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Abstract
In this paper, we have devised a multiobjective optimization solution framework for solving the problem of gene expression 
data clustering in reduced feature space. Here clustering problem is viewed from two different aspects: clustering of genes in 
reduced sample space or clustering of samples in reduced gene space. Three objective functions: two internal cluster validity 
indices and the count on the number of features are optimized simultaneously by a popular multiobjective simulated anneal-
ing based approach, namely AMOSA. Here, point symmetry based distance is used for the assignment of gene data points 
to different clusters. Seven publicly available benchmark gene expression data sets are used for experimental purpose. Both 
aspects of clustering in reduced feature space is demonstrated. The proposed gene expression clustering technique outper-
forms the existing nine clustering techniques. Apart from this, also some statistical and biological significant tests have been 
carried out to show that the proposed FSC-MOO technique is more statistically and biologically enriched

Keywords  Gene expression data clustering · Feature selection · Point symmetry based distance · Multiobjective 
optimization · Cluster validity index

1  Introduction

A large matrix showing gene expression levels(rows) and 
the different experimental conditions(columns) represent 
Gene expression data. Clustering of gene expression data 

can be carried out in two different spaces: gene space or 
sample space [24, 25, 31, 32]. In [11, 23], it has been men-
tioned that the appropriate sample selection helps to get a 
low-level visual representation of gene behavior across the 
samples. This dimensionality reduction in sample space 
helps to effectively tackle the problem of determining a 
low dimensional embedding that provides a precise visual 
representation of gene-gene interactions. Inspired by this 
observation in [23], a feature selection technique is proposed 
to reduce the number of samples from a given gene expres-
sion data set. The identified co-expressed genes are highly 
symmetrical, overlapping, and high-dimensional in nature. 
Most of the single-objective based clustering techniques fail 
to evolve the optimal clusters. Recently, some authors have 
developed multiobjective based clustering techniques [18, 
19, 21, 22] and applied on gene expression data to obtain 
the true partitioning results. But none of these authors have 
tried to solve simultaneous feature selection and clustering 
for gene expression. Thus none of these techniques have 
focussed on developing a system which is responsible for 
simultaneous feature selection and clustering.

In this paper, we have posed the problem of sample/
gene selection for the clustering of genes/samples as a 
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multiobjective optimization problem (MOOP). Here, 
AMOSA [4] a simulated annealing based optimization 
technique is used for the optimization of multiple objec-
tives. The proposed FSC-MOO, a feature selection as well 
as multiobjective clustering technique, encodes the num-
ber of features (in this case, either samples/genes) and the 
number of cluster centers (in terms of genes/ samples) in 
the form of a solution. Here, to obtain the true partitioning 
of genes/samples, we have employed a newly developed 
point-symmetry based distance [1]. The three objective 
functions are simultaneously optimized to obtain optimum 
clustering solutions. The First two internal cluster validity 
indices used here, explore different data intrinsic proper-
ties. The measured validity indices are Sym-index [2] and 
XB-index [37]. Sym-index [2] is responsible for counting 
total symmetrical compactness within the clusters, whereas 
XB-index [37] uses euclidean distance to measure cluster 
separation and cluster compactness. The third objective 
function is the feature index that is responsible for extract-
ing the relevant features.

Now with the help of AMOSA, these two cluster validity 
measures and the number of samples/genes are simultane-
ously optimized to evolve the final non-dominated solu-
tions. These non-dominated solutions represent different 
cluster centers as well as multiple combinations of samples/
genes. The algorithm will automatically identify the appro-
priate set of samples in case of gene clustering/appropriate 
set of genes in case of sample clustering, several gene-clus-
ters/sample-clusters, and the proper partitioning of genes/
samples from a given gene expression data set.

The performance of the proposed technique (FSC-MOO) 
is demonstrated on publicly available seven real-life gene 
expression data sets. Also, to show the effectiveness of the 
proposed clustering algorithm FSC-MOO, it is compared 
with well known existing clustering techniques. These 
techniques include MOGA clustering [3], MO-fuzzy [29], 
FCM [5], SGA [16], Hierarchical average linkage clustering 
[34], Self Organizing Map(SOM) [30], Chinese Restaurant 
Clustering(CRC) [26], Spectral Clustering [35] and K-mean 
clustering [14]. Further, some statistical and biological sig-
nificant tests are performed. The biological significance test 
reveals that indeed the appropriate sample selection helps in 
forming the biologically enriched gene clusters. The perfor-
mance of the proposed sample clustering technique, which 
simultaneously performs sample clustering and gene selec-
tion, is shown for two other gene expression data sets. For 
the comparative analysis, we have used MO-fuzzy, FCM, 
Average Linkage, SGA, Spectral, and K-mean clustering 
techniques. The obtained results show the superiority of 
the FSC-MOO technique. List of abbreviation is shown in 
Table 1 to understand the used symbol.

2 � Problem definition

Let us consider the data matrix Y = {yj ∶ j = 1, 2,… n} , yj 
is a vector of dimension D, which is required to be parti-
tioned into K different clusters such that 

∑K

k=1

∑n

j=1
ukj = n , 

where ukj denotes the membership value of jth point for 
kth cluster. Not all features are important from clustering 
point of view. So, here the goal is to project the original 
D-dimensional data into F-dimensional subspace such that 
F ≤ D. Also, to simultaneously satisfy multiple cluster 
quality measures (as opposed to single-objective optimi-
zation), the problem of clustering is posed as a multiob-
jective optimization problem (MOOPS). Multiobjective 
optimization problems can be formulated as: select the 
most efficient vectors from the given decision variables 
y
∗
= [y∗

1
, y∗

2
,… , y∗

n
]T which are bound to satisfy n inequal-

ity constraints:

the q equality constraints

and also simultaneously optimize P objective functions

The mathematical formulation of the proposed problem is 
given below: 

1.	 Input: A set of points Y = {yj ∶ j = 1, 2,… n},where yj 
is a vector of dimension D. Here n denotes the number 
of data points.

(1)hi(y) ≥ 0, i = 1, 2,… , n,

(2)gi(y) = 0, i = 1, 2,… , q,

(3)F1(y),F2(y),… ,FP(y).

Table 1   List of abbreviations and symbols used

S(C) Silhouette score/index
ARI Adjusted rand index
Sym(K) Validity measure based on point symmetry property
XB Xie and Beni proposed cluster validity measure
K Number of clusters
MOO Multiobjective optimization
MOOP Multiobjective optimization problem
CA Classification Accuracy
DB Davies- Bouldin index
GO Gene ontology
dps Point symmetry based distance
f Number of features present in a string
MOGA Multiobjective genetic algorithm
MO-fuzzy Multiobjective based fuzzy clustering technique
SA Simulated annealing
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2.	 Output: Determine a subset of feature combinations F 
where F ≤ D and based on this subset of features parti-
tion the data into some automatic number of clusters 
(K). The value of K would be determined automatically. 
The partition matrix U of size K × n is generated where 
K: number of clusters and n: number of points such that ∑K

k=1

∑n

j=1
ukj = n , where ukj denotes the membership 

value of jth point for kth cluster. ukj = 0 if jth point does 
not belong to kth cluster else ukj = 1 if jth point belongs 
to kth cluster.

3.	 Optimization functions: Several cluster validity indices 
like Val1,Val2,…ValP where Vali denotes ith cluster 
validity index should be simultaneously optimized using 
the search capability of any MOO based technique.

3 � Proposed method for multiobjective 
feature selection and unsupervised 
clustering technique

In this section, we have elaborated the working principle 
of the proposed FSC-MOO technique in detail. The steps 
involved in the proposed algorithm FSC-MOO are shown in 
Fig 1. Here AMOSA [4], an optimization technique based on 
the properties of simulated annealing, is used as the under-
lying multiobjective optimization technique to optimize the 
objective functions simultaneously. In case of multiobjec-
tive optimization, a set of trade-off solutions is obtained 
in which some are dominating and non-dominating to one 
another. The non-dominating solutions are Pareto optimal 
set. An example of dominance and non-dominance is shown 

in Fig. 2. It can be seen from this figure that there are five 
solutions in total, and out of these five solutions, four solu-
tions are non-dominating to each other, and these three solu-
tions dominate the one solution.

