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Abstract
Kernel density estimation, which is a non-parametric method about estimating probability density distribution of random 
variables, has been used in feature selection. However, existing feature selection methods based on kernel density estima-
tion seldom consider interval-valued data. Actually, interval-valued data exist widely. In this paper, a feature selection 
method based on kernel density estimation for interval-valued data is proposed. Firstly, the kernel function in kernel density 
estimation is defined for interval-valued data. Secondly, the interval-valued kernel density estimation probability structure 
is constructed by the defined kernel function, including kernel density estimation conditional probability, kernel density 
estimation joint probability and kernel density estimation posterior probability. Thirdly, kernel density estimation entropies 
for interval-valued data are proposed by the constructed probability structure, including information entropy, conditional 
entropy and joint entropy of kernel density estimation. Fourthly, we propose a feature selection approach based on kernel 
density estimation entropy. Moreover, we improve the proposed feature selection algorithm and propose a fast feature 
selection algorithm based on kernel density estimation entropy. Finally, comparative experiments are conducted from three 
perspectives of computing time, intuitive identifiability and classification performance to show the feasibility and the effec-
tiveness of the proposed method.

Keywords  Kernel density estimation · Entropy · Feature selection · Kernel function · Interval-valued decision table

1  Introduction

Feature selection is of great practical significance in real life. 
The purpose of feature selection is to select feature subset 
that can most effectively represent the decision from feature 
set of original data. Therefore, we can eliminate some attrib-
utes that are not related to decision, reduce the dimension 
of data, reduce over fitting, and improve the generalization 
ability of the model. Thus, feature selection has attracted 
the attentions of many researchers [1–9]. Especially in fea-
ture selection in numerical data, some researchers [10, 11] 
use discrete operation to preprocess numerical data. How-
ever, it is worth noting that discretization will lead to the 
loss of information in data. In order to avoid the discre-
tization of numerical features, we can catch the distribution 

characteristics of numerical data and estimate the probability 
density of numerical data.

There are two types of probability density estimation: 
parametric estimation and non-parametric estimation. As 
for parametric estimation, it is necessary to assume the 
probability density model of the data. Then, the param-
eters in the model are solved by using the given data, and 
the probability density estimation can be obtained. It ought 
to note that the probability density function can not well 
reflect the rules of the experimental data if the hypotheti-
cal model does not conform to experimental data. How-
ever, the above situation will not occur in non-parametric 
estimation. Non-parametric estimation does not need to 
assume the model of experimental data in advance, but 
directly fits the probability density function in line with 
the law of the distribution. There are several common 
methods of nonparametric density estimation, including 
Histogram estimation [12], Kernel density estimation 
[13] (shortly KDE), Rosenblatt estimation [14] and so on. 
Kernel density estimation overcomes discontinuous dis-
advantage of probability density function in Histogram 
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estimation and Rosenblatt estimation, so it has been widely 
used in many areas [15–24].

Among the applications of kernel density estimation, 
feature selection is an interesting and successful appli-
cation. The reason why it is so widely used in feature 
selection is that it can overcome information loss caused 
by discretization. Therefore, Kwak et al. [24] proposed 
a feature selection method on basis of mutual informa-
tion defined by kernel density estimation. Recently, Xu 
et al. [25] proposed a semi-supervised feature selection 
method with kernel purity and kernel density estimation. 
Zhang et al. [26] proposed a feature selection method in 
line with kernel density estimation for mixed data. It ought 
to notice that the above methods don’t consider interval-
valued data and they can’t be used in feature selection in 
interval-valued data.

As a matter of fact, interval-valued data exist widely in 
real applications to describe uncertainty [27, 28]. Many 
scholars have studied interval-valued data from different 
perspectives. Especially in feature selection, many research-
ers have studied feature selection for inter-val-valued data. 
Dai et al. [27, 28] constructed uncertainty measurement and 
feature selection in interval-valued data. Du et al. [29] put 
forward an approximation distribution reduct in interval-
valued ordered decision tables. Yang et al. [30] proposed an 
attribute reduction based on �−dominance relation in inter-
val-valued information systems. Dai et al. [31] constructed 
dominance-based fuzzy rough set model via probability 
approach in interval-valued decision systems and used the 
model to perform approximation distribution reduct. Guru 
et al. [32] constructed a novel feature selection model for 
supervised interval-valued data on basis of K-means clus-
tering. Li [33] put forward multi-level attribute reductions 
in an interval-valued fuzzy formal context. Dai et al. [34] 
proposed a heuristic feature selection for interval-valued 
data based on conditional entropy. Dai et al. [35] introduced 
a feature selection method in incomplete interval-valued 
decision systems. Guru et al. [36] presented a feature selec-
tion of interval-valued data based on Interval Chi-Square 
Score.

However, so far, there are very few feature selection 
methods on basis of kernel density estimation entropy for 
interval-valued data. Focusing on handling interval-valued 
data by kernel density estimation entropy, a feature selection 
method based on kernel density estimation for interval-val-
ued data is proposed in this paper. We first raise the kernel 
density estimation of interval-valued data, and then propose 
kernel density estimation probability structure. Based on the 
structure, kernel density estimation entropies are proposed 
and used in feature selection for interval-valued data. In 
addition, we improve the feature selection method and pro-
pose a fast feature selection method. Experiments indicate 

the effectiveness of the proposed feature selection methods 
for interval-valued data.

The rest of this paper is organized as below. In Sect. 2, 
the basic concepts of information theory and kernel density 
estimation are introduced. In Sect. 3, a kernel function for 
interval-valued data is proposed, and its theoretical proper-
ties are studied. In Sect. 4, the interval-valued kernel density 
estimation probability structure is raised with the proposed 
kernel function. In Sect. 5, the kernel density estimation infor-
mation entropy, kernel density estimation conditional entropy 
and kernel density estimation joint entropy for interval-valued 
data are constructed by using the raised structure. In Sect. 6, 
we propose a feature selection method based on kernel density 
estimation conditional entropy. For improving efficiency of the 
feature selection method, a fast feature selection algorithm is 
further presented via the incremental expressions of the kernel 
function and the inverse of the covariance matrix. In Sect. 7, 
the validity of the fast feature selection method is verified from 
aspects of computing time, intuitional identifiability and clas-
sification performance by experiments. Section 8 summarizes 
the paper.

2 � Preliminary knowledge

2.1 � Basic concepts in information theory

Let X be a discrete random variable with a range of � . 
p(x) = p(X = x) denotes the probability of occurrence of 
X = x . Information entropy H(X) is defined as below [37]:

Information entropy can measure the amount of information 
needed to eliminate uncertainty. The greater the uncertainty 
of discrete random variable X is, the greater its information 
entropy is.

Let X and Y be discrete random variables with ranges of �  
and �  , respectively. p(x, y) = p(X = x, Y = y) denotes the 
joint probability of x and y, then the joint entropy is defined 
as follows:

Joint entropy can measure the amount of information needed 
to eliminate the uncertainty in the joint distribution of X and 
Y. The greater the uncertainty in X and Y is, the greater the 
joint entropy is.

