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Abstract

Kernel density estimation, which is a non-parametric method about estimating probability density distribution of random
variables, has been used in feature selection. However, existing feature selection methods based on kernel density estima-
tion seldom consider interval-valued data. Actually, interval-valued data exist widely. In this paper, a feature selection
method based on kernel density estimation for interval-valued data is proposed. Firstly, the kernel function in kernel density
estimation is defined for interval-valued data. Secondly, the interval-valued kernel density estimation probability structure
is constructed by the defined kernel function, including kernel density estimation conditional probability, kernel density
estimation joint probability and kernel density estimation posterior probability. Thirdly, kernel density estimation entropies
for interval-valued data are proposed by the constructed probability structure, including information entropy, conditional
entropy and joint entropy of kernel density estimation. Fourthly, we propose a feature selection approach based on kernel
density estimation entropy. Moreover, we improve the proposed feature selection algorithm and propose a fast feature
selection algorithm based on kernel density estimation entropy. Finally, comparative experiments are conducted from three
perspectives of computing time, intuitive identifiability and classification performance to show the feasibility and the effec-

tiveness of the proposed method.

Keywords Kernel density estimation - Entropy - Feature selection - Kernel function - Interval-valued decision table

1 Introduction

Feature selection is of great practical significance in real life.
The purpose of feature selection is to select feature subset
that can most effectively represent the decision from feature
set of original data. Therefore, we can eliminate some attrib-
utes that are not related to decision, reduce the dimension
of data, reduce over fitting, and improve the generalization
ability of the model. Thus, feature selection has attracted
the attentions of many researchers [1-9]. Especially in fea-
ture selection in numerical data, some researchers [10, 11]
use discrete operation to preprocess numerical data. How-
ever, it is worth noting that discretization will lead to the
loss of information in data. In order to avoid the discre-
tization of numerical features, we can catch the distribution
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characteristics of numerical data and estimate the probability
density of numerical data.

There are two types of probability density estimation:
parametric estimation and non-parametric estimation. As
for parametric estimation, it is necessary to assume the
probability density model of the data. Then, the param-
eters in the model are solved by using the given data, and
the probability density estimation can be obtained. It ought
to note that the probability density function can not well
reflect the rules of the experimental data if the hypotheti-
cal model does not conform to experimental data. How-
ever, the above situation will not occur in non-parametric
estimation. Non-parametric estimation does not need to
assume the model of experimental data in advance, but
directly fits the probability density function in line with
the law of the distribution. There are several common
methods of nonparametric density estimation, including
Histogram estimation [12], Kernel density estimation
[13] (shortly KDE), Rosenblatt estimation [14] and so on.
Kernel density estimation overcomes discontinuous dis-
advantage of probability density function in Histogram
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estimation and Rosenblatt estimation, so it has been widely
used in many areas [15-24].

Among the applications of kernel density estimation,
feature selection is an interesting and successful appli-
cation. The reason why it is so widely used in feature
selection is that it can overcome information loss caused
by discretization. Therefore, Kwak et al. [24] proposed
a feature selection method on basis of mutual informa-
tion defined by kernel density estimation. Recently, Xu
et al. [25] proposed a semi-supervised feature selection
method with kernel purity and kernel density estimation.
Zhang et al. [26] proposed a feature selection method in
line with kernel density estimation for mixed data. It ought
to notice that the above methods don’t consider interval-
valued data and they can’t be used in feature selection in
interval-valued data.

As a matter of fact, interval-valued data exist widely in
real applications to describe uncertainty [27, 28]. Many
scholars have studied interval-valued data from different
perspectives. Especially in feature selection, many research-
ers have studied feature selection for inter-val-valued data.
Dai et al. [27, 28] constructed uncertainty measurement and
feature selection in interval-valued data. Du et al. [29] put
forward an approximation distribution reduct in interval-
valued ordered decision tables. Yang et al. [30] proposed an
attribute reduction based on a—dominance relation in inter-
val-valued information systems. Dai et al. [31] constructed
dominance-based fuzzy rough set model via probability
approach in interval-valued decision systems and used the
model to perform approximation distribution reduct. Guru
et al. [32] constructed a novel feature selection model for
supervised interval-valued data on basis of K-means clus-
tering. Li [33] put forward multi-level attribute reductions
in an interval-valued fuzzy formal context. Dai et al. [34]
proposed a heuristic feature selection for interval-valued
data based on conditional entropy. Dai et al. [35] introduced
a feature selection method in incomplete interval-valued
decision systems. Guru et al. [36] presented a feature selec-
tion of interval-valued data based on Interval Chi-Square
Score.

However, so far, there are very few feature selection
methods on basis of kernel density estimation entropy for
interval-valued data. Focusing on handling interval-valued
data by kernel density estimation entropy, a feature selection
method based on kernel density estimation for interval-val-
ued data is proposed in this paper. We first raise the kernel
density estimation of interval-valued data, and then propose
kernel density estimation probability structure. Based on the
structure, kernel density estimation entropies are proposed
and used in feature selection for interval-valued data. In
addition, we improve the feature selection method and pro-
pose a fast feature selection method. Experiments indicate
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the effectiveness of the proposed feature selection methods
for interval-valued data.

The rest of this paper is organized as below. In Sect. 2,
the basic concepts of information theory and kernel density
estimation are introduced. In Sect. 3, a kernel function for
interval-valued data is proposed, and its theoretical proper-
ties are studied. In Sect. 4, the interval-valued kernel density
estimation probability structure is raised with the proposed
kernel function. In Sect. 5, the kernel density estimation infor-
mation entropy, kernel density estimation conditional entropy
and kernel density estimation joint entropy for interval-valued
data are constructed by using the raised structure. In Sect. 6,
we propose a feature selection method based on kernel density
estimation conditional entropy. For improving efficiency of the
feature selection method, a fast feature selection algorithm is
further presented via the incremental expressions of the kernel
function and the inverse of the covariance matrix. In Sect. 7,
the validity of the fast feature selection method is verified from
aspects of computing time, intuitional identifiability and clas-
sification performance by experiments. Section 8 summarizes
the paper.

2 Preliminary knowledge
2.1 Basic concepts in information theory

Let X be a discrete random variable with a range of X.
p(x) = p(X = x) denotes the probability of occurrence of
X = x. Information entropy H(X) is defined as below [37]:

H(X) == ) p(x)log p(x) (1

xeX

Information entropy can measure the amount of information
needed to eliminate uncertainty. The greater the uncertainty
of discrete random variable X is, the greater its information
entropy is.

Let X and Y be discrete random variables with ranges of X
and Y, respectively. p(x,y) = p(X = x,Y = y) denotes the
joint probability of x and y, then the joint entropy is defined
as follows:

HXY) == 3 ) plx.y)logp(x. ) )

xeXyeY

Joint entropy can measure the amount of information needed
to eliminate the uncertainty in the joint distribution of X and
Y. The greater the uncertainty in X and Y is, the greater the
joint entropy is.