3.1 � Encoding of strings and initialization of archive

In FSC-MOO, the state representation of AMOSA consisted 
of two different elements. The first one exhibits a set of real 
numbers that are in fact, the coordinates of centers of parti-
tions of data set. The second one exhibits a set of binary 
numbers that explore the different sample/gene combina-
tions. With the help of this encoding scheme, AMOSA is 
capable of evolving true partitioning represented by cluster 
centers as well as suitable sample/gene combinations.

Fig. 1   Working principle of our 
proposed multiobjective cluster-
ing algorithm

Fig. 2   Pareto-optimal Front and dominance relation
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Let in a particular string total number of features and 
encoded cluster centers be F and K, respectively. Therefore, 
the length of the string can be defined as F + K × F . Here 
randomly chosen binary strings are represented as feature 
combinations.

Let us assume that in a string, we have K=3 number of 
clusters and F=5 number of features. Then the correspond-
ing representation is mentioned below:

< c1
1
, c2

1
, c3

1
… , c5

1
, c1

2
,… , c5

2
, c1

3
, c2

3
,… , c5

3
, 11010 .  Here 

< c1
1
, c2

1
, c3

1
,… , c5

1
> , < c1

2
,… , c5

2
> , and < c1

3
, c2

3
,… , c5

3
> 

represent three cluster centers for a single partitioning and 
only first, second and fourth features are selected. These 
features are considered for the computation of distance func-
tions for cluster assignment and objective function calcula-
tions. The encoding of cluster centers and feature combina-
tions is shown in Fig. 3.

Initially, in the archive each string j encompasses Kj 
number of clusters. Here value of Kj is generated as per 
the following formula: Kj = (rand()%(Kmax − 1)) + 2 . Here 
rand() function is used to generate a random number, 
which returns an integer number. Kmax is the maximum 
allowable cluster number for the data set. Thus in the 
above Equation after performing % operation, we can get 
values in the range of 0 to (Kmax − 2) . Thus by adding 2 to 
each of the numbers in the given range will return values 
in the range 2 to Kmax.

Here we have adopted a random procedure for initializa-
tion purposes. Let Kj represent the number of cluster centers 
for a particular chosen string j. These Kj cluster centers are 
randomly chosen from the whole data set. Thereafter, these 
selected cluster centers are encoded in a particular chosen 
jth string. Also, the minimum center-based distance crite-
rion is used to generate the initial partitionings. Apart from 
this, a random procedure is also invoked for the initializa-
tion of features associated with a particular string. Now let 
us assume there are total F number of features in a data set; 
then randomly each position of the feature set is initialized 
to either 0 or 1. If at ith position, 0 value has occurred, then 
the feature at that particular ith position is totally inactive 
for participation in further processing. Similarly, 1 value 

indicates that the feature at that particular ith position is 
participating actively in further processing. Here, further 
processing specifies the cluster assignment and computation 
of objective function values etc.

3.2 � Assignment of points

Here for the assignment of data points to different clusters, 
point symmetry based distance dps(y, z) [1] is utilized. In the 
proposed technique FSC-MOO, we have considered clus-
ter centers as representatives of different clusters. With this 
assumption, the assignment of points is done with respect 
to different clusters. Now let us suppose for a particular 
string: total number of present features=F and number of 
clusters=K. Now, the assignment is done using the follow-
ing steps:

•	 A gene xj , 1 ≤ j ≤ n , is assigned to cluster k using the 
point symmetry based distance if the following two con-
ditions are satisfied:

•	 dps(xj, ck) ≤ dps(xj, ci), i = 1,… ,K, i ≠ k,
•	 dsym(xj, ck) = (dps(xj, ck)∕de(xj, ck)) ≤ �.

•	 In case of (dps(xj, ck)∕de(xj, ck)) > 𝜃 , point xj is assigned 
to some cluster m using the Euclidean distance as 
done in case of K-means algorithm. The value of m is 
determined, which satisfies the following condition: 
de(xj, cm) ≤ de(xj, ci), i = 1, 2…K, i ≠ m.

Here, dsym computes the symmetry of a point within a clus-
ter with respect to the cluster center. If the value of this 
measurement is small enough, then we can expect that the 
given point is indeed symmetrical with respect to the cluster 
center. Thus we have used a threshold value to check the 
amount of symmetricity. If the amount of symmetricity is 
greater than the threshold, then it signifies that the point 
lacks symmetry with respect to any cluster. In such cases, the 
use of Euclidean distance for cluster assignment as done in 

Fig. 3   Representation of cluster 
centers and features in the form 
of a string
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case of K-means algorithm is justified. The reasons for this 
action are as follows: sometimes during the initial stage of 
the algorithm, clusters may not be appropriately formed. In 
such situations, the minimum value of dps for different points 
is expected to be high due to the lack of point symmetry 
property with respect to various cluster centers. So, in such 
conditions, Euclidean distance is used for cluster assign-
ment. In other words, if dps value is small, then the cluster 
assignment is done based on symmetry property.

Here in the proposed technique FSC-MOO, the distance 
computations are done only using those features which are 
present in that particular string. In this regard, the value of 
� is kept as the maximum nearest neighbor distance among 
all the points for a particular data set.

3.3 � Objective functions used

The objectives are selected, keeping the following points 
in mind: 

1.	 Three different objective functions explore different data 
intrinsic properties.

2.	 Sym-index basically measures the total symmetrical 
compactness of the data. It tries to capture the clusters 
which are highly symmetric about their cluster centers.

3.	 XB-index measures the compactness and separation of 
the obtained clusters using popular Euclidean distance. 
It tries to detect clusters which are hyperspherical in 
shape.

4.	 The last feature index is responsible for extracting the 
relevant features. The above two objective functions 
use Euclidean distance in their operations. Sym-index 
is based on point symmetry-based distance, which again 
uses Euclidean distance for its computation. Thus these 
indices are biased towards low-dimensions (low feature 
values). These indices try to decrease the number of fea-
tures present in the data set. The optimal values of these 
indices are obtained at number of features=1. In order to 
get rid of this bias, this objective function is used which 
tries to increase the number of features.

To evolve the good clustering solution and the appropri-
ate feature combination, three different objective functions 
are used, which are simultaneously optimized by the search 
capability of AMOSA [4].

3.3.1 � Sym‑index: symmetry based cluster validation index

Sym-index [2] is based on the point-symmetry based dis-
tance [1]. It computes the total symmetry present in the par-
titioning with respect to cluster centers. Let us consider the 
data matrix Y = {yj ∶ j = 1, 2,… n} which is partitioned into 

K different clusters. Computation of cluster center zi is done 
as follows: zi =

∑ni
j=1

y
i

j

ni
.

H e r e ,  EK =
∑K

i=1
Ei   ,  Ei =

∑ni
j=1

d∗
ps
(y

i

j
, zi)   , 

DK = maxK
i,j=1

‖zi − zj‖.

Among all the cluster center pairs, the maximum separa-
tion between any two centers is denoted by DK . Separation 
is measured in terms of the Euclidean distance. With some 
constraint d∗

ps
(y

i

j
, zi) is computed according to Equation (5). 

Here, knear number of nearest neighbors of y∗
j
= 2 × zi − y

i

j
 

are determined from the points which are part of the cluster 
i. To identify the actual number of clusters, and to avoid 
overlapping, Sym-index should be maximized. The differ-
ent components of Sym-index and their interactions are 
explained well in [2].

3.3.2 � XB index

Xie and Beni [37] focused on the compactness and separa-
bility of clusters to define the XB-index. From Equation 7, it 
can be easily seen that XB-index is the ratio of cluster com-
pactness and cluster separation. For optimal partitioning, 
the compactness of the clusters should be minimized, and 
separation between different clusters should be maximized. 
Hence, the most desirable partitioning is obtained by mini-
mizing the XB-index for K = 1,… ,Kmax.

where, K = Total number of clusters present in a solution. n 
= Total number of data points to be clustered. �ij = 1 if jth 
data point belongs to ith cluster. �ij = 0 if jth data point does 
not belong to ith cluster. xj = j th data point. ci = i th cluster.

