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Abstract
The robustness to outliers, noises, and corruptions has been paid more attention recently to increase the performance in linear 
feature extraction and image classification. As one of the most effective subspace learning methods, low-rank representation 
(LRR) can improve the robustness of an algorithm by exploring the global representative structure information among the 
samples. However, the traditional LRR cannot project the training samples into low-dimensional subspace with supervised 
information. Thus, in this paper, we integrate the properties of LRR with supervised dimensionality reduction techniques to 
obtain optimal low-rank subspace and discriminative projection at the same time. To achieve this goal, we proposed a novel 
model named Discriminative Low-Rank Projection (DLRP). Furthermore, DLRP can break the limitation of the small class 
problem which means the number of projections is bound by the number of classes. Our model can be solved by alternatively 
linearized alternating direction method with adaptive penalty and the singular value decomposition. Besides, the analyses of 
differences between DLRP and previous related models are shown. Extensive experiments conducted on various contaminated 
databases have confirmed the superiority of the proposed method.

Keywords Feature selection · Low-rank representation · Image classification · Small-class problem · Subspace learning

1 Introduction

Dimensionality reduction is one of the most effective and 
simple techniques in machine learning and classification 
problem [1, 2]. It is proposed to solve the critical problem 

called “curse of dimensionality” [3] which means models 
cannot perform well when processing high-dimensional 
data, even cause the singular problem. Recently, many clas-
sification models based on image recognition have been 
proposed, such as multiple-instance learning (MIL) [4] 
and subspace learning. The most classical subspace learn-
ing methods include principal component analysis (PCA) 
[5–7] and Linear discriminant analysis (LDA) [8–10]. PCA 
aims to project the high dimensionality data into the low 
dimensionality subspace along the direction of the maxi-
mum variance and LDA needs to find the optimal discrimi-
native subspace so that the ratio of between-class scatter 
to within-class scatter is maximized. However, both PCA 
and LDA cannot learn the local structure information for 
dimensionality reduction task. To address this problem, 
many manifold learning techniques based on locality infor-
mation were proposed. The representative methods include 
locality preserving projections (LPP) [11, 12], locally linear 
embedding (LLE) [13, 14], neighborhood preserving pro-
jection (NPP) [15], neighborhood preserving embedding 
(NPE) [16] and the variant of NPE named discriminant 
sparse neighborhood preserving embedding (DSNPE) [17]. 
Recently, a structured optimal graph based sparse feature 
extraction (SOGSFE) [18] method was proposed to obtain 
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the local manifold sparse structure and semi-supervised fea-
ture extraction simultaneously.

Previous studies present that a least square regression 
(LSR) formation [19, 20] characterizes the classical sub-
space learning methods. LSR is usually mathematically trac-
table and it has a lot of versions, such as weight LSR [21], 
partial LSR [22] and nonnegative least squares (NNLS) [23]. 
However, all above regression methods have two disadvan-
tages. Firstly, for most LSR-based methods, they are only 
devoted to keeping the local geometry information which 
is sensitive to the illumination, corruptions and outliers. 
Thus, these methods may fail to achieve good results in the 
recognition task. Secondly, LSR-based techniques possess 
small-class problem which means the number of classes 
limits the number of projected vectors when learning a low-
dimensional subspace.