Let X and Y be discrete random variables with ranges of
Xand Y. p(y|x) = p(Y = y|X = x) denotes the probability of
Y = y under X = x. The definition of conditional entropy is
shown as below:
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HY|X) = = ) px) ), pvl) log p(yl) 3)

xeX yeY

Conditional entropy can measure the amount of information
needed to eliminate uncertainty in ¥ under condition of X.
The more information can X provide about Y, the less uncer-
tainty Y has and the less the conditional entropy is.

The above forms of entropy are all for discrete features.
Entropy of continuous features without discrete processing can
be written in the form of integral:

HX) =~ / p(x)log p(x)dx 4)
xeX

Here X is a continuous random variable. p(x) represents the
probability density function of a random variable X, and X
denotes the range of X. From Eq. (4), we can see that the
key to obtain the entropy of continuous features lies in the
probability density function.

2.2 Feature selection

The curse of dimensionality is a problem which occurs in the
applications of data mining, pattern recognition and machine
learning [38—40]. In most cases, data sets coming from real
life have many features in which there may exist irrelevant or
redundant features that can consume a lot of computing time
and storage space. Feature selection can deal with the problem
effectively. Feature selection is to get rid of features which
are irrelevant to decision and to select the features which are
relevant to decision. In this way, the performances of learning
algorithms can be improved.

In this paper, we mainly study the feature selection
approach based information theory. In most cases, feature
selection method based on information theory use condition
entropy H(D|F) to evaluate the degree of relevance between
features and decision. In condition entropy H(D|F), F is a
feature set and D denotes the decision. The smaller the value
of H(D|F) is, the greater relevance between F and D is. Then,
we intend to select feature set which have minimum H(D|F)
in the process of feature selection.

Definition 1 [34] In an information table < U,C >, U is the
nonempty sample set and C is the nonempty feature set. Let
F be a selected feature set. For Va,b € C — F and a # b, if
H(D|F U a) < H(D|F U b), then a is more significant than
b relative to decision D.

The detailed process about feature selection based on condi-
tion entropy H(D|F) can be shown as follows.

Algorithm 1 Feature selection based on conditional

entropy

Input: Complete data set U, feature set C, decision
D;maximum number of selected features K; threshold T.

Output: The selected feature subset F

1: Set F to an empty set;

2: min_H = oo;

3: while (|F| < K)&&(|AH| > T) do;

4: Q* =argmingec—r H D(F );

5

6

7

AH = H(D|F) — H(D|F U Q*);
F =FUQ*
: end while

2.3 Kernel density estimation

In one-dimensional continuous real data, the definition of ker-
nel density estimation is as follows:

A 1 n 1 n x—x,
Jp, () = i ;Kh (r—x)= i pa K< 7 > )]

n

where £, denotes the window width; r}l»ngo h, = 0; nrepresents
the number of samples; K(.) denotes a kernel function; x,
denotes the ith sample. The common kernel functions are
Uniform kernel, Gauss kernel, Epanechnikov kernel and

Quadric kernel. Gauss kernel @(x - x,, i) = % exp <— ("2','1‘;)7> is

most commonly used in kernel density estimation. Accord-
ing to the properties of probability density function, it is
realized that the integration of probability density function
in definition domain is 1, that is to say, the integration of
kernel function in its definition domain is equal to
1:/ .exK(x)dx = 1. Bandwidth h plays a smooth role in
probability density function. The larger 4 is, the smoother
the curve estimated by kernel density is. On the contrary, the
steeper the curve is. From the definition of kernel function,
we can see that the kernel density estimation actually calcu-
lates the average effect of all sample points on the point x
probability density based on the distance. The closer the
sample points are to the point x, the greater the contribution
to the point x is. On the contrary, the farther the distance is,
the smaller the contribution will be.

In m-dimensional continuous real data, the Gauss kernel
function is defined as follows:

1
(Varh) 1 21

exp <_ (-x) X! (X—xl.)>

<D(x —xi,h) =

(6)

2h?
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where x; represents ith sample; Y denotes the m-dimen-
sional sample covariance; Y, ~! represents the inverse of
the covariance matrix; | ) | denotes the determinant of the
covariance.

Definition 2 [41] In a ¢ X ¢ dimension covariance matrix

Z= (%07

Y, is the first# — 1 dimensional matrix of ). ,, r, is the first
t — 1 row of the 7 column element. If ), is reversible, the
inverse matrix ); ~'of 3}, can be expressed as the following
incremental formula:

-1 T
-1 _ 2,_1 0t l bzb; bt
2= (o)t ?
where

br=—z,__11rz
p=1-rl Yy 'r,=1+rp,

Lemma 1 The determinant of the covariance matrix satisfies
the following property:

DIEYADIN ®)

Definition 3 [26] In data set U, the feature set X contains
t — 1features, where ¢t > 2 and its inverse matrix is expressed
as: Yy, t‘_ll. The X-feature part of sample x is represented as
column vector x. When the feature set Z = X U Y is obtained
by adding feature Y to the feature set X, its inverse matrix
is expressed as Z[‘l. The Z-feature part of sample z is
expressed as column vector z = (x,y) = (x1 I ST AP y)T,
and the incremental expression of each element in the kernel
matrix is expressed as:

¢(x; —x;.h)

x;—X; Tb, =Y : 9

¢(z—2.h) =

3 Kernel density estimation
for interval-valued data

Real-valued data can be regarded as a special form of inter-
val-valued data, where the left and right boundaries of the
interval form of real-valued data are equal. Inspired by the
large contribution of close samples and the small contribu-
tion of far samples, the interval-valued Gauss kernel can be
constructed.

@ Springer

Definition 4 In an interval-valued decision table
IVDT =< U,CuU D >, U denotes the sample set, |U| =n
denotes the base of U is n; C represents the conditional fea-
ture set; D denotes the decision feature. Feature values on
conditional features are interval values and feature values on
decision features are real values. Let A C C and |A| = m, the
interval Gaussian kernel function of random interval vari-
able x is defined as follows:

1
2(\/2xh, " 4l

(x— xl._A)T ZZA(X - x,)
exp| — i

D(x —x;,h,,A) =

! (10)

1
2V 2mh,)"| X gal?

-1
(=x )T YR =xf)
exp| — .
202

where h,, denotes the window width, /, > O and lim /s, = 0;

n—oo

X, represents the m-dimensional vector formed by the left
bound of interval values of the ith sample on the feature set
A; x;l represents the m-dimensional vector formed by the
right bound of interval values of the ith sample in the feature
set A; )7, 4 is the left-bound covariance of m-dimensional
on feature set A; )4 is the right-bound covariance of
m-dimensional on feature set A; Y, Z; and| ) ; 4| denote the
inverse and the determinant of the left-bounded covariance
matrix on feature set A; Y, 1;,}4 and| ), r 4| denote the inverse
and the determinant of the right-bounded covariance matrix
on feature set A.

