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Abstract
Multi-view semi-supervised support vector machines consider learning with multi-view unlabeled data to boost the learn-
ing performance. However, they have several defects. They need to solve the quadratic programming problem and the time 
complexity is quite high. Moreover, when a large number of multi-view unlabeled examples exist, it can generate more 
outliers and noisy examples and influence the performance. Therefore, in this paper, we propose two novel multi-view semi-
supervised support vector machines called multi-view Laplacian least squares twin support vector machine and its improved 
version with the manifold-preserving graph reduction which can enhance the robustness of the algorithm. They can reduce 
the time complexity by changing the constraints to a series of equality constraints and lead to a pair of linear equations. The 
linear multi-view Laplacian least squares twin support vector machine and its improved version with manifold-preserving 
graph reduction are further generalized to the nonlinear case via the kernel trick. Experimental results demonstrate that our 
proposed methods are effective.

Keywords  Multi-view semi-supervised learning · Least squares twin support vector machines · Semi-supervised learning · 
Manifold-preserving graph reduction

1  Introduction

Support vector machine (SVM) has been widely investigated 
[1–4], which implements the structural risk minimization 
of statistical learning theory. In contrast with other classi-
fication algorithms such as artificial neural networks [5], 
SVM can gain a better generalization capability. In recent 
years, non-parallel hyperplane classifiers have emerged and 
attracted much attention of many researchers. Twin support 
vector machine (TSVM) [6] is a typical non-parallel hyper-
plane classifier which creates two non-parallel hyperplanes 
such that one of the hyperplanes is closer to one class and 
has a certain distance to the other. Although the scale of 
TSVM is smaller than SVM, it still need to solve two quad-
ratic programming problems (QPPs). Least squares twin 
support vector machine (LSTSVM) [7–10] can make its 
learning speed faster than the one of TSVM.

In real application, collecting labeled examples spends 
most time and manual labor, while the collection of unla-
beled examples may be relatively easy. Semi-supervised 
learning [11–14] was presented to handle this problem. 
When the unlabeled data are adopted rationally, it can out-
perform the performance of the counterpart supervised 
learning approach. There exist several semi-supervised 
learning methods of SVM and TSVM, such as transduc-
tive SVM [15], semi-supervised support vector machines 
[16], Laplacian support vector machines (LapSVM) [17] and 
Laplacian twin support vector machines (LapTSVM) [18].

Multi-view learning [19–23] is a hot spot in machine 
learning with good theoretical evidence and great suc-
cessful practice. Multi-view learning leverages multiple 
feature sets to improve the generalization performance. 
For examples, images and videos, color information and 
texture information are two different kinds of features, 
which can serve as multi-view data. In web page classi-
fication, there exist two views for describing a given web 
page: the text content in itself and the anchor text linking 
to this web page. A noteworthy character of multi-view 
learning is that performance on a natural single view can 
be improved by using manually generated multiple views. 
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The current multi-view learning methods can be classi-
fied into three major styles: co-training style algorithms, 
co-regularization style algorithms and margin consist-
ency style algorithms. Co-training style algorithms are 
inspired by co-training [24] which is one of the earliest 
methods that the learners are trained alternately on two 
distinct views with confident labels for the unlabeled data. 
Representative algorithms are co-EM [25], co-testing 
[26] and robust co-training [27]. Co-regularization style 
algorithms fuse regularization terms of discriminant or 
regression function with the objective function. SVM-
2K [28], sparse multi-view SVM [29], multi-view TSVM 
(MvTSVM) [30], multi-view privileged SVM (PSVM-
2V) [31], multi-view LapSVM (MvLapSVM) [32] and 
multi-view LapTSVM (MvLapTSVM) [33] are typical 
algorithms. Farquhar et al. [28] provided a theoretical 
analysis for SVM-2K and reduce the Rademacher com-
plexity [34] of the corresponding function class signifi-
cantly. Sun and Shawe-Taylor [29] characterized the gen-
eralization error of sparse multi-view SVM for the margin 
bound and derived the empirical Rademacher complexity 
of the considered function class. Recently, Sun et al. [28] 
proposed several PAC-Bayes bounds for co-regularization 
style algorithms, which are the first application of PAC-
Bayes theory under the supervised and semi-supervised 
multi-view learning framework. Margin-consistency style 
algorithms are recently proposed to make use of the latent 
consistency of classification results from multiple views 
[36–39]. They are realized under the framework of maxi-
mize entropy discrimination (MED), such as alternative 
multi-view maximum entropy discrimination (AMVMED) 
[37]. Chao et al. [40] proposed semi-supervised multi-
view maximum entropy discrimination with expectation 
Laplacian regularization.

