.661;1, 1), (7.550, 8.944, 8.944, 9.661;1, 1)]

z
3

̃̂̃
𝛷

31

[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

̃̂̃
𝛷

32

[(5.508, 7.550, 7.550, 8.944;1, 1), (5.508, 7.550, 7.550, 8.944;1, 1)]

̃̂̃
𝛷

33

[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

̃̂̃
W

1

[(0.833, 0.966, 0.966, 1;1, 1), (0.833, 0.966, 0.966, 1;1, 1)]

̃̂̃
W

2

[(0.766, 0.933, 0.933, 1;1, 1), (0.766, 0.933, 0.933, 1;1, 1)]

̃̂̃
W

3

[(0.7, 0.833, 0.833, 0.9;1, 1), (0.7, 0.833, 0.833, 0.9;1, 1)]

Table 14  Results of 
L
(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′ j

)
 for the facility 

site selection problem
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

2j

)
L
(
̃̂̃
𝛷

1j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

2j ≥ ̃̂̃
𝛷

3j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

1j

)
L
(
̃̂̃
𝛷

3j ≥ ̃̂̃
𝛷

2j

)

c1 0.079 0.202 0.921 0.768 0.798 0.232
c2 0.048 0.5 0.952 0.952 0.5 0.048
c3 0.787 0.768 0.213 0.525 0.232 0.475
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(L), Medium Low (ML), Medium (M), Medium High (MH), 
High (H), and Very High (VH). Three experts described 
the performance ratings and the weights of criteria using 
the IT2TrF linguistic scale mentioned above as shown in 
Table 21 of “Appendix A”, or Table 1 of Chu and Lin [29].

Step 3. The weighted performance ratings ̃̂̃𝛷k
ij
 and impor-

tance weights ̃̂̃Wk
j
 are computed considering the importance 

of each expert. Then, we have ̃̂̃
𝛷k

ij
= 3(1∕3) ̃̃𝛷k

ij
 where 

̃̂̃
𝛷k

ij
= ̃̃𝛷k

ij
 for every zi ∈ Z , cj ∈ C and ek ∈ E by Eq. (15). 

Similarly, the importance weights are ̃̂̃Wk
j
= 3(1∕3) ̃̃Wk

j
 where 

̃̂̃
Wk

j
= ̃̃Wk

j
 for each cj ∈ C and ek ∈ E.

Step 4. The Bonferroni mean operator is now going to 
be employed for each zi ∈

{
z1, z2, z3

}
 , cj ∈

{
c1, c2, c3

}
 and 

ek ∈
{
e1, e2, e3

}
 to aggregate the performance ratings and 

the weights of criteria by Eqs. (17) and (18).By considering 
p, q = 1 , the results of this step are shown in Table 13.

Step 5. The lower, upper and mean likelihoods 
L−

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , L+

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i�j

)
 , and L

(
̃̂̃
𝛷ij ≥ ̃̂̃

𝛷i′j

)
 , are 

obtained by Eqs. (7) to (9). The obtained results of the likeli-
hoods for the facility site selection problem are shown in 
Table 14.

Step 6. The likelihood-based performance index P
(
̃̂̃
𝛷ij

)
 

fo r  each  agg rega ted  per for mance  ra t ing  for 
zi ∈

{
z1, z2, z3

}
 , cj ∈

{
c1, c2, c3

}
 by Eq. (23). The results 

are shown in Table 15.
The likelihood-based comprehensive evaluation val-

ues �i are computed byg Eq.  (25) for each alternative 
zi ∈

{
z1, z2, z3

}
 . The obtained �i are shown in Table 16.

Step 7. The signed distance-based evaluation value �i is 
obtained for each alternative zi ∈

{
z1, z2, z3

}
 by Eq. (27). 

The alternatives are ranked in descending order of �i to 
determine the best alternative by Eq. (28). The results are 
also shown in Table 16. The results indicate 𝜀2 > 𝜀3 > 𝜀1 
and z2 ≻ z3 ≻ z1 . In this case, the best alternative is z∗ = z2
.

