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Abstract
Considering contextual features is a key issue in sentiment analysis. Existing approaches including convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) lack the ability to account and prioritize informative contextual 
features that are necessary for better sentiment interpretation. CNNs present limited capability since they are required to be 
very deep, which can lead to the gradient vanishing whereas, RNNs fail because they sequentially process input sequences. 
Furthermore, the two approaches treat all words equally. In this paper, we suggest a novel approach named attentive convo-
lutional gated recurrent network (ACGRN) that alleviates the above issues for sentiment analysis. The motivation behind 
ACGRN is to avoid the vanishing gradient caused by deep CNN via applying a shallow-and-wide CNN that learns local 
contextual features. Afterwards, to solve the problem caused by the sequential structure of RNN and prioritizing informa-
tive contextual information, we use a novel prior knowledge attention based bidirectional gated recurrent unit (ATBiGRU). 
Prior knowledge ATBiGRU captures global contextual features with a strong focus on the previous hidden states that carry 
more valuable information to the current time step. The experimental results show that ACGRN significantly outperforms 
the baseline models over six small and large real-world datasets for the sentiment classification task.

Keywords  Sentiment analysis · Convolutional neural network · Recurrent neural network · Attention mechanism · 
Contextual features

1  Introduction

Nowadays, with the notable increase of Web 2.0 tools like 
online social media and e-commerce platforms, users freely 
express their ideas and thoughts in the form of text [1, 5, 6, 
39, 58]. Consequently, many organizations became increas-
ingly interested in getting the hidden insights from these 
user-generated content (UGC) [13, 24, 36] to assist in deci-
sion making and monitoring public opinion. Therefore, sen-
timent analysis has received a substantial amount of atten-
tion from many researchers as one of the natural language 
processing tasks that focuses on finding the opinions articu-
lated in the UGC.

To get good results in sentiment analysis requires mode-
ling and prioritizing informative contextual features. Consid-
ering the following review text extracted from the Amazon 
dataset, which talks about the sandals: “I received this day 
and I’m not a fan of it but I thought it would be puffier as 
it looks in the pic but it is not what I wanted to do with the 
sandals she was gonna wear it now I’m going to find another 
pair of sandals, just keep it cuz she likes it”. In view of local 
features like word-based features in the short sub sentences 
“i am not a fan” and “it is not what I wanted”, one may judge 
the review for being negative while at the end, the sub sen-
tence “she likes it” is positive. However, it is difficult to find 
the sentiment polarity of this review without considering the 
usage of both local and global contextual features and ignor-
ing irrelevant words, since they introduce noise.

In the present work, to get the sentiment label of review 
text like in such above example, we focus on the extraction 
of two main types of contextual features. The first type is 
local contextual features like n-grams and negation, which 
highly depend on the order of words in a text sequence 
[34]. The order matters because the contextual polarity of 
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given words can change depending on their position in the 
text sequence [49]. To capture these features, a subset of 
the input sequence must be considered. The second type 
is global contextual features that are reliant on long-range 
dependencies in the text sequence. We extract global long-
range dependencies to bring the relevant contexts closer to 
the words being predicted. Thus, to deal with these global 
contextual features requires having the whole context of the 
text sequence [28, 46].

Recently, deep learning methods such as convolutional 
neural networks (CNNs) [9] and recurrent neural networks 
(RNNs) like long short-term memory (LSTM) [14] and 
gated recurrent unit (GRU) [8] have considerably improved 
the results in sentiment analysis without laborious feature 
engineering. CNNs based approaches have demonstrated 
the capability of modeling local contextual features because 
they are unbiased models. Besides, they preserve the spatial 
structure of the input sentence [16]. RNNs, on the other 
hand, have recently shown promising results in learning 
global long-range dependencies because they can maintain 
the constant error flow [35]. To enhance the capability of 
RNNs in dealing with global long-range dependencies and 
capturing salient features in the input sequence, research-
ers have proposed the use of the attention mechanism [3, 
28, 40]. RNN attention-based models  present encouraging 
results on different tasks of sentiment analysis [18].

Although these models have achieved impressive results, 
their behavior for modeling contextual features is still 
unsatisfactory. First, CNNs fail to capture global contex-
tual features because they need to be very deep [10, 17]. 
It is, therefore, easy for the gradient to vanish during the 
training process. Second, RNNs are limited to model local 
contextual features because they lack the task-specific struc-
ture [10]. Lastly, the capacity of RNNs for modeling global 
contextual features is constrained to the fact that RNNs 
process input sequences in sequential order, where the cur-
rent time step depends on one previous hidden state. As a 
result, it implies RNNs to have the bias of favoring recent 
inputs, which causes them to be limited to a certain extent 
while modeling long-range dependencies [48]. Even though 
attention-based models were proposed to help RNN in deal-
ing with long-range dependencies and learning relevant fea-
tures in the input text sequence, we argue that they are still 
generic models to deal with both local and global features. 
This argument is linked to the fact that in this context, the 
attention mechanism is computed to find the representation 
of the whole input sequence when the last RNN unit outputs, 
i.e., is applied on the output sequence of sequential RNNs. 
Thus, RNN attention-based models suffer the same problem 
as original RNNs, which is linked to the sequential process-
ing of the input text sequence.

To address these problems, we propose a novel model 
named attentive convolutional gated recurrent network 

(ACGRN) that uses local and global contextual features to 
make the final prediction of the input sequence. ACGRN 
model is distinctive in that it uses a shallow-and-wide CNN 
to extract extreme local features. Then, it applies our novel 
prior knowledge attention-based bidirectional GRU (ATBi-
GRU) that allows learning global contextual features by 
feeding the contextual information of all prior hidden states 
(prior knowledge) to the current time step. Different from 
previous attention-based models,  in our model, the attention 
is computed at each time step to give the current time step 
the prior knowledge of all past hidden states. In summary, 
the contributions of this paper are as follows:  

1.	 We propose a shallow multichannel CNN followed by a 
max-pooling layer to learn local contextual features and 
produce high-level representations.