Let X and Y be discrete random variables with ranges of 
� and �  . p(y|x) = p(Y = y|X = x) denotes the probability of 
Y = y under X = x . The definition of conditional entropy is 
shown as below:

(1)H(X) = −
∑
x∈�

p(x) log p(x)

(2)H(X, Y) = −
∑
x∈�

∑
y∈�

p(x, y) log p(x, y)
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Conditional entropy can measure the amount of information 
needed to eliminate uncertainty in Y under condition of X. 
The more information can X provide about Y, the less uncer-
tainty Y has and the less the conditional entropy is.

The above forms of entropy are all for discrete features. 
Entropy of continuous features without discrete processing can 
be written in the form of integral:

Here X is a continuous random variable. p(x) represents the 
probability density function of a random variable X, and � 
denotes the range of X. From Eq. (4), we can see that the 
key to obtain the entropy of continuous features lies in the 
probability density function.

2.2 � Feature selection

The curse of dimensionality is a problem which occurs in the 
applications of data mining, pattern recognition and machine 
learning [38–40]. In most cases, data sets coming from real 
life have many features in which there may exist irrelevant or 
redundant features that can consume a lot of computing time 
and storage space. Feature selection can deal with the problem 
effectively. Feature selection is to get rid of features which 
are irrelevant to decision and to select the features which are 
relevant to decision. In this way, the performances of learning 
algorithms can be improved.

In this paper, we mainly study the feature selection 
approach based information theory. In most cases, feature 
selection method based on information theory use condition 
entropy H(D|F) to evaluate the degree of relevance between 
features and decision. In condition entropy H(D|F) , F is a 
feature set and D denotes the decision. The smaller the value 
of H(D|F) is, the greater relevance between F and D is. Then, 
we intend to select feature set which have minimum H(D|F) 
in the process of feature selection.

Definition 1  [34] In an information table < U,C > , U is the 
nonempty sample set and C is the nonempty feature set. Let 
F be a selected feature set. For ∀a, b ∈ C − F and a ≠ b , if 
H(D|F ∪ a) < H(D|F ∪ b) , then a is more significant than 
b relative to decision D.

The detailed process about feature selection based on condi-
tion entropy H(D|F) can be shown as follows.

(3)H(Y|X) = −
∑
x∈�

p(x)
∑
y∈�

p(y|x) log p(y|x)

(4)H(X) = −∫x∈�

p(x) log p(x)dx

Algorithm 1 Feature selection based on conditional
entropy
Input: Complete data set U , feature set C, decision

D;maximum number of selected features K; threshold T .
Output: The selected feature subset F

1: Set F to an empty set;
2: min H = ∞;
3: while &&(|F | < K) (|∆H| > T ) do;
4: Q∗ = argminQ∈C−F H (D|F );
5: ∆H = H(D|F )−H(D|F ∪Q∗);
6: F = F ∪Q∗;
7: end while

2.3 � Kernel density estimation

In one-dimensional continuous real data, the definition of ker-
nel density estimation is as follows:

where hn denotes the window width; lim
n→∞

hn = 0 ; n represents 
the number of samples; K(.) denotes a kernel function; xi 
denotes the ith sample. The common kernel functions are 
Uniform kernel, Gauss kernel, Epanechnikov kernel and 
Quadric kernel. Gauss kernel �(x − x

i
, h) =

1√
2�h

exp

�
−
(x−xi)

2

2h2

�
 is 

most commonly used in kernel density estimation. Accord-
ing to the properties of probability density function, it is 
realized that the integration of probability density function 
in definition domain is 1, that is to say, the integration of 
kernel function in its definition domain is equal to 
1:∫ x∈�K(x)dx = 1 . Bandwidth h plays a smooth role in 
probability density function. The larger h is, the smoother 
the curve estimated by kernel density is. On the contrary, the 
steeper the curve is. From the definition of kernel function, 
we can see that the kernel density estimation actually calcu-
lates the average effect of all sample points on the point x 
probability density based on the distance. The closer the 
sample points are to the point x, the greater the contribution 
to the point x is. On the contrary, the farther the distance is, 
the smaller the contribution will be.

In m-dimensional continuous real data, the Gauss kernel 
function is defined as follows:

(5)f̂hn (x) =
1

nhn

n∑
i=1

Khn

(
x − xi

)
=

1

nhn

n∑
i=1

K

(
x − xi

hn

)

(6)

�
�
x − xi, h

�
=

1�√
2�h

�m�∑ � 1

2

exp

�
−

�
x − xi

�T ∑ −1
�
x − xi

�
2h2

�
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where xi represents ith sample; 
∑

 denotes the m-dimen-
sional sample covariance; 

∑
−1 represents the inverse of 

the covariance matrix; �∑ � denotes the determinant of the 
covariance.

Definition 2  [41] In a t × t dimension covariance matrix

∑
t−1 is the first t − 1 dimensional matrix of 

∑
t , rt is the first 

t − 1 row of the t column element. If 
∑

t is reversible, the 
inverse matrix 

∑
−1
t

 of 
∑

t can be expressed as the following 
incremental formula:

where

Lemma 1  The determinant of the covariance matrix satisfies 
the following property:

Definition 3  [26] In data set U, the feature set X contains 
t − 1 features, where t ⩾ 2 and its inverse matrix is expressed 
as: 

∑
−1
t−1

 . The X-feature part of sample x is represented as 
column vector x . When the feature set Z = X ∪ Y is obtained 
by adding feature Y to the feature set X , its inverse matrix 
is expressed as 

∑
−1
t

 . The Z-feature part of sample z is 
expressed as column vector z = (x,y) =

(
x1, x2, ..., xt−1, y

)T , 
and the incremental expression of each element in the kernel 
matrix is expressed as:

3 � Kernel density estimation 
for interval‑valued data

Real-valued data can be regarded as a special form of inter-
val-valued data, where the left and right boundaries of the 
interval form of real-valued data are equal. Inspired by the 
large contribution of close samples and the small contribu-
tion of far samples, the interval-valued Gauss kernel can be 
constructed.

�
t =

�∑
t−1 rt

rT
t

1

�

(7)
�

−1
t

=

�∑
−1
t−1

�t

�T
t

0

�
+

1

�t

�
btb

T
t
bt

b
T
t

1

�

�
bt = −

∑
−1
t−1

rt

�t = 1 − rT
t

∑
−1
t−1

rt = 1 + rtbt

(8)|∑ t| = �t|
∑

t−1|

(9)
�
�
zi − zj, h

�
=

�
�
xi − xj, h

�

√
2��th exp

��
(xi−xj)

T
bt+(yi−yj)

�2

2h2�t

�

Definition 4  In an interval-valued decision table 
IVDT =< U,C ∪ D > , U denotes the sample set, |U| = n 
denotes the base of U is n; C represents the conditional fea-
ture set; D denotes the decision feature. Feature values on 
conditional features are interval values and feature values on 
decision features are real values. Let A ⊆ C and |A| = m , the 
interval Gaussian kernel function of random interval vari-
able x is defined as follows:

where hn denotes the window width, hn > 0 and lim
n→∞

hn = 0 ; 
x−
i,A

 represents the m-dimensional vector formed by the left 
bound of interval values of the ith sample on the feature set 
A ; x+

i,A
 represents the m-dimensional vector formed by the 

right bound of interval values of the ith sample in the feature 
set A ; 

∑
L,A is the left-bound covariance of m-dimensional 

on feature set A ; 
∑

R,A is the right-bound covariance of 
m-dimensional on feature set A ; 

∑
−1
L,A

 and �∑ L,A� denote the 
inverse and the determinant of the left-bounded covariance 
matrix on feature set A ; 

∑
−1
R,A

 and �∑ R,A� denote the inverse 
and the determinant of the right-bounded covariance matrix 
on feature set A.