To address the first problem mentioned above, researchers 
studied the l2,1-norm-based least square regression methods 
and low-rank learning methods. There were a lot of works 
[24–27] proved that the robustness of least square regres-
sion methods by imposing the l2,1-norm as the basic metric 
for pattern recognition. Therefore, more and more l2,1-norm 
regression models were used in subspace learning [28–32]. 
For example, l2,1-norm regularized discriminative feature 
selection (UDFS) [33] was designed for robust unsupervised 
subspace learning. However, UDFS is incapable of modeling 
the global structure of image points. Fortunately, the low-
rank learning technique can also be used to improve robust-
ness on noise/corrupted data and has been greatly noticed 
recently in the fields of data mining, machine learning and 
computer vision. A large number of low-rank representation 
(LRR) methods emerged in the past decade [34–39], which 
aims at corrupted data recovery and noise removal. LRR 
and its extended versions can discover potential relations 
among the data vectors by imposing a low-rank constraint. 
As a result, LRR-based methods can catch the global infor-
mation of data and weaken the disturbance of noise. For 
example, robust PCA (RPCA) [40] learns a clean matrix and 
a sparse error matrix from the input matrix to obtain robust 
subspace segmentation. However, RPCA presumes that all 
data points are distributed in a single subspace, which is 
inconsistent with the fact that data vectors usually locate in 
multiple subspaces. To solve the above problem, Liu et al. 
[41, 42] proposed LRR to better acquire the underlying data 
structure with a low-rank matrix. Moreover, by taking full 
advantage of the graph regularizer, Yin et al. [39] developed 
a laplacian regularized LRR-based method that exploited 
both the global and local geometric information in data for 
graph learning and subspace projection. Based on [39], Li 
et al. [43] adopted a rank constraint on the proposed model 
to further learn an optimal graph with clear clustering struc-
ture and obtained encouraging performance. What’s more, 
Zhuang et al. [44] introduced a non-negative low-rank and 

sparse graph (NNLRS) for classification and discriminative 
analysis task. NNLRS-graph not only captured the local lin-
ear relationships and global structures between image points 
but also preserved sparse to ensure the robustness of the 
algorithm. To integrate dimensionality reduction with LRR, 
Liu and Yan [45] put forward latent LRR which recovered 
the low-rank data representation and projected the clean 
data points into a low-dimensional subspace simultane-
ously. Since two low-rank matrices must be learned sepa-
rately, the effectiveness of latent LRR cannot be guaranteed. 
Thus, approximate low-rank projection (ALRP) [46] treated 
the two matrices in LatLRR as a whole so that they can be 
boosted mutually in the learning process. By combining with 
least square regression, ALRP was extended to the super-
vised version called SALRP which can do feature extrac-
tion and classification task at the same time. Nevertheless, 
SALRP is limited by the size of the class label matrix to 
obtain c projections at most, where c represents the number 
of classes. Especially, when c is small, the dimension of the 
learned features is not enough for achieving good perfor-
mance, which is undesirable in many applications.

To solve the problem mentioned above, we develop a 
novel model called discriminative low-rank projection 
(DLRP), which combines the properties of LRR and LSR 
to settle down the underlying problem existing in LRR and 
its variants. Our purpose is to obtain enough projections 
in a supervised manner and learn a robust discriminative 
subspace with low-rank representation. To ensure the effec-
tiveness, we employ some adaptive constraints and l2,1-norm 
as the basic measurement. The major contributions of this 
paper can be concluded as follows:

(1) Different from previous LLR-based techniques, our 
method alleviates the small-class problem that the num-
ber of features is bound by the number of classes. This 
problem may degrade the recognition rate for image 
feature extraction and classified task. DLRP can not 
only learn the projected vectors/matrix with arbitrary 
dimensions during the process of dimensionality reduc-
tion but also equip a robust low-rank subspace to gain 
better results.

(2) DLRP shares some advantages of both LSR and LRR. 
Therefore, it can not only utilize clean data recovered 
by LRR to obtain more promising image classification 
performances but also employ the projecting subspace 
to achieve better regression results for feature extrac-
tion.

(3) An efficient algorithm, which integrates the linearized 
alternating direction method with adaptive penalty 
(LADMAP) and singular value decomposition (SVD), 
is designed for solving the proposed model. The theo-
retical studies about the convergence and computation 
complexity of our algorithm are also shown. The algo-
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rithm has validated its superiority on no matter cor-
rupted datasets or deep learning dataset.

The remainder of this paper could be structured as below. 
In Sect. 2, some related methods will be reviewed for ease 
of understanding. The proposed DLRP and its optimization 
algorithm to solve the problem iteratively will be introduced 
in Sect. 3. Theoretical studies of our model will be shown in 
Sect. 4. Experimental analysis and results will be shown in 
Sect. 5 and conclusion in Sect. 6.