MvLapTSVM combines two views with the constraint 
of similarity between two distinct TSVM from two feature 
spaces. However, MvLapTSVM has some disadvantages as 
follows. It needs to solve a pair of QPPs and the time com-
plexity is quite high. A large number of unlabeled examples 
can generate more outliers and noisy examples. This can 
effect the performance of the algorithm and increase the 
running time of the algorithm. In this paper, to overcome 
the above disadvantages, we propose two novel multi-view 
semi-supervised SVMs called multi-view Laplacian least 
squares twin support vector machine (MvLapLSTSVM) 
and its improved version with manifold-preserving graph 
reduction (MPGR) [41] (MvLapLSTSVM with MPGR). 
The MPGR is a sparse approximate method that uses only a 
subset of the examples and focuses on the strategy of select-
ing the representative and informative examples to form the 
sparse subset. It can eliminate outliers and noisy examples so 

can enhance the robustness of the relevant algorithm. Here 
we first search for two sparse subsets of two views by the 
MPGR, respectively. Then a new sparse subset is formed 
by the intersection of the two sparse subsets. This would 
enhance the robustness of the algorithm.

The contribution of this paper is concluded below: 

(1)	 They combine two views by introducing a multi-view 
co-regularization term and leverage the manifold regu-
larization to semi-supervised learning.

(2)	 They can reduce the time complexity by changing the 
constraints to a series of equality constraints and lead 
to a pair of linear equations based on the principle of 
LSTSVM.

(3)	 MvLapLSTSVM with MPGR can integrate the MPGR 
to select informative unlabel examples from a large 
number of unlabel examples. This strategy can enhance 
the robustness of the relevant algorithm MvLapLST-
SVM.

(4)	 Experimental results validate the effectiveness of our 
proposed methods.

The remainder of this paper proceeds as follows. Section 2 
reviews related work about LSTSVM, MvLapTSVM and 
MPGR. Section 3 thoroughly introduces our proposed meth-
ods MvLapLSTSVM and its improved version with MPGR. 
After reporting experimental results in Sect. 4, we give con-
clusions and future work in Sect. 5.

2 � Related work

In this section, we briefly review LSTSVM, MvLapTSVM 
and MPGR.

2.1 � LSTSVM

Suppose training examples belonging to classes 1 and −1 
are represented by matrices A+ and B− , and the size of A+ 
and B− are (m1 × d) and (m2 × d) , respectively. The central 
idea of LSTSVM [7] is to seek two non-parallel hyperplanes

around which the examples of the corresponding class get 
clustered. Define two matrices A, B and four vectors v1 , v2 , 
e1 , e2,

(1)w⊤

1
x + b1 = 0 and w⊤

2
x + b2 = 0

(2)A = (A+, e1), B = (B−, e2), v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
.
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For simplicity in the paper, e, e1 and e2 are vectors of ones 
of appropriate dimensions.

The classifier is given by solving the following QPPs 
separately.

(LSTSVM1)

(LSTSVM2)

where c1 , d1 are nonnegative parameters and q1 , q2 are slack 
vectors of appropriate dimensions. The term 1

2
(Av1)

⊤(Av1) 
and constraint −Bv1 + q1 = e2 aim to make +1 class hyper-
plane closest to the corresponding +1 class and as far as 
possible from the corresponding −1 class simultaneously. 
The term 1

2
(Bv2)

⊤(Bv2) and constraint Av2 + q2 = e1 aim to 
make −1 class hyperplane closest to the corresponding −1 
class and as far as possible from the corresponding + 1 class 
simultaneously. Each of the above two QPPs can be con-
verted to the explicit expression of LSTSVM.

(LSTSVM1)

(LSTSVM2)

The two non-parallel hyperplanes are obtained by solving 
the following two linear equations:

The label of a new example x is determined by the mini-
mum of |x⊤wr + br| ( r = 1, 2 ) which are the perpendicular 
distances of x to the two hyperplanes given in (1).

2.2 � MvLapTSVM

In this part, we introduce MvLapTSVM [33]. MvLapTSVM 
combines two views by introducing the constraint of simi-
larity between two one-dimensional projections identi-
fying two distinct TSVMs from two feature spaces. Here 
on view 1, positive examples are represented by A′

1
 and 

(3)
min
v1,q1

1

2
(Av1)

⊤(Av1) +
c1

2
q⊤
1
q1

s.t. − Bv1 + q1 = e2,

(4)
min
v2,q2

1

2
(Bv2)

⊤(Bv2) +
d1

2
q⊤
2
q2

s.t. Av2 + q2 = e1,

(5)min
v1

1

2
(Av1)

⊤(Av1) +
1

2
c1(e2 + Bv1)

⊤(e2 + Bv1),

(6)min
v2

1

2
(Bv2)

⊤(Bv2) +
1

2
d1(e1 − Av2)

⊤(e1 − Av2).

