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Abstract
lq ( 0 < q < 1 ) regularization is a dominating strategy for matrix completion problems. The main goal of nonconvex lq regu-
larization based algorithm is to find a so-called low-rank solution.Unfortunately, most existing algorithms suffer from full 
singular value decomposition (SVD), and thus become inefficient for large-scale matrix completion problems. To alleviate 
this limitation, in this paper we propose an accelerated inexact algorithm to handle such problem. The key idea is to employ 
the closed-form q-thresholding ( q = 1∕2, 2∕3 ) operator to approximate the rank of a matrix. The power method and the 
special “sparse plus low-rank” structure of the matrix iterates are adopted to allow efficient SVD. Besides, we employ Nes-
terov’s accelerated gradient method and continuation technique to further accelerate the convergence speed of our proposed 
algorithm. A convergence analysis shows that the sequence {Xt} generated by our proposed algorithm is bounded and has at 
least one accumulation point. Extensive experiments have been conducted to study its recovery performance on synthetic 
data, image recovery and recommendation problems. All results demonstrate that our proposed algorithm is able to achieve 
comparable recovery performance, while being faster and more efficient than state-of-the-art methods.

Keywords  Matrix completion · lq regularization · q-thresholding operator · Nesterov’s rule · Power method

1  Introduction

In various machine learning and data analysis areas, such as 
collaborative filtering [1, 2], dimensionality reduction [3], 
subspace clustering [4], multiple labels learning [5, 6], and 
image processing [7, 8], one needs to consider the following 
matrix completion problem:

where M ∈ ℝ
m×n is the incomplete low-rank matrix to be 

reconstructed, X is the considered low-rank matrix in ℝm×n , 

rank(X) is the rank of X, � is the location of the observed 
entries, and P� is the orthogonal projection onto the span 
of matrices vanishing outside of � . The goal of problem (1) 
is to find the lowest-rank solution X∗ of P�(X) = P�(M) , 
which is minimal to rank(X). More often, we consider the 
following regularization problem, which can be cast as:

where ‖ ⋅ ‖F is the Frobenius norm, � is a positive regulariza-
tion parameter.

However, since the nonconvexity and discontinuous 
nature of rank(X), problems (1) and (2) are NP-hard [9] and 
cannot be solved in polynomial time. To alleviate this dif-
ficulty, a widely used strategy is to adopt the nuclear norm 
as a convex surrogate of rank(⋅) . Theoretical studies show 
that the nuclear norm is the tightest convex lower bound 
of the rank [9]. Candès and Recht [10] have been proven 
that the missing values can be perfectly recovered by solv-
ing nuclear norm regularization minimization problem if 
incomplete matrix M satisfies certain assumptions, e.g., 
|�| ≥ O(N1.2rlog(N)) (N = max(m, n), r = rank(M)) . Gener-
ally speaking, the nuclear norm regularization minimization 

(1)min
X∈ℝm×n

rank(X) s.t. P�(X) = P�(M),
(2)min

X∈ℝm×n

1

2
‖P�(X −M)‖2

F
+ �rank(X),
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problem can be treated as a Semidefinite Program (SDP) 
problem [11]. However, SDP solvers are only suitable for 
m × n matrices with m, n ≤ 100 . In order to overcome this 
drawback, various methods have been proposed to tackle 
nuclear norm regularization minimization problem. Exam-
ples of first-order methods include singular value threshold-
ing (SVT) algorithm [12] and accelerated proximal gradient 
with linesearch (APGL) algorithm [13]. Although these two 
sophisticated algorithms can attain promising results with a 
strong theoretical guarantee, they all involve expensive SVD 
operations in each iteration and cannot suitable for large-
scale matrices. With the aim of alleviating this shortcoming, 
fixed point continuation with approximate (FPCA) [14] SVD 
addresses the same problem as APGL while utilizing a fast 
Monte Carlo algorithm for SVD calculations. Another state-
of-the-art algorithm is Soft-impute algorithm [15] which 
utilizes a special “sparse plus low-rank” structure associ-
ated with the SVT to allow efficient SVD in each iteration. 
Very recently, Soft-impute algorithm has been accelerated 
by using Nesterov’s rule [16].

Although the nuclear norm regularization minimization 
problem can be efficiently solved and has been accepted as a 
powerful tool for the matrix completion problems. Fan [17] 
pointed out that the nuclear norm penalty shrinks all singu-
lar values equally, which leads to over-penalize large singu-
lar values. In other words, the nuclear norm may make the 
solution deviate from the original solution. With the aim of 
making the larger singular values get less penalized, there 
has been a significant interest in the use of the nonconvex 
surrogates of rank(⋅) , such as capped-l1 penalty, log-sum 
penalty (LSP), truncated nuclear norm (TNN), smoothly 
clipped absolute deviation (SCAD), minimax concave pen-
alty (MCP). In [18], the learning formulations with capped-l1 
objective functions are solved by means of multi-stage con-
vex relaxation scheme. In [19], the sparse signal recovery 
problems are solved by a sequence of weighted l1-minimi-
zation problems. In [20], the matrix completion algorithm 
based on the TNN is employed in achieving a better approxi-
mation to the rank of matrix. In [17], the penalized like-
lihood methods are proposed to deal with nonparametric 
regression by select variables and estimate coeffcients simul-
taneously. In [21], a fast, continuous, nearly unbiased and 
accurate method is proposed for solving high-dimensional 
linear regression. Empirically, these nonconvex regulariza-
tion methods achieve better recovery performance than the 
convex nuclear norm regularization methods.