2.	 A novel prior knowledge attention based bidirectional 
GRU (ATBiGRU) is brought up to extract global con-
textual features. Specifically, it allows the current time 
step to have access to the aggregated representation of 
all previous hidden states.

3.	 We evaluate the performance of our ACGRN model on 
six real-world datasets. The proposed ACGRN model 
outperforms state-of-the-art approaches in terms of 
accuracy. Some visualization cases also validate the 
effectiveness of ACGRN model.

The rest of the paper is structured as follows. First, we 
discuss several related works in Sect. 2. Second, we give 
a detailed description of ACGRN architecture in Sect. 3. 
Third, the experimental setup and results achieved by our 
model are discussed in Sect. 4. In Sect. 5, we provide the 
discussion and qualitative analysis of our model. Finally, in 
Sect. 6 we conclude the paper with a final remark.

2 � Related work

In this section, we briefly discuss deep learning methods for 
sentiment analysis aiming to model local and global contex-
tual features. These approaches fall into three categories: 
CNN-based, RNN-based, and hybrid approaches.

2.1 � CNN‑based approaches

CNN-based models have shown superior performance in 
modeling local contextual features using filters. A two-chan-
nel CNN-based approach was explored to extract a possible 
number of local contextual features [20]. The two channels 
receive different inputs, where the first one is treated as static 
while the second is fine-turned during the training process. 
The study [56] conducted a sensitivity analysis of a one-
layer CNN model to prove the effectiveness of its different 
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components on the performance. Similarly, shallow-and-
wide CNN, as well as DenseNet, were explored to evalu-
ate the effect of CNN’s deepness on the performance [23]. 
The study proved that shallow-wide CNN is most effective 
at word-level compared to the deep CNN. A CNN-based 
approach that takes into account the word order in extract-
ing local contextual features for text classification has been 
explored [16]. A dynamic CNN-based model with a dynamic 
k-max-pooling mechanism was proposed to handle short and 
long-range dependencies in the input sentence [19]. With 
this dynamic CNN-based model, the convolutional layers 
alternate with the max-pooling layer, where k-max values 
are pooled in the input sentence. A two-layer deep CNN 
was designed to exploit character-to-sentence-level features 
in the input sentences of any size [12]. Shallow CNN-based 
approaches can only deal with local contextual features 
bounded in their window sizes.

Consequently, researchers suggested very deep CNN-
based models for capturing global long-range contextual fea-
tures. A very deep CNN with 29 small convolutional layers 
that operate at the character level was proposed to capture 
long-range association in a sentence [10]. It proved that the 
performance of CNN increases with depth. Similarly, the 
study [17] introduced a deep pyramid CNN to deal with 
long-range dependencies. The proposed CNN model tried 
to improve the performance of word-level CNN by increas-
ing its depth in a deep pyramidal shape where its internal 
structure is reduced over time.

Although CNN-based approaches have shown prom-
ising capability in extracting local contextual features, 
they are limited to learn global contextual features as they 
are required to be very deep. Besides, the local contextual 
features extracted by CNN are not satisfactory for sentiment 
interpretation.

2.2 � RNN‑based approaches

In the literature, a large number of sequential RNN-based 
models have been suggested to learn long-range contextual 
features in general. A generative contextual bidirectional-
LSTM (cBiLSTM) model was introduced to predict the sen-
timent label of a word based on its right and left contexts in 
the sentence [33]. Likewise, the study [54] proposed a neural 
network that uses a bi-directional gated recurrent network 
(BiGRN) to link together the input tweets. Then, it applies 
a three-way gated network model to the produced hidden 
states to learn the relationship between the target word and 
its surrounding contexts.  In order to deal with long-term 
dependencies, a BiLSTM was suggested to  capture the 
contextual information from the input texts represented by 
considering the weight of each word [51]. The work [43] 
constructed a tree-LSTM model that represents the words of 
the sentence in the form of the parent and child relationship. 

The proposed tree-LSTM  approach presented the capability 
to deal with long-range dependencies. Researchers in [44] 
came up with a capsule tree-LSTM approach for address-
ing the bias limitation of LSTM as well as tree-LSTM. The 
model introduces a dynamic routing algorithm as an aggre-
gation layer, which is used in the sentence representation 
construction to automatically learn the weights of each node.

On the other hand, the recent development in research 
has brought a new idea of using attention mechanism [3, 28] 
to allow the model to focus on the most contributing part 
of the input sequence. Correspondingly, different attention-
based approaches have been explored in sentiment analysis. 
A hierarchical GRU attention-based network was suggested 
to hierarchically learn informative information of the words 
and sentences of a document [53]. The work [52] suggested 
a bidirectional LSTM with the  attention mechanism to 
model the relationship between the target word and its dis-
criminative features in the input sentence. Researchers [45] 
designed a BiGRU coupled with attention mechanism for 
capturing the long-range dependencies in the input sentence. 
Likewise, the authors in [38] introduced an attention-based 
tree structure GRU model that represents the sentence by 
integrating the structure information at each node of the 
tree. In this approach, they used the attention mechanism to 
prioritize the most contributing nodes in the tree. Similarly, 
the work [50] designed a model that takes into consideration 
user and product information in sentiment classification. The 
proposed model separately uses the bidirectional LSTM, fol-
lowed by an attention mechanism to generate the user and 
the product representations, which are combined to make 
the final representation. A cognitive-based attention LSTM 
approach that uses the attention mechanism, which is built 
using the cognition ground eye-tracking data was introduced 
to deal with long-term dependencies in sentiment analysis 
[27]. A hierarchical LSTM-based model trained by cognition 
grounded eye-tracking data that predicts overall review text’s 
sentiment was suggested [32]. A BiLSTM with multi-head 
attention was proposed to deal with the long-term depend-
ency problem as well as to capture the actual context of the 
text [26].

However, despite the success of RNN-based approaches, 
they are limited to deal with local contextual features since 
they are biased to favor the recent inputs. Furthermore, they 
are bound to  extract global contextual features due to the 
recurrent nature.