2  Related works

In this section, we present the notations and definitions 
related to our model firstly, and then review some related 
LRR-based models, such as subspace learning model RPCA, 
low-rank representation method LRR and its extended ver-
sion latent LRR.

2.1  Notations and definitions

In this paper, given a collection of data points 
X = [x1, x2,… , xn] , n is the number of training samples, and 
Y  is label information matrix which includes c classes. The 
matrix Y  is a binary label matrix and when xi belongs to j th 

class, the Yij = 1 ; if not, Yij = 0.‖X‖F =
�∑m

i=1

∑n

j=1
x2
ij
 is 

Frobenius norm ( F-norm) of X . ‖X‖∗ denotes the nuclear 
norm that computes the sum of all the singular values. 
diag(X) means the diagonal matrix X . Table 1 lists the detail 
notations of this paper.

2.2  Robust principal component analysis

As a dimensionality reduction technique, RPCA [40] can 
decompose the contaminated image information into a clean 
low-rank term and a sparse error term simultaneously. Because 
PCA assumes that the noises of data is Gaussian, its effective-
ness will be influenced by heavy noises or unexcepted outli-
ers. However, RPCA has not this assumption (RPCA assumes 

that the noises are sparse). Thus, RPCA is a robust extended 
version of PCA. This advantage of RPCA is widely used in a 
variety of applications, such as video surveillance [47], face 
recognition [48] and singing-voice separation from monaural 
records [49].

RPCA is a low-rank matrix recovery technique, and its 
goal is to decompose data X to A + E , where A is the clean 
low-rank data on the low-dimensional subspace and E records 
sparse error. Such decomposition can be obtained through 
solving the following principal component pursuit problem 
[40]:

where rank(A) means the rank of A , � is a positive parameter 
to trade off the low rankness and sparsity.

2.3  Low‑rank representation‑based clustering 
methods

Firstly, we introduce the LRR [41, 42] method. Then, we 
review the LatLRR [45].

As a subspace learning method, LRR aims to find the low-
est-rank representation for data clustering. The general formu-
lation of LRR can be written as:

where D is treated as the dictionary matrix while Z reveals 
the potential subspace structure. In real applications, we 
select X itself as dictionary matrix, so (2) can be reformu-
lated as:

Due to problem (3) is a NP-hard, we transform (3) into the 
base minimization problem:

Similar to RPCA, LRR can also be rewritten to the follow-
ing formulation with error component:

where � is a positive penalty parameter to balance the low-
rank part and reconstruction error as � of RPCA. ‖⋅‖p denotes 
certain norm, such as F-norm, l1-norm, l2,1-norm, etc. How-
ever, when training samples are high-dimensional and insuf-
ficient, LRR fails to obtain good performance. LatLRR is 
proposed to exploit more unobserved samples. The function 
of LatLRR is formulated as:

(1)min
A,E

rank(A) + �‖E‖0, s.t.X = A + E

(2)min
Z

rank(Z), s.t.X = DZ

(3)min
Z

rank(Z), s.t.X = XZ

(4)min
Z

‖Z‖∗, s.t.X = XZ

(5)min
Z,E

‖Z‖∗ + �‖E‖p, s.t.X = XZ + E

(6)min
Z,E

‖Z‖∗ + �‖E‖p, s.t.X =
�
X,XH

�
Z + E

Table 1  The notations used in this paper

Notation Size Description

X m × n The data matrix
Y c × n The label matrix
P c × d The coefficient matrix
Q m × d The transformation matrix
Z n × n The low-rank representation matrix
E m × n Error matrix
J n × n Auxiliary matrix
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where X,XH represent the observed data and unobserved 
data separately. With Bayesian inference [50], X can equal to 
XZ + LX so that LatLRR can use L to reduce the dimension 
of original datasets. (6) is rewritten as:

Although LatLRR is a good solution to the problem that 
LRR-based methods cannot directly learn the low-dimen-
sional subspace, but the discriminant information is not 
used. Therefore, LatLRR is not suitable for feature extrac-
tion and classification problems in such case.