Another line of nonconvex surrogates of rank(⋅) is 
lq (0 < q < 1) or Schatten-q quasi-norm, which has received 
significant interest in the area of matrix completion. The 
key idea is that it allows a less biased and/or lower rank 
solution to be found than using the nuclear norm. How-
ever, the resultant nonconvex lq regularization problems 
are much more difficult to solve. A popular used method 

for optimization the nonconvex lq regularization problems 
is lq-Proximal-Gradient ( lqPG ) algorithm [22]. Since the 
noncontinuous of objective function ( q = 0 ), most exist-
ing convergence theory that work with convex cases can-
not be applied. By employing the Zangwill’s global con-
vergence theory, a non-trivial convergence result of lqPG is 
obtained. However, each lqPG iteration involves computing 
the approximate solutions [23–26] and SVD steps. Thus, this 
method is not very accurate and may becomes slow when 
addressing large-scale matrices. To improve the accuracies 
and speed of lqPG algorithm, some improved methods based 
on Schatten 1/2 quasi-norm [27] and Schatten 2/3 quasi-
norm [28] have recently been proposed. Peng et al. [29] 
proposed a fixed point iterative scheme with the singular 
value half thresholding operator. The convergence analysis 
of this method reveals that it is faster and more efficient than 
lqPG algorithm. Most recently, by observing that the Schat-
ten 2/3 quasi-norm regularization model has shown better 
performance than Schatten 1/2 quasi-norm minimization as 
it requires fewer measurements, Wang et al. [30] build a L2∕3
-PA algorithm for matrix completion. Although, the closed-
form thresholding formulas of Schatten 1/2 quasi-norm 
and Schatten 2/3 quasi-norm regularization problems are 
obtained, a computationally expensive SVD still be required 
in each iteration.

With the aim of improving the drawbacks of above, this 
paper proposes a novel faster and more accurate algorithm 
for matrix completion. The proposed method extends HFPA 
and L2∕3-PA algorithms by using inexact proximal operator 
and Nesterov’s accelerated gradient method. More precisely, 
our algorithm is based on HFPA and L2∕3-PA algorithms, but 
achieves faster convergence rate and better recovery perfor-
mance than HFPA and L2∕3-PA algorithms do. Besides, our 
proposed algorithm is simple and easy to use for large-scale 
matrix completion problems. The main contributions of our 
paper include the following: 

1.	 We first propose an efficient and fast algorithm to solve 
matrix completion problem, which is based on an inex-
act proximal operator and the Nesterov’s accelerated 
gradient method;

2.	 In addition, we study the convergence of our proposed 
method, and show that our proposed algorithm is guar-
anteed to converge to a critical point of the nonconvex 
objective. Furthermore, our proposed algorithm is sim-
ple and easy to use;

3.	 Finally, we apply the proposed algorithm to synthetic 
data, image recovery and large-scale recommendation 
problems, and achieve faster convergence rate and better 
recovery performance than most of state-of-the-art algo-
rithms, which demonstrate that our proposed algorithm 
has the great potentials in matrix completion applica-
tions.
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The remainder of this paper can be organized as follows. 
Section 2 describes the related works; Sect. 3 introduces the 
proposed algorithm; Sect. 4 reports and analyses the exper-
imental results in both speed and quality; Finally, Sect. 5 
gives the conclusion of this paper.

Notation We summarize the notations that will be used 
in this paper. For X ∈ ℝ

m×n, �(X) = (�1(X), �2(X),… , �r(X))
T 

denotes the vector of singular value of X arranged in  
nonincreasing order; Diag(�(X)) denotes a diagonal matrix 
whose diagonal vector is �(X) . The Frobenius norm  
and Schatten q quasi-norm of X are defined as 
‖X‖F = (

∑
i,j
X2

ij
)1∕2 = (

∑r

i=1
�i(X)

2)1∕2 and ‖X‖q = (
∑r

i=1
�i(X)

q)1∕q , 
respectively. For X, Y ∈ ℝ

m×n , < X, Y >= tr(YTX) denotes 
their inner product.

2 � Related work

2.1 � Proximal algorithms

The APGL algorithm pioneered uses proximal operator [31] 
to solve matrix completion problems. It considers the fol-
lowing low-rank matrix completion problem:

where f, g are convex, and f is smooth but g is possibly nons-
mooth. Besides, f is differentiable with Lipschitz continuous 
gradient L, i.e., ‖▽f (X1) −▽f (X2) ≤ L‖X1 − X2‖ . At the tth 
iteration, the APGL algorithm generates Xt+1 as

where 𝜇 < 1∕L , and prox�g(⋅) denotes the proximal operator. 
By using the Nesterov’s accelerated gradient method, Y can 
be obtained as follows:

The convergence analysis of APGL algorithm reveals that 
this algorithm converges at a rate of O(1∕T2) , where T is the 
iteration number. This is also known to be the best possible 
rate for the problem (3) [32].

Since the considerable attention of nonconvex and non-
smooth problems in machine learning, it is natural to ask 
that if the accelerated proximal algorithm can be extended 
to problems where f and/or g may be nonconvex. The answer 
is positive. In [33], Li and Lin have extended accelerated 

(3)min
X∈ℝm×n

F(X) ≡ f (X) + g(X),

(4)Xt+1 = prox�g(Y) = argmin
X∈ℝm×n

1

2
‖X − Y‖2

F
+ �g(X),

(5)Gt = (1 + �t)Xt − �tXt−1,

(6)Y = Gt − �▽f (Gt),

(7)�t+1 =
1 +

√
1 + 4(�t)

2

2
.

proximal algorithm to solve nonconvex and nonsmooth 
problems. The key idea is adopting a monitor that satisfies 
the sufficient descent property. Subsequently, they proposed 
a nonmonotone accelerated proximal gradient algorithm 
(nmAPG). Although the nmAPG algorithm is much faster 
than most of state-of-the-art, its convergence rate is still 
unknown.

2.2 � Existing completion methods with lq 
regularization

Using the Schatten-q quasi-norm minimization instead 
of the rank(⋅) minimization is one of the most successful 
approaches in the area of matrix completion. The state-of-
the-art matrix completion algorithms based on lq regulariza-
tion are lqPG [22], HFPA [29], and L2∕3-PA [30].

(1) lqPG : Considering the lq penalized model:

where q ∈ [0, 1] . It should be note that q = 0 is equivalent to 
the problem (2) and q = 1 is equivalent to the nuclear norm 
penalized problem. It requires computing the following non-
trivial optimization problem:

where z is a constant and q ∈ (0, 1) . This has the following 
non-trivial solutions.