2.3 � Hybrid neural networks

Currently, there is a large body of hybrid models in which 
researchers attempt to combine the advantages of CNN 
and RNN by using them to extract local and global contex-
tual features. The work [11] constructed a hybrid model 
that augments the CNN with LSTM. The pooling layer 
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of the proposed CNN is replaced with an LSTM layer for 
better capturing long-range dependencies. Researchers in 
[55] designed a dependency sensitivity CNN model that 
learns long-term dependencies and generates a hierarchi-
cal representation of a sentence using an LSTM, and then 
applies the convolutions to learn local contextual features. 
The work [22] proposed a model that uses the max-pool-
ing layer to select relevant features among the contextual 
features produced by bidirectional RNN. A hybrid con-
textualized sentiment classifier model, which combines a 
CNN model applied to learn local feature sentences and 
a BiLSTM that deals with long-term dependencies, was 
proposed [2]. A self-attention sandwich neural network 
was suggested to learn local semantic and global structure 
representations [57]. The proposed model makes full use 
of both representations with a self-attention mechanism. 
The study [29] introduced a framework with a mutual 
attention mechanism to exploit the mutual effects between 
local contextual features extracted with CNN and global 
contextual features learned with BiLSTM.

Despite the success of these models, they are 
generic appraoches to extract contextual features. There-
fore, in this paper, we focus on designing a simple multi-
channel CNN that allows extracting local contextual and 
a prior knowledge attention-based bidirectional GRU that 
allows the current time step to have access to the aggre-
gated representation of all previous hidden states. Pre-
cisely, the previous hidden states that carry more valuable 
information to the present time step are prioritized by the 
attention mechanism.

3 � Proposed method

In this section, we discuss the details of our proposed model 
to deal with contextual features in sentiment analysis. We 
first describe the task definition, followed by a shallow 
overview of our model architecture. Lastly, we describe our 
model architecture layer-by-layer.

3.1 � Task definition

We argue that in order to obtain good results in senti-
ment analysis, it is necessary to consider local and global 
contextual features. Thus, in this work, we give the fol-
lowing analogy for extracting these contextual features. 
Considering an input text sequence S with length N, 
S = [x1, x2, x3, x4,… , xN] ∈ ℝ

d×N where xi ∈ ℝ
d corresponds 

to the ith word vector in the text sequence matrix. We aim 
to assign to the text sequence S a sentiment label. We assert 
that to find the polarity of a given input text sequence S, each 
word xi in the text sequence S holds the key local and global 
contextual features necessary for sentiment interpretation. 
Thus, exploiting the complement of these contextual features 
can help to improve the performance.

3.2 � Model overview

To address the above-described problem, we propose the 
ACGRN model shown in Fig. 1. It consists of two main 
components: the local contextual features extraction layer 
and the global contextual features layer. The former uses 

Fig. 1   The overall architecture 
of attentive convolutional gated 
recurrent network (ACGRN)
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convolutional and max-pooling layers to extract local con-
textual features and generates high-level representation 
from embeddings. It applies three concurrent convolution 
operations with kernel window sizes k4, k5 , and k6 . After-
wards, the pooling layer is used to downscale the features 
by extracting the maximum between two contiguous features 
in the feature map. The resulted high-level representations 
are concatenated and fed to the latter component that uses 
prior knowledge attention based BiGRU to extract global 
contextual features. Specifically, this component allows the 
current time step to have access to all previous hidden states. 
Finally, the model applies a softmax classifier to generate the 
prediction based on the extracted contextual features.

3.3 � Word embedding layer

The input to the proposed model is a text sequence S of 
length N  denoted as S = [w1,w2,w3,… ,wN−1,wN] . 
The embedding layer maps each word in the input 
sequence S to a high-dimensional vector space through 
the pre-trained GloVe embedding method [37]. Accord-
ingly, the output of this layer is an embedding matrix 
S = [x1, x2, x3,… , xN−1, xN] ∈ ℝ

N×d , where xi ∈ ℝ
d corre-

sponds to the ith word vector in the sequence representation 
S and d is the embedding dimension.

3.4 � Local contextual features extraction layer

Inspired by the performance of CNN based-models 
described in the literature, we apply three concurrent shal-
low convolutional layers followed by max-pooling layers to 
extract local contextual features and generate a high-level 
representation.

In general, the structure of a convolutional layer, which 
is applied to the text sequence representations depends on 
the length of the text sequence and embedding dimension 
denoted by N and d, respectively. The convolutional layer 
applies a filter with weight matrix F ∈ ℝ

n×d to each possible 
window of n words of the sequence matrix S and generates 
a feature map M. Formally, the ith element of the feature 
map M generated from n-gram text fragment is defined as 
follows:

where b ∈ ℝ is a bias term, and � is a non-linear function, 
which can be either sigmoid, hyperbolic tangent, or rectified 
linear unit. ⊙ is the Hadamard product between two matrices. 
Thus, the filter F is applied to each possible window of words 
in the text sequence matrix S, i.e., x1∶n, x2∶n+1,… , xN−n+1∶N 
to generate feature map M ∈ ℝ

N−n+1 , which is expressed as 
follows:

(1)mi = 𝜎

(∑
(S[∗, i ∶ i + n]⊙ F) + b

)

Motivated by the performance of pooling operation for 
dimension reduction and noise reduction, we adopt max-
pooling rather than average pooling. Max-pooling retains 
extreme features with less computational complexity [9]. On 
the other hand, the average pooling may not extract informa-
tive features as it computes the average of all values, which 
may or may not be necessary. Accordingly, the max-pool-
ing operation transforms the feature map M to Q ∈ ℝ

⌊ N−n+1

2
⌋ , 

which is defined as follows:

where the ith element of the feature map q is expressed as 
follows:

To get sufficient local contextual features, we, therefore, 
apply L different filters to get L feature maps, which can be 
rearranged through column vector concatenation as follows:

where Q̄ ∈ ℝ
⌊ N−n+1

2
⌋×L

Furthermore, stimulated by Kim [20], we apply three con-
volutional channels with kernel window size of 4, 5, and 6 
to get feature maps Q̄k4, Q̄k5 , and Q̄k6 , respectively. Thus, to 
get the final feature maps P ∈ ℝ

⌊ N−n+1

2
⌋×(L×3) , we concatenate 

Qk4,Qk5 , and Qk6 as follows:

For simplicity, let k and d̄ denote ⌊N−n+1

2
⌋ and L × 3 , respec-

tively. Therefore, the matrix P with its elements is written 
as P = [p1, p2, p3,… , pk−1, pk] ∈ ℝ

k×d̄ . Then, we feed these 
feature maps to a prior knowledge attention based BiGRU 
to capture global contextual features. 