We can rewrite Eq. 5 to �(x − x
i
, h

n
,A) = L(x − x

i
, h

n
,A)+

R(x − x
i
, h

n
,A)  w h e r e  L(x − x

i
, h

n
,A) =

1

(
√
2�h

n
)m�∑

L,A
� 12

exp(−
(x−x−

i,A
)T

∑
−1
L,A

(x−x−
i,A
)

2h2
n

) and R(x − x
i
, h

n
,A) =

exp(−
(x−x+

i,A
)T

∑−1
R,A

(x−x+
i,A

)

2h2n

)

(
√
2�hn)

m �∑R,A �
1
2

Example 1  An in ter val -va lued decis ion  t able 
IVDT =< U,C ∪ D > is presented in Table  1 where 
U = {x1, x2, x3, x4} , C = {a, b, c} . In this example, we set 
h = 1∕log2(4) = 0.5 and A = {a} . Then we can get the fol-
l o w i n g  r e s u l t s :  L

(
x1 − x2,

1

2
,A

)
= 0.1080 

R
(
x1 − x2,

1

2
,A

)
= 0.0003.

(10)

�(x − xi, hn,A) =
1

2(
√
2�hn)

m�∑ L,A�
1

2

exp

�
−
(x − x−

i,A
)T
∑

−1
L,A

(x − x−
i,A
)

2h2
n

�

+
1

2(
√
2�hn)

m�∑ R,A�
1

2

exp

�
−
(x − x+

i,A
)T
∑

−1
R,A

(x − x+
i,A
)

2h2
n

�
.

Table 1   An interval-valued 
decision table

a b c D

x
1

[1,2] [2,4] [1,4] 1
x
2

[2,4] [2,3] [3,6] 2
x
3

[2,3] [2,3] [3,6] 2
x
4

[1,2] [2,4] [1,4] 1
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Similarly, we can get the following matrixes:

L
�

1

2
,A

�
=

⎛
⎜⎜⎜⎝

0.7981 0.1080 0.1080 0.7981

0.1080 0.7981 0.7981 0.1080

0.1080 0.7981 0.7981 0.1080

0.7981 0.1080 0.1080 0.7981

⎞
⎟⎟⎟⎠
 and

R
�

1

2
,A

�
=

⎛
⎜⎜⎜⎝

0.7981 0.0003 0.1080 0.7981

0.0003 0.7981 0.1080 0.0003

0.1080 0.1080 0.7981 0.1080

0.7981 0.0003 0.1080 0.7981

⎞
⎟⎟⎟⎠

Proposition 1  Interval Gaussian kernel function Eq. 10 has 
the following properties:

(1)	 Continuity;
(2)	 𝛷

(
x − xi, hn,A

)
> 0,∀A ⊆ C ;

(3)	 Symmetry:�
(
x − y, hn,A

)
= �

(
y − x, hn,A

)
,

	   ∀x, y ∈ U,∀A ⊆ C;
(4)	 ∫ �

(
x − xi, hn,A

)
dx = 1,∀A ⊆ C;

(5)	 Semi-positive definiteness.

We can notice that the interval-valued Gaussian kernel 
raised in this paper will be reduced to real-valued Gaussian 
kernel when the interval values are reduced to real values 
and 

∑
L,A and 

∑
R,A are reversible. From this aspect, we can 

see that interval kernel function is an extension of classical 
Gaussian kernel.

Theorem 1  ∀A ⊆ B ⊆ C , ∃𝛿 > 0, if hn ⩾ � and 
∑

L,B and ∑
R,B are reversible, then �(x − xi, hn,A) ⩾ �(x − xi, hn,B).

Proof  Let A ⊆ B ⊆ C , E = A + b, b ∈ B . We can get 
�
(
x − xi, hn,A

)
= L

(
x − xi, hn,A

)
+ R

(
x − xi, hn,A

)
 .  We 

can first prove the properties on L(.).
Suppose 

∑
L,E is reversible, we can get 

∑
L,A is reversible 

and 𝛽L,E > 0 by Eq. 8 and the semi-positive definiteness of 
covariance matrix. Similarly, when 

∑
L,B is reversible, we 

can get 
∑

L,F is reversible and 𝛽L,F > 0 for ∀F ⊆ B.

L(x − xi, hn,A) =
exp(−

(x−x−
i,A

)T
∑−1

L,A
(x−x−

i,A
)

2h2n

)

(
√
2�hn)

m�∑ L,A�
1
2

L(x − xi, hn,E) =
exp(−

(x−x−
i,E

)T
∑−1

L,E
(x−x−

i,E
)

2h2n

)

(
√
2�hn)

m�∑ L,E�
1
2

Based on Definitions 2, 1 and 3, we can get:

L(x − x
i
, h

n
,A) − L(x − x

i
, h

n
,E) =

1

(
√
2�h

n
)m�∑

L,A�
1
2

exp(−
(x−x−

i,A
)T

∑
−1
L,A

(x−x−
i,A
)

2h2
n

)

×(1 −
1

√
2�h

n
�

1
2
L,E

exp(−
((x−x−

i,A
)Tb

L,E+(x−x
−
i,b
))2

2h2
n
�
L,E

))   .  

We can see that 1

(
√
2𝜋hn)

m�∑ L,A�
1
2

exp(−
(x−x−

i,A
)T

∑
−1
L,A

(x−x−
i,A
)

2h2
n

) > 0 . 

max{exp(−
((x−x−

i,A
)T bL,E+(x−x

−
i,b
))2

2h2n�L,E
)} = 1 for 𝛽L,E > 0 and hn > 0.    

So when hn ⩾
1

√
2��

1
2
L,E

 , L(x − xi, hn,A) ⩾ L(x − xi, hn,E).  Let 

�
L
= max{

1

√
2��

1
2
L,E

,
1

√
2��

1
2
L,F

, ...,
1

√
2��

1
2
L,B

} where F = E + f , f ∈ B . 