—+

We canrewrite Eq. 5 to®@(x — x;, h,,A) = L(x — x;, h,,A)+

R(x —x;,h,,A) where Lkx-ux;h,,A)= —_—
(V2zh )" ¥ a4l2
[CESR D Yl Ct
_ _ - ia) ZrAY A

(=x )" ZL;{(X_XLA) P 202 )
(————") and Rex - x,h,.4) = i

(\ﬂhmmlflml%

Example 1 An interval-valued decision table
IVDT =< U,CUD > is presented in Table 1 where
U= {x,%,x35,x}, C={a,b,c}. In this example, we set
h=1/log2(4) = 0.5 and A = {a}. Then we can get the fol-

lowing results: L(xl—xz,%,A>=O.1080
1 _

R(x1 _x, E,A) = 0.0003.

Table 1 An interval-valued a b c D

decision table
Xy [1.2] [24] [1.4] 1
X [24] [23] [3.6] 2
X3 [2,3] [23] [3.6] 2
Xy [1.2] [24] [1.4] 1
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Similarly, we can get the following matrixes:
0.7981 0.1080 0.1080 0.7981

L(l A) ~10.1080 0.7981 0.7981 0.1080
2’77/ 710.1080 0.7981 0.7981 0.1080
0.7981 0.1080 0.1080 0.7981

and

0.7981 0.0003 0.1080 0.7981
0.0003 0.7981 0.1080 0.0003
~10.1080 0.1080 0.7981 0.1080
0.7981 0.0003 0.1080 0.7981

Proposition 1 Interval Gaussian kernel function Eq. 10 has
the following properties:

(1) Continuity;
(2) ®(x—x,h,,A)>0YACC;

(3) Symmetry:¢p(x —y, h,,A) = ¢(y — x,h,,A),
Vx,y € UVA C C;
@ [ $(x—x;,h,A)dx = LVA C C;

(5) Semi-positive definiteness.

We can notice that the interval-valued Gaussian kernel
raised in this paper will be reduced to real-valued Gaussian
kernel when the interval values are reduced to real values
and )}, , and )  , are reversible. From this aspect, we can
see that interval kernel function is an extension of classical
Gaussian kernel.

Theorem 1 VACB CC,356>0,if h, > 6 and ), p and
2. rp are reversible, then p(x — x;, h,,A) > ¢p(x — x;, h,,, B).

Proof Let ACBCC, E=A+b, beB. We can get
@ (x—x;, h,,A) =L(x—x;, h,,A) +R(x —x;,h,,A). We
can first prove the properties on L(.).

Suppose Y, ; i is reversible, we can get ), ; 4 is reversible
and f; > 0 by Eq. 8 and the semi-positive definiteness of
covariance matrix. Similarly, when )’ ; p is reversible, we

can get )’ ; - is reversible and f; . > 0 for VF C B.

Tyl e
Omxi)” By G

exp(= 202 )
L(x —x;,h,,A) = L
(V2rh,y"| £ 1al2
S U s W
exp(—< iE) iéE( I,E))
L(x—x;,h,E) = &

1
V2zhy| L |2

Based on Definitions 2, 1 and 3, we can get:

=37 X =)
exp <_(x Yig izL.E(x Yik >
1
(V2zh,)"| X gl

=x )T Y 7L (x—x7)))?
exp <_ iA 2;;4 iA )

(\/ﬂhn)"ﬂ 2ral lﬂzE

i((x —x )b+ (x —x,))

L(x—x;,h, E) =

xexp|—
2h?
n
= T =1 (e
Lx = x,.h,, A) — L(x = x;, b, E) = L exp(— il Tt
V2zh | L 1412 2,
1 (o=, ) by g+ (x=x7,))
x(1 - - exp(——A— )
21h, p, b

1 exp(— (x—xl,’A)T ZZ;(X_X;A)) >0
V2 8412 2,

(e=x7)7Th, L_E+(x—xijb>)2

We can see that

max {exp(— T yy=1 for f, >0 and h, > 0.
nPLE >
So when h,, > ! — L(x — x;,h,,A) > L(x — x;, h,,E). Let
ViR,
8, = max{—— I ...——}where F=E+f, f €B.

4 1
Varpl, VBl VBl
When h, > 6;, L(x — x;, h,,A) > L(x — x;, h,, B).

Similarly, let 6 = max{ ——, ——, ..., ——}. I

h, > 6y, we have R(x — x;, h,,A) > R(x —x;, h,,B).
In summary, when 6 = max{6,,6x} and h, >0,
¢ —x;,h,,A) = Pp(x — x;, h,, B) holds. O

Definition 5 Given an interval-valued decision table
IVDT =< U,CUD >, A C C and |A| = m, the probability
density function estimation of interval values on A is defined
as below:

AW =Y B =,k A) (11

ieU

Proposition2 (1)/ p,(x)dx = 1.

Proof It can be proved by Proposition 1. O

4 Kernel density estimation probability
structure for interval values

Enlightened by Kwak et al. [24], the conditional probability

and joint probability of kernel density estimation for interval
values can be defined based on the interval kernel function.

@ Springer



2612 International Journal of Machine Learning and Cybernetics (2020) 11:2607-2624

Definition 6 Given an interval-valued decision table
IVDT =< U,CUD >, A CC and |A| = m. In feature set
A, the conditional probability of kernel density estimation
under D = d is defined as below

lEl,

Palxld) =

where I, = {x;|Vx; € U, D(i) = d} in which D(i) denotes
decision value of ith sample; n; = |I,;| represents the number
of elements in set /.

Definition 7 Given an interval-valued decision table
IVDT =< U,CuUD >, A C Cand|A| = m. In feature set A,
the joint probability is defined as follows by Eq. 12:

Palx,d) = py(@d)py(x|d)

fa 1 qux X;, hA
d il (13)

—2¢ —x;,h,A)

i€l

where n denotes the number of samples in sample set U.

Definition 8 Given an interval-valued decision table
IVDT =< U,CuUD >, A C Cand|A| = m. In feature set A,
the posterior probability is defined as follows by Eqs. 12
and 13:
1
patrd) Zier, $(x—x;,h,A)
Pax) izieyd)(x—xi,h,A)
_ Zield d)(x X h’A)
Liev $(x=x.hA)

Proposition 3

13A(d|x) =
(14)

(1) par) == dE Palx|d);
eD

() ZdeDﬁA(d|x) =1

B3) pald) =1 X0 pa(dlx);

(4 Pax) = pa(x, d);
() Palx,d) < py(xld).

Proof (1)
nd I’ld 1
ZpA(xld) — > ¢ —x,hA)
deD Ny geb i€l
=- Zq’)(x X b, A).
zEU
@)
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> dd) X —x;, hA
Y batdln = Y, == ( )
deD ied Licu d)(x—xi,h,A)

B Laen Zield d)(x —x;,h,A)
- Ziev d)(x_xi’h’A)

_ Yiev P(x = x.h.A)

- Tepblr—xihA)

)
Pald) = / Pald, x)dx
= [ bapataoas
-1 ; paldl)

(3)It can be proven by Eqgs. 13 and 11. (4)It can be proven
by Egs. 13 and 12. O

Theorem2 36 >0,VACBCC , ifh, >
2. r.p are reversible, then:

6 and )}, g and

(1) pa(x) = pp);
() patx,d) 2 pp(x,d);
(3) palxld) = pp(x|d).