3.5 � Global contextual features extraction layer

In this subsection, we first introduce the standard sequen-
tial GRU, which is our base model and, then we proceed to 
the details of our prior knowledge attention based BiGRU 
(ATBiGRU) model.

3.5.1 � Sequential GRU​

Gated recurrent unit (GRU) [8] is a popular RNN model, which 
has been extensively used in sentiment analysis to deal with 
long-term dependencies [18]. It sequentially takes each word 
in the input text sequence, models its information and produces 
a hidden state that contains contextual information. Firstly, let 
the feature maps P = [p1, p2, p3,… , pk−1, pk] ∈ ℝ

k×d̄ and L̄ 

(2)M = [m1,m2,m3,… ,mN−n+1]

(3)Q = [q1, q2, q3,… , q⌊ N−n+1

2
⌋]

(4)qi = max(m2×i−1,m2×i)

(5)Q̄ = [Q1,Q2,Q3,… ,QL]

(6)P = [Q̄k4, Q̄k5, Q̄k6]
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be the input and the hidden state dimension of single direction 
GRU, respectively. As is shown in Fig. 2, at time step t, the 
hidden state ht ∈ ℝ

L̄ of a single direction GRU is computed 
as below:

where rt , zt , h̃t , � , ⊙ , and {U∗ ∈ ℝ
L̄×L̄,W ∗∈ ℝ

k×L̄} denote 
the reset gate, update gate, candidate activation, sigmoid 
function, Hadamard product, and weight matrices of a single 
directional GRU, respectively.

Then, to allow each word for containing the contextual 
information of its predecessor and successor words in the 
input text sequence, BiGRU is used. First, to get forward 
hidden state �⃗ht , it processes the input text sequence with the 
GRU in the forward direction with Eqs. (7)–(10). Similarity, 

(7)rt = �(Wrpt + Urht−1)

(8)zt = �(Wzpt + Uzht−1)

(9)h̃t = tanh(Whpt + Uh(rt ⊙ ht−1))

(10)ht = (1 − zt)ht−1 + zth̃t

by modeling the text sequence with the GRU in a backward 
direction, it updates the backward hidden state �⃖ht . Finally, the 
two hidden states �⃗ht and �⃖ht are combined as follows:

where t = 1,… , k , ⊕ denotes the element-wise sum between 
the forward and backward hidden state vectors. The hidden 
state vector yt ∈ ℝ

L̄ represents the global long-term depend-
ency at time step t as it contains text sequence information 
from both directions. Therefore, depending on the required 
task to accomplish, one can either use the final hidden state 
yk ∈ ℝ

L̄ or whole output sequence of the BiGRU collected 
in a matrix Y ∈ ℝ

k×L̄ as follows:

However, the BiGRU’s capacity to deal with global long-
range dependencies can be limited by the long distance 
between dependencies as it processes the input in a sequen-
tial manner where the current time step can only access its 
successor or predecessor. Furthermore, it considers all words 
equally.

3.5.2 � Prior knowledge attention based BiGRU​

Inspired by recurrent skip connection [7, 47], context-aware 
LSTM [25], and conscience prior network [4], we address 
the above issues using prior knowledge ATBiGRU, whose 
single direction is illustrated in Fig. 3. The proposed ATBi-
GRU is a prior knowledge model in the sense that the current 
time step has access to all previous hidden states that serve 
as its context (prior knowledge).

To achieve the purpose, we introduce a global context 
memory (GCM), which stores the hidden states at each time 
step and supplies them to the current time step to bring 

(11)yt = [��⃗ht ⊕
�⃖�ht]

(12)Y = [y1, y2, y3,… , yk−1, yk]

Fig. 2   Sequential GRU​

Fig. 3   Illustration of the proposed prior knowledge attention based GRU network. The golden lines indicate the aggregate ( hA ) of previous hid-
den states. The blue lines mark the hidden states being loaded to the Global Context Memory (GCM)
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closer the contextual information of the input text sequence. 
However, all hidden states don’t equally contribute to the 
present time step, and all of them can not be supplied to the 
current time step due to the dimensions mismatch. There-
fore, we apply the attention mechanism on GCM to produce 
the aggregated hidden state ( hA ) that can be inputted to the 
current time step. Thus, at time step t, in contrast to the 
sequential GRU, which only accesses one prior hidden state 
ht−1 , our prior ATGRU updates the hidden state ht with the 
aggregated hidden state ( hA ) as below:

where hA is the aggregate of j = t − 1 previous hidden states, 
which is expressed by Eq. (19), and the most relevant hidden 
states to the present time step are assigned higher weights.

At time step t, when a new hidden state is loaded to GCM, 
the GCM produces the hA based on the attention operations 
expressed as follows:

where hA ∈ ℝ
L̄ is a vector that contains the weighted sum of 

j = t − 1 prior hidden states. gt, �t, cv,Wm , and bm denotes the 
hidden representation of ht , normalized weight of the hidden 
state ht , context vector, weight, and bias, repressively.