In addition, it is expected that label information of the 
data can be well integrated with LRR-based methods, which 
will derive the clean data with discriminating power. Moreo-
ver, if directly used the terms ‖Y − XZ‖2

F
 or ‖Y − LX‖2

F
 in 

the above low-rank learning models, we had to encounter 
the small-class problem. i.e. the upper bound of the learned 
subspace of L or Z will be the maximum of c . Hence, how 
to recover the discriminant representative coefficient matrix 
Z for robust regression task is a critical problem.

3  Objective function and optimization 
solution

In this subsection, we first the introduce motivations of our 
model. The object function and update rules are also pre-
sented later. At last, an efficient algorithm is designed to 
iteratively solve the optimization problem.

3.1  Motivations of proposed method

The classical unsupervised dimensionality reduction tech-
niques use Euclidean distances as the metric to measure the 
local geometric structure and construct the graph by local 
patches. In real applications, the data are often noisy and 
even grossly corrupted. Local structural information of data 
is easily damaged in the contaminated circumstances and 
then affect the recognition results in previous method. As 
a result, it is desirable to develop a novel technique that 
focuses on global information and keeps the robustness to 
some unexpected situations, such as disguise, occlusion, and 
specular reflections or pixel corruptions.

To this end, LRR is proposed as its ability to obtain the 
global structure of the data information. It also has great 
robustness for subspace learning and even recovers the true 
data [42]. Therefore, it is expected to integrate the low-
rank properties of LRR into the dimensionality reduction 
process. Furthermore, to make the algorithm obtain more 
projections and inherit discriminative ability of LSR, we 
propose a novel supervised subspace learning method called 
DLRP. The key idea is to use the clean recovered data to 

(7)min
Z,E

‖Z‖∗ + ‖L‖∗ + �‖E‖p, s.t.X = XZ + LX + E

fit the label so that data samples with the same labels can 
keep close to each other on the low-dimensional subspace. 
In this way, our method can not only use the discriminant 
information to obtain higher recognition rates but also guar-
antee the robustness in low-dimensional subspace. Different 
from the previous LRR-based methods, we impose some 
adaptive constraints on representation matrix Z for better 
performance. In conclusion, our method can jointly generate 
a robust low-dimensional subspace, where the dimension of 
features is greater than the number of classes, and obtain a 
discriminate low-rank representation.

3.2  Objective function of DLRP

Unlike the previous LRR-based methods which cannot 
directly introduce the label matrix for regression task, we 
aim to embed the label information into LRR and use the 
recovered data for supervised subspace learning. In order 
to make our model perform more robust, we utilize the l2,1
-norm as the basic metric to record the reconstructive errors. 
Then we have

For evading the trivial solution of the problem (8) and 
ease of measuring the reconstructive error, we introduce the 
orthogonal constraint on matrix P and error matrix E , so we 
can reformulate (8) as:

where P is an orthogonal matrix and Q is the projected 
matrix which maps the recovered data representation XZ 
onto the low-dimensional space, � is a positive weighted 
parameter to control the fitness of least squares term. To 
address the small-class problem, which may degrade the 
performance in real applications, it is expected to utilize the 
two particular matrices P ∈ Rc×d and Q ∈ Rm×d to replace 
the single projector L ∈ Rc×m in LatLRR ( PQT is the same 
size as L obviously).

In conventional LSR, the single projection matrix can 
only learn at most c projections. However, the proposed 
method can obtain d ( d ≥ c ) projections at least for extract-
ing salient features. In this way, the small-class problem in 
LSR or LatLRR can be released. In conclusion, in the term 
‖‖Y − PQTXZ‖‖

2

F
 , the matrix QT first projects the low-rank 

representation XZ to robust low-dimensional subspace, then 
the orthogonal matrix P is used to obtain more projective 
information and regress the projected features to the label 
matrix Y  with an orthogonal rotation. This regularization 

(8)min
Z,P,Q

‖Z‖∗ + �‖X − XZ‖2,1 + �
���Y − PQTXZ

���
2

F

(9)
min

Z,E,P,Q
‖Z‖∗ + �‖E‖2,1 + �

���Y − PQTXZ
���
2

F

s.t. X = XZ + E,PTP = I
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term can make the low-dimensional representation PQTXZ 
own the similar structure as that of Y .