Theorem 1  [22] Let q ∈ (0, 1) , b = [2�(1 − q)]1∕(2−q) , and 
c = b + �qbq−1 . Then the solutions x∗ = ��(z) to the problem 
(9) are:

where for |z| > c , x̂ ∈ (b, |z|) solves:

When |z| > c there are two solution to (11) and x̂ is the larger 
one which can be computed from the iteration:

with the initial condition x(0) ∈ [b, |z|].

Using the above theorem, Marjanovic et al. have pro-
posed a MM-based algorithm namely lqPG for iteratively 
reducing objective function F. Moreover, experiments are 
performed on matrix completion problems show that lqPG 

(8)min
X∈ℝm×n

F(X) =
1

2
‖P�(X −M)‖2

F
+ �‖X‖q

q
,

(9)min
x

�(x) =
1

2
(z − x)2 + �|x|q,

(10)𝜏𝜆(z) =

⎧⎪⎨⎪⎩

0, if �z� < c;

{0, sgn(z)b}, if �z� = c;

sgn(z)x̂, if �z� > c.

(11)x + 𝜆qxq−1 = |z| where x > 0.

(12)xt+1 = �(xt) where �(x) = |z| − �qxq−1
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algorithm is superior to the state-of-the-art. Although the 
lqPG algorithm further accelerated using warm-starting and 
Nesterov’s method, it is still suffer from heavy SVD which 
takes O(mn2) time.

(2) HFPA:   Recently, Peng et  al. proposed HFPA to 
improve FPCA and lqPG algorithms by using the Schatten 
1/2 quasi-norm. The key idea is that when q = 1∕2 the solu-
tion of problem (9) has an analytical expression [27], that is:

with ��(z) = arccos(
�

8
(
z

3
)−3∕2) . The HFPA algorithm con-

sists of two loops. For inner iterations, a special gradient 
descent method and the matrix half thersholding operator 
are employed to obtain the approximation solution. In the 
outer loops, the continuation technique is used to accelerate 
the convergence speed of HFPA. Besides, the authors fur-
ther provide the global necessary optimality condition for 
the L1∕2 regularization problem and the exact mathematical 
convergence analysis of the HFPA. Actually, HFPA is a fixed 
point method, but used for nonconvex optimization problem. 
Although, a fast Monte Carlo algorithm is adopted in HFPA 
to approximate SVD procedure, it is still time-consuming on 
large matrices. 

(3) L2∕3-PA: Another state-of-the-art algorithm, L2∕3-PA, 
combines a gradient descent method in inner iterations that 
approximation the solutions by 2/3-thresholding operator 
with continuation technique that accelerates the convergence 
speed. The main idea in L2∕3-PA is to employ the follow-
ing analytical expression of solutions of problem (9) when 
q = 2∕3:

(13)

𝜏𝜆(z) =

⎧
⎪⎪⎨⎪⎪⎩

0, if �z� < 3
√
54

4
𝜆2∕3;

{0,
2

3
z(cos(

2𝜋

3
−

2

3
𝜙𝜆(z)))}, if �z� =

3
√
54

4
𝜆2∕3;

2

3
z
�
cos

�
2𝜋

3
−

2

3
𝜙𝜆(z)

��
, if �z� > 3

√
54

4
𝜆2∕3.

(14)

𝜏𝜆(z) =

⎧⎪⎨⎪⎩
sgn(z)

�
(�𝜑𝜆(z)�+

�
2�z�

�𝜑𝜆 (z)�
−�𝜑𝜆(z)�2)

2

�3

, if �z� > 4
√
48

3
𝜆3∕4;

0, otherwise;

w h e r e  ��(z) = (2∕
√
3)�1∕4(cosh(��(z)∕3))

1∕2  ,  w i t h 
��(z) = arccosh(27z2�−3∕2∕16) . Based on the empirical 
studies, we found that L2∕3-PA is not very accurate though 
it improves the recovery performance of HFPA. Moreover, 
it is not efficient enough as still involve time-consuming 
SVD steps and cannot suitable for large-scale matrices 
completion.

2.3 � Existing completion methods with inexact 
proximal operator

In machine learning research, the proximal gradient meth-
ods are popular for solving various optimization problems 
with non-smooth regularization. However, it requires the full 
SVD to solve the proximal operator, which may be time-
consuming. Thus, inexact proximal gradient methods are 
extremely important.

Based on this line, Yao et al. [34] use the power method to 
approximate the SVD scheme, and propose Accelerated and 
Inexact Soft-Impute (AIS-Impute) algorithm for matrix com-
pletion. The convergence analysis of the AIS-Impute algo-
rithm illustrates that it still converges at a rate of O(1∕T2) . 
For the nonconvex problems, a Fast NonConvex Low-rank 
(FaNCL) [35] algorithm is proposed for matrix comple-
tion and robust principal component analysis (RPCA). To 
improve the convergence speed, the inexact proximal gradi-
ent method is also employed in the procedure of FaNCL. 
Besides, Gu et al. [36] have proposed nonmontone accel-
erated inexact proximal gradient method (nmAIPG) which 
extends the nmAPG from exact case to inexact case. They 
also point out that the inexact version of nmAPG shares the 
same convergence rate as the nmAPG. Observing that the 
nmAIPG may requires two proximal steps in each iteration, 
and can be inefficient for solving large-scale matrices. With 
the aim of alleviating this shortcoming, the noconvex inexact 
APG (niAPG) algorithm has been proposed in [37] which 
requires only one inexact proximal step in each iteration. 
Thus, the niAPG algorithm is much faster, while achieves 
the comparable performance as the state-of-the-art.

3 � Proposed method

In this section, we introduce our proposed algorithm and 
discuss some of its basic properties.

3.1 � Motivation

In this section, we illustrate that how the proximal gradient 
algorithm can be solving the following problems:

(15)min
X∈ℝm×n

F(X) = f (X) + �‖X‖q
q
,



2331International Journal of Machine Learning and Cybernetics (2020) 11:2327–2339	

1 3

where f (X) = 1

2
‖P�(X −M)‖2

F
 and q ∈ {

1

2
,
2

3
}.

First, we give the following definition.