3.3.3 � Feature selection based objective function

The third objective function is the number of features (sam-
ples or genes) encoded in a particular string. We have to 
calculate the number of features (samples or genes) present 
in a particular string, and have to maximize the number of 
features. This objective function is used to balance the bias 
of the first two objective functions on dimensionality. Inter-
nal cluster validation techniques are based on some distance 

(4)Sym(K) =

(
1

K
×

1

EK

× DK

)

(5)dps(y, z) =dsym(y, z) × de(y, z),

(6)=

∑knear

i=1
di

knear
× de(y, z),

(7)XB =

∑K

i=1

∑n

j=1
�2
ij
‖xj − ci‖2

n(mini≠k‖ci − ck‖2)
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computations and thus, those are biased towards lower 
dimensions [9]. To balance this bias, we have used the third 
objective, which will try to increase the number of features 
(samples or genes) present in a data set. f3 = maximize ‖f‖ 
where ‖f‖ = number of features present in that particular 
string. The values of the above mentioned two cluster valid-
ity indices are calculated for the partitioning represented 
in each string. For Sym-index and XB-index computations, 
we have to consider only those features (samples or genes) 
which are present in that particular string. The multiple 
objectives corresponding to a particular string are:

where Sym(K, f), XB(K, f), and ‖f‖ denote the obtained val-
ues for Sym-index, XB-index, and the number of features 
respectively, present in that particular string. The number of 
clusters encoded in a particular string is denoted by K, and f 
is the number of features (samples or genes) present in that 
particular string. The modern MOO technique AMOSA is 
deployed to maximize these three objectives simultaneously.

3.4 � Mutation operations

The intuition behind the mutation operation is to generate a 
new string from the current string. For this, we have employed 
the three different types of mutation operations to change the 
cluster centers encoded in a particular string. Here, the binary 
mutation is used in which each bit position of feature-combi-
nation in a particular string, is flipped with some probability. 
In other words, if the initial bit position of feature is 1, it can 
be replaced by 0; and vice versa. The proposed approach is 
used to select the number of gene-clusters/sample-clusters 
from any gene expression data set automatically. We initialize 
each string with some randomly generated number of clusters. 
To explore the entire search space, we need to change the 
number of clusters encoded in a particular string. Mutation 
operations are defined in such a way so that these can change 
the number of clusters encoded in a particular string. For this, 
we have developed the second and third mutation operations. 
The third mutation provides a way to increment the number 
of clusters. The second mutation operation provides a way to 
decrement the value of the number of clusters encoded in a 
particular string. The first mutation operator is used to change 
the existing cluster centers by some value. 

1.	 Here Laplacian distribution p(�) ∝ e
−

|�−�|
�  is used to per-

turb the individual cluster centers, where � is the scal-
ing factor which determines the perturbation value. The 
position for perturbation is denoted by � , and scaling 
factor � is chosen to one. In this way, the old value is 
replaced by the newly generated value. Independently 
this perturbation operation is imposed on all the dimen-

obj = {Sym(K, f ), 1∕XB(K, f ), ‖f‖}

sions. Here, the binary mutation is utilized to change the 
feature combination.

2.	 To reduce the cluster numbers for a particular string, 
this mutation operation is utilized. It is done after delet-
ing a randomly selected cluster center from a particular 
string. Again to change the feature combination, binary 
mutation is employed.

3.	 To increase the cluster numbers for a particular string, this 
mutation operation is utilized. It is done after addition of 
a randomly selected point from the entire data set in the 
particular string as a new cluster center. Again to change 
the feature combination, binary mutation is employed.

We perform any one of these mutation operations on a string 
if it is selected for mutation process. All these three opera-
tions are applied with a uniform probability.

3.5 � Selection of the best solution

After the application of the proposed MOO based tech-
nique, a set of nondominated solutions on the final Pareto 
optimal front is obtained [8]. Each of these solutions 
provides a combination of feature-collection and cluster 
centers. Based on this information using the point sym-
metry based distance [1], we can get the partitioning of 
the gene expression data associated with this solution. 
All the nondominated solutions are important. But some-
times depending on user requirements and also for the 
purpose of comparison, we may need to select a single 
solution. In this connection, we use an internal cluster 
validity index, Silhouette index [28]. The range of S(C) 
index value is [-1, +1]. Therefore, high positive value of 
S(C) index ensures the true optimal clustering solution.

4 � Data sets and results analysis

Here, seven benchmark gene expression data sets are 
used for experimental purposes. Two variations of 
these data sets are used, one variation with preprocess-
ing steps and the other without using any preprocess-
ing steps. The motivation behind these variations is to 
show the impact of preprocessing steps on the model 
performance. Used data sets are Yeast Sporulation 
[6]1,Yeast Cell Cycle [12]2, Arabidopsis Thaliana [27]3,  

1  http://cmgm.stanf​ord.edu/pbrow​n/sporu​latio​n,sps25​
2  http://facul​ty.washi​ngton​.edu/kayee​/clust​er,sps26​
3  http://homes​.esat.kuleu​ven.be/thijs​/Work/Clust​ering​.html.sps27​

http://cmgm.stanford.edu/pbrown/sporulation,sps25
http://faculty.washington.edu/kayee/cluster,sps26
http://homes.esat.kuleuven.be/thijs/Work/Clustering.html,sps27
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D. melano-gaster [13]4, C.elegans5, SRBCT6 and Leuke-
mia7. Preprocessed data information are shown in Table 2. 
The entire descriptive data analysis is mentioned in the given 
supplementary file.

4.1 � Performance metrics

Here, Silhouette index [28] and DB index [7] are used to 
measure the performance of the proposed FSC-MOO clus-
tering technique. Also, cluster profile [17] and Eisen plots 
[17] are used to show the obtained partitioning results visu-
ally. Also, some biological significance test has been per-
formed to confirm that the obtained partitioning results are 
more biologically enriched. Apart from this, for SRBCT 
and Leukemia data sets, two performance measures, namely 
Adjusted Rand Index [10] and Percentage Classification 
Accuracy(%CA) [20] are utilized to compare the obtained 
partitioning results with other clustering algorithms. Again, 
for the proposed clustering technique FSC-MOO, a statisti-
cal significance test is performed using Wilcoxon’s rank sum 
test [36]. The detail information about these performance 
indicators is mentioned in the given supplementary file.

4.2 � Results analysis

In FSC-MOO, a modern MOO technique based on the con-
cepts of simulated annealing, namely AMOSA, is used for 
simultaneous feature selection and unsupervised clustering. 
Experimental results are summarized in two different cat-
egories: first the proposed technique is applied on five gene-
expression data sets for simultaneous sample selection and 
gene-clustering. In the second part, the proposed technique 
is applied on two gene-expression data sets for simultaneous 

gene selection and sample clustering. In both the cases we 
have compared the performance of the proposed approach 
with some bench-mark approaches. The whole experimental 
steps are shown in Fig. 4.

The parameters of the proposed FSC-MOO cluster-
ing technique are as follows: SL=100 HL=50, iter=50, 
Tmax=100, Tmin=0.00001 and cooling rate, � = 0.9 . The 
performance of FSC-MOO technique is compared with 
MO-fuzzy [29], MOGA [3], FCM [5], SGA [16], Aver-
age Linkage [34], SOM [30], and CRC [26], Spectral [35] 
and K-mean [14] clustering techniques where all the time 
points are utilized for distance computations for the pur-
pose of assignment of genes and objective function calcula-
tions. The number of clusters and the number of time points 
automatically determined by the proposed FSC-MOO tech-
nique using point symmetry-based distance are reported in 
Table 3. To evaluate the quality of the obtained partitioning 
by the proposed FSC-MOO clustering technique, Silhouette 
index and DB index values are calculated. As maximum 
value of Silhouette index and low value of DB index value 
refer to good partitioning solutions. The Silhouette index 
and DB index values for optimal solutions generated by dif-
ferent clustering techniques are shown in Table 4. We have 
also performed two variants of FSC-MOO technique based 
on varying objective functions.