In (9), the first part is the minimization of the rank of Z , 
which can keep the global structure of original data, while 
the second part is for recording errors derived from noise 
and corruptions. For balance the representation coefficients, 
we further introduce a new constraint on the low-rank rep-
resentation Z . Thus, the final objective function of DLRP is 
defined as follows:

where 1 ∈ Rn×1 represents the vector with all elements equal 
to one. To avoid all row elements of Z equal to zero, it is 
sensible to enforce low-rank representation Z by constraint 
1T
n
Z = 1T

n
 , which means the sum of each row of low-rank 

matrix Z must be one.
(10) is our final objective function which can be itera-

tively optimized. Therefore, in next subsection, we design an 
iterative algorithm to compute the optimal solution of DLRP.

3.3  Iterative algorithms

In this part, we introduce the solution of optimization prob-
lem. We first use the LADMAP [51] to optimal Z and E in 
(11) and (42). Then we optimal P and Q in sequence. To 
make the object function easily separated and solved, we 
introduce an auxiliary matrix J to replace Z . So, we have

(10)
min

Z,E,P,Q
‖Z‖∗ + �‖E‖2,1 + �

���Y − PQTXZ
���
2

F

s.t. X = XZ + E,PTP = I, 1T
n
Z = 1T

n

The augmented Lagrangian function of problem (11) is:

where C1,C2,C3 are Lagrange multipliers, 𝜇 > 0 is a pen-
alty parameter. With other variables fixed, we can solve the 
Z,E, J,C1,C2,C3,� by minimizing the augmented Lagran-
gian function and P,Q respectively.

Z‑step Given the other variables, the terms in (12) and (42) 
that depend on Z are

Then, (13) can be transformed to the minimization prob-
lem as follow:

where M = X − E +
C1

�
 , N = J −

C2

�
 and L = 1T

n
−

C3

�
 . Then 

(14) can be solved by setting its derivative with respect to Z 
be 0 , we have

where

Finally, we can have the solution as follow:

(11)
min

Z,E,P,Q,J
‖J‖∗ + �‖E‖2,1 + �

���Y − PQTXZ
���
2

F

s.t. X = XZ + E,PTP = I, 1T
n
Z = 1T

n
, Z = J

(12)

L
�
Z,E, J,C1,C2,C3,�

�

= ‖J‖∗ + �‖E‖2,1 + �
���Y − PQTXZ

���
2

F

+ ⟨C1,X − XZ − E⟩ + ⟨C2, Z − J⟩ +
�
C3, 1

T
n
Z − 1

T
n

�

+
�

2

�
‖X − XZ − E‖2

F
+ ‖Z − J‖2

F
+
���1

T
n
Z − 1

T
n

���
2

F

�

= ‖J‖∗ + �‖E‖2,1 + �
���Y − PQTXZ

���
2

F

+
�

2

�
����
X − XZ − E +

C1

�

����

2

F

+
����
Z − J +

C2

�

����

2

F

+
����
1T
n
Z − 1

T
n
+

C3

�

����

2

F

�

−
1

2�

�
��C1

��
2

F
+ ��C2

��
2

F
+ ��C3

��
2

F

�

(13)

�
‖‖‖Y − PQTXZ

‖‖‖
2

F

+
�

2

(
‖‖‖‖
X − XZ − E +

C1

�

‖‖‖‖

2

F

+
‖‖‖‖
Z − J +

C2

�

‖‖‖‖

2

F

+
‖‖‖‖
1
T
n
Z − 1

T
n
+

C3

�

‖‖‖‖

2

F

)

(14)
min
Z

�
���Y − PQTXZ

���
2

F

+
�

2

�
‖M − XZ‖2

F
+ ‖Z − N‖2

F
+
���1

T
n
Z − L

���
2

F

�

(15)WaZ = Wb +Wc

(16)Wa = 2�XTQQTX + �
(
XTX + In + 1

n
1T
n

)

(17)Wb = 2�XTQPTY

(18)Wc = �
(
XTM + N + 1

n
L
)
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E‑step E is obtained by solving the following function:

According to [52], E can be presented as the following 
closed solution:

where � is the shrinkage operator.