Definition 1  (q-thresholding operator) Suppose 
x = (x1, x2,… , xn)

T , for any 𝜆 > 0 , the q-thresholding opera-
tor T�(⋅) is defined as

Now, we consider the following quadratic approximation 
model of the objective function (15) at Y:

where � ∈ (0, 1∕L) . It should be note that Q�,�(X,X) = F(X) 
and Q�,�(X, Y) ≥ F(X) for any X, Y ∈ ℝ

m×n . By using simple 
algebra, Eq. (17) can be recasted as:

Ignoring the constant terms in (18) and let Y = Xt−1 , the 
minimizer Xt of Q�,�(X, Y) can be obtained by

Thus, the above lq regularization problem can be solved by 
the proximal operator as shown in the following lemma.

Lemma 2  [29] Let G = Xt−1 − �P�(Xt−1 −M) and the SVD 
of G is U�VT . Then

where q ∈ {
1

2
,
2

3
} . Specifically, prox��,q(G) = UDiag

(T��(�(G)))V
T.

3.2 � Method for computing inexact proximal 
operator

As shown in Lemma  2, solving the proximal operator 
prox��,q(⋅) only needs the singular values/vectors which are 
greater than 

3
√
54

4
(��)2∕3 or 

4
√
48

3
(��)3∕4 . It means that the full 

SVD in Lemma 2 is time-consuming and unnecessary. In 
order to overcome this drawback, it is natural to ask that if 
there is a faster and more effective way to solve this problem. 

(16)T�(x) = (��(x1), ��(x2),… , ��(xn))
T .

(17)

Q𝜆,𝜇(X, Y) =
1

2
‖P𝛺(Y −M)‖2

F
+ < X − Y ,P𝛺(Y −M) >

+
1

2𝜇
‖X − Y‖2

F
+ 𝜆‖X‖q

q
,

(18)

Q�,�(X, Y) =
1

2�
‖X − (Y − �P�(Y −M))‖2

F
+ �‖X‖q

q

+
1

2
‖P�(Y −M)‖2

F
−

�

2
‖P�(Y −M)‖2

F
.

(19)

Xt = argmin
X∈ℝm×n

�
1

2�
‖X − (Xt−1 − �P�(Xt−1 −M))‖2

F
+ �‖X‖q

q

�
.

(20)Xt = prox��,q(G) = argmin
X∈ℝm×n

1

2
‖X − G‖2

F
+ �‖X‖q

q
,

Fortunately, there are some researcher focus on this prob-
lem [35, 38]. They suggest to apply SVD on small matrix 
instead of the original large matrix, thus the complexity 
could be dramatically down. The main idea of their meth-
ods is to extract a small core matrix by finding orthonormal 
based with the unitary invariant property. For problem (20), 
we can obtain similar result.

Proposition 1  Suppose G has k̂ singular values larger 
than 

3
√
54

4
(��)2∕3 or 

4
√
48

3
(��)3∕4 , and G = QQTG , where 

Q ∈ ℝ
m×k, k > k̂ , is orthogonal. Then

	 (i)	 range(G) ⊆ range(Q);
	 (ii)	 prox��,q(G) = Qprox��,q(Q

TG).

Proof 

	 (i)	 Since G = Q(QTG) , we can obtained the first part of 
Proposition 1 obviously.

	 (ii)	 Consider an arbitrary matrix X ∈ ℝ
m×n admits the 

SVD as X = U�VT , then QX = (QU)�VT . Since Q 
is orthogonal and using the unitary invariant norm 
property, we can get ‖X‖qq = ‖QX‖qq . Therefore, 

 the second equality follows from X = QZ.
Since ‖QTX‖qq = ‖Z‖qq = ‖QZ‖qq = ‖X‖qq and QQT = I , we 
get

which is the second part of Proposition 1. We complete the 
proof. 	�  ◻

In the traditional way, we need full SVD on the original 
large matrix and its complexity is O(mn2) . From Proposi-
tion 1, we can easily find that the complexity can be dramati-
cally down as performing SVD on a smaller matrix. Specifi-
cally, we perform SVD on matrix QTG and its complexity 
becomes O(mk2) . Thus, when k ≪ n , the computation speed 
can be significantly improved.

It should be note that the proof process of Proposition 1 
partially follows but is different from [38]. Actually, we deal 
with the lq regularization problem instead of nuclear norm 
regularization problem.

(21)

Qprox��,q(Q
TG) = Q argmin

Z∈ℝm×n

1

2
‖Z − QTG‖2

F
+ �‖Z‖q

q

= argmin
X∈ℝm×n

1

2
‖QZ − QQTG‖2

F
+ �‖QTX‖q

q
,

(22)
Qprox��,q(Q

TG) = argmin
X∈ℝm×n

1

2
‖X − G‖2

F
+ �‖X‖q

q

= prox��,q(G),



2332	 International Journal of Machine Learning and Cybernetics (2020) 11:2327–2339

1 3

Next, we will address that how to determine the orthogo-
nal matrix Q. Indeed, orthogonal matrix Q can be approxi-
mated by using power method [39], which is wildly used to 
approximate the SVD in nuclear norm and nonconvex regu-
larization minimization problem [35, 40]. More precisely, 
we can use Algorithm 2 to obtain the orthogonal matrix Q. 

Similar to [35, 40], we fix the number of iterations to 3 for 
PowerMethod. The matrix R is used for warm-start which is 
particularly useful for proximal algorithm. As pointed out 
by [35], the PROPACK algorithm [41] can also be used to 
obtain Q and the complexity is the same as PowerMethod. 
Empirically, PROPACK is much less efficient than Power-
Method. Besides, a fast Monte Carlo algorithm [14, 29, 30] 
is used for computing an approximate SVD. Although this 
method greatly reduces the computational effort, it has some 
tunable parameters that need to be set, which makes it not 
easy to use.

3.3 � Inexact proximal operator

Based on the PowerMethod algorithm, we can compute 
prox��,q(⋅) more efficiently. Specifically, as in Algorithm 3, 
we first adopt the PowerMethod algorithm to obtain orthogo-
nal matrix Q. Then, we perform SVD on QTG which is much 
smaller than the original matrix G as k ≪ n , and the com-
plexity is reduced from O(mn2) to O(mk2) . The next steps are 
obtain the approximate prox��,q(⋅) by solving problem (9), 
where q is fixed to 1/2 or 2/3.