(7)
v1 = −

(
A⊤A +

1

c1
B⊤B

)−1

A⊤e2,

v2 =

(
B⊤B +

1

d1
A⊤A

)−1

B⊤e1.

negative examples are represented by B′

1
 . On view 2, posi-

tive examples are represented by A′

2
 and negative examples 

are represented by B′

2
 . The optimization problems of linear 

MvLapTSVM can be written as

where ‖ ⋅ ‖ indicates the �2-norm, M′

1
 includes all of labeled 

data and unlabeled data from view 1. M′

2
 includes all of 

labeled data and unlabeled data from view 2. L1 is the graph 
Laplacian of view 1 and L2 is the graph Laplacian of view 2. 
w1 , b1 , w2 , b2 , w3 , b3 , w4 , b4 are classifier parameters. c1 , c2 , 
c3 , c4 , D and H are nonnegative parameters. q1 , q2 , q3 , q4 , � 
and � are slack vectors of appropriate dimensions.

Define

Therefore, the dual optimization formulation is

(8)

min
w1,w2,b1,b2,q1,q2,𝜂

1

2
‖A�

1
w1 + e1b1‖2

+
1

2
‖A�

2
w2 + e1b2‖2 + c1e

⊤

2
q1 + c2e

⊤

2
q2

+
1

2
c3(‖w1‖2 + b2

1
+ ‖w2‖2 + b2

2
)

+
1

2
c4[(w

⊤

1
M

�⊤

1
+ e⊤b1)L1(M

�

1
w1 + eb1)

+ (w⊤

2
M

�⊤

2
+ e⊤b2)L2(M

�

2
w2 + eb2)] + De⊤

1
𝜂

s.t. �A�

1
w1 + e1b1 − A

�

2
w2 − e1b2� ⪯ 𝜂,

− B
�

1
w1 − e2b1 + q1 ⪰ e2,

− B
�

2
w2 − e2b2 + q2 ⪰ e2,

q1 ⪰ 0, q2 ⪰ 0,

𝜂 ⪰ 0,

(9)

min
w3,w4,b3,b4,q3,q4,𝜁

1

2
‖B�

1
w3 + e2b3‖2

+
1

2
‖B�

2
w4 + e2b4‖2 + c1e

⊤

1
q3 + c2e

⊤

1
q4

+
1

2
c3(‖w3‖2 + b2

3
+ ‖w4‖2 + b2

4
)

+
1

2
c4[(w

⊤

3
M

�⊤

1
+ e⊤b3)L1(M

�

1
w3 + eb3)

+ (w⊤

4
M

�⊤

2
+ e⊤b4)L2(M

�

2
w4 + eb4)] + He⊤

2
𝜁

s.t. �B�

1
w3 + e2b3 − B

�

2
w4 − e2b4� ⪯ 𝜁 ,

− A
�

1
w3 − e1b3 + q3 ⪰ e1,

− A
�

2
w4 − e1b4 + q4 ⪰ e1,

q3 ⪰ 0, q4 ⪰ 0,

𝜁 ⪰ 0,

(10)

A1 = (A
�

1
, e1), A2 = (A

�

2
, e1), B1 = (B

�

1
, e2), B2 = (B

�

2
, e2),

J1 = (M
�

1
, e), J2 = (M

�

2
, e), v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
.
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where �1 , �2 , �1 , �2 , �1 , �2 , �1 and �2 are the vectors of non-
negative Lagrange multipliers.

The augmented vectors u1 =
(
w3

b3

)
, u2 =

(
w4

b4

)
 are given 

by

For an example x with x′

1
 and x′

2
 , if 1

2
(|x⊤

1
v
1
| + |x⊤

2
v
2
|)

≤
1

2
(|x⊤

1
u
1
| + |x⊤

2
u
2
|) , where x1 = (x

�

1
, 1) and x2 = (x

�

2
, 1) , it 

is classified to class +1 , otherwise class −1.

2.3 � MPGR

In this section, we briefly introduce the manifold-preserving 
graph reduction algorithm [41].

MPGR is an efficient graph reduction algorithm based 
on the manifold assumption. A sparse graph with mani-
fold-preserving properties means that a point outside of it 
should have a high connectivity with a point to be reserved. 

(11)

min
𝜉1,𝜉2,𝛼1,𝛼2

1

2
𝜉⊤
1
(A⊤

1
A1 + c3I + c4J

⊤

1
L1J1)

−1𝜉1

+
1

2
𝜉⊤
2
(A⊤

2
A2 + c3I + c4J

⊤

2
L2J2)

−1𝜉2

− (𝛼1 + 𝛼2)
⊤
e2

s.t. 𝜉1 = A
⊤

1
(𝛽2 − 𝛽1) − B

⊤

1
𝛼1,

𝜉2 = A
⊤

2
(𝛽1 − 𝛽2) − B

⊤

2
𝛼2,

0 ⪯ 𝛽1, 𝛽2, 𝛽1 + 𝛽2 ⪯ De1,

0 ⪯ 𝛼1∕2 ⪯ c1∕2e2,

(12)