When hn ⩾ �L , L(x − xi, hn,A) ⩾ L(x − xi, hn,B).
Similarly, let �R = max{

1
√
2��

1
2
R,E

,
1

√
2��

1
2
R,F

,⋯ ,
1

√
2��

1
2
R,B

} . If 

hn ⩾ �R , we have R(x − xi, hn,A) ⩾ R(x − xi, hn,B).
In summary, when � = max{�L, �R} and hn ⩾ � , 

�(x − xi, hn,A) ⩾ �(x − xi, hn,B) holds. 	 � ◻

Definition 5  Given an interval-valued decision table 
IVDT =< U,C ∪ D > , A ⊆ C and |A| = m , the probability 
density function estimation of interval values on A is defined 
as below:

Proposition 2  (1)∫ p̂A(x)dx = 1.

Proof  It can be proved by Proposition 1. 	�  ◻

4 � Kernel density estimation probability 
structure for interval values

Enlightened by Kwak et al. [24], the conditional probability 
and joint probability of kernel density estimation for interval 
values can be defined based on the interval kernel function.

L(x − xi, hn,E) =

exp

�
−

(x−x−
i,E
)T

∑
−1
L,E

(x−x−
i,E
)

2h2
n

�

(
√
2�hn)

m�∑ L,E�
1

2

=

exp

�
−

(x−x−
i,A
)T

∑
−1
L,A

(x−x−
i,A
))2

2h2
n

�

(
√
2�hn)

m�∑ L,A�
1

2 �
1

2

L,E

∗ exp

⎛
⎜⎜⎝
−

1

�L,E
((x − x−

i,A
)TbL,E + (x − x−

i,b
))2

2h2
n

⎞
⎟⎟⎠

(11)p̂A(x) =
1

n

∑
i∈U

𝜙
(
x − xi, hn,A

)
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Definition 6  Given an interval-valued decision table 
IVDT =< U,C ∪ D > , A ⊆ C and |A| = m . In feature set 
A , the conditional probability of kernel density estimation 
under D = d is defined as below

where Id =
{
xi|∀xi ∈ U, D(i) = d

}
 in which D(i) denotes 

decision value of ith sample; nd = |Id| represents the number 
of elements in set Id.

Definition 7  Given an interval-valued decision table 
IVDT =< U,C ∪ D > , A ⊆ C and |A| = m . In feature set A , 
the joint probability is defined as follows by Eq. 12:

where n denotes the number of samples in sample set U.

Definition 8  Given an interval-valued decision table 
IVDT =< U,C ∪ D > , A ⊆ C and |A| = m . In feature set A , 
the posterior probability is defined as follows by Eqs. 12 
and 13:

Proposition 3 

(1)	  p̂A(x) =
nd

n

∑
d∈D

p̂A(x�d);
(2)	  

∑
d∈D p̂A(d�x) = 1;

(3)	  p̂A(d) =
1

n

∑n

i=1
p̂A

�
d�xi

�
;

(4)	 p̂A(x) ⩾ p̂A(x, d);
(5)	 p̂A(x, d) ⩽ p̂A(x|d).

Proof  (1) 

(2) 

(12)p̂A(x|d) = 1

nd

∑
i∈Id

𝜙
(
x − xi, h,A

)

(13)

p̂A(x, d) = p̂A(d)p̂A(x|d)
=

nd

n

1

nd

∑
i∈Id

𝜙
(
x − xi, h,A

)

=
1

n

∑
i∈Id

𝜙
(
x − xi, h,A

)

(14)

p̂A(d�x) =
p̂A(x, d)

p̂A(x)
=

1

n

∑
i∈Id

𝜙
�
x − xi, h,A

�
1

n

∑
i∈U 𝜙

�
x − xi, h,A

�

=

∑
i∈Id

𝜙
�
x − xi, h,A

�
∑

i∈U 𝜙
�
x − xi, h,A

�

nd

n

∑
d∈D

p̂A(x|d) =
nd

n

1

nd

∑
d∈D

∑
i∈Id

𝜙(x − xi, h,A)

=
1

n

∑
i∈U

𝜙(x − xi, h,A).

(3)

(3)It can be proven by Eqs. 13 and 11. (4)It can be proven 
by Eqs. 13 and 12. 	�  ◻

Theorem 2  ∃𝛿 > 0, ∀A ⊆ B ⊆ C , if hn ⩾ � and 
∑

L,B and ∑
R,B are reversible, then:

(1)	 p̂A(x) ⩾ p̂B(x);
(2)	 p̂A(x, d) ⩾ p̂B(x, d) ;
(3)	 p̂A(x|d) ⩾ p̂B(x|d).

Proof  It can be proved according to Theorem 1. 	�  ◻

5 � Kernel density estimation entropy 
of interval values

According to the law of large numbers, the information 
entropy, joint entropy and conditional entropy of kernel 
density estimation for interval values can be defined.

Given  an  i n t e r va l -va lued  dec i s ion  t ab l e 
IVDT =< U,C ∪ D > , U denotes the sample set. Suppose 
the samples are independent and subject to the same distri-
bution. A ⊆ C denotes feature subset. � denotes the value 
domain of A.

Definition 9  The information entropy of interval values is 
defined as below:

�
d∈D

p̂A(d�x) =
�
d∈D

∑
i∈Id

𝜙
�
x − xi, h,A

�
∑

i∈U 𝜙
�
x − xi, h,A

�

=

∑
d∈D

∑
i∈Id

𝜙
�
x − xi, h,A

�
∑

i∈U 𝜙
�
x − xi, h,A

�

=

∑
i∈U 𝜙

�
x − xi, h,A

�
∑

i∈U 𝜙
�
x − xi, h,A

� .

p̂A(d) = ∫ p̂A(d, x)dx

= ∫ p̂A(x)p̂A(d|x)dx

=
1

n

n∑
i=1

p̂A
(
d|xi

)

(15)
Ĥ(A) = −∫

x∈�

p̂A(x) log p̂A(x)dx

= −
1

n

∑
i∈U

log p̂A
(
xi
)
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Theorem 3  ∃𝛿 > 0, ∀A ⊆ B ⊆ C , if hn ⩾ � and 
∑

L,B and ∑
R,B are reversible, then Ĥ(A) ⩾ Ĥ(B).

Proof  It can be proved according to Theorem 2. 	�  ◻

Definition 10  The joint entropy of interval values is defined 
as:

Definition 11  The entropy of D under the condition A is 
defined as follows:

Conditional entropy Ĥ(D|A) can reflect the correlation 
between conditional feature set A and decision feature D. 
The larger the condition entropy is, the smaller the cor-
relation between A and D is. Otherwise, the greater the 
correlation between A and D is.

Definition 12  The entropy of A under the condition D is 
defined as follows:

Theorem 4 

(16)

Ĥ(A,D) = −∫x∈�

∑
d∈D

p̂A(x, d) log p̂A(x, d)dx

= −∫x∈�

∑
d∈D

p̂A(x)p̂A(d|x) log p̂A(x, d)dx

= −
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
xi, d

)

(17)

Ĥ(D|A) = ∫x∈�

p̂A(x)Ĥ(D|A = x)dx

= −∫x∈�

p̂A(x)
∑
d∈D

p̂A(d|x) log p̂A(d|x)dx

= −
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
d|xi

)

(18)

Ĥ(A|D) =
∑
d∈D

p̂A(d)Ĥ(A|D = d)

= −
∑
d∈D

p̂A(d)∫x∈�

p̂A(x|d) log p̂A(x|d)dx

= −
∑
d∈D

p̂A(d)∫x∈�

p̂A(x)p̂A(d|x)
p̂A(d)

log p̂A(x|d)dx

= −
∑
d∈D

∫x∈�

p̂A(x)p̂A(d|x) log p̂A(x|d)dx

= −
1

n

∑
d∈D

∑
i∈U

p̂A
(
d|xi

)
log p̂A

(
xi|d

)

Ĥ(A,D) = Ĥ(A|D) + H(D)

= Ĥ(D|A) + Ĥ(A).