Proof 1t can be proved according to Theorem 1. O

5 Kernel density estimation entropy
of interval values

According to the law of large numbers, the information
entropy, joint entropy and conditional entropy of kernel
density estimation for interval values can be defined.

Given an interval-valued decision table
IVDT =< U,CUD >, U denotes the sample set. Suppose
the samples are independent and subject to the same distri-
bution. A C C denotes feature subset. A denotes the value
domain of A.

Definition 9 The information entropy of interval values is
defined as below:

HA) = - / Pa(x) log py(x)dx

== Y logp, (x)

zEU

as)
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Theorem3 36 >0,VACBCC . ifh, > 6 and )}  and
2. r.p are reversible, then HA) > HB).

Proof 1t can be proved according to Theorem 2. O

Definition 10 The joint entropy of interval values is defined
as:

HA,D) = - / D palx.d)log p,(x, dydx
*€A geD

=— | Y ha@paliv)logpsx.d)dx  (16)

x€A gepD
1 R ~
T 2 2 baldlx) logpy (xi.d)
icU deb

Definition 11 The entropy of D under the condition A is
defined as follows:

AD|A) = / Pa@HADIA = x)dx
xXEA

= _/ A13,4(%) Y baldlx)logp,(d|x)dx (17)
X€

deD

= ‘rl, D, 2 baldix) log pa (dlx;)

ieU deD

Conditional entropy H(D|A) can reflect the correlation
between conditional feature set A and decision feature D.
The larger the condition entropy is, the smaller the cor-
relation between A and D is. Otherwise, the greater the
correlation between A and D is.

Definition 12 The entropy of A under the condition D is
defined as follows:

H(AID) = ) po(dH(AID = d)

deD
= T 0a@ [ patald)logp, (e
deD xeEA
. PaPaldlx) .
=-)p (d)/ ————— log p,(x|d)dx
deZD Y en Pa@ 4 (18)
-3 [ hapataiogp,laras
deD Y Xx€A
1 . .
=, 2 ZPA (dlxi) log py (xild)
deD ieU
H(A,D) = HA|D) + H(D)
= H(D|A) + H(A).
Theorem 4 (DIA) “)

Proof Since ¥, pa(d]x) = 1 and% Y v Paldlx) = p4(a),
we have:

FIAID) + HD) = = 3" py(@logh,(@

deD
1 . R
T D, Y baldlx) logpy (xi1d)
ieU deD
1 A .
=— DD baldlx;) logpa(@)
deD iU
1 . R
i Z ZpA (dlxi) log py (xi|d)
nicv aep
1 R .
I Z ZPA(‘”%‘) logps (x;-d)
ieU deD
= H(A,D)
H(D|A) + HA) = —% D logha (x;)
iev
1 . .
- Z ZpA (d|x;) log py (d|x;)
ieU deD
1 ) .
=~ 2 X baldlx;)logpy (x;)
ieU deD
1 . R
== 2 X paldlx) log by (dlx;)
iU deD
1 R .
=- Z ZPA(‘”X:') log s (d> ;)
iU dep
= H(A,D)
In summary, #(4,D) = H(AID) + H(D) = H(DIA) + H(A). =

6 Feature selection on basis of kernel
density estimation entropy

6.1 Feature selection on basis of kernel density
estimation entropy

Based on the definition (see Definition 11) of conditional
entropy via interval kernel density estimation, we construct
the original algorithm (see Algorithm 2) to calculate condi-
tional entropy. In Step 3, we calculate the inverse of covari-
ance matrix by gaussian elimination [42, 43] whose time
complexity is O(|A|?); the time complexity of the kernel
matrix from Step 1 to Step 5 is O(n? * |A|?); from Step 6
to Step 11, the time complexity of conditional entropy is
O(n* +n % N,). To sum up, the time complexity of Algo-
rithm 2 is O(n? * |A|> + n> + n = N,).
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Algorithm 2 Original Conditional Entropy calculation
for Interval-Valued Data (OCE_IV D)

Input: An interval-valued decision table IVDT =< U,C U
D >, |U| = n; [1,N4], the value domain of decision feature
D; the conditional feature setA.

Output: H (D|A).

1: for i =1 ton do

2: for j =1 ton do
3: Based on Eq. 10, we can get ¢4, ;;;//Computing
kernel matrix @ 4 on conditional feature set A.
4: end for
5: end for
6: for k=1 ton do
7 for I =1 ton do
p(k)=0;
p(k)=p(k)+Pa,k ;
8: end for
9: for d =1 to N4 do

p'(k,d) =p'(k,d) + X pcr, Pakb 3
10: end for ) )
_p P
H(k)="x log2 55
11: end flor
A (D|A) = — X H()/n
12: return H (D|A).

Then, we construct a feature selection algorithm (see
Algorithm 3) based on conditional entropy of kernel den-
sity estimation. The time complexity of Algorithm 3 is
O(K * |C| * (|A]? * n®> + n> + n % N)).

Algorithm 3 Original Feature Selec-
tion based on Interval-Valued Kernel Density Es-
timation entropy (OFS_IVKDE)

Input: An interval-valued decision table IVDT =< U,C U
D >, |U| = n; the value domain of decision feature D is
[1,N4]; number of features K and stop threshold T.

Output: The selected feature S

: Set S_X, S to an empty set;

min_H = oco;

while (|S| < K)&&(|AH| > T) do;
pre-H = min_H;
for Q =C — S do
S X =SuUQ;
new_H = CE_IVD(IVDT, S_X);

if new_H < min_H then
min_H = new_H;
minQ = Q;

: end if

10: end for

11: AH =min_H — pre_H;

12: S(end + 1) = min_Q;

13: end while

6
7
8:
9

6.2 Fast feature selection on basis of kernel density
estimation entropy

The computation of kernel matrix has high time complexity
and low efficiency. Therefore, in this section, we first pro-
pose an incremental algorithm for interval-valued data (see
Algorithm 4) to calculate kernel matrix and the inverse of
covariance matrix. Secondly, we propose a concept of kernel

@ Springer

partition matrix and an algorithm (see Algorithm 5) of cal-
culating conditional entropy based on kernel partition matrix
for interval-valued data. Finally, based on the above two algo-
rithms, a fast feature selection algorithm (see Algorithm 6) is
proposed by interval-valued kernel density estimation entropy.

Algorithm 4 Incremental algorithm for Interval-
Valued Data (I_1V D)

Input: An interval-valued decision table IVDT =< U,C U
D >, [U| = n; the selected conditional feature set S;
a candidate conditional feature Q; left-bound covariance
matrix créQ on S and Q)j; right-bound covariance matrix

O'gQ on S and Q; the left-bound kernel matrix ®% on S;
the right-bound kernel matrix @g on S; inverse of left-
bound covariance matrix ZZ}S on S; inverse of right-
bound covariance matrix Z;{}S on S; width parameter
h
-1 -1

Output: ®§ x; ®§ 45> L,S_X> ZR,S,X

1. S X=S4+0Q;

2: if |[S_X| ==1 then //Q is the first candidate feature.