According to Algorithm 3, the prox��,q(⋅) step will be 
inexact. Thus, we should monitor the progress of F to 
make sure the proposed algorithm converges to a criti-
cal point. Motivated by [42], Yao et al. [35, 37] suggest 
employing the following condition to control the inexact-
ness, that is,

where 𝛿 > 0 is a constant. Obviously, this condition makes 
the objective function F always decreased. However, in real 
application, this monotonically decreasing may makes the 
algorithm fall into narrow curved valley. A nonmontone con-
dition is also used. Specifically, we accept Xt+1 , if Xt+1 makes 

(23)F(Xt+1) ≤ F(Xt) −
�

2
‖Xt+1 − Xt‖2F,

the value of F smaller than the maximum over previous m 
(m > 1) iterations, that is,

Based on the analysis of above, we propose Algorithm 4 to 
obtain the approximation solution at iteration t.

3.4 � The proposed algorithm

In this section, we will introduce our proposed lq inexact 
APG ( lqiAPG) algorithm and discuss three techniques to 
accelerate the convergence of our proposed algorithm.

First, we use Nesterov’s accelerated gradient method. 
In the area of convex optimization, the Nesterov’s acceler-
ated gradient method is a widely used technique for speed 
up the convergence of most machine learning algorithms, 
e.g., proximal algorithm. Recently, this method has also 
been employed to accelerate the convergence of non-
convex optimization. nmAPG [33], FaNCL-acc [35] and 
niAPG [37] are the state-of-the-art algorithms. Thus, simi-
lar to nmAPG, we will use the following steps in lqiAPG 
algorithm,

(24)F(Xt+1) ≤ max
t=max(1,k−m),…,k

F(Xt) −
�

2
‖Xt+1 − Xt‖2F,

(25)
�t+1 =

1 +

√
1 + 4�2t

2
,

(26)
Yt+1 = Xt +

(
�t

�t+1

)
(Zt − Xt)

+

(
�t − 1

�t+1

)
(Xt − Xt−1).
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Due to the (25) and (26) strategies, extensive experiments 
have shown that the convergence rate of lqiAPG algorithm 
is significantly improved.

Since the regularization parameter � plays an important 
role in our proposed algorithm, the tuning of � becomes a 
subtle issue. Fortunately, this problem has been already con-
sidered in [29, 30], and a most reliable choice of the optimal 
regularization parameters of (15) are

Besides, the continuation technique is used in our proposed 
algorithm. As shown in [14, 30, 35], continuation technique 
is a commonly used method to improve the convergence 
speed of machine learning algorithms. The key idea of 
continuation technique is to choose a decreasing sequence 
𝜆t ∶ 𝜆1 > 𝜆2 > … > 𝜆̄ > 0 , then at tth iteration, use � = �t . 
Therefore, based on continuation technique, we suggest use 
the following regularization parameter at the (t + 1) th itera-
tion, that is,

where � ∈ (0, 1) is a constant, rt+1 is the rank of Xt+1 , and 𝜆̄ 
is a sufficiently small but positive real number, e.g., 10−4.

Now, we outline our proposed algorithm as follows, 

The third technique to accelerate the convergence rate of 
our proposed algorithm is to use the “sparse plus low-rank” 
structure [15]. Step 4 in lqiAPG algorithm performs inexact 
proximal step. Obviously, for any t > 1 , there are two cases 
wi l l  be  happen .  When Xt  i s  equa l  to  Zt  , 
Yt+1 = Xt +

(
�t−1

�t+1

)
(Xt − Xt−1) . Therefore, step 1 of Algo-

rithm 4 has

(27)�∗ =

⎧
⎪⎨⎪⎩

√
96

9�
(�rt (Xt+1))

3∕2, if q =
1

2
;

3
√
108

4�
(�rt (Xt+1))

4∕3, if q =
2

3
.

(28)

𝜆t+1 =

⎧⎪⎨⎪⎩

max
�
𝜆̄, min

�
𝜂𝜆t,

√
96

9𝜇
(𝜎rt+1(Xt+1))

3∕2
��

, if q =
1

2
;

max{𝜆̄, min{𝜂𝜆t,
3
√
108

4𝜇
(𝜎rt+1(Xt+1))

4∕3}}, if q =
2

3
.

The first two terms are low-rank matrices, while the last term 
is a sparse matrix. This kind of “sparse plus low-rank” struc-
ture can speed up matrix multiplications. More precisely, for 
any V ∈ ℝ

m×k , GV can be obtained as

where �t =
�t−1

�t+1
 . Similarly, for any U ∈ ℝ

m×k , UTG can be 
obtained as

When Xt = Xt−1 , Yt+1 becomes Xt +
(

�t

�t+1

)
(Zt − Xt) . Thus, 

step 1 of Algorithm 4 has

where �t =
�t

�t+1
 . The same as above, we have

and

It should be note that the lqiAPG algorithm is different 
from lq PG algorithm. First, the lqiAPG algorithm employs 
closed-form thresholding formulas, while lq PG algorithm 
uses q-thresholding function. The q-thresholding function 
is often solved by numerical methods and only obtained its 
approximate solutions. Besides, the lqiAPG algorithm allows 
inexact proximal step (Step 4), which makes the algorithm 
more efficient and faster. Moreover, the lqiAPG algorithm 
uses more robust acceleration scheme, in which involves 
Xt , Xt−1 and Zt . Finally, the lqiAPG algorithm exploits the 
“sparse plus low-rank” structure to improve the speed of 
matrix multiplications.

The convergence of F(X) is shown as follows:

Theorem 3  Let {Xt} be the sequence generated by lqiAGP 
algorithm, then

(29)
G = Yt+1 − �P�(Yt+1 −M) =

(
1 +

�t − 1

�t+1

)
Xt

−

(
�t − 1

�t+1

)
Xt−1 − �P�(Yt+1 −M).

(30)
GV = (1 + �t)Ut�t(V

T
t
V) − �tUt−1�t−1(V

T
t−1

V)

+ �P�(M − Yt)V ,

(31)
UTG = (1 + �t)(U

TUt)�tV
T
t
− �t(U

TUt−1)�t−1V
T
t−1

+ �UT
P�(M − Yt).