The parameters of the these two versions of FSC-MOO 
clustering technique are as follows: SL=100 HL=50, 

Table 2   Description of data sets where n and d denote the number of 
genes and the number of samples respectively, used for gene-cluster-
ing

Data set n d

Yeast Sporulation 474 7
Yeast Cell Cycle 384 17
Arabidopsis Thaliana 138 8
D. melanogaster 14300 30
C. elegans 27135 35
SRBCT 200 72
Leukemia 200 72

Fig. 4   Descriptive view of result analysis

4  http://www.stat.ucla.edu/jingy​i.li/softw​are-and-data.html,mode
5  http://www.stat.ucla.edu/jingy​i.li/softw​are-and-data.html,mode
6  http://www.biola​b.si/supp/bi-cance​r/proje​ction​s/info/SRBCT​.htm
7  http://www.biola​b.si/supp/bi-cance​r/proje​ction​s/info/leuke​mia.htm

http://www.stat.ucla.edu/jingyi.li/software-and-data.html,mode
http://www.stat.ucla.edu/jingyi.li/software-and-data.html,mode
http://www.biolab.si/supp/bi-cancer/projections/info/SRBCT.htm
http://www.biolab.si/supp/bi-cancer/projections/info/leukemia.htm
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iter=50, Tmax=100, Tmin=0.00001 and cooling rate, 
� = 0.9 These two versions are:

•	 FSC-MOO1 : FSC-MOO clustering technique optimizing 
FCM-index [5]as internal cluster validity indices and the 
number of features as another objective function.

•	 FSC-MOO2 : FSC-MOO clustering technique optimiz-
ing PBM-index [15] and Sym-index as internal cluster 
validity indices and the number of features as another 
objective function.

The results obtained by two variants of FSC-MOO technique 
are reported in Table 4.

4.2.1 � Results of sample selection and gene clustering

The number of time points selected by FSC-MOO cluster-
ing technique for Yeast Sporulation gene data is five out 
of seven. Based on these selected time points, FSC-MOO 
technique evolves six clusters(K = 6 ). The selected features 
are shown in Table 3. The S(C) index value for FSC-MOO 

is 0.6212, which is highest to all nine clustering techniques. 
The Silhouette index index values are reported in Table 4 for 
all the clustering techniques. The nine clustering techniques 
used here for the purpose of comparison utilize all the avail-
able time points during the clustering process. The number 
of obtained cluster and corresponding S(C) scores for these 
all clustering techniques MO-fuzzy, MOGA, FCM, Average 
Linkage, SOM, SGA, CRC, Spectral and K-mean clustering 
techniques are (6, 0.5877)(6, 0.5754)(7, 0.4696)(6, 0.5023)
(6, 0.5794)(6, 0.5712)(8, 0.5623)

(6, 0.5606)(6, 0.4677). The DB index value for FSC-
MOO is 0.2362, which is lowest to all corresponding nine 
clustering techniques and reported in Table 4. The DB 
index values corresponding to the partitionings obtained 
by corresponding clustering techniques are 0.2592, 0.2851, 
0.4178, 0.3103, 0.3925, 0.2982, 0.3262, 0.3428 and 0.4456 
respectively.

Apart from this, FSC-MOO1 and FSC-MOO2 are also 
executed on these data sets to obtain the optimal solutions. 
These variants select five and four features as the optimal 
number of features, respectively. Both these techniques 

Table 3   Time points 
selected, number of clusters 
and Silhouette index of 
the final partitionings 
automatically determined 
by the proposed FSC-MOO 
clustering algorithm. Here K 
denotes number of clusters 
automatically selected by FSC-
MOO clustering algorithm, raw 
denotes unprocessed data and 
pre denotes preprocessed data

Data set Feature selected K S(C)

Yeast Sporulation 1,2,3,6,7 6 0.6212
Yeast Cell Cycle 1,2,3,4,5,6,8,9,17 5 0.4421
Arabidopsis Thaliana 1,2,4,6,8 4 0.4258
Yeast Sporulation(raw) 1,3,5,6,7 6 0.5317
Yeast Cell Cycle(raw) 2,5,7,8,10,11,14,15 5 0.2409
Arabidopsis Thaliana(raw) 1,3,4,5,6,8 4 0.5983
D. melanogaster(raw) 1,5,7,8,11,12,14,17,19,22,27,29 3 0.8908
C. elegans(raw) 5,7,8,11,14,15,17,18,20,22,27,29,31 3 0.8897
D. melanogaster(pre) 1,2,4,6,8,9,12,16,22,23,27,30 3 0.9081
C. elegans(pre) 1,4,6,8,10,14,15,17,19,22,25,28,30 7 0.9654

Table 4   Obtained Silhouette 
index and DB index values for 
different clustering techniques

Bold symbol indicates high index value obtianed by proposed algorithm

Algorithm_used Sporulation Cell Cycle Thaliana

K S(c) DB K S(c) DB K S(c) DB

FSC-MOO 6 0.6212 0.2362 5 0.4421 0.2467 4 0.4258 0.1469
FSC-MOO

1
6 0.5944 0.2441 5 0.4413 0.2506 4 0.3958 0.2204

FSC-MOO
2

6 0.6084 0.2415 5 0.4171 0.2924 4 0.4204 0.1692
MO-fuzzy 6 0.5877 0.2592 5 0.4342 0.2600 4 0.4194 0.1802
MOGA 6 0.5754 0.2851 5 0.4232 0.2889 4 0.4023 0.2678
FCM 7 0.4696 0.4178 6 0.3856 0.4017 4 0.3665 0.4234
SGA 6 0.5712 0.3103 5 0.4232 0.2904 4 0.3854 0.3982
Average Linkage 6 0.5023 0.3925 4 0.4378 0.5206 5 0.3162 0.5124
SOM 6 0.5794 0.2982 6 0.3862 0.4248 5 0.2352 0.6246
CRC​ 8 0.5623 0.3262 5 0.4275 0.2762 4 0.3965 0.4146
Spectral Clustering 6 0.5606 0.3428 4 0.3626 0.4423 4 0.1682 0.5755
K-mean 6 0.4677 0.4456 5 0.4167 0.4232 5 0.3706 0.4168
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determine total six clusters(K = 6 ) in optimal partition-
ing on using these selected features. S(C) and DB index 
values obtained by these two versions of FSC-MOO 
clustering approaches, FSC-MOO1 and FSC-MOO2 are 
[0.5944,0.2441] and [0.6084,0.2415] respectively. These 
values are reported in Table 4. S(C) and DB index value 
for FSC-MOO is higher and lower than both of FSC-MOO1 
and FSC-MOO2 , which again proves the superiority of the 
FSC-MOO algorithm.

The number of time points selected by FSC-MOO clus-
tering technique for Yeast Cell Cycle gene data is nine out 
of total seventeen time points. Based on these selected time 
points, FSC-MOO technique determines total five clus-
ters(K = 5 ). The S(C) index value for FSC-MOO is 0.4421, 
which is highest among all nine clustering techniques. The 
Silhouette index values and the optimal clusters(K) obtained 
by all the corresponding nine clustering techniques are 
reported in Table 4. Also, DB index value for FSC-MOO is 
the lowest compared to other nine techniques. It attains the 
DB index value of 0.2467. The DB index values correspond-
ing to the partitionings obtained by MO-fuzzy, MOGA, 
FCM, SGA, Average Linkage, SOM, CRC, Spectral and 
K-mean clustering techniques are 0.2600, 0.2889, 0.4017, 
0.2904, 0.5206, 0.4248, 0.2762, 0.4423 and 0.4232 respec-
tively. All these values are shown in Table 4.