Table 15  Results of P
(
̃̂̃
𝛷ij

)
 for 

the facility site selection 
problem

c1 c2 c3

P

(
̃̂̃
𝛷

1j

) 0.281 0.548 1.555

P

(
̃̂̃
𝛷

2j

) 1.689 1.904 0.738

P

(
̃̂̃
𝛷

3j

) 0.03 0.548 0.707

Table 16  Results of �i and �i for 
the facility location problem

Likelihood-based comprehensive evaluation value �i �i Final rank

z_1 [(1.695, 2.05, 2.05, 2.29;1, 1), (1.695, 2.05, 2.05, 2.29;1, 1)] 4.07 3
z_2 [(3.35, 4.01, 4.01, 4.28;1, 1), (3.35, 4.01, 4.01, 4.28;1, 1)] 7.92 1
z_3 [(1.747, 2.08, 2.08, 2.24;1, 1), (1.747, 2.08, 2.08, 2.24;1, 1)] 4.12 2

Table 17  Comparison analysis of the obtained results

Research source Comparative method Ranking results

The supplier selection problem
Hatami-Marbini and Tavana [23] Non-fuzzy extended ELECTRE I z

2
∼ z

3
≻ z

4
∼ z

1
≻ z

5

Chen et al. [24] An approval status approach z
2
∼ z

3
≻ z

4
∼ z

1
∼ z

5

Chen [15] IT2F ELECTRE using a net concordance approach z
2
≻ z

3
≻ z

4
≻ z

1
≻ z

5

Current study Likelihood-based MCGDM approach using Bonferroni mean operator z
2
≻ z

3
≻ z

4
≻ z

1
≻ z

5

The food production problem
Chen [25] A Vertex distance-based TOPSIS with triangular fuzzy sets z

2
≻ z

3
≻ z

1

Li [26] Compromise ratio-based TOPSIS method z
2
≻ z

3
≻ z

1

Chen and Niou [27] Type-1 fuzzy preference relations z
2
≻ z

3
≻ z

1

Current study Likelihood-based MCGDM approach using Bonferroni mean operator z
2
≻ z

3
≻ z

1

The facility location selection problem
Ertuğrul and Karakaşoğlu [28] Type-1 fuzzy TOPSIS z

1
≻ z

2
≻ z

3

Ertuğrul and Karakaşoğlu [28] Type-1 fuzzy AHP z
1
≻ z

2
≻ z

3

Current study Likelihood-based MCGDM approach using Bonferroni mean operator z
1
≻ z

2
≻ z

3

The facility site selection problem
Chu and Lin [29] Interval arithmetic-based TOPSIS z

2
≻ z

3
≻ z

1

Current study Likelihood-based MCGDM approach using Bonferroni mean operator z
2
≻ z

3
≻ z

1
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4.5  Comparisons of the results

This subsection discusses the results to elucidate the advan-
tages of the proposed MCGDM approach over pre-existent 
models. The practicability of the proposed approach is dem-
onstrated by the applications to four cases. The results of the 
comparison analysis are indicated in Table 17.

We compare the final ranking orders of the supplier 
selection problem obtained by the likelihood-based 
MCGDM approach using Bonferroni mean operator with 
the results obtained in Refs. [14, 24, 37]. With respect to 
the results obtained by the proposed method, there is a high 
degree of similarity between the final ranking orders of five 
suppliers with the results shown in Table 17. The difference 
is that in the ranking order provided by Hatami-Marbini and 
Tavana [23], z2 ∼ z3 ≻ z4 ∼ z1 ≻ z5 , alternatives z2 and z3 
are not comparable, which makes it difficult for experts to 
characterize the best alternatives. Similarly, in Ref. [24], the 
ranking order z2 ∼ z3 ≻ z4 ∼ z1 ∼ z5 has the incomparable 
pair z2 and z3 . The IT2F ELECTRE-based approach 
proposed by Chen [15] overcame the mentioned gap by 
deducing a precise ranking order in which the alternatives 
were differentiated using a net concordance approach. 
However, the procedure of IT2F ELECTRE approach 
proposed by Chen [15] contained complex computations 
which consumes time for obtaining the signed distance-
based hybrid averaging operations, the weighted collective 
evaluation values and the concordance indices. Nevertheless, 
we elaborate the likelihood-based approach for MCGDM 
problems with the ability of determining the exact decisions 
by a soft computing procedure. The proposed likelihood-
based MCGDM approach concludes the same ranking order 
by obtaining the likelihoods of IT2TrF preference relations 
for five suppliers zi ∈