(32)
G = Yt+1 − �P�(Yt+1 −M) = (1 + �t)Xt

− �tZt − �P�(Yt+1 −M),

(33)
GV = (1 + �t)Ut�t(V

T
t
V) − �tUZt

�Zt
(VT

Zt
V)

+ �P�(M − Yt)V ,

(34)
UTG = (1 + �t)(U

TUt)�tV
T
t
− �t(U

TUZt
)�Zt

VT
Zt

+ �UT
P�(M − Yt).
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	 (i)	 {Xt} is a minimization sequence and bounded, and 
has at least one accumulation point;

	 (ii)	 F(Xt) converges to F(X∗) , where X∗ is any accumula-
tion point of {Xt}.

Proof 

	 (i)	 According to the control condition (23) in lqiAGP 
algorithm, for any t = 1, 2,… , we have 

 Thus, {Xt} is  a minimization sequence 
of F(X) ,  and {F(Xt)} is  bounded.  Since 
{Xt} ⊂ {X ∶ F(X) ≤ F(X0)} , {Xt} is bounded and has 
at least one accumulation point.

	 (ii)	 From above description, we also have F(Xt) con-
verges to F∗ , where F∗ is a constant. Suppose an 
accumulation point of {Xt} is X∗ . Using the continu-
ity of F(X), we obtain F(Xt) → F∗ = F(X∗) as t → ∞ . 
We complete the proof.� □

4 � Numerical experiments

In this section, we validate our proposed lqiAPG algorithm 
for matrix completion problems by conducting a series of 
experiments. We compare our proposed method with the 
following state-of-the-art matrix completion algorithms. 

(1)	 Three nuclear norm minimization algorithms: 
APGL [13], AIS-Impute [34], and Active [40];

(2)	 Two low-rank matrix decomposition-based methods: 
low-rank matrix fitting (LMaFit) [43], and alternating 
steepest descent algorithm (ASD) [45];

(35)F(Xt) ≤ F(Xt−1) ≤ ⋯ ≤ F(X0).

(3)	 Two methods for solving models with schatten-q regu-
larizers: HFPA [29], and multi-schatten-q norm sur-
rogate (MSS) [46];

(4)	 Three methods for solving models with nonconvex low-
rank regularizers: iterative reweighted nuclear norm 
(IRNN) [47] algorithm, FaNCL [35], and niAPG [37].

We also tested singular value projection (SVP)  [48], 
rank-one matrix pursuit method (R1MP ) [44], iterative 
reweighted least square(IRucLp) [49], and Soft-AIS [50]. 
In the following tests, however, these methods are slow or 
require large memory, so their results are not reported here.

In the following experiments, we follow the recom-
mended settings of the parameters for these algorithms. 
For our proposed algorithm, we set 𝜆̄ = 10−4 , � = 1.99 , and 
� = 0.75 . To prove the effectiveness of our proposed algo-
rithm, we consider three cases: synthetic data, image recov-
ery and recommendation problems. Besides, all the algo-
rithms are stopped when the difference in objective values 
between consecutive iterations becomes smaller than 10−5 . 
All the algorithms are implemented in MATLAB R2014a on 
a Windows server 2008 system with Intel Xeon E5-2680-v4 
CPU(3 cores, 2.4 GHz) and 256 GB memory.

4.1 � Synthetic data

The test matrix M ∈ ℝ
m×n with rank r is generated as 

M = MLMR + N  , where the entries of random matrices 
ML ∈ ℝ

m×r and MR ∈ ℝ
r×n are sampled i.i.d. from the stand-

ard normal distribution N(0, 1) , and entries of N sampled 
from N(0, 0.1) . Without loss of generality, we set m = n and 
r = 5 . We then sampled a subset � of p entries uniformly at 
random as the observations, where p = 2mrlog(m).

Similar to [35], we evaluate the recovery performance 
of the algorithms based on the i) normalized mean squared 

Table 1   Comparison of different algorithms on synthetic data, NMSE is scaled by 10−2 . CPU time is in seconds, and “sr” denotes the sample 
ratio

m = 1000
sr = 6.91%

m = 2000
sr = 3.80%

m = 3000
sr = 2.67%

m = 5000
sr = 1.70%

NMSE Rank Time NMSE Rank Time NMSE Rank Time NMSE Rank Time

APGL 3.82 68 45.1803 3.81 104 447.22 3.66 132 2372.0 3.49 179 21,448.0
AIS-Impute 3.05 5 5.0919 3.61 80 259.82 3.53 80 500.96 3.33 80 1579.3
LMaFit 4.14 5 1.4848 4.15 5 3.4542 4.19 5 5.240 4.19 5 10.40
ASD 4.75 5 1.6022 4.81 5 3.2956 4.73 5 5.0718 4.77 5 9.3707
HFPA 4.89 5 5.7976 4.91 5 24.5722 4.92 5 98.6759 4.92 5 222.15
IRNN 1.83 5 92.8488 1.77 5 1046.5 1.70 5 4761.4 1.67 5 23,906.0
FaNCL 1.86 5 2.1539 1.78 5 8.8105 1.73 5 19.1202 1.61 5 39.9434
niAPG 1.87 5 0.5796 1.74 5 2.2092 1.73 5 4.1760 1.67 5 10.9549
lqiAPG(1/2) 1.84 5 0.4691 1.77 5 1.6351 1.69 5 3.1847 1.64 5 6.8887
lqiAPG(2/3) 1.84 5 0.4816 1.74 5 1.6496 1.73 5 2.9768 1.66 5 6.8203
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error NMSE = ‖P�⟂(X − UV)‖F∕‖P�⟂(UV)‖F , where X 
is the recovered matrix and �⟂ stands for the unobserved 
positions; ii) rank of X; and iii) running time. We vary m 
in the range {1000, 2000, 3000, 5000} . For each algorithm, 
we present its average NMSE, rank and running time with 
10 runs.