min
𝜌1,𝜌2,𝜔1,𝜔2

1

2
𝜌⊤
1
(B⊤

1
B1 + c3I + c4J

⊤

1
L1J1)

−1𝜌1

+
1

2
𝜌⊤
2
(B⊤

2
B2 + c3I + c4J

⊤

2
L2J2)

−1𝜌2

− (𝜔1 + 𝜔2)
⊤
e1

s.t. 𝜌1 = B
⊤

1
(𝛾2 − 𝛾1) − A

⊤

1
𝜔1,

𝜌2 = B
⊤

2
(𝛾1 − 𝛾2) − A

⊤

2
𝜔2,

0 ⪯ 𝛾1, 𝛾2, 𝛾1 + 𝛾2 ⪯ He2,

0 ⪯ 𝜔1∕2 ⪯ c1∕2e1,

(13)
v1 = (A⊤

1
A1 + c3I + c4J

⊤

1
L1J1)

−1[A⊤

1
(𝛽2 − 𝛽1) − B⊤

1
𝛼1],

(14)
v2 = (A⊤

2
A2 + c3I + c4J

⊤

2
L2J2)

−1[A⊤

2
(𝛽1 − 𝛽2) − B⊤

2
𝛼2].

(15)
u1 = (B⊤

1
B1 + c3I + c4J

⊤

1
L1J1)

−1[B⊤

1
(𝛾2 − 𝛾1) − A⊤

1
𝜔1],

(16)
u2 = (B⊤

2
B2 + c3I + c4J

⊤

2
L2J2)

−1[B⊤

2
(𝛾1 − 𝛾2) − A⊤

2
𝜔2].

Suppose there is a graph G composed of m vertices and the 
sparsity level or the number of vertices in the desired sparse 
graphs. The manifold-preserving sparse graphs Gs are those 
sparse graph candidates Gc which have a high space connec-
tivity with G. The value of space connectivity is as follows:

where s is the number of vertices to be retained, and W is the 
weight matrix of G. For subset selection, a point which is 
closer to surrounding points should be selected since it con-
tains more important information. This conforms to MPGR 
in which the point with a large degree will be preferred. The 
degree d(p) is defined as

where p − q means that the point p is connected with the 
point q and wpq is their corresponding weight. If two ver-
tices are not linked, their weight would be zero. Due to its 
simplicity, d(p) is generally considered as a criterion to con-
struct sparse graphs. A bigger d(p) means the point p con-
tains more information. Namely, the point p is more likely 
to be selected into the sparse graphs. In a word, the subset 
constructed by MPGR is high representative and maintains 
a good global manifold structure of the original data distri-
bution. Suppose that E is the maximum number of edges 
linked to a point in the original graph. The time complexity 
of the algorithm is less than O(Ems). This can eliminate the 
outlier and noise examples, and enhance the robustness of 
the algorithm.

3 � Our proposed method

3.1 � MvLapLSTSVM with MPGR

Now we introduce our methods multi-view Laplacian least 
squares twin support vector machine and its improved ver-
sion with MPGR. We begin to construct two optimization 
problems for linear MvLapLSTSVM which can be written as

(17)
1

m − s

m∑

i=s+1

(
max
j=1,…,s

Wij

)
,

(18)d(p) =
∑

p−q

wpq,

(19)

min
v1,v2,q1,q2

1

2
‖A1v1‖2 +

1

2
‖A2v2‖2 +

D

2
‖A1v1 − A2v2‖2

+ c1(q
⊤

1
q1 + q

⊤

2
q2) +

c2

2
(v⊤

1
J
⊤

1
L1J1v1 + v

⊤

2
J
⊤

2
L2J2v2)

s.t. − B1v1 + q1 = e2,

− B2v2 + q2 = e2,
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(20)

min
u1,u2,k1,k2

1

2
‖B1u1‖2 +

1

2
‖B2u2‖2 +

H

2
‖B1u1 − B2u2‖2

+ d1(k
⊤

1
k1 + k

⊤

2
k2)

+
d2

2
(u⊤

1
J
⊤

1
L1J1u1 + u

⊤

2
J
⊤

2
L2J2u2)

s.t. − A1u1 + k1 = e1,

− A2v2 + k2 = e1,

class simultaneously. The multi-view regularization term 
D

2
‖A1v1 − A2v2‖2 and H

2
‖B1u1 − B2u2‖2 can be understood 

as minimizing the difference of function values between 
two views. The last terms c2

2
(v⊤

1
J⊤
1
L1J1v1 + v⊤

2
J⊤
2
L2J2v2) and 

d2

2
(u⊤

1
J⊤
1
L1J1u1 + u⊤

2
J⊤
2
L2J2u2) are manifold regularization 

terms which are similar to the ones of MvLapTSVM.
The above optimization problems can be written as 

another form

where ‖ ⋅ ‖ indicates the �2-norm, v1 , v2 , u1 , u2 are classifier 
parameters. c1 , c2 , d1 , d2 , D, H are nonnegative parameters 
and q1 , q2 , k1 , k2 are slack vectors of appropriate dimen-
sions. The term 1

2
‖A1v1‖2 +

1

2
‖A2v2‖2 and constraints 

−B1v1 + q1 = e2 , −B2v2 + q2 = e2 aim to make +1 class 
hyperplanes of two views closest to the corresponding +1 
class and as far as possible from the corresponding −1 class 
simultaneously. The term 1