-1 .

3: > Lsx =L
. -1 1.
4: R,S_.X — 17
5 Calculate ‘pé,x’
(z; —x;)

gi)é,x,ij: L(Iiijﬁ h7 S*X): \/217}1 eXp(f 2;,/2] )7
Vi, j € [L,n] ;

6: Calculate sﬁg x>

R ] 1 (af —a)?

gpS,X,ij:R(xiixj’h’ S,X) :\/ﬂh exp(f Sh )7
Vi, j € [1,n] ;

7: else //Q is not the first candidate feature.

8: rl = <J§Q>;

9: rr = (U§Q> ;

10 bl=-3 7kl

11: br = — Elsrr;

12: Bl=1+rlTbl;
13: Br=1+rrTbr;
14: if gl # 0 then

. -1 _ -1 pit” bl wT 1.
15: L,S.X — Lst Bl 7@1??@)7
16: &L  canbe obtained through ®%, Vi, j€[1,n],

L(:z:i—azj, h, S,X) =
L(x;—x;,h,S)

i
\/ﬁh.m%,exp(«mi»s 258" bl o=, Q)

2h231 )
17: else
18: tsx=1
19: All the elements in the kernel matrix ég,x are 1.
20: end if
21: if Br # 0 then

T T

22: E,ls,x = (Z ;c,ls + br};: ’%? bé} 7%)
23: &L | canbeobtained through #&, V4, j€[1,n],

R(l’l — Iy, h, S,X) =
R(z;—z;,h,S)

m:r,Sfm;’.S)Tbr'Ha:ifQ7“’;,(.,2))2 ’

1 ((
V2mh-Br2-exp(

2h23r

24: else

. -1 — 1.
25: rs.x =1;
26: All the elements in the kernel matrix ¢§7X are 1 ;
27: end if
28: end if

. . N -1 -1
29: return ®% ;@8 . LS. XX RS X
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In Algorithm 4, if conditional feature Q is the first
candidate feature, then the inverse of left bound covari-
ance matrix and right bound covariance matrix are both 1
and the kernel matrix (I>§ and (I)g‘ are calculated based on
Eq. 10 where S denotes the selected conditional features.
If conditional feature Q is not the first candidate feature,
then we need to calculate the inverse of covariance matrix
based on Eq. 7 and two kernel matrices @k, (I)§ based on
Egs. 9 and 10, respectively. The main cost of Algorithm 4
is the calculation of the kernel matrix, so the time com-
plexity of the algorithm is O(n?).

Algorithm 5 Conditional Entropy calculation for
Interval-Valued Data (CE_IV D)

Input: An interval-valued decision table IVDT =< U,C U
D >, |U| = n; [1,Ny], the value domain of decision feature
D; the conditional feature subset A; kernel matrix @5
consisting of left bounds of interval values; kernel matrix
7 consisting of right bounds of interval values
Output: -H (D|A)/n
1: Create a kernel partition matrix Y (A,D) and set
the element value of the matrix to 0; Y (A,D) =
( 00 (A, D))an ,whereY; pjy (A,D) = T;pgy +
AZ] +¢A ”,V’l j € [1 n]
H(D|A)=0;
for K =1ton do
ﬁA (dlzy,) = Yy,4(A,D) |

1r(A,D)lx’
H (D|A) = H (D|A) + Pa (d|xx)log Pa (d]a);
: end for

return -H (D] A)/n.

In Algorithm 5, the time complexity of Step 1 is O(n?);
the time complexity of Step 3 to Step 6 is O(n). So the
total time complexity of the algorithm is O(n* + n).

Definition 13 In an interval-valued decision table
IVDT =< U,CUD >, U denotes the sample set and
[Ul=n, ACC. DA) = (d)(xi—xj,h,A))m =
(L(xi - xj,h,A) + R(xi - X, h,A))m is a kernel matrix.
The range of decision D is the integer of [I,Nd]. Then the

definition of the kernel partition matrix Y (4,D) is as follows:

Y(A,D) = (Y-l,d(A’D) nxNy <Z d)’] Jd>
nxN,

< _xj’h’A)mjd)
nxNy

< —X; hA) )
nXxN,

(ZRx—x hA >
nxN,

1 DG) =
where m;, = { 0 D((g;éd'

Example 2 (Continued from Example 1) Based on Table 1,
10

01
01
10
(Y11(A,D)) = 1.5962 + 1.5962 = 3.1924. Similarly, we can
3.1924 0.3243

0.2166 2.5023

0.432 2.5023 |

3.1924 0.3243

Re mark 1 Y, ,(AD)=Y" $(x;
(x—xi,h,A) —n*pA(x dj.

19)

we can get MD) =Myl : MD)=

get: Y(A,D) =

— X h’A>mjd = Ziel(, ¢

Theorem 5 |Y'(A,D)|; represents the addition of the ith row
elements of the kernel partition matrix. It satisfies the fol-
lowing property:

YAD)|, =Y o(x

jeu

P =X, h,A) =n*p, (x,-)

Proof |Y(A D)l = Zde[l Ny d(A D)= Ede[l N, 2,71 ¢(xi X h,A)mjd
_Zj= d)( % hA) ”*;*Zj 1¢( xj,h,A)=n*
Pa (xi) O

~ Y, 4(A,D)
Remark2 p,(d|x;) = IY([A,D)I
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Algorithm 6 Fast Feature Selection based on
Interval-Valued Kernel Density Estimation entropy
(FFS_IVKDE)

Input: An interval-valued decision table IVDT =< U,C U
D >,|U| = n; [1,Ng4], the value field of decision feature
D; the maximum upper limit of the number of selected
features K; threshold T; width parameter h

Output: Selected feature set S.

1: Set S_X to an empty set

2. AH = inf

3: while |S| < K&&|AH| > T do

4: min _H = oo;

5: pre_H = min _H;

6: for Q € C — S do

7 S X=8+Q;

. -1 -1 L R

8: (Z L,S_X> > rs.x ®s x: (I’s,x>
— -1 -1 L R .
=1.1VD (@, 8, X 1), X il @, 84, 1);

9: new H = CE_IVD (IVDT, &%, &% h, N;)

10: if new_H < min _H then

11: min _H = new_H;

12: min _Q = Q;

13: min ivsel = 3" ;g 5

14: min L = 'Pg,x ;1

15: min _ivser =3 5s x5

16: min &% = &F ,;

17: end if

18: end for
19: AH = min _H — pre_H;

20: 3 7 = min Zivscl;
21: &L = min &L,
22: > ='g = min _ivser;

23: ¢§ = min _&F;
24 S=8S8.X;

25: end while

26: return S.