Proof  Since 
∑

d∈D p̂A(d�x) = 1 and 1
n

∑
i∈U p̂A(d�xi) = p̂A(d) , 

we have:

In summary, Ĥ(A,D) = Ĥ(A|D) + H(D) = Ĥ(D|A) + Ĥ(A) . 	�  ◻

6 � Feature selection on basis of kernel 
density estimation entropy

6.1 � Feature selection on basis of kernel density 
estimation entropy

Based on the definition (see Definition 11) of conditional 
entropy via interval kernel density estimation, we construct 
the original algorithm (see Algorithm 2) to calculate condi-
tional entropy. In Step 3, we calculate the inverse of covari-
ance matrix by gaussian elimination [42, 43] whose time 
complexity is O(|A|3) ; the time complexity of the kernel 
matrix from Step 1 to Step 5 is O(n2 ∗ |A|3) ; from Step 6 
to Step 11, the time complexity of conditional entropy is 
O(n2 + n ∗ Nd) . To sum up, the time complexity of Algo-
rithm 2 is O(n2 ∗ |A|3 + n2 + n ∗ Nd).

Ĥ(A|D) + H(D) = −
1

n

∑
d∈D

p̂A(d) log p̂A(d)

−
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
xi|d

)

= −
1

n

∑
d∈D

∑
i∈U

p̂A
(
d|xi

)
log p̂A(d)

−
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
xi|d

)

= −
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
xi, d

)

= Ĥ(A,D)

Ĥ(D|A) + Ĥ(A) = −
1

n

∑
i∈U

log p̂A
(
xi
)

−
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
d|xi

)

= −
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
xi
)

−
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
d|xi

)

= −
1

n

∑
i∈U

∑
d∈D

p̂A
(
d|xi

)
log p̂A

(
d, xi

)

= Ĥ(A,D)
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Algorithm 2 Original Conditional Entropy calculation
for Interval-Valued Data (OCE IV D)
Input: An interval-valued decision table IV DT =< U ,C ∪

D >, |U | = n; [1,Nd], the value domain of decision feature
D; the conditional feature setA.

Output: Ĥ (D|A).
1: for i = 1 to n do
2: for j = 1 to n do
3: Based on Eq. 10, we can get ΦA,ij ;//Computing

kernel matrix ΦA on conditional feature set A.
4: end for
5: end for
6: for k = 1 to n do
7: for l = 1 to n do

p(k)=0;
p(k)=p(k)+ΦA,kl ;

8: end for
9: for d = 1 to Nd do

p′(k, d) = p′(k, d) +
∑

b∈Id
ΦA,kb ;

10: end for
H(k)= p′(k)

p(k) log2
p′(k)
p(k)

11: end for
Ĥ (D|A) = −

∑
H(:)/n

12: return Ĥ (D|A).

Then, we construct a feature selection algorithm (see 
Algorithm 3) based on conditional entropy of kernel den-
sity estimation. The time complexity of Algorithm 3 is 
O(K ∗ |C| ∗ (|A|3 ∗ n2 + n2 + n ∗ Nd)).

Algorithm 3 Original Feature Selec-
tion based on Interval-Valued Kernel Density Es-
timation entropy (OFS IV KDE)
Input: An interval-valued decision table IV DT =< U ,C ∪

D >, |U | = n; the value domain of decision feature D is
[1,Nd]; number of features K and stop threshold T .

Output: The selected feature S

1: Set S X, S to an empty set;
2: min H = ∞;
3: while &&(|S| < K) (|∆H| > T ) do;
4: pre H = min H;
5: for Q = C − S do

S X = S ∪Q;
new H = CE IV D(IV DT,S X);

6: if new H < min H then
7: min H = new H;
8: min Q = Q;
9: end if
10: end for
11: ∆H = min H − pre H;
12: S(end+ 1) = min Q;
13: end while

6.2 � Fast feature selection on basis of kernel density 
estimation entropy

The computation of kernel matrix has high time complexity 
and low efficiency. Therefore, in this section, we first pro-
pose an incremental algorithm for interval-valued data (see 
Algorithm 4) to calculate kernel matrix and the inverse of 
covariance matrix. Secondly, we propose a concept of kernel 

partition matrix and an algorithm (see Algorithm 5) of cal-
culating conditional entropy based on kernel partition matrix 
for interval-valued data. Finally, based on the above two algo-
rithms, a fast feature selection algorithm (see Algorithm 6) is 
proposed by interval-valued kernel density estimation entropy.

Algorithm 4 Incremental algorithm for Interval-
Valued Data (I IV D)
Input: An interval-valued decision table IV DT =< U ,C ∪

D >, |U | = n; the selected conditional feature set S;
a candidate conditional feature Q; left-bound covariance
matrix σL

SQ on S and Q; right-bound covariance matrix
σR
SQ on S and Q; the left-bound kernel matrix ΦL

S on S;
the right-bound kernel matrix ΦR

S on S; inverse of left-
bound covariance matrix

∑−1
L,S on S; inverse of right-

bound covariance matrix
∑−1

R,S on S; width parameter
h

Output: ΦL
S X ; ΦR

S X ;
∑−1

L,S X ;
∑−1

R,S X
1: S X = S +Q;
2: if |S X| == 1 then //Q is the first candidate feature.
3:

∑−1
L,S X = 1;

4:
∑−1

R,S X = 1;
5: Calculate ΦL

S X ,

ΦL
S X,ij= L(xi−xj , h,S X)= 1√

2πh
exp(−

(x−
i −x−

j )2

2h2 ),
∀i, j ∈ [1,n] ;

6: Calculate ΦR
S X ,

ΦR
S X,ij=R(xi −xj , h,S X) = 1√

2πh
exp(−

(x+
i −x+

j )2

2h2 ),
∀i, j ∈ [1,n] ;

7: else //Q is not the first candidate feature.
8: rl =

(
σL
SQ

)
;

9: rr =
(
σR
SQ

)
;

10: bl = −
∑−1

L,Srl;
11: br = −

∑−1
R,Srr;

12: βl = 1+ rlT bl;
13: βr = 1+ rrT br;
14: if βl �= 0 then

15:
∑−1

L,S X =
(∑−1

L,S + blblT

βl
, bl
βl
; blT

βl
, 1
βl

)
;

16: ΦL
S X canbe obtained throughΦL

S ,∀i, j∈[1,n],
L(xi−xj , h,S X) =

L(xi−xj ,h,S)

√
2πh·βl

1
2 ·exp(

((x−
i,S

−x
−
j,S

)T bl+(x−
i,Q

−x
−
j,Q

))2

2h2βl
)

;

17: else
18:

∑−1
L,S X = 1;

19: All the elements in the kernel matrix ΦL
S X are 1.