The average NMSE, rank, and running time are reported 
in Table 1. The results in Table 1 demonstrate that our pro-
posed lqiAPG is a competitive algorithm. More precisely, 
lqiAPG algorithm runs fastest among these algorithms. In 
terms of accuracy, lqiAPG attained satisfying performance. 
In Table 1, we can find that lqiAPG algorithm achieves most 
accurate solutions in nearly all problems. We also observe 

Table 2   Comparison of different algorithms on benchmark images. CPU time is in seconds

Barbara Bridge Clown Couple Crowd Fingerprint

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

APGL 23.74 9.39 23.16 7.78 26.36 7.60 25.57 7.67 24.88 7.82 23.06 7.89
AIS-Impute 23.68 21.22 16.39 1.33 26.35 17.00 16.73 1.33 24.86 20.74 14.87 1.38
Active 23.77 15.44 23.26 19.78 26.33 6.92 25.56 8.39 24.86 10.85 23.06 18.59
LMaFit 18.61 3.56 19.37 0.74 20.5 3.83 21.04 3.74 18.1 4.11 16.44 3.63
ASD 27.03 12.60 25.97 13.13 23.86 9.87 24.87 9.97 28.31 9.33 25.72 9.92
HFPA 23.37 33.63 22.75 33.12 28.45 32.59 26.42 33.35 26.13 33.87 22.58 33.76
MSS 22.34 22.17 21.97 22.16 24.99 22.96 24.27 22.93 23.70 22.40 21.51 22.45
IRNN 23.26 10.80 22.76 23.58 26.06 5.11 25.10 3.88 24.52 5.11 22.81 15.96
FaNCL 23.01 5.75 22.63 10.42 25.95 2.89 24.85 1.69 24.34 2.92 22.61 26.67
niAPG 23.20 0.75 22.76 0.81 25.97 0.72 25.09 0.65 24.55 0.70 22.83 1.03
lqiAPG(1/2) 22.28 1.43 22.26 2.10 28.20 1.83 26.13 1.92 25.84 1.53 22.69 2.15
lqiAPG(2/3) 22.19 1.53 22.17 2.24 28.13 1.45 26.22 1.91 25.83 1.97 22.73 2.53

Houses Lighthouse Truck Trucks Zelda

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

APGL 22.34 8.07 24.82 7.78 27.21 7.43 25.56 7.44 28.72 7.26
AIS-Impute 13.73 1.40 16.43 1.33 21.12 1.38 18.36 1.27 28.66 9.92
Active 22.33 23.81 24.76 10.31 27.22 3.46 25.53 6.95 28.69 2.75
LMaFit 16.21 3.59 20.03 3.69 24.11 3.88 21.87 3.67 23.15 3.55
ASD 26.09 10.12 25.86 9.52 28.14 9.44 27.28 9.71 31.83 12.73
HFPA 21.71 32.98 25.31 32.73 28.60 33.61 26.41 34.31 31.44 33.75
MSS 21.05 23.09 23.65 22.33 25.53 22.15 24.14 23.10 27.34 23.04
IRNN 22.21 9.99 24.43 5.76 26.41 2.63 24.92 6.53 28.26 6.24
FaNCL 21.90 7.72 24.46 7.16 26.32 1.36 24.83 2.75 28.26 1.05
niAPG 22.14 1.00 24.53 0.69 26.41 0.50 24.99 0.54 28.25 0.45
lqiAPG(1/2) 21.62 2.08 25.05 1.93 29.52 1.38 26.35 2.18 33.37 1.77
lqiAPG(2/3) 21.66 2.45 24.99 1.65 29.45 1.18 26.44 2.23 33.43 2.18

Fig. 1   Results of image 
recovery by using different 
algorithms

(a) APG (b) AIS-Impute (c) Active (d) LMaFit (e) ASD (f) HFPA

(g)MSS (h) IRNN (i) FaNCL (j) niAPG (k) lqiAPG(1/2) (l) lqiAPG(2/3)
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that as the size of the matrix increases, the lqiAPG algorithm 
will be more faster than other algorithms. Moreover, lqiAPG 
algorithm is able to solve large-scale random matrix comple-
tions. Specifically, the running time of lqiAPG algorithm for 
solving problem with m = 105 , sr = 0.12% is within 1159.2 s 
(NMSE is smaller than 0.0141), while most other algorithms 
cannot get satisfactory results within this time. Therefore, 
taking both accuracy and converge speed into considera-
tion, our proposed lqiAPG algorithm has the best recovery 
performance among these algorithms.

4.2 � Image recovery

In this section, we will apply lqiAPG algorithm to image 
inpainting problems. In image inpainting problems, the val-
ues of some of the pixels of the image are missing, and our 
mission is to find out the missing values. If the image is low 
rank or numerical low rank, we can solve the image inpaint-
ing problem as a matrix completion problem. In this tests, 
we use the following benchmark images: Barbara, Bridge, 
Clown, Couple, Crowd, Fingerprint, Girlface, Houses, Kiel, 
Lighthouse, Tank, Truck, Trucks, and Zelda. The size of 
each image is 512 × 512 . We directly deal with the origi-
nal images. As the image matrix is not guaranteed to be 
low rank, we use rank 50 for the estimated matrix for test. 

We randomly exclude 50% of the pixels in the images, and 
the remaining ones are used as the observations. We use 
peak signal-to-noise ratio (PSNR) [51] and running time to 
evaluate the recovery performance of the algorithms. We 
represent their average results with 5 runs.

We list the results in terms of the PSNR in Table 2. We 
also exhibit the results of image recovery by using different 
algorithms for Zelda in Fig. 1. The results in Fig. 1 dem-
onstrate that our proposed lqiAPG algorithm performs best 
among 12 algorithms. We also can easily find from Table 2 
that our lqiAPG, niAPG, HFPA, and ASD algorithms achieve 
the best results. Although, the results obtained by HFPA 
and ASD algorithms are slightly better than lqiAPG. Our 
algorithm is much faster than HFPA and ASD algorithms. 
In addition, although niAPG algorithm is slightly faster than 
our algorithm, the solutions obtained by our algorithm are 
more accurate. More precisely, lqiAPG algorithm achieves 
most accurate solutions 7 times on all images, while niAPG 
achieves most accurate solutions only 4 times. Again, taking 
both accuracy and converge speed into consideration, our 
proposed lqiAPG algorithm is a competitive algorithm in the 
field of image recovery.