{
z1, z2,… , z5

}
 with regards to five 

criteria cj ∈
{
c1, c2,… , c5

}
 based on the considerations of 

three experts ei ∈
{
e1, e2, e3

}
 aggregated by a Bonferroni 

aggregation operator with p, q = 1.
Similarly, we illustrate the validation and effectiveness 

of the proposed approach by comparing the results of the 
proposed approach and the results obtained by these three 
approaches [13, 19, 40]. Chen [25] introduced a new fuzzy 
TOPSIS considering a vertex distance between triangular 
fuzzy sets. Le [26] also developed a TOPSIS method with 
introducing a compromise ratio under the fuzzy environ-
ment. Chen and Niou [27] utilized the concept of type-1 
fuzzy preference relations to resolve the same case. From 

Table 17, three approaches obtained the same ranking order 
for three alternatives with respect to five criteria. Both Chen 
[25] and Li [26] utilized the TOPSIS method with differ-
ent distance measures for ranking these alternatives. They 
determined the decision matrix based on experts’ linguistic 
judgements and prepared the normalized decision matrix 
based on the TOPSIS principles. They both obtained the dis-
tances to positive and negative ideal solutions based on the 
performance of each alternative. Compared with the TOP-
SIS method, the proposed likelihood-based approach mini-
mizes the computation steps by removing the calculation of 
distances and replacing them with lower, upper and likeli-
hoods of IT2TrF preference relations. In other words, the 
proposed likelihood-based approach removes the hardships 
of conventional fuzzy TOPSIS by proposing a soft comput-
ing calculation and a new method for ranking the potential 
alternatives. With Eq. (24), there is no need to normalize the 
decision matrixes for changing the scales of cost criteria. 
Using the same equation can automatically alter the effects 
of cost criteria for each alternative. Although Chen and Niou 
[27] utilized the concept of preference relations of type-1 
fuzzy sets to propose a far effective approach than conven-
tional TOPSIS, the approach was limited with type-1 fuzzy 
sets. Additionally, Chen and Niou [27] computed the fuzzy 
preference relations for performance rating of each alterna-
tive based on the judgements of each expert, which increases 
the complexity of computations and time of the process. 
This is why the Bonferroni mean operator is employed in 
this study to aggregate the judgements of each expert based 
on their importance. Using the IT2TrFBAO, we can exploit 
a balanced value which embeds the impact of each expert.

The facility location selection problem presented by 
Ertuğrul and Karakaşoğlu [28] is resolved using the pro-
posed approach to verify the accuracy of the obtained 
results. Ertuğrul and Karakaşoğlu [28] solved this particular 
case with both fuzzy TOPSIS and fuzzy AHP. The results 
indicated that both approaches are leading to the same 
conclusions. Although the fuzzy TOPSIS, fuzzy AHP and 
the proposed approach concluded the same ranking order 
z1 ≻ z2 ≻ z3 for three alternatives, we compare the struc-
tures of these three approaches to clarify the advantages and 
disadvantages of each approach. In Ref. [28], they deduced 
that the fuzzy AHP requires more complex computations 
than fuzzy TOPSIS. As discussed early, the proposed likeli-
hood-based MCGDM approach reduces the computational 
complexity of TOPSIS method by removing the distances 



2736 International Journal of Machine Learning and Cybernetics (2020) 11:2719–2741

1 3

to both positive and negative ideal solutions. Given this, the 
proposed approach is more facilitated than the fuzzy AHP 
while it removes the pairwise comparison of alternatives 
with respect to each criterion. They also mentioned the fact 
that TOPSIS is known as the best approach for addressing 
the rank reversal issue which is the consequence of changes 
in the number of alternatives when a non-optimal alternative 
is added or removed from the list of potential alternatives 
[28]. The proposed likelihood-based MCGDM approach is 
also very performable in cases where the number of alterna-
tives is changing time to time. In the event, the fuzzy AHP 
is planned to handle the cases with a fixed number of alter-
natives. Regarding the nature of fuzzy AHP, each expert is 
asked to provide judgements about either the importance of 
one criterion against another criteria or its preference of one 
alterative on one criterion against another alternatives [28]. 
With respect to this fact, it is reasonable to assume in cases 
with huge number of criteria, the pairwise comparison pro-
cess becomes unwieldy [28, 45]. In contrast, the proposed 
likelihood-based approach has few limitations in the number 
of criteria which is one of the advantages of this approach.