In the end, by processing the input text sequence in 
the forward and backward directions with our prior knowl-
edge ATBiGRU, we get the final output Z ∈ ℝ

k×L̄ repre-
sented as follows:

where zt = [��⃗ht ⊕
�⃖�ht] . Therefore, aiming to classify the input 

text sequence, we use the final hidden state zk ∈ ℝ
L̄ as is 

shown in Fig. 1. Acting in this way, zk is considered to con-
tain the global contextual information of the whole sequence 
since it has a short-cut connection to all previous hidden 
states.

(13)rt = �(Wrpt + Urh
A)

(14)zt = �(Wzpt + Uzh
A)

(15)h̃t = tanh(Whpt + Uh(rt ⊙ hA))

(16)ht = (1 − zt)h
A + zth̃t

(17)gt = tanh(Wmht + bm)

(18)�t =
exp(gtcv)

∑j

t=1
exp(gtcv)

(19)hA =

j∑

t=1

�tht

(20)Z = [z1, z2, z3,… , zk−1, zk]

3.6 � Output layer

The output layer takes the hidden state vector zk ∈ ℝ
L̄ as 

input. Afterwards, the softmax is applied to estimate the 
probability distribution for each sentiment class label. For-
mally, the softmax operation is defined by:

where C, bi ∈ ℝ
C , and wc ∈ ℝ

L×C denote number of classes, 
bias for class c, and weight for class c, respectively. We apply 
the cross-entropy loss to minimize the difference between 
the actual probability distribution and predicted the prob-
ability for each training sample:

where tc(yi) is one-hot vector representing the distribution of 
the actual sentiment label and P(yi = c|bi;wc) is the predicted 
probability.

4 � Experiments

We evaluate the effectiveness of ACGRN on several real-
world datasets. Therefore, this section presents the empirical 
results obtained.

4.1 � Dataset description

We evaluate the performance of the proposed model on the 
following six real-world sentiment analysis datasets. Their 
statistics are presented in Table 1. First, we adopt small 
datasets like IMDB Large Movie Review1 [30] and Stan-
ford Sentiment Treebank (SSTb)2 [41]. We also consider 

(21)P(yi = c�bi;wc) =
exp(wT

c
zk + bi)

∑C

j=1
exp(wT

j
zk + bj)

(22)L = −

C∑

i=1

tc(yi)logP(yi = c|bi;wc)

Table 1   Summary statistics of the datasets

Dataset #Train #Val #Test #Classes

SSTb 8544 1101 2210 2
IMDB 25,000 – 25,000 2
Amazon1 P 166,314 81,916 81,916 2
Amazon1 F 186,697 91,956 91,956 5
Amazon2 P 667,155 328,599 328,599 2
Amazon2 F 735,376 362,201 362,201 5

1  http://ai.stanf​ord.edu/~amaas​/data/senti​ment/.
2  https​://nlp.stanf​ord.edu/senti​ment/.

http://ai.stanford.edu/%7eamaas/data/sentiment/
https://nlp.stanford.edu/sentiment/
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large datasets from Amazon review3 [31]: Clothing, Shoes, 
and Jewelry Review dataset (we name this Amazon1), and 
CDs and Vinyl Review dataset (we name this Amazon2). For 
Amazon review datasets, we create two types of datasets. 
The first dataset has five labels (we name this F: Full). The 
second dataset is the sentiment polarity datasets (we name 
this P: Polarity), in which labels 1 and 2 are viewed as nega-
tive. Similarly, labels 4 and 5 are taken as positive. All these 
datasets present different properties. The number of exam-
ples varies from 8544 to 1 million. The number of classes 
is comprised of two to five classes. Besides, we bring to the 
readers’ attention that for speeding up the training process, 
we fix the sentence length to 500 and 1024 on IMDB and 
Amazon datasets, respectively.

4.2 � Experimental settings

The inputs to the proposed model are the embeddings ini-
tialized by GloVe4 [37] with dimension 200 and they are 
updated with other parameters during the network training 
process. For the CNN model, we apply three channels where 
each one uses a one-dimensional convolutional layer with 
256 filters(L), and the kernel window sizes k(4, 5, 6). We use 
the rectifier linear unit (ReLU) activation function to each 
convolutional layer. Besides, each channel applies a max-
pooling layer with size two. The hidden units ( ̄L ) for the 
GRU layer are fixed to 300. The number of epochs for train-
ing the proposed model on all datasets varies between (5, 7). 
For each iteration of the training process, we fix the batch 
size to 32. To prevent the model for overfitting, we apply 
the early stopping and dropout [42] with the dropout prob-
ability between 0.5 and 0.8 after the convolution layer. Adam 
optimizer [21] with default parameters is used to perform 
parameter optimization. While training the proposed model, 
we minimize the cross-entropy loss given by Eq. (22).

4.3 � Baseline methods

We compare the effectiveness of the proposed model with 
CNNs, RNN with attention-based, and hybrids state-of-the-
art deep learning approaches for sentiment classification. 
Furthermore, we compare our model with fastText [15], 
which is a simple but efficient baseline for text classification.

(1) CNN-based approaches

•	 CNN-Multi [20]: A model that uses two CNN channels 
with different filters to learn local contextual features.

•	 VDCNN [10]: A state-of-the-art very deep CNN pro-
posed in text classification to deal with long-range 
dependencies.

•	 DeepCNN [12]: A deep CNN model that uses character 
information in the sentence representations.

•	 CNN-SA [56]: A simple CNN but with a better choice 
of hyper-parameters. It has been suggested in analyzing 
the sensitivity of CNN’s components.

(2) RNN with attention-based approaches

•	 BiGRU​ATT​ [45]: A bidirectional gated recurrent unit 
coupled with attention mechanism suggested for captur-
ing long-term dependencies.

•	 Tree-GRU [38]: A model that represents sentence infor-
mation in the form of the tree. In this tree,  the nodes are 
chosen based on the weight of each word computed using 
the attention mechanism.

•	 CBA+LSTM [27]: A Cognitive Based Attention LSTM 
approach that uses the attention mechanism built using 
the cognition ground eye-tracking data.

•	 HAN [53]: A hierarchical network with attention model, 
which has shown the strong performance of various 
review text datasets.