2
‖B1u1‖22 +

1

2
‖B2u2‖2 and con-

straints −A1u1 + k1 = e1 , −A2v2 + k2 = e1 aim to make −1 
class hyperplanes of two views closest to the corresponding 
−1 class and as far as possible from the corresponding +1 

Let

They can be written as

Simultaneously, we draw the structural risk minimization 
into the above optimization problems. The Lagrangian of 
the optimization problem (24) is given by

(21)

min
v1,v2,q1,q2

1

2

(
v1
v2

)⊤ (
(1 + D)A⊤

1
A1 + c2J

⊤
1
L1J1 − DA⊤

1
A2

−DA⊤
2
A1 (1 + D)A⊤

2
A2 + c2J

⊤
2
L2J2

)(
v1
v2

)

+ c1

(
q1
q2

)⊤ (
q1
q2

)

s.t. −

(
B1 0

0 B2

)(
v1
v2

)
+

(
q1
q2

)
= e2,

(22)

min
u1,u2,k1,k2

1

2

(
u1
u2

)⊤ (
(1 + H)B⊤

1
B1 + d2J

⊤
1
L1J1 − HB⊤

1
B2

−HB⊤
2
B1 (1 + H)B⊤

2
B2 + d2J

⊤
2
L2J2

)(
u1
u2

)

+ d1

(
k1
k2

)⊤ (
k1
k2

)

s.t. −

(
A1 0

0 A2

)(
u1
u2

)
+

(
k1
k2

)
= e1.

(23)

v =

(
v1
v2

)
, u =

(
u1
u2

)
,

E =

(
(1 + D)A⊤

1
A1 + c2J

⊤
1
L1J1 − DA⊤

1
A2

−DA⊤
2
A1 (1 + D)A⊤

2
A2 + c2J

⊤
2
L2J2

)
, F =

(
B1 0

0 B2

)
,

M =

(
(1 + H)B⊤

1
B1 + d2J

⊤
1
L1J1 − HB⊤

1
B2

−HB⊤
2
B1 (1 + H)B⊤

2
B2 + d2J

⊤
1
L1J1

)
, N =

(
A1 0

0 A2

)
,

q =

(
q1
q2

)
, k =

(
k1
k2

)
.

(24)
min
v,q

1

2
v⊤Ev +

c1

2
q⊤q + c3||v||2

s.t. − Fv + q = e2,

(25)
min
u,k

1

2
u⊤Mu +

d1

2
k⊤k + d3||u||2

s.t. − Nu + k = e1.
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We take partial derivatives of the above equation and let 
them be zero

From the above equations, we obtain

Applying the same techniques to (25), we obtain

Then we integrate the MPGR to select two sparse subsets 
of the unlabeled examples corresponding to the two views, 
respectively. Then a new sparse subset is formed by the 
intersection of the two sparse subsets. The procedure of the 
whole algorithm is in Algorithm 1.

Algorithm 1 Multi-view Laplacian Least Squares Twin Support 
Vector Machines with Manifold-preserving Graph Reduction 
Algorithm

1: Input: labeled two view data l
1
 , l

2
 , 

and unlabeled two view data u
1
 , 

u
2
 , model parameters ( c

1
 , c

2
 , c

3
 , 

d
1
 , d

2
 , d

3
 , D,H).

2: Use the MPGR on unlabeled 
data of view 1 u

1
 to generate 

the sparse subset T
1
 and use the 

MPGR on unlabeled data of 
view 2 u

2
 to generate the sparse 

subset T
2
.

3: Obtain the common sparse subset 
T which is the intersection of T

1
 

and T
2
.

4: Obtain E, M, F and N using (23).
5: Determine parameters of two 

hyperplanes for each view by 
solving the linear equation (28) 
and (29), respectively.

6: Output: For a test exam-
ple x = (x⊤

1
1 x

⊤
2
1)⊤ , if 

|x⊤v| ≤ |x⊤u| , it is classified to 
class +1 , otherwise class −1.

3.2 � Kernel MvLapLSTSVM with MPGR

In this part, we extend MvLapLSTSVM with MPGR to the 
nonlinear case. The kernel-generated hyperplanes are:

(26)L =
1

2
v⊤Ev +

c1

2
(Fv + e)⊤(Fv + e) + c3||v||2.

(27)
𝜕L

𝜕v
= Ev + c1F

⊤Fv + c1F
⊤e + c3v = 0,

(28)v = −

(
E

c1
+ F⊤F +

c3

c1
I

)−1

F⊤e2.