The facility site selection problem proposed by Chu and Lin 
[29] is an illustrative case which validated the interval arith-
metic-based TOPSIS approach. We utilize this case to ensure 
the effectiveness and dominancy of the proposed likelihood-
based MCGDM approach over the state-of-the-art extensions 
of TOPSIS. Ref. [30] proposed interval arithmetic-based fuzzy 
principles to normalize the performance rating of each alterna-
tive and the weight of each criteria into a comparable scale. 
They utilized the �-cuts of a triangular fuzzy number to define 
some principles for arithmetic of fuzzy sets. With respect to 
these principles, they remodeled the fuzzy TOPSIS method 
in an interval-based fuzzy environment which enhanced 
the accuracy of results. Furthermore, the concept of �-cuts 
depends on choosing a right and accurate � to perform the cuts. 
it is a challenging task to select the most appropriate � while 
there are so many variables affecting the performance ratings 
of alternatives. Hence, it is more valuable to deal with fuzzy 
numbers directly than converting them into crisp sets. On the 
other hand, triangular fuzzy sets cannot contain enough infor-
mation compared with trapezoidal fuzzy sets [46]. Besides, in 
Ref. [29], they utilized the average operator to determine the 
aggregated performance ratings and importance weights of 
criteria. The averaging operator is weak because it ignores the 
importance of each expert. In contrast, the Bonferroni mean 
operator is a powerful aggregating operator in the sense that 
it performs based on the importance of each criteria. Even if 
there is no difference between the importances of experts, the 
results obtained by the Bonferroni mean operator differs from 
the results obtained by the averaging operator.

5  Conclusions

With respect to the fact that decisions are made by analyz-
ing the related data which always carry uncertainty, IT2TrFSs 
were proposed as a generalization for conventional fuzzy sets 
in which the degree of membership falls into a fuzzy set on 
the interval [0,1] [2]. The IT2TrFSs were established because 
the conventional type-1 fuzzy sets were incompetent to cover 
all the uncertainties that currently exist in real-world problems 
[12]. This study elaborated the single expert decision-making 
model based on the likelihoods of IT2TrF preference relations 
proposed by Chen [2] to a multi-expert MCGDM approach by 
employing the Bonferroni mean operator to aggregate the sub-
jective preferences of experts in terms of IT2TrFSs. The pro-
posed methodology was proved to be more facilitated, accu-
rate, flexible, and effective than conventional group decision 
making approaches such as the fuzzy TOPSIS, fuzzy AHP, and 
fuzzy ELECTRE. This likelihood-based MCGDM approach 
was established based on the comparison of IT2TrFSs. The 
likelihoods of IT2TrF preference relations compressed the 
valuable information of the sophisticated IT2TrF into regu-
lar crisps to reduce the complexity of making decisions for 
experts.

By the likelihoods and the IT2TrFBAO, this study pre-
sented a multi-expert MCGDM approach which was validated 
by the applications to four pre-existent cases. Comparisons of 
the results also authenticated the effectiveness and applicabil-
ity of the proposed group decision making approach.
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Appendix A

This appendix provides the IT2TrF data that are utilized to 
express the importance weights and performance rates for 
the presented cases. These provided data includes Table 18 
which indicates the linguistic and IT2TrFs data expressed 
by three decision makers ej ∈