(3) Hybrid approaches

•	 CNN-LSTM [11]: A hybrid model that replaces the pool-
ing layer of the CNN with an LSTM layer.

•	 DSCNN [55]: A dependency sensitivity CNN that hier-
archically applies the LSTM to represent sentence then 
uses CNN in the features extraction.

•	 HRL [47]: A hybrid residual LSTM model that inte-
grates the ResNet connection with LSTM to perform the 
sequence classification.

•	 RCNN [22]: An approach that learns the contextual fea-
tures produced by RNN with a max-pooling layer.

•	 SA-SNN [57]: A self-attention sandwich neural network 
model, which integrates LSTM and CNN in a sandwich 
form. It employs a self-attention mechanism to fully use 
the extracted local semantic and global structure repre-
sentations.

•	 GLMA [29]: A global-local mutual attention approach, 
which extracts local contextual features with CNN and 
global contextual features with LSTM, then integrates 
them through a mutual attention mechanism.

4.4 � Model comparison with baseline methods

The experimental results achieved by ACGRN against base-
line models on six real-world datasets are given in Table 2. 
Foremost, the experimental results reveal that ACGRN sig-
nificantly outperforms all baseline methods for five out of 
six datasets.

(1) Comparison with CNN-based approaches In compari-
son against CNN-based models, the empirical results show 4  http://nlp.stanf​ord.edu/proje​cts/glove​/.

3  http://jmcau​ley.ucsd.edu/data/amazo​n/.

http://nlp.stanford.edu/projects/glove/
http://jmcauley.ucsd.edu/data/amazon/
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that ACGRN consistently outperforms them with an abso-
lute improvement in accuracy by 0.6% , 2.63% , 1.32% , 2.7% , 
2.1% , and 1.33% on SSTb, IMDB, Amazon1 P, Amazon1 
F, Amazon2 P, and Amazon2 F, respectively. It is evidence 
that ACGRN is more efficient in modeling contextual fea-
tures compared to individual CNN-based models. Besides, 
this increase in accuracy justifies the potential of using prior 
knowledge attention based BiGRU that helps in modeling 
global contextual features.

(2) Comparison with RNN with attention-based 
approaches In comparison with RNN with attention-based 
models, we observe that ACGRN performs better than them 
with an increase in accuracy of 0.4% , 1.04% , 1.32% , 1.08% , 
and 1.1% on SSTb, IMDB, Amazon1 P, Amazon1 F, and 
Amazon2 P, respectively. In this setting, the outstanding per-
formance of the ACGRN model is first attributed to local 
contextual features produced by the proposed CNN. Sec-
ond, we attribute it to the global contextual features learned 
by the proposed prior knowledge ATBiGRU. Therefore, it 
shows the benefits of applying the attention mechanism to 
each time step instead of waiting for the last output of GRU. 
Moreover, the results reveal that the cognition-based atten-
tion in CBA+LSTM does not make a significant difference 
with our proposed attention, which is based on the context 
of a word in the text sequence.

(3) Comparison with hybrid approaches By comparing 
ACGRN with hybrid approaches, we observe that ACGRN 
outperforms these models with an improvement in accu-
racy by 0.18% , 0.23% , 0.25% , 0.6% , and 0.18% on SSTb, 
IMDB, Amazon1 P, Amazon1 F, Amazon2 P, respectively. 

We attribute the better performance of ACGRN to the best 
choice of combining CNN with prior knowledge atten-
tion based BiGRU that allows the current time step to have 
access to all previous hidden states. In particular, the atten-
tion mechanism allows our model to focus on the salient 
words that hold sentiment information. Also, we realize 
that baseline CNN-LSTM performs worse on large datasets 
because it does not use the pooling layer.

In comparison against the fastText model, we observe that 
ACGRN outperforms it by 1.2% , 1.71% , 1.84% , 1.73% , 2.38% , 
and 1.64% in terms of accuracy on SSTb, IMDB, Amazon1 
P, Amazon1 F, Amazon2 P, and Amazon2 F, respectively. 
Therefore, these results demonstrate that ACGRN is more 
efficient in modeling contextual features compared with fast-
Text. However, fastText presents the advantage of being fast 
compared to our models as well as other baseline methods.

In brief, the experimental results prove our initial hypoth-
esis that using local and global contextual features improves 
the performance accuracy for sentiment classification.

4.5 � Ablation studies

We perform ablation studies to evaluate the technical con-
tributions of the ACGRN’s components. Thus, a set of 
ACGRN’s variants and the empirical results achieved are 
presented in Table 3. Note that, the models in this subsection 
follows the experiment setup in Sect. 4.2.

The effect of contextual features’ complement To evalu-
ate the significance of using both types of contextual fea-
tures, i.e., local contextual features and global contextual 

Table 2   Experimental results [in accuracy] on SSTb, IMDB, Amazon1 P, Amazon1 F, Amazon2 P and Amazon2 F

For our experiments, we report the mean accuracy of 5 runs. The results with * are reported from their original paper. The best performances are 
in bold

Category Model SSTb (%) IMDB (%) Amazon1 P (%) Amazon1 F (%) Amazon2 P (%) Amazon2 F (%)

CNN-based CNN-multi 88.90 87.26 93.60 86.30 91.15 87.74
CNN-SA 88.90 88.10 92.80 87.10 92.30 87.40
VDCNN 89.30 88.70 94.80 87.08 93.79 87.87
DeepCNN 85.22 89.11 92.60 87.17 94.30 87.28

RNN-att-based BiGRU​ATT​ 89.30 89.91 94.80 88.79 95.30 89.20
CBA+LSTM 89.50 90.70 94.60 88.50 94.80 88.74
HAN 89.34 89.96 94.71 88.58 94.51 87.56
Tree-GRU​ 89.50* – – – – –

Hybrids RCNN 89.70 90.10 93.97 88.69 95.10 87.54
DSCNN 89.43 90.66 95.20 88.87 96.10 88.95
CNN-LSTM 89.10 90.75 89.33 83.41 90.71 83.30
SA-SNN 89.16 91.13 95.17 88.34 95.21 88.87
GLMA 89.72 91.51 95.87 89.27 96.22 89.43
HRL – 90.92* – – – –