(29)u = −

(
M

d1
+ N⊤N +

d3

d1
I

)−1

N⊤e1.

where K is a chosen kernel function which is defined by 
K{xi, xj} = (Φ(xi),Φ(xj)) . Φ(⋅) is a nonlinear mapping from 
a low-dimensional feature space to a high-dimensional fea-
ture space. C1 and C2 denote training examples from view 
1 and training examples from view 2 respectively, that is, 
C1 = (A

�⊤
1
,B

�⊤
1
)⊤ , C2 = (A

�⊤
2
,B

�⊤
2
)⊤ . We define

Then the optimization problems for kernel MvLapLSTSVM 
with MPGR are written as same as the linear MvLapLST-
SVM with MPGR

where v1 , v2 , u1 , u2 are classifier parameters. c1 , c2 , d1 , d2 , 
D, H are nonnegative parameters, and q1 , q2 , k1 , k2 are slack 
vectors of appropriate dimensions. Then we integrate the 
MPGR to select two sparse subsets of the unlabeled exam-
ples corresponding to the two views.

Suppose a new example x has two views x1 and  
x2 . If 

1

2
|K{x⊤

1
,C

⊤

1
}w

1
+ b

1
+ K{x⊤

2
,C

⊤

2
}w

2
+ b

2
| ≤ 1

2
|K{x⊤

1
,C

⊤

1
}w

3

+b
3
+ K{x⊤

2
,C

⊤
2
}w

4
+ b

4
| , it is classified to class +1 , other-

wise class −1.
Above all, MvLapLSTSVM with MPGR needs to solve 

two small-scale linear equations and also contains the time 
complexity O(Emu) of MPGR while MvLapTSVM solves a 
pairs of QPPs (time complexity O((u + l)3) , u is the number 

(30)
K{x⊤

1
,C⊤

1
}w1 + b1 = 0, K{x⊤

2
,C⊤

2
}w2 + b2 = 0,

K{x⊤
1
,C⊤

1
}w3 + b3 = 0, K{x⊤

2
,C⊤

2
}w4 + b4 = 0,

(31)

G1 = (K{A
�

1
,C⊤

1
}, e),H1 = (K{B

�

1
,C⊤

1
}, e),

G2 = (K{A
�

2
,C⊤

2
}, e),H2 = (K{B

�

2
,C⊤

2
}, e),

v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
, u1 =

(
w3

b3

)
, u2 =

(
w4

b4

)
.

(32)

min
v1,v2,q1,q2

1

2
‖G1v1‖2 +

1

2
‖G2v2‖2 +

D

2
‖G1v1 − G2v2‖2

+ c1(q
⊤
1
q1 + q⊤

2
q2) + c2(v

⊤
1
J⊤
1
L1J1v1 + v⊤

2
J⊤
2
L2J2v2)

s.t. − H1v1 + q1 = e2,

− H2v2 + q2 = e2,

(33)

min
u1,u2,k1,k2

1

2
‖H1u1‖2 +

1

2
‖H2u2‖2 +

H

2
‖H1u1 − H2u2‖2

+ d1(k
⊤
1
k1 + k⊤

2
k2) + d2(u

⊤
1
J⊤
1
L1J1u1 + u⊤

2
J⊤
2
L2J2u2)

s.t. − G1u1 + k1 = e1,

− G2v2 + k2 = e1,

Table 1   Datasets

Name Attributes Instances Classes

Ionosphere 34 351 2
Handwritten digits 649 2000 10
Caltech-101 3766 9146 101
Corel 89 68,040 99
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of unlabeled dataset and l is the number of labeled data-
set) and MvLapSVM solves a large QPP (time complexity 
O((u + l)3) ). Thus MvLapLSTSVM with MPGR can reduce 
the time complexity largely.

4 � Experiments

In this section, we evaluate our proposed methods 
MvLapLSTSVM with MPGR and MvLapLSTSVM on four 
real-world datasets. Three datasets ionosphere, handwritten 
digits and corel come from UCI Machine Learning Reposi-
tory1. Another one is caltech-1012 [42]. Specific information 
about the four datasets is listed in Table 1.

4.1 � Dataset description and experimental setting

•	 Ionosphere The dataset incorporates 351 examples (225 
positive examples and 126 negative examples). The posi-
tive examples are those radar returns which show some 
type of structure in the ionosphere while the negative 
examples are those that do not and their signals pass 
through the ionosphere.

In our experimental setting, we design the original data 
and the resultant data by PCA as two views. We adopt ten-
fold cross-validation to choose the optimal parameters in the 
area [2−7, 27] with exponential growth 1 and get the results 
by operating these methods for five times. We divide the 
whole dataset to 300 training examples and 51 test examples. 

We select 80 examples as labeled examples and the oth-
ers as unlabeled examples in the 300 examples. We set the 
input number of MPGR from 10% to 100% of 220 unlabeled 
examples for each view and intersect the sparse subsets of 
two views. Linear kernel is chosen for the dataset. Multi-
view semi-supervised learning methods MvLapSVM and 
MvLapTSVM, and multi-view supervised learning methods 
SVM-2K, MvTSVM, PSVM-2V and AMVMED are used 
for comparison.