Algorithm 6 describes a Fast Feature Selection based
on Interval-Valued Kernel Density Estimation entropy
(shortly FFS_IVKDE). Step 8 calculates the inverse of the
left bound covariance matrix ZZ'S  and the right bound
covariance Y, 1‘{15 x on conditional feature S X where
S_X is the conditional feature set after adding a candi-
date conditional feature Q. In addition, the kernel matrix
(I>§  about the left bound of interval values and the kernel
matrix (I>§ x about the right bound of interval values on the
feature set S_X are calculated. Step 9 calculates the condi-
tional entropy new_H on the conditional feature set S_X.
Steps 10-17 determine whether the conditional entropy
new_H on the conditional feature set S_X is smaller than
the conditional entropy min _H on the original feature set
S. If new_H is less than min _H, then candidate feature Q
in S_X can provide feature information about decision fea-
ture D and put Q in the selected feature set S. And, based
on the time complexity analysis of the above Algorithms 5
and 4, we can get that the time complexity of Algorithm 6
is O(K * |C| * (n®> + n)).
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7 Experiments

In order to test the effectiveness of the proposed method,
experiments are carried out on 14 data sets. The details of
these 14 data sets are shown in Table 2. The first four of
them are real-life interval-valued data sets [28, 44, 45].
SRBCT is real-valued data from [46]. Glioma is real-
valued data from [47]. The other data sets are real-valued
data from UCI [48].

Since the last ten data sets are real-valued data, we need
to convert the real-valued data into interval-valued data.
The specific operation about above converting is designed
as follows: a7 = a; — 0,4, af = a;+ 0, where a; denotes
the ith sample’s value on feature a € C, o, denotes the
standard variance of feature values about samples whose
labels are the same as ith sample [49].

In the experiment, we evaluate the effectiveness of the
fast feature selection method proposed in this paper from
three perspectives: (1). Feature selection via interval-
valued kernel density estimation entropy mainly includes
three aspects: computing of kernel matrix and the inverse
of covariance matrix, computing of conditional entropy,
feature selection. In order to test wheth-er the fast fea-
ture selection algorithm is faster than the original feature
selection algorithm, we compare the running time of two
methods from three aspects: the computing time of kernel
matrix and the inverse of covariance matrix, the comput-
ing time of conditional entropy, and the computing time
of feature selection. (2). Sample distribution by first two
features selected by our method are compared with that
of two features selected randomly. (3). Compare the clas-
sification performance of our method with other six com-
parative methods. Due to the limited number of samples in
Fish, Face, Car and Glioma, leave-one-out cross validation
is used. Other data sets use 10 fold cross validation.

7.1 Comparison of running time

In order to test wether the fast feature selection algorithm is
faster than the original feature selection method, we conduct
experiments on three representative data, including Face
data of 9 label classes, Hill data of 1212 samples and Colon
data of 2000 features. Here we set window width parameter
h as 1/log2(n) where n denotes the number of samples. In
addition, the hardware platform for our experiments is a PC
equipped with 12 G main memory and 3.41 GHZ CPU. The
software is Matlab (Version R2019a).

The calculation of the kernel matrix and the inverse of
covariance matrix in Steps 1-5 of Algorithm 2 is denoted
as the Non Incremental strategy of Interval-Valued Data
(shortly NI_IVD). We compare NI_IVD with Algorithm 4, in
which the calculation of the kernel matrix and the inverse of
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covariance matrix is denoted Incremental algorithm of Inter-
val-Valued Data (shortly /_IVD). In Fig. 1, we show the time
comparison results of NI_IVD method and /_IVD method on
Face, Hill and Colon, where the red line represents I _IVD
and the black line represents NI_IVD. In each node (x, y),
x represents the number of features, and y represents time
of the method calculating the kernel matrix and inverse of
covariance matrix under feature subset {a,, a,, ---, a, }. From
Fig. 1, we can find /_IVD is much faster than IN_IVD on the
three data sets. Therefore, our incremental algorithm /_IVD
can greatly speed up the speed of calculating kernel matrix
and the inverse of covariance matrix.

Fig. 2 shows the time comparison results of conditional
entropy on Face, Hill and Colon. In Fig. 2, the black line
represents the original conditional entropy calculation
method (see Algorithm 2), and the red line represents the
improved conditional entropy calculation (see Algorithm 5).
What’s more, in each node (x, y), x represents the num-
ber of features, and y represents the running time of the
method calculating condition entropy under feature subset
{a,,ay, -+ ,a,}. From the figure, we can see that the cal-
culation time of CE_IVD is significantly less than that of
OCE_IVD. It indicates that algorithm CE_IVD is faster than
algorithm OCE_IVD.

Figure 3 shows the time comparison results of feature
selection on Face, Hill and Colon data. Furthermore, in each
node (x, y), x represents the number of features and y rep-
resents running time of the method selecting feature x. In
Fig. 3, the black line represents the original feature selection
method (see Algorithm 3), and the red line represents the
fast feature selection method (see Algorithm 6). We can see
that the red line is much lower than the black line. Therefore,
the speed of FFS_IVKDE is faster than that of OFS_IVKDE
in feature selection.

7.2 Intuitive effect

In order to intuitively display the effectiveness of the
proposed fast feature selection, we select Face, Iris and
Colon to show the intuitive effect of the method. We
compare scatter plot constructed by the first two fea-
tures selected through Algorithm 6 with scatter plot con-
structed by two random features from original data. Here
we set window width parameter & as 3/log2(n) where n
denotes the number of samples. Figs 4, 5, 6 show the
comparison of scatter plots, where each rectangle rep-
resents a sample and different colors represent different
classes.

Sub-figures (a) in Figs. 4-6 show sample distribution
under the first two features selected by our method, while
sub-figures (b) in Figs. 4-6 show sample distribution under
two random features. The x-axis denotes the first selected
feature and the y-axis denotes the second selected feature.
We can find that the sample distribution of the first two
features selected by our method is clear, while the sample
distribution of two random features has many intersections.
It suggests that the top two features selected by our method
have higher identifiability than the two random features,
visually. Hence, the proposed feature selection does be
effective.

7.3 Classification performance

Most of the traditional classifiers are for real-valued data.
To classify interval-valued data, Dai et al. [28] proposed
the extensions of K-Nearest Neighbor(KNN) method and
Probabilistic Neural Network(PNN).