Linear model fastText 88.78 90.03 94.28 88.14 94.02 87.56
Ours ACGRN 89.90 91.74 96.12 89.87 96.40 89.20
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features, we compare our hybrid models, i.e., CsGRU, 
CBiGRU, ATCsGRU, and ACGRN against their compo-
nent models. Generally, the combined approaches sig-
nificantly outperform their component models across all 
datasets, which shows the advantage of exploiting both 
type contextual features. For instance, when we consider 
the ACGRN’s variant models, i.e., multi-channel CNN 
(MCNN) that uses only local contextual features and 
prior knowledge ATBiGRU that makes use of global con-
textual features to perform sentiment classification, the 
results indicate that ACGRN outperforms ATBiGRU by 
0.4% , 0.41% , 1.02% , and 0.7% on SSTb, IMDB, Amazon1 
P and Amazon1 F, respectively. Similarly, it outweighs 
MCNN by 0.8% , 1.16% , 2.42% , and 6.46% on SSTb, IMDB, 
Amazon1 P, and Amazon1 F, respectively.

The effect of global context memory To assess the advan-
tage offered by GCM, we first compare our models that 
contain the GCM components against their counterparts, 
which do not include it. We observe that our models with 
GCM, i.e., ATGRU, ATBiGRU, ATCsGRU, and ACGRN, 
significantly perform well compared to their counterparts 
without GCM, i.e., GRU, BiGRU, CsGRU, and CBiGRU, 
respectively. For instance, our top-performing model, i.e., 
ACGRN, outperforms CBiGRU with an improvement of 
0.2% , 0.35% , 2% , and 1.65% in terms of accuracy on SSTb, 
IMDB, Amazon1 P, and Amazon1 F, respectively. Thus, the 
results evidence their better skills to model global contex-
tual features using the GCM. Besides, we compare ACGRN 
against CGRN+ATT. Unlike ACGRN that uses GCM to 
compute the attention at each time step to bring closer the 
contextual information, in CGRN+ATT, the attention mech-
anism is applied to the whole output of BiGRU. The results 
show that ACGRN exceeds CGRN+ATT with an improve-
ment in accuracy by 0.4% , 0.53% , 0.78% , and 0.9% on SSTb, 
IMDB, Amazon1 P, and Amazon1 F, respectively. It con-
firms the usefulness of attention mechanism in prioritizing 

informative features at each time step rather than waiting for 
the last output of the GRU.

The effect attention mechanism as an aggregation method 
To verify the effectiveness of the attention mechanism in 
aggregating the previous hidden states in our model, we 
design MaxCGRN, AvgCGRN, AddCGRN models by 
replacing the attention mechanism with max-pooling, aver-
age pooling, and addition aggregation methods, respec-
tively. In Table 4, we present the comparison results among 
ACGRN, MaxCGRN, AvgCGRN, and AddCGRN. It 
shows that our ACGRN model with attention mechanism 
outperforms its counterparts across all datasets. Thus, the 
results demonstrate the effectiveness of the proposed atten-
tion mechanism in aggregating the most discriminative and 
informative hidden states into a single vector representation.

The effect of GRU’s direction To evaluate the advantages 
of modeling the input text sequence in the forward and back-
ward directions, we compare our model variants that con-
tain a bidirectional layer against their counterparts without 
it. Looking at the results, we observe that our models with 
bidirectional layer, i.e., BiGRU, ATBiGRU, CBiGRU, and 
ACGRN consistently outperform their counterparts without 
it, i.e., sGRU, ATGRU, CsGRU, and ATCsGRN, respec-
tively. Therefore, the results confirm the advantages of mod-
eling the input in both directions as a way of enriching the 
global contextual features extracted by GRU.

In a nutshell, based on the analysis of the results of abla-
tion studies on ACGRN’s variants, we stress that the changes 
brought by global context memory give good results when 
coupled with BiGRU. This assumption remains true across 
all datasets considered in the experiments. Also, to get good 
results, the features learned by CNN need to be modeled 
with ATBiGRU. Besides, it is worth mentioning that the 
majority of ACGRN’s variants outperforms some of the 
baselines.

Table 3   Ablation studies of different components of ACGRN

Amaz means Amazon. The results are in accuracy. The best perfor-
mances are in bold

Variant SSTb (%) IMDB (%) Amaz1 P (%) Amaz1 F (%)

MCNN 89.1 90.58 93.70 83.41
sGRU​ 88.6 91.06 93.40 83.32
BiGRU​ 89.1 90.88 93.10 86.60
CsGRU​ 89.2 90.74 89.33 83.41
CBiGRU​ 89.7 91.39 94.12 88.22
ATGRU​ 88.9 90.60 94.70 88.27
ATBiGRU​ 89.5 91.33 95.10 89.17
ATCsGRU​ 89.5 91.09 94.77 88.47
CGRN+ATT​ 89.5 91.21 95.34 88.97
ACGRN 89.9 91.74 96.12 89.87

Table 4   Comparison results of aggregation methods

Amaz means Amazon. The results are in accuracy. The best perfor-
mances are in bold

Variant SSTb (%) IMDB (%) Amaz1 P (%) Amaz1 F (%)

MaxCGRN 88.31 91.44 95.25 88.94
AvgCGRN 88.43 91.49 95.34 89.24
AddCGRN 88.89 91.18 94.87 88.78
ACGRN 89.9 91.74 96.12 89.87
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5 � Discussion and qualitative analysis

5.1 � Effect of sentence length

One hypothesis to explain the advantages of ACGRN over 
CNN and GRU is that it helps to learn contextual features of 
short and long sentences. If this were true, ACGRN could 
consistently outperform both CNN and GRU on short and 
long sentences. Therefore, to facilitate the interpretation, 
we illustrate the relationship between sentence length and 
the performance accuracy in Figs. 4 and 5. Figures 4 and 5 
show the performance achieved by MCNN, sGRU, BiGRU, 
ATGRU, ATBiGRU, and ACGRN on IMDB and Amazon1 
P datasets, respectively. We bring to the readers’ attention 

that the models in this subsection follow the experimental 
protocol described in Sect. 4.2. Besides, we vary the sen-
tence length of both datasets considered in this section from 
50 up to 500.