•	  Handwritten digits This dataset contains features of 
handwritten digits (0 ∼ 9) extracted from a collection 
of Dutch utility maps. It contains 2000 examples (200 
examples per class) with view 1 being the 76 Fourier 
coefficients and view 2 being the 64 Karhunen-Love coef-
ficients of each image. Because our proposed methods 
are designed for multi-view binary classification while 
handwritten digit dataset contains 10 classes. We choose 
three pairs (0,8), (3,5) and (2,7) to evaluate all involved 
methods for the experiment. We use 50 examples as label 
examples and 150 unlabel examples, and 200 examples 
for testing. We adopt ten-fold cross-validation to choose 
the optimal parameters in the area [2−10, 210] with expo-
nential growth 1. We set the input number of MPGR as 
150 for each view and intersect the sparse subsets of two 
views.

•	  Caltech-101 The caltech-101 dataset contains 9146 
images in total which owns 101 different object catego-
ries, as well as an additional background/clutter cate-
gory. Each object category contains between 40 and 800 
images on average. Among them, we randomly select two 
classes named ‘BACKGROUND-Google’ and ‘Faces’ for 

1  https​://archi​ve.ics.uci.edu/ml/index​.php.
2  http://www.visio​n.calte​ch.edu/Image​_Datas​ets/Calte​ch101​.

Table 2   Classification performance and running time (%,s) on ionosphere

Percentage Method

MvLapSVM MvLapTSVM MvLapLSTSVM MvLapLSTSVM with MPGR

10 82.35(6.50) (2.67*103) 83.81(7.08) (3.44*103) 85.88(4.68) (3.76*102) 85.88(4.68) (3.14*102)
20 83.14(7.02) (4.11*103) 84.71(4.47) (4.51*103) 85.88(4.68) (5.41*102) 85.88(5.48) (5.40*102)
30 83.53(4.92) (1.11*104) 83.92(4.25) (4.33*103) 84.31(6.04) (4.10*102) 85.10(5.30) (6.06*102)
40 82.75(5.08) (1.50*104) 84.71(2.15) (4.44*103) 84.31(6.04) (1.13*103) 85.88(4.88) (1.04*103)
50 82.75(8.01) (2.08*104) 85.88(4.88) (2.61*103) 86.67(3.77) (7.52*102) 85.10(5.30) (7.34*102)
60 82.35(6.93) (1.22*104) 86.67(1.64) (2.63*103) 86.67(5.44) (2.90*102) 86.27(6.20) (6.49*102)
70 84.71(7.12) (3.79*103) 85.49(3.56) (3.14*103) 85.49(2.97) (1.26*103) 85.10(6.88) (1.50*103)
80 81.18(6.59) (1.48*104) 83.53(6.88) (3.16*103) 83.92(3.77) (6.64*102) 85.88(6.11) (7.38*102)
90 81.18(6.59) (1.50*104) 84.71(3.77) (3.16*103) 83.92(4.88) (1.03*103) 85.49(5.30) (9.84*102)
100 81.57(6.29)(3.17*104) 85.49(5.11) (4.69*103) 85.88(3.22) (1.02*103) 85.88(4.70) (7.06*102)

 Method SVM-2K MvTSVM AMVMED PSVM-2V

Accuracy 82.35(6.93) (1.37*104) 78.04(9.55) (4.43*103) 82.35(4.80) (1.09*103) 79.22(9.96) (3.67*104)

Bold values indicate the best accuracy

https://archive.ics.uci.edu/ml/index.php
http://www.vision.caltech.edu/Image_Datasets/Caltech101
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multi-view binary classification. We adopt 80 examples 
as label examples and 520 unlabel examples, and 302 
examples for testing. We adopt ten-fold cross-validation 

to choose the optimal parameters in the area [2−5, 25] with 
exponential growth 1. We set the input number of MPGR 
as 250 for each view and intersect the sparse subsets of 
two views. The other experimental setting is as same as 
the above experiment.

•	 Corel This dataset has four views from a corel image 
collection. We choose two classes and two views for 
multi-view binary classification. We use 40 examples 
as label examples and 120 unlabel examples, and 62 
examples for testing. We adopt 10-fold cross-vali-
dation to choose the optimal parameters in the area 
[2−5, 25] with exponential growth 1. We set the input 
number of MPGR as 120 for each view and intersect 
the sparse subsets of two views. The other experimen-
tal setting is as same as above experiments.

4.2 � Experimental analysis

From the experimental results in Tables 2, 3 and Figs. 1, 
2, we can find that our method MvLapLSTSVM with 
MPGR performs better than our method MvLapLSTSVM, 
MvLapSVM and MvLapTSVM in most cases. Our meth-
ods MvLapLSTSVM with MPGR and MvLapLSTSVM 
perform far better than SVM-2K, MvTSVM, PSVM-2V 
and AMVMED. However, PSVM-2V performs best in the 
pair (3,5). The performance of MvLapLSTSVM is just a 

Fig. 1   Classification accuracies 
on ionosphere
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Table 3   Classification performance and running time (%,s) on hand-
written digits

Method Digit pair

(0,8) (2,7) (3,5)