{
e1, e2, e3

}
 for the sup-

plier selection case including importance weights of each 
criteria cj ∈

{
c1, c2,… , c5

}
 and the performance rate of 

each supplier zi ∈
{
z1, z2, z3

}
 with respect to each criteria 

cj ∈
{
c1, c2,… , c5

}
 . Table 19 which indicates the linguistic 

and IT2TrFs of decision makers ej ∈
{
e1, e2, e3

}
 for the food 

production company including importance weights assigned 
for each criteria cj ∈

{
c1, c2,… , c5

}
 and the performance 

rate of each alternative zi ∈
{
z1, z2, z3

}
 with respect to each 

criteria cj ∈
{
c1, c2,… , c5

}
 . Table 20 indicates the linguistic 

and IT2TrFs of decision makers ej ∈
{
e1, e2, e3

}
 for the facil-

ity location selection problem including importance weights 
assigned for each criteria cj ∈

{
c1, c2,… , c5

}
 and the perfor-

mance rate of each supplier zi ∈
{
z1, z2, z3

}
 with respect to 
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Table 18  The IT2TrFN rating �k
ij
 . and the importance weights Wk

j
 for 

the supplier selection problem

IT2TrFN ratings

�1

11
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

11
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

11
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

12
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

12
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

12
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

13
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

13
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

13
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

14
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

14
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)].

�3

14
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

15
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

15
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

15
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

21
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

21
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

21
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

22
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

22
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

22
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

23
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

23
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

23
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

24
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

24
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

24
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

25
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

25
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

25
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

31
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

31
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

31
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

32
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

32
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

32
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

33
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

33
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

33
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

34
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�2

34
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

34
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

35
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

35
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�3

35
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

41
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

Table 18  (continued)

IT2TrFN ratings

�2

41
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

41
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

42
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

42
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

42
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�1

43
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

43
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

43
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

44
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

44
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

44
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

45
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�2

45
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

45
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

�1

51
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

51
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

51
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�1

52
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

52
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�3

52
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

53
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

53
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

53
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�1

54
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

54
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

54
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

�1

55
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�2

55
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

�3

55
[(0.6, 0.7, 0.7, 0.8;0.9, 0.9), (0.5, 0.7, 0.7, 0.9;1, 1)]

W
1

1
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
2

1
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
3

1
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
1

2
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

W
2

2
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

W
3

2
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

W
1

3
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

W
2

3
[(0.95, 1, 1, 1;0.9, 0.9), (0.9, 1, 1, 1;1, 1)]

W
3

3
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
1

4
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
2

4
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
3

4
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
1

5
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
2

5
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]

W
3

5
[(0.8, 0.9, 0.9, 0.95;0.9, 0.9), (0.7, 0.9, 0.9, 1;1, 1)]
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Table 19  The IT2TrFN rating �k
ij
 and the importance weight Wk

j
 for 

the food production company

IT2TrFN ratings

A
1

11
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
2

11
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

11
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

12
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

12
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

12
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
1

13
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

13
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

13
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

14
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
2

14
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

14
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

15
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

15
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

15
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

21
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

21
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

21
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

22
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
2

22
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

22
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

23
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

23
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

23
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
1

24
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

24
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

24
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

25
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

25
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
3

25
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

31
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
2

31
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
3

31
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
1

32
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

32
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

32
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

33
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

33
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

33
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

34
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
2

34
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

34
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
1

35
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

35
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

35
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

W
1

1
[(0.7, 0.9, 0.9, 1;1, 1), (0.7, 0.9, 0.9, 1;1, 1)]

Table 19  (continued)

IT2TrFN ratings

W
2

1
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

1
[(0.5, 0.7, 0.7, 0.9;1, 1), (0.5, 0.7, 0.7, 0.9;1, 1)]

W
1

2
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
2

2
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

2
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
1

3
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
2

3
[(0.7, 0.9, 0.9, 1;1, 1), (0.7, 0.9, 0.9, 1;1, 1)]

W
3

3
[(0.7, 0.9, 0.9, 1;1, 1), (0.7, 0.9, 0.9, 1;1, 1)]

W
1

4
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
2

4
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

4
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
1

5
[(0.3, 0.5, 0.5, 0.7;1, 1), (0.3, 0.5, 0.5, 0.7;1, 1)]

W
2

5
[(0.5, 0.7, 0.7, 0.9;1, 1), (0.5, 0.7, 0.7, 0.9;1, 1)]