Foremost, we observe that ACGRN consistently out-
performs its counterparts across all sentence lengths on 
both datasets. Also, from Fig. 4, we observe that the rate 
of performance increase of ACGRN and ATBiGRU mod-
els on IMDB is high compared to other variants from sen-
tence length equal to three hundred. On the other side, from 
Fig. 5, we observe the capability of our model variants for 
modeling long sentences. The direct observation is that the 
performance accuracy of ACGRN keeps increasing up to 
sentence length equal to 450. Besides, with support of abla-
tion study experimental results in Table 3 with the sentence 
length fixed to 1024, we observe that the performance accu-
racy of all models decreases. However, the rate of decrease 
of ACGRN’s performance accuracy is low compared to its 
variants. For example, the accuracy achieved by ACGRN 
is 96.14% and 96.12% when the sentence length is equal to 
500 and 1024, respectively. Whereas, the performance accu-
racy achieved by MCNN drops from 95.76% to 93.7% for 
the sentence length is equal to 500 and 1024, respectively. 
Therefore, these results show that ACGRN performs well on 
short and long sentences.

5.2 � Effect of filter numbers

The increase of filter number does not always result in accu-
racy increase rather than can increase model parameters. In 
this subsection, we experiment by varying the numbers of 
filters in our models that contain the convolution layer. Thus, 
we present the performance accuracy achieved on IMDB and 
Amazon1 P datasets in Figs. 6 and 7, respectively. Note that, 

Fig. 4   Sentiment classification accuracy versus sentence length on 
IMDB dataset

Fig. 5   Sentiment classification accuracy versus sentence length on 
Amazon1 P dataset

Fig. 6   Sentiment classification accuracy versus number of filters on 
IMDB dataset
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the experiments in this subsection follow the experimental 
protocol described in Sect. 4.2.

From the experimental results, we observe that the 
increasing number of filters does not always achieve the best 
accuracy. The results indicate that performance achieved by 
ACGRN on both datasets peaks when the number of filters is 
between 256 and 320. On the other hand, ACGRN overfits if 
the number of filters increases to more than 320. This over-
fitting is caused by the increase of filter numbers that can 
result in a large number of model parameters, which lead to 

model overfitting. In brief, this behavior of ACGRN of using 
fewer filters to achieve excellent performance is attributed to 
our multi-channel CNN, which is shallow and wide.

5.3 � Case study for visualization of attention

To illustrate the advantages of our ACGRN model over CNN 
and RNN, we visualize how the attention focuses on the 
most contributing words. The attention visualization for sev-
eral review texts from the Amazon1 dataset is demonstrated 
in Fig. 8. Note that the darker color means higher weight.

Considering the following positive review text shown in 
Fig. 8a. ACGRN does not only take into account words car-
rying strong sentiment like “disappointing”, “good”, “very” 
but also deals with the context across the sentence. In this 
example, by looking at the first part of the sentence before 
the word “but”, one may think that the sentence is negative 
since it contains sub-sentence “it doesn’t have” with “nega-
tion” n-gram “doesn’t”. However, our model looks at the 
whole context of the review text and finds that the second 
part of the sentence is very positive since it contains words 
like “very”, “good” and their corresponding n-grams. Hence, 
our model correctly predicts the review as positive.

 Taking into a negative review text presented in Fig. 8b1, 
b2, this review text has a long and complicated structure that 
it is difficult for simple CNN or RNN to obtain the correct 
label. Therefore, ACGRN obtains the correct negative label 
with the help of sentence global contextual features.

Fig. 7   Sentiment classification accuracy versus number of filters on 
Amazon1 P dataset

Fig. 8   Visualization of attention over the words from review sentences in Amazon1 dataset
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However, there is no one size fits all. ACGRN fails to 
obtain the correct label in some instances. Let us consider 
the following negative review text shown in Fig. 8c. ACGRN 
obtains the positive label because it requires modeling differ-
ent aspects of the object to find real sentiment. In this case, 
the sentiment of the review text with respect to the bag is 
positive, while the problem arises when it comes to judging 
its weight.

6 � Conclusion

In this paper, we propose a novel model ACGRN to learn 
local and global contextual features. Specifically, we apply 
three concurrent convolutional layers followed by max-pool-
ing to extract a possible number of local contextual features. 
Subsequently, we use our novel prior knowledge ATBiGRU 
to learn global contextual features from the representations 
encoded by the CNN layer. The proposed prior knowledge 
ATBiGRU accesses all previous hidden states as an aggre-
gated hidden state generated by the attention mechanism. We 
have evaluated the effectiveness of the ACGRN model on six 
small and large real-world datasets. The proposed ACGRN 
consistently outperforms the state-of-the-art methods.

The experimental results indicate that ACGRN improved 
the performance accuracy by 0.18% , 0.23% , 0.25% , 0.6% , 
and 0.18% on SSTb, IMDB, Amazon1 P, Amazon1 F, and 
Amazon2 P, respectively. Furthermore, the ablation studies’ 
experimental results allow us to stress that the BiGRU modi-
fied by the attention mechanism gives good results compared 
to single-channel GRU modified by the attention mecha-
nism. The qualitative analysis shows that ACGRN is good at 
learning short and long sentences. Thus, this work validates 
our idea of using contextual features for better performance 
in sentiment analysis.

This research can be extended in multiple dimensions. 
Therefore, direct future work is to incorporate our model 
into an end-to-end manner to other natural language tasks to 
solve the problem of long-range dependencies. In particular, 
we would like to investigate the effectiveness of our model 
on multilingual sentiment analysis with text sequences that 
may contain long-term dependencies.
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