Apart from this, FSC-MOO1 and FSC-MOO2 are also 
executed on these data sets to obtain the optimal solu-
tions. These variants select eleven and nine features as 
the optimal number of features, respectively. Using these 
selected features, both these techniques determine total six 
clusters(K = 6 ) in the optimal partitioning. S(C) and DB 
index values obtained by these two versions of FSC-MOO 
clustering approaches, FSC-MOO1 and FSC-MOO2 are 
[0.4413,0.2506] and [0.4171,0.2924] respectively. These 
values are reported in Table 4. S(C) and DB index value 
for FSC-MOO is higher and lower than both of FSC-MOO1 
and FSC-MOO2 , which again proves the superiority of the 
FSC-MOO algorithm.

The number of time points selected by FSC-MOO clus-
tering technique for Arabidopsis Thaliana gene data is five 
out of total eight time points. Based on these selected time 
points, FSC-MOO technique evolves four clusters(K = 4 ). 
The S(C) index value for FSC-MOO is 0.4258, which is 
highest among all nine clustering techniques. The Silhou-
ette index values and the optimal clusters(K) obtained by all 
the corresponding nine clustering techniques are reported in 
Table 4. The obtained results on this data set again prove that 
with half number of selected features FSC-MOO performs 
better than the existing techniques. Also, DB index value of 
this partitioning is the lowest compared to other nine tech-
niques. It attains the DB index value of 0.1469. The DB 
index values corresponding to the partitionings obtained by 
MO-fuzzy, MOGA, FCM, SGA, Average Linkage, SOM, 

CRC, Spectral and K-mean clustering techniques are 0.1802, 
0.2678, 0.4234, 0.3982, 0.5125, 0.6246, 0.4146, 0.5755 and 
0.4168, respectively. These all values are shown in Table 4.

Apart from this, FSC-MOO1 and FSC-MOO2 are also 
executed on these data set to obtain the optimal solutions. 
Both of these variants select six features for evolving opti-
mal clusters. Based on these selected features, both these 
techniques give four clusters(K = 4 ). The S(C) index value 
for these variants is given in Table 4. S(C) values obtained 
by these two versions of FSC-MOO clustering approaches, 
FSC-MOO1 and FSC-MOO2 are 0.3958 and 0.4204, respec-
tively. These values are reported in Table 4. But S(C) value 
obtained by FSC-MOO algorithm is higher than those 
obtained by FSC-MOO1 and FSC-MOO2 techniques, which 
again proves the superiority of the FSC-MOO algorithm. 
Again DB index values are calculated for the partition-
ing results obtained by these two versions of FSC-MOO 
techniques. The obtained DB index values by FSC-MOO1 
and FSC-MOO2 techniques are 0.2204 and 0.1692, respec-
tively. These values are reported in Table 4. But DB index 
value obtained by FSC-MOO algorithm is lower than those 
obtained by FSC-MOO1 and FSC-MOO2 clustering tech-
niques, which again proves the superiority of FSC-MOO 
algorithm.

Also, FSC-MOO and MO-fuzzy algorithms are applied 
on the Yeast Sporulation, Yeast Cell Cycle, and Arabidop-
sis Thaliana data without using any preprocessing steps. 
The selected features and the optimal number of clusters 
obtained by FSC-MOO algorithm is shown in Table 3. The 
Silhouette index values of the obtained partitioning results 
are shown in Table 5. Thus FSC-MOO determines the most 
reasonable partitioning from this data set where MO-fuzzy 
fails to evolve the true partitioning results. The correspond-
ing Silhouette index value is also better than that obtained by 
MO-fuzzy clustering technique. Also, Silhouette index value 
for preprocessed data is higher than un-preprocessed data.

Table 5   Obtained Silhouette index values by different clustering tech-
niques; here raw denotes original unprocessed data and pre denotes 
the pre-processed data

Bold symbol indicates highest index value and optimal number of 
cluster obtained by FSC-MOO and Mo-fuzzy

Data set_used FSC-MOO MO-fuzzy

K S(c) K S(c)

Sporulation(raw) 6 0.5317 5 0.5135
Cell Cycle(raw) 5 0.4503 4 0.4091
Thaliana(raw) 4 0.5983 4 0.4968
D. melanogaster(raw) 3 0.8908 2 0.8299
C. elegans(raw) 3 0.8897 2 0.8645
D. melanogaster(pre) 3 0.3624 3 0.3238
C. elegans(pre) 3 0.8677 3 0.8045
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For D. melanogaster data set, we have applied FSC-MOO 
and MO-fuzzy clustering techniques on both the versions of 
the dataset obtained using with and without application of 
any preprocessing step. FSC-MOO for raw data D. mela-
nogaster provides the optimal partitioning result with K=3, 
number of clusters. Silhouette index value for the obtained 
optimal solution is 0.8908. MO-fuzzy provides K=2 as the 
optimal number of clusters, and the corresponding Silhou-
ette index value is 0.8299. These results are reported in 
Table 5. FSC-MOO technique selects 12 time points out of 
total thirty time points. The selected time points are shown 
in Table 3. Results again reveal that FSC-MOO technique 
attains the improved performance with half the number of 
time points.

Now, for preprocessed D. melanogaster data, we again 
apply the clustering techniques, FSC-MOO, MO-fuzzy, 
FCM, and Average Linkage. FSC-MOO provides partition-
ing results with K=3 number of clusters. The corresponding 
Silhouette index value is 0.9081. MO-fuzzy automatically 
determines K=3 as the number of clusters, and the corre-
sponding Silhouette index value is 0.8609. FCM is executed 
with K=3 number of clusters, and the corresponding Silhou-
ette index value is 0.8565. Average Linkage is executed with 
K=3 number of clusters, and the corresponding Silhouette 
index value is 0.8962. Results are reported in Table 6. FSC-
MOO selects twelve time points out of thirty time points. 
The set of selected features is also shown in Table 3.

For C. elegans data set, we have applied FSC-MOO and 
MO-fuzzy clustering techniques on this data set with and 
without application of any preprocessing step. FSC-MOO 
for raw data C. elegans1 provides partitioning results with 
K=3 number of clusters. Silhouette index value of the 
obtained optimal solution is 0.8897. MO-fuzzy provides 
K=2 as the optimal number of clusters, and the correspond-
ing Silhouette index value is 0.8645. Results are reported in 
Table 5. FSC-MOO technique selects thirteen time points 
out of total thirty five time points. The selected features are 
shown in Table 3. Now, for preprocessed C. elegans1 data, 
we have again applied FSC-MOO, MO-fuzzy, FCM, and 
Average Linkage clustering techniques. FSC-MOO attains 
K=7 number of clusters for the optimal partitioning, and the 
corresponding Silhouette index value is 0.9654. MO-fuzzy 
attains K=6 number of clusters on the optimal partitioning, 

and the corresponding Silhouette index value is 0.9245. 
FCM and Average Linkage clustering techniques are also 
executed on this data set with K=6 as the number of clusters, 
and the corresponding Silhouette index values are 0.9089 
and 0.9021, respectively. Results are reported in Table 6. 
FSC-MOO selects thirteen time points out of total thirty 
five time points. The feature combination selected by the 
proposed technique is shown in Table 3.

4.2.2 � Results of gene selection and sample clustering

To show the effectiveness of the proposed FSC-MOO tech-
nique for gene selection and sample clustering, two gene 
expression data sets SRBCT and Leukemia are used. Here 
samples are treated as rows, and genes are treated as col-
umns of the data set. The aim is to select the relevant set 
of genes which can cluster the samples well. FSC-MOO is 
applied in the same setting, as mentioned earlier. FSC-MOO 
automatically determines K = 4 number of clusters from 
this data set. Out of total 200 genes, FSC-MOO technique 
selects 86 genes on the optimal solution. Thus 200 genes are 
reduced to 86 genes. Therefore each sample is treated as a 
86 dimensional vector. Here again, the values of an external 
cluster validity index, ARI-index, and percentage classifica-
tion accuracy are calculated to validate the obtained parti-
tioning results. The obtained ARI index value, %CA value 
and Silhouette index scores are 0.8171, 90.21 and 0.4331, 
respectively, for this data set (refer to Table 7). For the pur-
pose of comparison, six clustering techniques, namely MO-
fuzzy, FCM, Average Linkage, SGA, Spectral and K-mean 
clustering technique, utilizing all the 200 genes are used to 
cluster the available samples with K = 4 number of clusters. 
The ARI index, %CA and Silhouette index values obtained 
by these algorithms are (0.7677, 88.71, 0.4056), (0.4603, 
0.7488, 0.3339), (0.1021, 49.05, 0.2008) and (0.3198, 
70.81, 0.2957), (0.2132, 51.23, 0.2414) and (0.3135, 70.19, 
0.2889) respectively. But all these values are less than the 
values obtained by our proposed FSC-MOO technique. The 
obtained results are reported in Table 7.