Table 2 Interval-valued data

sots Data Abbreviation Instances Features Classes Data type
Fish Fish 12 13+1 4 Interval-valued data
Face Face 27 6+1 9 Interval-valued data
Car Car 33 7+1 4 Interval-valued data
Water Water 316 48+1 2 Interval-valued data
Iris Iris 150 4+1 3 Real-valued data
Glass Glass 214 9+1 7 Real-valued data
Wine Wine 178 13+1 3 Real-valued data
Waveform Wave 500 40+1 3 Real-valued data
Hillvalley Hill 1212 100+1 2 Real-valued data
ColonTumor Colon 62 2000+1 2 Real-valued data
SRBCT Srbct 83 2308+1 4 Real-valued data
Glioma Glioma 50 4434+1 4 Real-valued data
TumorsC TumorsC 60 7130+1 2 Real-valued data
LungCancer Lung 96 7129+1 2 Real-valued data
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Definition 14 [28] u; and u; are two objects of interval-val

ke kot
u;

ued information table. u; = [ N

represent the interval values of object u; and u; in kth feature.
The distance between u; and u; is defined as follows:

P(uk>uk) denotes the possible degree of the interval value i;
i 7Y
[—=—NI_1VD] [—=—N1_1IVD
0.25 - —e—1_IVD 450 —e—1_IVD [ce—LIVD
400 500+
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Fig. 1 Comparison of computing time of kernel matrix and inverse on covariance matrix on Face, Hill, Colon
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Fig.2 Comparison of computing time of conditional entropy on Face, Hill, Colon
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Fig. 3 Comparison of computing time of feature
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Where m denotes the number of conditional features and
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relative to the interval value u;, which is designed as follows:

P infl utt—ult 0
(uf?uj]f) - mln{ ’ maX{ (u[k’+—u[k’_)+(uj1"+—u/-h'_) ’ } }

In this paper, we compare our method with six represen-
tive methods. In [27], a similarity relation between two inter-
val values based on the possible degree of interval value A
relative to interval value B was proposed. In [30], the «
dominance relation was presented. In [34], the relative
bound difference similarity degree between two interval val-
ues was proposed. In [50], the a-weak similarity relation
between two interval values was proposed. Then we use
these four kinds of relations to define conditional entropy
similar to [27] for feature selection, and obtain four feature
selection methods, namely Feature Selection of the Similar-
ity Relation (FSSR), Feature Selection of « Dominance
Relation (FSDR), Feature Selection of the Relative Bound
Difference similarity degree (FSRBD) and Feature Selection

of the a-Weak Similarity relation (FSWS). Attribute reduc-
tion using conditional entropy based on dominance fuzzy
rough sets was proposed by [35], called Attribute Reduction
of Dominance Relation (ARDR). Recently, feature selection
based on Interval Chi-Square Score was presented by [36],
called Feature Selection of Interval Chi-Square Score
(FSICSS). We proposed Fast Feature Selection method of
the Kernel Density Estimation entropy (FFSKDE) in this
paper. The range of parameter 6 involved in FSSR, FSDR,
FSRBD, FSWS is set to {0.4,0.5,0.6,0.7,0.8}. According
to literatures [24, 51], the range of parameter 4 involved in

the proposed FFSKDE is set to { zoglz(n)’ logi(n)’ log;(n) } where

n denotes the number of samples. In this experiment, FSSR,
FSDR, FSRBD, FSWS, FFSKDE feature selection methods
select the optimal classification results within its corre-
sponding parameter range.

Fig.4 Comparison of sample 180 707
distribution on two features @] o5 e
from Face Dataset 170 = i ‘
@&‘ 60 =0 |
=160 > I
O L ] i -
A o
150 sol [
140 45
20 100 110 120 130 45 50 55 60 65 70
(a) (b)
Fig.5 Comparison of sample 3 6r
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from Iris Data set 2t ar ‘ s
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> N I
of I i
0r |
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| -2r HEE
1 =SS im
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X
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Fig.6 Comparison of sample 10} 6r
distribution on two features
from Colon Data set 4
5t 5l :
. = 5 a=s I
ot (TTTIHREEEE S
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In the following, we will compare FFSKDE with
FSSR,FSDR, FSRBD, FSWS, FSCISS, ARDR and All fea-
tures on the indexes of accuracy, precision, recall which can
comprehensively and well reflect the classification perfor-
mance of these methods.

First, the accuracy results are shown in Table 3 and
Table 4 where the optimal classification accuracies of the
data among the seven feature selection methods are rep-
resented in bold. From Table 3 and Table 4, the times of
being the optimal of FFSKDE method is higher than other
six methods on both KNN classifier and PNN classifier.
Moreover, in terms of the average classification accuracy
on the data sets, FFSKDE method is not only higher than
the other six comparative methods, but also higher than the
average classification accuracy of ALL features. Especially,
in KNN classifier and PNN classifier, only our method has
an average classification accuracy of more than 80%. By
KNN classifier, our method’s average classification accuracy
is about 6% higher than the sub-optimal method’s average
classification accuracy. By PNN classifier, our method’s
average classification accuracy is about 4% higher than the
sub-optimal method’s average classification accuracy.

Second, the precision results are displayed in Table 5 and
Table 6 where the optimal classification precision results
among the seven feature selection methods are denoted in
bold. By KNN classifier, we can observe the times when
FFSKDE achieves the optimal results is higher than other
comparative methods. By PNN classifier, although the times
that FFSKDE achieves the best equal to FFSR, the average
classification precision of FFSKDE is obviously higher than
FFSS. What’s more, the average value of classification preci-
sion on FFSKDE is not only higher that of other comparative
methods, but also higher ALL features.

Finally, the classification recall results are shown in
Table 7 and Table 8 where the optimal classification recall
results are represented in bold.We can get the same conclu-
sion as classification precision. Then, we can get result that
the FFSKDE proposed in this paper performs better than
other methods and All features in accuracy, precision and
recall. Therefore, the fast feature selection method proposed
in this paper is effective.

8 Conclusion

Kernel density estimation technology has been applied
in feature selection to avoid discretization for real-valued
data. However, there are few studies on feature selection
based on kernel density estimation for interval-valued
data. Therefore, a feature selection method based on ker-
nel density estimation entropy for interval-valued data is
proposed in this paper. Firstly, we raise kernel density esti-
mation of interval-valued data and study its’ properties.

@ Springer

Table 3 The accuracy results of KNN

FSSR FSDR FSRBD FSWS FSICSS ARDR All

FFSKDE
Acc + std

Dataset

Acc + std Acc + std Acc + std Acc + std Acc + std Acc + std

Acc + std

0.5833 + 0.0000
1.0000 =+ 0.0000

0.3333 + 0.0000
0.9630 + 0.0000
0.6970 + 0.0000
0.7142 + 0.0091
0.9447 + 0.0083
0.6818 + 0.0051
0.9612 + 0.0041
0.5344 +0.0118
0.5363 + 0.0064
0.6000 + 0.0212
0.9398 + 0.0062
0.6800 + 0.0000
0.6333 +0.0189
0.9792 + 0.0069
0.7284 + 0.0070

0.4167 + 0.0000
0.9633 + 0.0000
0.7656 + 0.0000

0.5000 + 0.0000 0.5833 + 0.0000 0.7500 + 0.0000
1.0000 + 0.0000 1.0000 + 0.0000
0.7405 + 0.0151

1.0000 + 0.0000

0.6667 + 0.0000 0.4167 + 0.0000
1.0000 + 0.0000

1.0000 + 0.0000

Fish

Face
Car

0.6364 + 0.0000
0.7633 + 0.0077
0.9547 + 0.0069
0.6710 + 0.0131

0.6061 + 0.0000
0.6832 + 0.0094
0.9487 + 0.0032
0.6794 + 0.0089
0.9736 + 0.0060

0.5516 + 0.0080
0.5391 + 0.0064

0.5152 + 0.0000
0.7180 + 0.0125

0.6970 + 0.0000
0.7468 + 0.0060
0.9600 + 0.0064
0.6308 + 0.0153

0.5455 + 0.0000

0.7032 + 0.0107

0.7273 + 0.0000
0.7184 + 0.0090

0.9533 +0.0028
0.5981 + 0.0115
0.9405 + 0.0167
0.7120 + 0.0098
0.5000 + 0.0073
0.6290 + 0.0000
0.4458 +0.0133
0.4800 + 0.0000
0.8967 + 0.0070
0.8958 + 0.0089
0.7098 + 0.0066