SVM-2K 97.70(2.25) 97.90(3.03) 94.10(1.52)
MvTSVM 98.50(0.01) 98.90(0.74) 94.80(0.67)
PSVM-2V 98.30(1.60) 98.70(0.27) 95.30(2.20)
AMVMED 97.70(1.20) 98.60(0.74) 93.80(3.40)
MvLapSVM 97.00(1.46) 96.50(2.21) 95.10(3.23)
MvLapTSVM 98.30(3.25) 98.00(1.90) 94.10(0.35)
MvLapLSTSVM 98.60(0.82) 98.50(0.61) 94.80(2.20)
MvLapLSTSVM with 

MPGR
99.00(0.71) 99.10(0.65) 95.10(1.98)

SVM-2K 3.54*104 3.25*104 3.88*104

MvTSVM 1.05*104 7.22*103 7.90*103

PSVM-2V 7.62*104 7.34*104 7.60*104

AMVMED 1.66*103 1.32*103 1.95*103

MvLapSVM 6.76*103 1.04*104 6.81*103

MvLapTSVM 3.75*104 3.75*104 3.74*104

MvLapLSTSVM 2.56*103 2.36*103 2.80*103

MvLapLSTSVM with 
MPGR

1.89*103 2.20*103 2.20*103

Bold values indicate the best accuracy
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little worse than the one of MvLapSVM and MvLapLST-
SVM with MPGR in the pair (3,5). The reason may be that 
multi-view learning methods based on SVM MvLapSVM 
and PSVM-2V can effectively leverage the information of 
two views in the pair (3,5).

From the experimental results in Tables 4,  5 and Figs. 3, 
4, we can find that MvLapLSTSVM with MPGR is supe-
rior to all the other methods. Our method MvLapLSTSVM 

peforms a little worse than MvLapLSTSVM with MPGR. 
From all experimental results, we find that the running time 
of MvLapLSTSVM and MvLapLSTSVM with MPGR is 
less than the one of MvLapSVM, MvLapTSVM, SVM-2K, 
MvTSVM and close to the one of AMVMED.

In short, we can conclude that our methods MvLapLST-
SVM with MPGR and MvLapLSTSVM perform better 
than MvLapSVM, MvLapTSVM, SVM-2K, MvTSVM, 

Fig. 2   Classification accuracies 
on handwritten digits
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on caltech-101
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PSVM-2V and AMVMED for almost all the cases. They 
own the less time complexity. MvLapLSTSVM with MPGR 
can eliminate outliers and noisy examples in unlabeled 
examples so can enhance the robustness of the relevant algo-
rithm MvLapLSTSVM.

5 � Conclusion and future work

In this paper, two novel multi-view semi-supervised sup-
port vector machines were proposed. MvLapLSTSVM 
and MvLapLSTSVM with MPGR combine two views by 
introducing multi-view co-regularization terms. They lev-
erage the manifold regularization to the semi-supervised 

learning. They can reduce time complexity by solving a 
pair of linear equation problems. MvLapLSTSVM with 
MPGR uses the manifold-preserving graph reduction to 
select a representative and informative unlabeled subset, 
and can improve the robustness of the relevant algorithm 
MvLapLSTSVM. Experimental results on multiple real-
world datasets indicate that MvLapLSTSVM with MPGR 
is superior to SVM-2K, AMVMED, PSVM-2V, MvTSVM, 
MvLapSVM, MvLapTSVM and our method MvLapLST-
SVM. Our method MvLapLSTSVM is next to MvLapLST-
SVM with MPGR. It would be interesting for future work 
to exploit other ways which select the informative and rep-
resentative subsets from unlabeled examples to multi-view 
semi-supervised learning.

Fig. 4   Classification accuracies 
on corel

SVM-2K MvTSVM PSVM-2V AMVMED MvLapSVM MvLapTSVM MvLapLSTSVM with MPGR

av
er

ag
e 

ac
cu

ra
cy

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Table 4   Classification performance and running time (%,s) on caltech-101

Method SVM-2K MvTSVM AMVMED PSVM-2V

Accuracy 79.47(2.21) 6.37*103 81.66(2.56) 1.59*103 73.91(14.85) 8.82*102 76.89(2.49) 1.60*104

 Method MvLapSVM MvLapTSVM MvLapLSTSVM MvLapLSTSVM with MPGR

Accuracy 81.52(4.63) 1.63*104 83.21(3.17) 2.78*104 84.90(1.70) 1.16*104 85.30(0.89) 6.07*103

Bold values indicate the best accuracy

Table 5   Classification performance and running time (%,s) on corel

Method SVM-2K MvTSVM AMVMED PSVM-2V

Accuracy 76.45(3.53) 4.79*103 70.32(5.77) 3.42*103 69.35(9.74) 7.94*102 70.32(2.93) 1.11*104

 Method MvLapSVM MvLapTSVM MvLapLSTSVM MvLapLSTSVM with MPGR

Accuracy 76.77(9.78) 6.42*102 77.10(4.48) 1.52*103 77.10(3.10) 1.83*102 77.74(3.85) 1.81*102

Bold values indicate the best accuracy
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