4.3 � Recommendation

To further demonstrate the effectiveness of our proposed 
method, in this section we apply lqiAPG algorithm on Jester 
and MovieLens datasets. We consider six datasets: Jester1, 
Jester2, Jester3, Jester-all, MovieLens-100K, and Mov-
ieLens-1M. The characteristics of these datasets are shown 
in Table 3. The Jester datasets are collected from a joke 
recommendation system. The whole data is stored in three 
excel files with the following characteristics [13]. 

(1)	 jester-1: 24,983 users who have rated 36 or more jokes;

Table 3   Characteristics of the recommendation datasets

Dataset Row Column Rating

Jester1 24,983 100 106

Jester2 23,500 100 106

Jester3 24,983 100 6 × 105

MovieLens100K 943 1682 105

MovieLens1M 6040 3706 106

Table 4   Comparison of different algorithms on Jester and MovieLens datasets. CPU time is in seconds

Jester1 Jester2 Jester3 Jester-all MovieLens100K MovieLens1M

RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

APGL 4.1709 157.53 4.1976 145.35 4.6358 412.55 4.2547 795.66 1.0367 1264.9 – –
AIS-Impute 4.3158 42.88 4.3471 50.04 5.2217 83.84 4.6815 474.09 1.0390 15.04 0.8880 103.44
LMaFit 5.3163 8.04 5.3831 6.97 5.5149 3.84 5.3901 19.09 – – – –
ASD 4.6943 106.28 4.7283 102.01 5.1348 41.79 4.9944 279.94 1.1552 5.67 0.9992 56.48
HFPA 4.3410 48.59 4.3662 49.14 – – 4.3449 92.31 1.1992 9.01 1.1117 28.34
MSS 4.3269 110.31 4.3568 104.56 – – 4.3234 210.43 0.9616 28.79 0.8849 434.75
IRNN 4.3257 412.07 4.3512 370.13 6.8324 274.09 4.6352 1224.6 1.1026 368.84 – –
FaNCL 4.3210 97.91 4.3589 93.97 4.8349 38.50 4.6251 257.90 1.0871 5.22 0.9190 52.03
niAPG 4.2784 4.18 4.2898 4.45 4.9993 14.39 4.4087 19.96 0.9503 0.62 0.8815 22.98
lqiAPG(1/2) 4.2867 4.91 4.2970 5.49 4.9315 9.17 4.3992 20.01 0.9682 3.83 0.9079 24.20
lqiAPG(2/3) 4.3000 7.37 4.3129 8.93 4.9857 12.84 4.4219 19.11 1.0481 5.25 0.9270 38.40



2337International Journal of Machine Learning and Cybernetics (2020) 11:2327–2339	

1 3

(2)	 jester-2: 23,500 users who have rated 36 or more jokes;
(3)	 jester-3: 24,938 users who have rated between 15 and 

35 jokes.

The MovieLens datasets are collected from the MovieLens 
website. The characteristics of these data sets are list as 
follows [13]: 

(1)	 movie-100K: 100,000 ratings for 1682 movies by 943 
users;

(2)	 movie-1M: 1 million ratings for 3900 movies by 6040 
users.

The Jester-all is obtained by combining Jester1, Jester2, and 
Jester3 datasets. In the following test, we follow the setup 
in [35], and randomly pick up 50% of the observed for train-
ing and use the remaining 50% for testing. We use the root 
mean squared error (RMSE) and running time to evaluate 
the recovery performance of the algorithms. The RMSE is 
defined as RMSE =

�
‖P𝛺̄(X −M)‖2

F
∕�𝛺̄�1 , where 𝛺̄ is 

the test set, X is the recovered matrix. The test of each algo-
rithm is repeated 5 times.

The reconstruction results in terms of RMSE and running 
time are listed in Table 4. We depict the RMSE along the 
CPU times and show these results in Fig. 2. As can be seen 
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Fig. 2   Matrix completion results on Jester and MovieLens datasets by 
using different algorithms. In the first and second rows, we apply dif-
ferent algorithms on Jester datasets and depict the RMSE along the 

CPU times. In the last row, we apply different algorithms on Mov-
ieLens datasets and depict the RMSE along the CPU times
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form Table 4, our proposed algorithm, APGL, and niAPG 
achieve the lowest RMSE in nearly all problems. We also 
observe that the results obtained by APGL are slightly bet-
ter than ours, but our method is much faster. Besides, our 
proposed algorithm can be runs on all six data sets, while 
many algorithms only run partial data sets. Furthermore, 
Fig. 2 demonstrate that our proposed algorithm decreases 
the RMSE much faster than others. This is the third time to 
show that our proposed algorithm is a competitive algorithm 
in the field of matrix completion.

5 � Conclusion

In this paper, we focus on the large-scale low-rank matrix 
completion problems with lq regularizers and proposed an 
efficient and fast inexact thresholding algorithm called lq
iAPG algorithm to handle such problems. The key idea is to 
employ the closed-form q-thresholding operator to approxi-
mate the rank of a matrix and power method to approximate 
the SVD procedure. At the same time, our proposed algo-
rithm inherits the great efficiency advantages of first-order 
gradient-based methods and is simple and easy to use, which 
is more suitable for large-scale matrix completion problems. 
In addition, we adopted three techniques to accelerate the 
convergence rate of our proposed algorithm, which are Nes-
terov’s accelerated gradient method, continuation technique, 
and the “sparse plus low-rank” structure. Furthermore, a 
convergence analysis of the lqiAPG algorithm has shown that 
the sequence {Xt} generated by lqiAPG algorithm is bounded 
and has at least one accumulation point. More important, 
we also shown that the objective function F(X) converges to 
F(X∗) , where X∗ is any accumulation point of {Xt} . Finally, 
extensive experiments on matrix completion problems 
validated that our proposed algorithm is more efficient and 
faster. Specifically, we compare our proposed algorithm with 
state-of-the-art algorithms on a series of scenarios, including 
synthetic data, image recovery and recommendation prob-
lems. All results demonstrated that our proposed algorithm 
is able to achieve comparable recovery performance, while 
being faster and more efficient than state-of-the-art methods.
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