0.9667 + 0.0032
0.7336 + 0.0163
0.9831 + 0.0055
0.7640 + 0.0101

Water
Iris

0.9533 +0.0032
0.6822 +0.0138

0.9493 + 0.0034
0.6136 +0.0172
0.9736 + 0.0038

Glass

0.9792 + 0.0027
0.7246 + 0.0089
0.5396 + 0.0036
0.6452 + 0.0228
0.8554 +0.0213
0.7200 + 0.0000
0.5700 + 0.0205

0.9691 + 0.0040
0.7376 £ 0.0111

0.9494 + 0.0070
0.5640 + 0.0076
0.5503 + 0.0084
0.7097 + 0.0141
0.6988 + 0.0248
0.5800 + 0.0000
0.6667 + 0.0141

Wine

0.5215 + 0.0089
0.6710 + 0.0254
0.7229 + 0.0175
0.6600 + 0.0000
0.6667 + 0.0209
0.9896 + 0.0000
0.7422 + 0.0084

0.7310 + 0.0100
0.5437 + 0.0078

0.7581 + 0.0251
0.8313 +0.0244

Waveform

Hill

0.6758 + 0.0160
0.7108 + 0.0226
0.6600 + 0.0000
0.6500 + 0.0209
0.8958 + 0.0000
0.7374 + 0.0072

0.5743 + 0.0098
0.7742 + 0.0068
0.8313 + 0.0208
0.8600 + 0.0000
1.0000 + 0.0000
0.9896 + 0.0073

Colon

0.6400 + 0.0000
0.9950 + 0.0081
1.0000 + 0.0000

Srbct

Clioma

Tumors

0.8958 + 0.0000
0.7528 + 0.0077

0.8958 + 0.0000
0.7250 + 0.0074

Lung

0.8278 + 0.0063 0.7644 + 0.0079

Avg.
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Table 8 The recall results of PNN

FSSR FSDR FSRBD FSWS FSICSS ARDR All

FFSKDE
Acc + std

Dataset

Acc + std Acc + std Acc + std Acc + std Acc + std Acc + std

Acc + std

0.6250 + 0.0000
1.0000 =+ 0.0000

0.4375 + 0.0000
0.9630 =+ 0.0000
0.7893 + 0.0000
0.6307 + 0.0053
0.9533 + 0.0021
0.3477 + 0.0088
0.9568 + 0.0030
0.5924 + 0.0090
0.5083 + 0.0023
0.6136 + 0.0154
0.9703 + 0.0059
0.7537 + 0.0000
0.3870 + 0.0461
0.9884 + 0.0037
0.7066 + 0.0073

0.5625 + 0.0000
1.0000 + 0.0000

0.8125 + 0.0000
1.0000 + 0.0000
0.6402 + 0.0000
0.6388 + 0.0162
0.9600 + 0.0031
0.3858 + 0.0151
0.9718 + 0.0027
0.7624 + 0.0059
0.5784 + 0.0023
0.5132 +0.0225
0.7863 + 0.0222
0.7560 + 0.0000
0.3835 +0.0167
0.3314 +0.0155
0.6800 + 0.0087

0.5000 + 0.0000
1.0000 + 0.0000

0.5000 + 0.0000
1.0000 + 0.0000

0.5000 =+ 0.0000
1.0000 + 0.0000
0.5464 + 0.0000
0.6629 + 0.0136
0.9600 + 0.0054
0.4662 + 0.0135
0.9733 + 0.0047
0.8084 + 0.0037
0.5099 + 0.0023
0.8068 + 0.0253
0.8495 + 0.0151
0.7202 + 0.0000
1.0000 + 0.0000
1.0000 + 0.0000
0.7717 + 0.0060

0.6250 + 0.0000

1.0000 + 0.0000

Fish

Face
Car

0.6280 + 0.0076
0.9667 + 0.0044
0.4914 + 0.0127
0.9803 + 0.0024
0.8379 + 0.0058
0.5074 + 0.0078
0.5534 +0.0248
0.8662 + 0.0229
0.7036 + 0.0000
0.4269 + 0.0283
0.5000 + 0.0000

0.6821 + 0.0000
0.6978 + 0.0083

0.6378 +0.0144

0.6821 + 0.0000
0.9620 + 0.0045

0.6590 + 0.0039
0.9667 + 0.0047

0.5214 + 0.0000
0.3849 +0.0163

0.7893 + 0.0000
0.6437 + 0.0090
0.9533 + 0.0000
0.4075 +0.0102
0.9521 + 0.0039
0.5948 + 0.0059
0.5107 +0.0016
0.7216 + 0.0134
0.7466 + 0.0147
0.6681 + 0.0000
0.3927 + 0.0275

0.7580 + 0.0000
0.6652 + 0.0065
0.9667 + 0.0049
0.3630 + 0.0127
0.9709 + 0.0020

0.8120 + 0.0046
0.5116 + 0.0035

Water
Iris

0.3368 +0.0237
0.8239 +0.0126
0.8027 + 0.0045

Glass

0.9607 + 0.0024
0.8051 + 0.0040
0.5091 + 0.0023

Wine

Waveform

Hill

0.5048 +0.0018
0.1350 +0.0129
0.3277 + 0.0105

0.7557 +0.0238
0.8775 +0.0188
0.8595 + 0.0000
1.0000 + 0.0000

0.7498 + 0.0314
0.7885 + 0.0251

Colon

Srbct

0.5378 + 0.0000
0.8119 +0.0176
0.3128 + 0.0086
0.6027 + 0.0079

0.7560 + 0.0000
0.3821 +0.0251

Clioma

Tumors

0.9942 + 0.0000
0.7127 + 0.0082

0.9267 + 0.0264 0.6410 + 0.0258
0.6801 + 0.0080

0.7923 + 0.0074

Lung

Avg.

The kernel density estimation probability structure is
constructed. By the constructed structure, a series of ker-
nel density estimation entropies are defined. Further we
present a fast feature selection method by kernel parti-
tion matrix, incremental expressions of kernel matrix and
inverse of covariance matrix. Experiments are conducted
to verify the proposed approach. The results show that the
proposed fast feature selection method is efficient.

It is worth noting that the proposed fast feature selec-
tion algorithm doesn’t consider the correlation among
the selected features. Therefore, in the future work, we
will construct an improved feature selection method via
introducing the concept of mutual information which can
not only evaluate the correlation between the selected fea-
tures and decision feature, but also evaluate the correlation
among the selected features. However, how to construct
the mutual information by kernel density estimation is
challenging. In the future, we intend to study this issue.
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