20: end if
21: if βr �= 0 then

22:
∑−1

R,S X =
(∑−1

R,S + brbrT

βr
, br
βr

; brT

βr
, 1
βr

)
;

23: ΦR
S X canbe obtained throughΦR

S , ∀i, j∈[1,n],
R(xi − xj , h,S X) =

R(xi−xj ,h,S)

√
2πh·βr

1
2 ·exp(

((x+
i,S

−x+
j,S

)T br+(x+
i,Q

−x+
j,Q

))2

2h2βr

;

24: else
25:

∑−1
R,S X = 1 ;

26: All the elements in the kernel matrix ΦR
S X are 1 ;

27: end if
28: end if
29: return ΦL

S X ;ΦR
S X ;

∑−1
L,S X ;

∑−1
R,S X .
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In Algorithm 4, if conditional feature Q is the first 
candidate feature, then the inverse of left bound covari-
ance matrix and right bound covariance matrix are both 1 
and the kernel matrix �L

S
 and �R

S
 are calculated based on 

Eq. 10 where S denotes the selected conditional features. 
If conditional feature Q is not the first candidate feature, 
then we need to calculate the inverse of covariance matrix 
based on Eq. 7 and two kernel matrices �L

S
 , �R

S
 based on 

Eqs. 9 and 10, respectively. The main cost of Algorithm 4 
is the calculation of the kernel matrix, so the time com-
plexity of the algorithm is O(n2).

Algorithm 5 Conditional Entropy calculation for
Interval-Valued Data (CE IV D)
Input: An interval-valued decision table IV DT =< U ,C ∪

D >, |U | = n; [1,Nd], the value domain of decision feature
D; the conditional feature subset A; kernel matrix ΦL

A
consisting of left bounds of interval values; kernel matrix
ΦR

A consisting of right bounds of interval values
Output: -Ĥ (D|A)/n
1: Create a kernel partition matrix Υ (A,D) and set

the element value of the matrix to 0; Υ (A,D) =
Υi,D(j) (A,D)

)
n×Nd

, whereΥi,D(j) (A,D) = Υi,D(j) +

ΦL
A,ij + ΦR

A,ij , ∀i, j ∈ [1,n]
2: Ĥ (D|A) = 0 ;
3: for K = 1 to n do
4: p̂A (d|xk) =

Υk,d(A,D)
|Υ (A,D)|k

;

5: Ĥ (D|A) = Ĥ (D|A) + P̂A (d|xk) log P̂A (d|xk);
6: end for
7: return -Ĥ (D|A)/n.

In Algorithm 5, the time complexity of Step 1 is O(n2) ; 
the time complexity of Step 3 to Step 6 is O(n). So the 
total time complexity of the algorithm is O(n2 + n).

Definition 13  In an interval-valued decision table 
IVDT =< U,C ∪ D > , U denotes the sample set and 
|U| = n  ,  A ⊆ C  .  �(A) =

(
�
(
xi − xj, h,A

))
n×n

=(
L
(
xi − xj, h,A

)
+ R

(
xi − xj, h,A

))
n×n

 is a kernel matrix. 
The range of decision D is the integer of 

[
1,Nd

]
 . Then the 

definition of the kernel partition matrix � (A,D) is as follows:

where mjd =

{
1 D(j) = d

0 D(j) ≠ d
.

Example 2  (Continued from Example 1) Based on Table 1, 

w e  c a n  g e t  M(D) = (mjd)4×2  :  M(D) =

⎛
⎜⎜⎜⎝

1 0

0 1

0 1

1 0

⎞
⎟⎟⎟⎠

 . 

(
�1,1(A,D)

)
= 1.5962 + 1.5962 = 3.1924 . Similarly, we can 

get: �(A,D) =

⎛⎜⎜⎜⎝

3.1924 0.3243

0.2166 2.5023

0.432 2.5023

3.1924 0.3243

⎞⎟⎟⎟⎠
.

Re mark 1  �i,d(A,D) =
∑n

j=1
�
�
xi − xj, h,A

�
mjd =

∑
i∈Id

�(
x − xi, h,A

)
= n ∗ p̂

A

(
xi, d

)
.

Theorem 5  |� (A,D)|i represents the addition of the ith row 
elements of the kernel partition matrix. It satisfies the fol-
lowing property:

Proof  |� (A,D)|i = ∑
d∈[1,Nd]

�id(A,D) =
∑

d∈[1,Nd]
∑n

j=1
�
�
xi − xj, h,A

�
mjd

 
=
∑n

j=1
�
�
xi − xj, h,A

�
 = n ∗

1

n
∗
∑n

j=1
�
�
xi − xj, h,A

�
= n ∗ 

p̂
A

(
x
i

)
 	�  ◻

Remark 2  p̂A
(
d|xi

)
=

𝛶i,d(A,D)

|� (A,D)|i

(19)

�(A,D) =
(
�i,d(A,D)

)
n×Nd

=

(
n∑
j=1

�ijmjd

)

n×Nd

=

(
n∑
j=1

�
(
xi − xj, h,A

)
mjd

)

n×Nd

=

(
n∑
j=1

L
(
xi − xj, h,A

)
mjd

)

n×Nd

+

(
n∑
j=1

R
(
xi − xj, h,A

)
mjd

)

n×Nd

|� (A,D)|i =
∑
j∈U

𝜙
(
xi − xj, h,A

)
= n ∗ p̂A

(
xi
)
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Algorithm 6 Fast Feature Selection based on
Interval-Valued Kernel Density Estimation entropy
(FFS IV KDE)
Input: An interval-valued decision table IV DT =< U,C ∪

D >,|U | = n; [1,Nd], the value field of decision feature
D; the maximum upper limit of the number of selected
features K; threshold T; width parameter h

Output: Selected feature set S.
1: Set S X to an empty set
2: ∆H = inf

3: while |S| < K&&|∆H| > T do
4: min H = ∞;
5: pre H = min H;
6: for Q ∈ C − S do
7: S X = S +Q ;
8:

(∑−1
L,S X ,

∑−1
R,S X ,ΦL

S X ,ΦR
S X

)

=I IV D
(
Q,S,

∑−1
L,S ,

∑−1
R,S ,ΦL

S ,ΦR
S , h

)
;

9: new H = CE IV D IV DT,ΦL,ΦR, h,Nd

)

10: if new H < min H then
11: min H = new H;
12: min Q = Q;
13: min ivscl =

∑−1
L,S X ;

14: min ΦL = ΦL
S X ;

15: min ivscr =
∑−1

R,S X ;
16: min ΦR = ΦR

S X ;
17: end if
18: end for
19: ∆H = min H − pre H;
20:

∑−1
L,S = min ivscl;

21: ΦL
S = min ΦL;

22:
∑−1

R,S = min ivscr;
23: ΦR

S = min ΦR;
24: S = S X;
25: end while
26: return S.