W
3

5
[(0.5, 0.7, 0.7, 0.9;1, 1), (0.5, 0.7, 0.7, 0.9;1, 1)]

Table 20  The IT2TrFN rating �k
ij
 and the importance weight Wk

j
 for 

the facility location selection problem

IT2TrFN ratings

A
1

11
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
2

11
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
3

11
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
1

12
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

12
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
3

12
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
1

13
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
2

13
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
3

13
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
1

14
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

14
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
3

14
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
1

15
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

15
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
3

15
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
1

21
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

21
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
3

21
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
1

22
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
2

22
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
3

22
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
1

23
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

23
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
3

23
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
1

24
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
2

24
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
3

24
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]
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Table 20  (continued)

IT2TrFN ratings

A
1

25
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
2

25
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
3

25
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
1

31
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
2

31
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
3

31
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
1

32
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
2

32
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
3

32
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
1

33
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
2

33
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

A
3

33
[(8, 10, 10, 10;1, 1), (8, 10, 10, 10;1, 1)]

A
1

34
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
2

34
[(4, 5, 5, 6;1, 1), (4, 5, 5, 6;1, 1)]

A
3

34
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
1

35
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
2

35
[(5, 6.5, 6.5, 8;1, 1), (5, 6.5, 6.5, 8;1, 1)]

A
3

35
[(7, 8, 8, 9;1, 1), (7, 8, 8, 9;1, 1)]

W
1

[(0.8, 1, 1, 1;1, 1), (0.8, 1, 1, 1;1, 1)]

W
2

[(0.7, 0.93, 0.93, 1;1, 1), (0.7, 0.93, 0.93, 1;1, 1)]

W
3

[(0.7, 0.87, 0.87, 1;1, 1), (0.7, 0.87, 0.87, 1;1, 1)]

W
4

[(0.5, 0.7, 0.7, 0.9;1, 1), (0.5, 0.7, 0.7, 0.9;1, 1)]

W
5

[(0.7, 0.8, 0.8, 0.9;1, 1), (0.7, 0.8, 0.8, 0.9;1, 1)]

Table 21  The IT2TrFN rating �k
ij
 and the importance weight Wk

j
 for 

the facility site selection problem

IT2TrFN ratings

A
1

11
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
2

11
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

11
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

A
1

12
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
2

12
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

12
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

13
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
2

13
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

13
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

21
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

21
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

21
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
1

22
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
2

22
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

22
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

23
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
2

23
[(9, 10, 10, 10;1, 1), (9, 10, 10, 10;1, 1)]

A
3

23
[(5, 7, 7, 9;1, 1), (5, 7, 7, 9;1, 1)]

Table 21  (continued)

IT2TrFN ratings

A
1

31
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

31
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

31
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

32
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

32
[(3, 5, 5, 7;1, 1), (3, 5, 5, 7;1, 1)]

A
3

32
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
1

33
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
2

33
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

A
3

33
[(7, 9, 9, 10;1, 1), (7, 9, 9, 10;1, 1)]

W
1

1
[(0.7, 0.9, 0.9, 1;1, 1), (0.7, 0.9, 0.9, 1;1, 1)]

W
2

1
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

1
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
1

2
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
2

2
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

2
[(0.7, 0.9, 0.9, 1;1, 1), (0.7, 0.9, 0.9, 1;1, 1)]

W
1

3
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
2

3
[(0.9, 1, 1, 1;1, 1), (0.9, 1, 1, 1;1, 1)]

W
3

3
[(0.3, 0.5, 0.5, 0.7;1, 1), (0.3, 0.5, 0.5, 0.7;1, 1)]

each criteria cj ∈
{
c1, c2,… , c5

}
 . Table 21 also indicates the 

linguistic and IT2TrFs of decision makers ej ∈
{
e1, e2, e3

}
 

for the facility site selection problem including importance 
weights assigned for each criteria cj ∈

{
c1, c2, c3

}
 and the 

performance rate of each alternative zi ∈
{
z1, z2, z3

}
 with 

respect to each criteria cj ∈
{
c1, c2, c3

}
.
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