Again, FSC-MOO1 and FSC-MOO2 techniques are 
also applied on this particular data set (results reported in 
Table 7). They select 96 and 91 genes, respectively. In all the 
cases, the final partitioning result is associated with K = 4 

Table 6   Silhouette index and 
DB index values obtained 
by different clustering 
algorithms for pre-processed 
D. melanogaster and C. elegans 
data sets when applied for gene-
clustering

Bold symbol indicates high index value and optimal number of clusters obtained by proposed algorithm

Algorithm D. melanogaster C. elegans

K S(c) DB K S(c) DB

FSC-MOO 3 0.9081 0.0653 4 0.9654 0.0143
MO-fuzzy 3 0.8609 0.1456 6 0.9245 0.2012
FCM 3 0.8565 0.2062 6 0.9089 0.2492
Average Linkage 3 0.8962 0.1034 6 0.9021 0.2624
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number of clusters. ARI index, %CA and Silhouette index 
values obtained by these two versions of FSC-MOO cluster-
ing approaches, FSC-MOO1 and FSC-MOO2 are (0.7402, 
85.27, 0.4031) and (0.7978, 88.12, 0.4107), respectively. 
These values are reported in Table 7. But ARI and %CA 
values obtained by FSC-MOO algorithm are higher than 
those obtained by FSC-MOO1 and FSC-MOO2 techniques, 
which again proves the superiority of the FSC-MOO algo-
rithm. Again DB index values are calculated for the obtained 
partitioning results by FSC-MOO, FSC-MOO1 , FSC-MOO2 , 
MO-fuzzy, FCM, Average Linkage, SGA, Spectral and 
K-mean clustering techniques. The obtained DB index values 
are 0.1430, 0.2521, 0.2220,l 0.2482, 0.4213, 0.7242, 0.6234, 
0.6934 and 0.6324 respectively. These values are reported 
in Table 7. But the DB index value obtained by FSC-MOO 
algorithm is lower than those obtained by FSC-MOO1 , FSC-
MOO2 , MO-fuzzy, FCM, Average Linkage, SGA, Spectral 
and K-mean clustering techniques, which again proves the 
superiority of the FSC-MOO algorithm.

Again for Leukemia data set, FSC-MOO is applied as a 
sample-based-clustering to select the relevant set of genes 
which can partition the available samples into some relevant 
number of clusters. Here FSC-MOO automatically deter-
mines K = 2 number of clusters from this data set. Out of 
these 200 genes, FSC-MOO technique selects total 72 genes 
on the final optimal solution. Thus 200 genes are reduced to 
72 genes, and therefore each sample is treated as a 72 dimen-
sional vector. An external cluster validity index, ARI-index, 
and also percentage classification accuracy are calculated to 
validate the obtained partitioning results. The obtained ARI 
index and %CA values are 0.7248 and 89.60, respectively 
(refer to Table 7). To evaluate the performance another six 
clustering techniques, MO-fuzzy, FCM, Average Linkage 
and SGA, Spectral and K-mean clustering technique, are 
also applied on the same data set with K = 2 number of 
clusters with all the available number of genes for clustering 
purpose. The ARI index, %CA and Silhouette index values 
obtained by these algorithms are (0.6523, 84.32, 0.3436), 

(0.5295, 81.25, 0.2796), (0.5971, 82.82, 0.3257),(0.6021, 
83.06, 0.3325),(0.5023, 76.75, 0.2634) and (0.5523, 78.25, 
0.2765), respectively. But all these values are less than the 
values obtained by executing the FSC-MOO technique. 
These values are reported in Table 7. Again, FSC-MOO1 
and FSC-MOO2 techniques are also applied on this particu-
lar data set (results reported in Table 7). They select 84 and 
77 genes, respectively. In all the cases, the final partitioning 
result is obtained with K = 2 number of clusters. ARI index, 
%CA and Silhouette index values obtained by these two 
versions of FSC-MOO clustering approaches, FSC-MOO1 
and FSC-MOO2 are (0.6672, 86.27, 0.3749) and (0.6908, 
87.81, 0.3971), respectively. These values are reported in 
Table 7. But ARI and %CA values obtained by FSC-MOO 
algorithm are higher than those obtained by FSC-MOO1 and 
FSC-MOO2 techniques, which again prove the superiority of 
FSC-MOO algorithm. Again DB index values are calculated 
for obtained partitioning results by FSC-MOO, FSC-MOO1 , 
FSC-MOO2 , MO-fuzzy, FCM, Average Linkage, SGA, 
Spectral and K-mean clustering techniques. The obtained 
DB index values are 0.1760, 0.2209, 0.1994, 0.2816, 0.3625, 
0.3016, 0.2692, 0.4126 and 0.3985 respectively. These val-
ues are reported in Table 7. But the DB index value obtained 
by FSC-MOO algorithm is lower than those obtained by 
FSC-MOO1 , FSC-MOO2 , MO-fuzzy, FCM, Average Link-
age, and SGA clustering techniques, which again proves the 
superiority of the FSC-MOO algorithm.

4.2.3 � Biological significance

To show the biologically relevance of an obtained cluster, 
Gene Ontology (GO) annotation database8 is used. So, in 
order to compute the compatibility between number of genes 
n for a particular GO category and cluster of size K, prob-
ability p is calculated as given in Equation [33].

Table 7   ARI index, %CA, 
Silhouette index, DB-index 
values obtained by different 
clustering algorithms for 
SRBCT and Leukemia data 
sets when applied for sample-
clustering

Bold symbol indicates high index value and optimal number of  cluster obtianed by proposed algorithm

Algorithm_used SRBCT Leukemia

K ARI %CA S(C) DB K ARI %CA S(C) DB

FSC-MOO 4 0.8171 90.21 0.4331 0.1430 2 0.7248 89.60 0.4109 0.1760
FSC-MOO

1
4 0.7402 85.27 0.4031 0.2521 2 0.6672 86.27 0.3749 0.2209

FSC-MOO
2

4 0.7978 88.12 0.4107 0.2220 2 0.6908 87.81 0.3971 0.1994
MO-fuzzy 4 0.7677 86.71 0.4056 0.2482 2 0.6523 84.32 0.3436 0.2816
FCM 4 0.4603 79.21 0.3339 0.4213 2 0.5295 81.25 0.2796 0.3625
Average Linkage 4 0.1021 45.24 0.2008 0.7242 2 0.5971 82.82 0.3257 0.3016
SGA 4 0.3198 70.81 0.2957 0.6234 2 0.6021 83.06 0.3325 0.2692
Spectral 4 0.2132 51.23 0.2414 0.6934 2 0.5023 76.75 0.2634 0.4126
K-mean 4 0.3135 70.19 0.2889 0.6324 2 0.5523 78.25 0.2765 0.3985

8  http://db.yeast​genom​e.org/cgi-bin/GO/goTer​mFind​er

http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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Where, t and l represent the number of genes for a particu-
lar GO category and the total number of genes to genome. 
After getting the p-value for each GO category, we perform 
biological significance test for genes in a cluster. In any situ-
ation, if p value equals zero then it signifies that genes within 
a particular cluster show the same biological function.

In this paper at 1% significance level, we have performed 
the biological significance test for Yeast Sporulation data set 
for gene-clustering. Also, the clustering results obtained by 
different algorithms are biologically tested. In the proposed 
FSC-MOO clustering technique all the obtained 6 gene clus-
ters are more biological significant, while the number of bio-
logically significant clusters for MO-fuzzy, MOGA, FCM, 
SGA, Average linkage, SOM, CRC, Spectral clustering and 
K-mean clustering are 6, 6, 4, 6, 4, 4, 6, 6 and 6 respectively.