Algorithm 6 describes a Fast Feature Selection based 
on Interval-Valued Kernel Density Estimation entropy 
(shortly FFS_IVKDE ). Step 8 calculates the inverse of the 
left bound covariance matrix 

∑
−1
L,S_X

 and the right bound 
covariance 

∑
−1
R,S_X

 on conditional feature S_X where 
S_X is the conditional feature set after adding a candi-
date conditional feature Q. In addition, the kernel matrix 
�

L
S_X

 about the left bound of interval values and the kernel 
matrix �R

S_X
 about the right bound of interval values on the 

feature set S_X are calculated. Step 9 calculates the condi-
tional entropy new_H on the conditional feature set S_X . 
Steps 10-17 determine whether the conditional entropy 
new_H on the conditional feature set S_X is smaller than 
the conditional entropy min _H on the original feature set 
S . If new_H is less than min _H , then candidate feature Q 
in S_X can provide feature information about decision fea-
ture D and put Q in the selected feature set S . And, based 
on the time complexity analysis of the above Algorithms 5 
and 4, we can get that the time complexity of Algorithm 6 
is O(K ∗ |C| ∗ (n2 + n)).

7 � Experiments

In order to test the effectiveness of the proposed method, 
experiments are carried out on 14 data sets. The details of 
these 14 data sets are shown in Table 2. The first four of 
them are real-life interval-valued data sets [28, 44, 45]. 
SRBCT is real-valued data from [46]. Glioma is real-
valued data from [47]. The other data sets are real-valued 
data from UCI [48].

Since the last ten data sets are real-valued data, we need 
to convert the real-valued data into interval-valued data. 
The specific operation about above converting is designed 
as follows: a−

i
= ai − �d , a+i = ai + �d where ai denotes 

the ith sample’s value on feature a ∈ C , �d denotes the 
standard variance of feature values about samples whose 
labels are the same as ith sample [49].

In the experiment, we evaluate the effectiveness of the 
fast feature selection method proposed in this paper from 
three perspectives: (1). Feature selection via interval-
valued kernel density estimation entropy mainly includes 
three aspects: computing of kernel matrix and the inverse 
of covariance matrix, computing of conditional entropy, 
feature selection. In order to test wheth-er the fast fea-
ture selection algorithm is faster than the original feature 
selection algorithm, we compare the running time of two 
methods from three aspects: the computing time of kernel 
matrix and the inverse of covariance matrix, the comput-
ing time of conditional entropy, and the computing time 
of feature selection. (2). Sample distribution by first two 
features selected by our method are compared with that 
of two features selected randomly. (3). Compare the clas-
sification performance of our method with other six com-
parative methods. Due to the limited number of samples in 
Fish, Face, Car and Glioma, leave-one-out cross validation 
is used. Other data sets use 10 fold cross validation.

7.1 � Comparison of running time

In order to test wether the fast feature selection algorithm is 
faster than the original feature selection method, we conduct 
experiments on three representative data, including Face 
data of 9 label classes, Hill data of 1212 samples and Colon 
data of 2000 features. Here we set window width parameter 
h as 1/log2(n) where n denotes the number of samples. In 
addition, the hardware platform for our experiments is a PC 
equipped with 12 G main memory and 3.41 GHZ CPU. The 
software is Matlab (Version R2019a).

The calculation of the kernel matrix and the inverse of 
covariance matrix in Steps 1-5 of Algorithm 2 is denoted 
as the Non Incremental strategy of Interval-Valued Data 
(shortly NI_IVD ). We compare NI_IVD with Algorithm 4, in 
which the calculation of the kernel matrix and the inverse of 
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covariance matrix is denoted Incremental algorithm of Inter-
val-Valued Data (shortly I_IVD ). In Fig. 1, we show the time 
comparison results of NI_IVD method and I_IVD method on 
Face, Hill and Colon, where the red line represents I_IVD 
and the black line represents NI_IVD . In each node (x, y), 
x represents the number of features, and y represents time 
of the method calculating the kernel matrix and inverse of 
covariance matrix under feature subset {a1, a2,⋯ , ax} . From 
Fig. 1, we can find I_IVD is much faster than IN_IVD on the 
three data sets. Therefore, our incremental algorithm I_IVD 
can greatly speed up the speed of calculating kernel matrix 
and the inverse of covariance matrix.

Fig. 2 shows the time comparison results of conditional 
entropy on Face, Hill and Colon. In Fig. 2, the black line 
represents the original conditional entropy calculation 
method (see Algorithm 2), and the red line represents the 
improved conditional entropy calculation (see Algorithm 5). 
What’s more, in each node (x, y), x represents the num-
ber of features, and y represents the running time of the 
method calculating condition entropy under feature subset 
{a1, a2,⋯ , ax} . From the figure, we can see that the cal-
culation time of CE_IVD is significantly less than that of 
OCE_IVD . It indicates that algorithm CE_IVD is faster than 
algorithm OCE_IVD.

Figure 3 shows the time comparison results of feature 
selection on Face, Hill and Colon data. Furthermore, in each 
node (x, y), x represents the number of features and y rep-
resents running time of the method selecting feature x. In 
Fig. 3, the black line represents the original feature selection 
method (see Algorithm 3), and the red line represents the 
fast feature selection method (see Algorithm 6). We can see 
that the red line is much lower than the black line. Therefore, 
the speed of FFS_IVKDE is faster than that of OFS_IVKDE 
in feature selection.

7.2 � Intuitive effect

In order to intuitively display the effectiveness of the 
proposed fast feature selection, we select Face, Iris and 
Colon to show the intuitive effect of the method. We 
compare scatter plot constructed by the first two fea-
tures selected through Algorithm 6 with scatter plot con-
structed by two random features from original data. Here 
we set window width parameter h as 3/log2(n) where n 
denotes the number of samples. Figs 4, 5, 6 show the 
comparison of scatter plots, where each rectangle rep-
resents a sample and different colors represent different 
classes.

Sub-figures (a) in Figs. 4–6 show sample distribution 
under the first two features selected by our method, while 
sub-figures (b) in Figs. 4-6 show sample distribution under 
two random features. The x-axis denotes the first selected 
feature and the y-axis denotes the second selected feature. 
We can find that the sample distribution of the first two 
features selected by our method is clear, while the sample 
distribution of two random features has many intersections. 
It suggests that the top two features selected by our method 
have higher identifiability than the two random features, 
visually. Hence, the proposed feature selection does be 
effective.

7.3 � Classification performance

Most of the traditional classifiers are for real-valued data. 
To classify interval-valued data, Dai et al. [28] proposed 
the extensions of K-Nearest Neighbor(KNN) method and 
Probabilistic Neural Network(PNN).    

Table 2   Interval-valued data 
sets

Data Abbreviation Instances Features Classes Data  type

Fish Fish 12 13+1 4 Interval-valued  data
Face Face 27 6+1 9 Interval-valued  data
Car Car 33 7+1 4 Interval-valued  data
Water Water 316 48+1 2 Interval-valued  data
Iris Iris 150 4+1 3 Real-valued  data
Glass Glass 214 9+1 7 Real-valued  data
Wine Wine 178 13+1 3 Real-valued  data
Waveform Wave 500 40+1 3 Real-valued  data
Hillvalley Hill 1212 100+1 2 Real-valued  data
ColonTumor Colon 62 2000+1 2 Real-valued  data
SRBCT Srbct 83 2308+1 4 Real-valued  data
Glioma Glioma 50 4434+1 4 Real-valued  data
TumorsC TumorsC 60 7130+1 2 Real-valued  data
LungCancer Lung 96 7129+1 2 Real-valued  data
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Definition 14  [28] ui and uj are two objects of interval-val-
ued information table. ui =

[
u
k,−

i
, u

k,+

i

]
 and uj =

[
u
k,−

j
, u

k,+

j

]
 

represent the interval values of object ui and uj in kth feature. 
The distance between ui and uj is defined as follows: Where m denotes the number of conditional features and 

P(
uk
i
⩾uk

j

) denotes the possible degree of the interval value ui 

Dis
(
ui, uj

)
=

√√√√ m∑
k=1

(
P(

uk
i
⩾uk

j

) − P(
uk
i
⩽uk

j

)
)2

(a) Face (b) Hill (c) Colon

Fig. 1   Comparison of computing time of kernel matrix and inverse on covariance matrix on Face, Hill, Colon

(a) Face (b) Hill (c) Colon

Fig. 2   Comparison of computing time of conditional entropy on Face, Hill, Colon

(a) Face (b) Hill (c) Colon

Fig. 3   Comparison of computing time of feature selection on Face, Hill, Colon
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relative to the interval value uj , which is designed as follows: 
P(uk

i
⩾uk

j
) = min{1,max{

ui
k,+−uj

k,−

(ui
k,+−ui

k,−)+(uj
k,+−uj

b,−)
, 0}}.

In this paper, we compare our method with six represen-
tive methods. In [27], a similarity relation between two inter-
val values based on the possible degree of interval value A 
relative to interval value B was proposed. In [30], the � 
dominance relation was presented. In [34], the relative 
bound difference similarity degree between two interval val-
ues was proposed. In [50], the �-weak similarity relation 
between two interval values was proposed. Then we use 
these four kinds of relations to define conditional entropy 
similar to [27] for feature selection, and obtain four feature 
selection methods, namely Feature Selection of the Similar-
ity Relation (FSSR), Feature Selection of � Dominance 
Relation (FSDR), Feature Selection of the Relative Bound 
Difference similarity degree (FSRBD) and Feature Selection 

of the �-Weak Similarity relation (FSWS). Attribute reduc-
tion using conditional entropy based on dominance fuzzy 
rough sets was proposed by [35] , called Attribute Reduction 
of Dominance Relation (ARDR). Recently, feature selection 
based on Interval Chi-Square Score was presented by [36], 
called Feature Selection of Interval Chi-Square Score 
(FSICSS). We proposed Fast Feature Selection method of 
the Kernel Density Estimation entropy (FFSKDE) in this 
paper. The range of parameter � involved in FSSR, FSDR, 
FSRBD, FSWS is set to {0.4, 0.5, 0.6, 0.7, 0.8} . According 
to literatures [24, 51], the range of parameter h involved in 
the proposed FFSKDE is set to { 1

log2(n)
,

2

log2(n)
,

3

log2(n)
} where 

n denotes the number of samples. In this experiment, FSSR, 
FSDR, FSRBD, FSWS, FFSKDE feature selection methods 
select the optimal classification results within its corre-
sponding parameter range.

Fig. 4   Comparison of sample 
distribution on two features 
from Face Dataset
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Fig. 5   Comparison of sample 
distribution on two features 
from Iris Data set
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Fig. 6   Comparison of sample 
distribution on two features 
from Colon Data set
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In the following, we will compare FFSKDE with 
FSSR,FSDR, FSRBD, FSWS, FSCISS, ARDR and All fea-
tures on the indexes of accuracy, precision, recall which can 
comprehensively and well reflect the classification perfor-
mance of these methods.

First, the accuracy results are shown in Table  3 and 
Table 4 where the optimal classification accuracies of the 
data among the seven feature selection methods are rep-
resented in bold. From Table 3 and Table 4, the times of 
being the optimal of FFSKDE method is higher than other 
six methods on both KNN classifier and PNN classifier. 
Moreover, in terms of the average classification accuracy 
on the data sets, FFSKDE method is not only higher than 
the other six comparative methods, but also higher than the 
average classification accuracy of ALL features. Especially, 
in KNN classifier and PNN classifier, only our method has 
an average classification accuracy of more than 80% . By 
KNN classifier, our method’s average classification accuracy 
is about 6% higher than the sub-optimal method’s average 
classification accuracy. By PNN classifier, our method’s 
average classification accuracy is about 4% higher than the 
sub-optimal method’s average classification accuracy.

Second, the precision results are displayed in Table 5 and 
Table 6 where the optimal classification precision results 
among the seven feature selection methods are denoted in 
bold. By KNN classifier, we can observe the times when 
FFSKDE achieves the optimal results is higher than other 
comparative methods. By PNN classifier, although the times 
that FFSKDE achieves the best equal to FFSR, the average 
classification precision of FFSKDE is obviously higher than 
FFSS. What’s more, the average value of classification preci-
sion on FFSKDE is not only higher that of other comparative 
methods, but also higher ALL features.

Finally, the classification recall results are shown in 
Table 7 and Table 8 where the optimal classification recall 
results are represented in bold.We can get the same conclu-
sion as classification precision. Then, we can get result that 
the FFSKDE proposed in this paper performs better than 
other methods and All features in accuracy, precision and 
recall. Therefore, the fast feature selection method proposed 
in this paper is effective.

8 � Conclusion

Kernel density estimation technology has been applied 
in feature selection to avoid discretization for real-valued 
data. However, there are few studies on feature selection 
based on kernel density estimation for interval-valued 
data. Therefore, a feature selection method based on ker-
nel density estimation entropy for interval-valued data is 
proposed in this paper. Firstly, we raise kernel density esti-
mation of interval-valued data and study its’ properties. Ta
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The kernel density estimation probability structure is 
constructed. By the constructed structure, a series of ker-
nel density estimation entropies are defined. Further we 
present a fast feature selection method by kernel parti-
tion matrix, incremental expressions of kernel matrix and 
inverse of covariance matrix. Experiments are conducted 
to verify the proposed approach. The results show that the 
proposed fast feature selection method is efficient.

It is worth noting that the proposed fast feature selec-
tion algorithm doesn’t consider the correlation among 
the selected features. Therefore, in the future work, we 
will construct an improved feature selection method via 
introducing the concept of mutual information which can 
not only evaluate the correlation between the selected fea-
tures and decision feature, but also evaluate the correlation 
among the selected features. However, how to construct 
the mutual information by kernel density estimation is 
challenging. In the future, we intend to study this issue.
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