Here, for Yeast Sporulation data, the number of GO terms 
for individual gene clusters varies; first cluster contains 61 
terms, second cluster contains 50 terms, third cluster con-
tains 51 terms, fourth cluster contains 57 terms, fifth one 
contains 19 terms, and the last one contains total 29 GO 
terms at false discovery rate (FDR) < 0.01 . Now, for MO-
fuzzy, the number of GO terms per cluster varies in com-
parison with FSC-MOO; first cluster contains 54 terms, 
second cluster contains 34 terms, third cluster contains 29 

Fig. 5   Boxplots of p values of the most significant GO terms of all 
clusters obtained by FSC-MOO, MO-fuzzy and MOGA algorithms 
for Yeast Sporulation data when applied for gene-clustering

Table 8   Three most significant 
GO terms of individual six 
clusters of Yeast sporulation 
data and their p values obtained 
after application of FSC-MOO 
clustering technique when 
applied for gene-clustering

Clusters Significance GO term p value

Cluster1 Cytoplasmic translation:GO:0002181 3.36E-61
Translation: GO:0006412 9.80E-32
Cellular protein metabolic process: GO:0044267 2.07E-17

Cluster2 Sporulation :GO:0043934 2.95E-39
Anatomical structure formation involved in morphogenesis : GO:0048646 1.47E-38
Sporulation resulting in formation of a cellular spore :GO:0030435 2.2E-38

Cluster3 Reproductive process in single-celled organism:GO:0022413 6.55E-33
Developmental process involved in reproduction:GO:0003006 7.11E-32
Single organism reproductive process :GO:0044702 7.11E-32

Cluster4 Ribosome biogenesis :GO:0042254 1.45E-12
Ribonucleoprotein complex biogenesis :GO:0022613 5.44E-11
rRNA processing:GO:0006364 4.22E-09

Cluster5 Meiotic nuclear division:GO:0007126 2.90E-26
Meiotic cell cycle:GO:0051321 2.90E-26
Reciprocal DNA recombination :GO:0035825 6.28E-26

Cluster6 Carboxylic acid metabolic process :GO:0019752 5.71E-12
Oxoacid metabolic process :GO:0043436 1.41E-11
Organic acid metabolic process :GO:0006082 5.69E-11

Table 9   p values produced 
by Wilcoxon’s rank sum test 
comparing FSC-MOO with 
other algorithms for gene-
clustering

Data set MO-fuzzy MOGA FCM SGA SOM CRC​ Spectral K-mean

Sporulation 3.69E-05 3.87E-05 2.12E-09 3.77E-04 4.12E-04 5.22E-04 6.21E-04 3.46E-08
CellCycle 1.07E-03 2.22E-03 5.60E-08 2.77E-04 4.44E-05 2.11E-03 5.23E-05 2.46E-03
Arabidopsis 1.01E-03 2.07E-03 7.22E-06 3.54E-03 6.12E-07 2.64E-03 1.08E-14 3.54E-07
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terms, fourth cluster contains 22 terms, fifth cluster con-
tains 9 terms, and the last cluster contains 50 GO terms at 
false discovery rate(FDR) < 0.01 . The p-values for the three 
most relevant GO terms of genes belonging to a particular 
cluster are shown in Table 8. We consider that all p-values ≤ 
0.01. These results have been obtained after the application 
of the proposed FSC-MOO clustering technique on Yeast 
Sporulation data set. Lower the p value or higher −log10 (p 
value) ensures that the clusters obtained by different algo-
rithms, consisting of significant GO terms, are more biologi-
cally relevant. The p values are log transformed for better 
readability. To show that the six gene-clusters obtained by 
FSC-MOO technique for Yeast Sporulation data are more 
biologically significant, box plot is shown for all clusters 
having significant GO terms that are associated with p val-
ues. These are compared with those obtained by MOGA and 
MO-fuzzy algorithms because both these techniques provide 
six clusters having significant GO terms. Box plots for all 
six clusters having significant GO terms and associated with 
p values, produced by FSC-MOO, MOGA and MO-fuzzy 
clustering techniques are shown in Fig. 5. From Fig. 5, it 
is clear that FSC-MOO gives higher −log10(p value) value 
in comparison with MOGA and MO-fuzzy. So it has been 
proved that clusters obtained by our proposed FSC-MOO 
approach for Yeast Sporulation data are more biologically 
significant and functionally enriched. Apart from this, with 
the help of gene ontology database9, biologically significant 

test for Rat CNS data is also performed. For the proposed 
FSC-MOO, all the obtained six clusters are biologically 
significant. Here again, p values ≤ 0.01 are considered for 
GO term evaluations. Here, for Rat CNS data, the number 
of GO terms for individual gene cluster varies; first cluster 
contains 12 terms, second cluster contains 42 terms, third 
cluster contains 43 terms, fourth cluster contains 6 terms, 
fifth one contains 19 terms and the last one contains total 

Fig. 6   Pareto optimal fronts obtained after application of FSC-MOO algorithm for a Yeast Sporulation, b Yeast Cell Cycle data sets for gene-
clustering

Fig. 7   Pareto optimal fronts obtained after application of FSC-MOO 
algorithm for Arabidopsis Thaliana data sets for gene-clustering

9  http://geneo​ntolo​gy.org/

http://geneontology.org/
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11 GO terms at false discovery rate (FDR) < 0.01 . Now, for 
MO-fuzzy, the number of GO terms per cluster varies in 
comparison with FSC-MOO; first cluster contains 9 terms, 
second cluster contains 15 terms, third cluster contains 39 
terms, fourth cluster contains 3 terms, fifth cluster contains 

9 terms and the last cluster contains 15 GO terms at false 
discovery rate(FDR) < 0.01 . The biologically significant 
test again reveals that the clusters obtained by the proposed 
FSC-MOO clustering technique after application on gene 

Fig. 8   Pareto optimal fronts obtained after application of FSC-MOO
1
 algorithm for a Yeast Sporulation, b Arabidopsis Thaliana data sets for 

gene-clustering

Fig. 9   Pareto optimal fronts obtained after application of FSC-MOO
2
 algorithm for a Yeast Sporulation, b Yeast Cell Cycle data sets for gene-

clustering
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expression data sets are more biologically relevant and func-
tionally enriched.

4.2.4 � Statistical significance

To show the efficacy of the proposed clustering technique 
FSC-MOO, again statistical significance test is performed 
using Wilcoxon’s rank sum test [36]. In this regard, the 
comparative analysis of p values obtained by FSC-MOO 
with respect to different gene clustering techniques are high-
lighted in Table 9.

The p values reported in Table 9 are attainable at a level 
of significance less than 5%. From Table 9, we can see that 
obtained p values are more statistically significant because 
of the difference between the median values of two different 
groups. If differences show the resultant value other than 
zero, then it is totally against null hypothesis and is strongly 
accepted as more statistically significant. In this experiment, 
we have considered the median values of Silhouette index 
attained by FSC-MOO and other gene-clustering techniques. 
Based on the results of this test, we can easily conclude that 
Silhouette index values obtained by FSC-MOO are more 
statistically significant.

4.2.5 � Visualizations of the obtained clustering results

For three preprocessed gene expression data sets, Yeast 
Sporulation, Yeast Cell Cycle and Thaliana, the Pareto 

optimal fronts obtained by FSC-MOO, FSC-MOO1 and 
FSC-MOO2 clustering techniques are shown in Figs. 6,7 
8 and 9, respectively. For SRBCT data set, Pareto optimal 
fronts obtained by FSC-MOO, FSC-MOO1 and FSC-MOO2 
clustering techniques are shown in Figs. 10a, b and 11, 
respectively. Also, Silhouette index values of Pareto optimal 
fronts obtained after application of FSC-MOO, FSC-MOO1 , 

Fig. 10   Pareto optimal fronts obtained after application of FSC-MOO, FSC-MOO
1
 on SRBCT data set for gene-clustering

Fig. 11   Pareto optimal fronts obtained after application FSC-MOO
2
 

on SRBCT data set for gene-clustering
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FSC-MOO2 , MO-fuzzy and MOGA on Yeast Sporulation, 
Yeast Cell Cycle and Thaliana gene expression data sets are 
shown in Fig. 12. Also, the Pareto optimal fronts obtained 
for un-preprocessed gene expression data sets by MO-fuzzy 
and FSC-MOO algorithms are shown in Figs. 13,14, 15 and 
16.

Also, Eisen and cluster profile plots are used to visualize 
the obtained partitioning results by the proposed technique 

FSC-MOO. In Eisen plot, patterns having similar colors are 
grouped, have similar functionality. In another way, we can 
say that genes within a particular cluster perform similar 
functionality because their gene expression values have 
similar colors. Eisen plots are shown in Fig. 17 for obtained 
partitionings for three preprocessed gene expression data 
sets (Yeast Sporulation, Yeast Cell Cycle and Arabidop-
sis). Similarly, the cluster profile plot is a representation 

Fig. 12   Silhouette index values of Pareto optimal fronts obtained after application of FSC-MOO, FSC-MOO
1
 , FSC-MOO

2
 , MO-fuzzy and 

MOGA algorithm for a Yeast Sporulation, b Yeast Cell Cycle (c) Arabidopsis Thaliana data sets for gene-clustering

Fig. 13   Pareto optimal fronts obtained after application of MO-fuzzy algorithm for un-preprocessed a Yeast Sporulation, b Yeast Cell Cycle 
data sets



2557International Journal of Machine Learning and Cybernetics (2020) 11:2541–2563	

1 3

of normalized gene expression values over different time 
points. Cluster profile plots are shown in Figs. 18, 19 and 20 
for obtained partitionings, respectively.

4.3 � Observations

Results of simultaneous sample selection and gene clustering 
on seven benchmark gene expression data sets show that, the 
proposed simultaneous feature selection and automatic clus-
tering technique performs better as compared to the other 
nine existing gene expression data clustering techniques. 
As the proposed technique automatically selects the num-
ber of samples/time points required to cluster the given gene 
expression data, the time complexity of the entire clustering 
process is reduced further. Note that the partitioning results 
of the proposed FSC-MOO clustering are better than those 
obtained by two recently developed multiobjective based 
gene expression data clustering techniques, MO-fuzzy [29], 
MOGA [3] (as shown in Tables 4 and 6). MO-fuzzy tech-
nique also utilizes AMOSA as the search technique. Here 
point symmetry-based distance [1] is used for assigning 
points to different clusters. But no feature selection step was 
executed during the clustering process. All the given features 
were used for distance computations. It utilizes two internal 
cluster validity indices, an Euclidean distance based cluster 
validity index, XB-index and a symmetry distance based 
cluster validity index, Sym-index. MOGA uses a multiobjec-
tive evolutionary algorithm, NSGA-II [8], as the underlying 
optimization technique. Here Euclidean distance is used for 
cluster assignment. Center-based encoding is used, and two 
cluster validity indices are used for optimization. These are 
XB-index and FCM-index. Here also, no feature selection 
step was executed during the clustering process. Thus the 

Fig. 14   Pareto optimal fronts obtained after application of MO-fuzzy 
algorithm for un-preprocessed Arabidopsis Thaliana data sets

Fig. 15   Pareto optimal fronts obtained after application of FSC-MOO algorithm for un-preprocessed a Yeast Sporulation, b Yeast Cell Cycle



2558	 International Journal of Machine Learning and Cybernetics (2020) 11:2541–2563

1 3

improved results by the proposed FSC-MOO technique fur-
ther illustrate the usefulness of the feature selection step. 
In current work, we have combined feature selection and 
clustering in a single step. We have shown with sufficient 
experimental results that the feature selection is required for 
solving the gene expression data clustering problem effec-
tively. Existing MOO based techniques, when applied with 

all the available features on the benchmark gene expression 
data sets, attain some decreased values of Silhouette index 
as compared to our proposed FSC-MOO technique. These 
results are due to the use of all features for distance compu-
tations in MOGA and MO-fuzzy clustering techniques. We 
have also applied the FSC-MOO clustering technique on two 
new gene expression data sets obtained using RNA sequenc-
ing, D. melanogaster and C. elegans. Here in this paper, we 
have used two different versions of all the data sets, one 
with some pre-processing step and another without using 
any pre-processing step. The proposed technique is applied 
on the above mentioned data sets. Results are then compared 
with nine other clustering techniques for gene expression 
data sets. The comparison of results is done using one inter-
nal cluster validity index, Silhouette index. The obtained 
results prove that this proposed clustering technique attains 
improved performance with less number of features. From 
the results mentioned above, we can further prove that the 
feature selection, as well as pre-processing steps are very 
crucial for clustering all the gene expression data sets.

The better results obtained by FSC-MOO technique thus 
show the utility of feature selection while clustering the gene 
expression data. The improved performance of the proposed 
technique is due to the following reasons:

•	 Here, a set of features is first selected, then clustering is 
applied on the given gene expression data based on those 
features. This helps to reduce the time complexity of the 
entire clustering process.

•	 All the features (genes or samples) present in the gene 
expression data may not be relevant for clustering. So, 
the selection of the appropriate subset of features helps 
to get improved partitioning.

•	 The proposed technique is able to identify automati-
cally (i) appropriate set of cluster centers (ii) appro-
priate feature combinations and the (iii) appropriate 
partitioning.

•	 Use of point symmetry-based distance for assignment 
of genes to different clusters helps to determine clusters 
having different shapes.

•	 Use of multiple cluster quality measures as the objective 
functions helps to determine the appropriate partitioning 
automatically.

5 � Conclusions

For clustering purposes, not all the features(it may be samples 
or genes depending on gene-clustering or sample-clustering) 
are essential. So in this paper, simultaneous feature selec-
tion and unsupervised clustering is posed as a multiobjective 

Fig. 16   Pareto optimal fronts obtained after application of FSC-MOO 
algorithm for un-preprocessed Arabidopsis Thaliana data sets

Fig. 17   Eisen Plot for a Yeast Sporulation, b Yeast Cell Cycle, c 
Arabidopsis Thaliana after application of FSC-MOO clustering tech-
nique for gene-clustering
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Fig. 18   Cluster profile plot for Yeast Sporulation data obtained after application of FSC-MOO clustering technique
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optimization problem. Here in proposed multiobjective based 
approach FSC-MOO, some relevant time points of gene 
expression data are selected from a large collection of time 
points, and thereafter clustering is performed in the reduced 
space to obtain a good partitioning result. Three objective 
functions Sym-index, XB-index and feature index are opti-
mized simultaneously to obtain a large collection of non-
dominated solutions. The proposed technique FSC-MOO is 
able to select the relevant features and evolve the true optimal 
clusters. The effectiveness of the proposed algorithm, namely 

FSC-MOO is demonstrated for simultaneous sample selec-
tion, and gene clustering on three open access gene expres-
sion data sets obtained from micro-array technology and four 
bench-mark gene expression data sets obtained from RNA-
sequencing. Again, the results obtained by FSC-MOO tech-
nique are compared with some existing clustering techniques 
like MOGA, MO-fuzzy, FCM, SGA, Self Organizing Map 
(SOM), Chinese Restaurant Clustering (CRC), hierarchical 
average linkage, Spectral and K-mean clustering techniques. 
Also, biological significant test is carried out to show that the 

Fig. 19   Cluster profile plot of Arabidopsis Thaliana data obtained after application of FSC-MOO clustering method
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Fig. 20   Cluster profile plot of Yeast Cell Cycle data obtained after application of FSC-MOO clustering technique
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obtained clusters are more biologically relevant and function-
ally enriched. In another part of the experimental results, the 
effectiveness of the proposed algorithm for simultaneous gene 
selection and sample clustering is shown on two gene expres-
sion data sets.

Future work may include the use of some supervised infor-
mation while clustering the gene expression data sets. We 
would also like to apply the proposed technique for some can-
cer data sets or mRNA data sets.
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