J‑step For solving J , (12) is rewritten to the following mini-
mization problem:

then J can be achieved as follow by using the singular value 
thresholding (SVT) operator [53]:

where � is SVT operator.

C1,C2,C3,�‑step Lagrange multipliers C1,C2,C3 and pen-
alty parameter � update as follow:

where 𝜌 > 0 and � are constants

P‑step Given the other variables, P can be solved by mini-
mizing the following problem:

(28) can be expanded to:

(19)Z = W−1
a

(
Wb +Wc

)

(20)E = argmin
E

�‖E‖2,1 +
�

2

����
X − XZ − E +

C1

�

����

2

F

(21)E = ��∕�

(
X − XZ +

C1

�

)

(22)J = argmin
J

‖J‖∗ +
�

2

����
Z − J +

C2

�

����

2

F

(23)J = �1∕�

(
Z +

C2

�

)

(24)C1 ← C1 + �(X − XZ − E)

(25)C2 ← C2 + �(Z − J)

(26)C3 ← C3 + �
(
1T
n
Z − 1T

n

)

(27)� ← min
(
��,�max

)

(28)P = argmin
P

�
‖‖‖Y − PQTXZ

‖‖‖
2

F
s.t.PTP = I

(29)

P = argmin
P

�
‖‖‖Y − PQTXZ

‖‖‖
2

F

= argmin
P

�tr
[(
Y − PQTXZ

)T(
Y − PQTXZ

)]

= argmin
P

�tr
(
YTY − 2YTPQTXZ + ZTXTQQTXZ

)

s.t. PTP = I

When other variables are fixed, (29) is equivalent to opti-
mize the follow problem:

Then P can be optimal by computing singular value 
decomposition (SVD) [40] of matrix QTXZYT as follow:

Finally, the optimal P can be presented as

Q‑step For (29), P and Z are given already, we take partial 
derivative of (29) with respect to Q and set it to 0, it is simple 
to get

By updating the iterative algorithm mentioned above, 
we finally obtained the optimal solution to DLRP. Algo-
rithm 1 presents the steps that how to employ the algorithm 
iteratively. Theoretical studies of our model, such as con-
vergence and computational complexity, can be found in the 
next section.

4  Algorithm analysis and comparisons

In this section, we first introduce the convergence of our 
algorithm. And then, we analyze its computational complex-
ity. Finally, we show the details about comparisons between 
our algorithm and other most related algorithms.

4.1  Convergence discussion

As shown in previous section, we optimized the proposed 
model with an iterative algorithm. So it is necessary to prove 
the convergence of our model.

Let

We can obtain the following theorem.

Theorem 1 The iterative scheme of algorithm in Algo-
rithm 1 monotonically decreases the objective function value 
of (10) in each iteration.

Proof Suppose the objective function in the t th iteration can 
be presented as

(30)
min
P

tr
(
−2QTXZYTP

)
s.t.PTP = I

⇔ max
P

tr
(
QTXZYTP

)
s.t.PTP = I

(31)QTXZYT = ŨD̃ṼT

(32)P = ṼŨT

(33)Q =
(
XZZTXT + I

)−1
XZYTP

(34)U(Z,E, J,P,Q) = ‖J‖∗ + �‖E‖2,1 + �
���Y − PQTXZ

���
2

F
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where Zt,Et, Jt,Pt and Qt mean matrix Z,E, J,P and Q in t th 
iteration, respectively. When Et, Jt,Pt and Qt are given. We 
know that inverse operation in (19) to compute Zt will finally 
decrease the objective function, thus we have

When Zt, Jt,Pt and Qt are given. The convergence in (21) 
has proven in [52], thus we have

When Zt,Et,Pt and Qt are given. Jt can be achieved by 
using the SVT operator which further decreases the objec-
tive function value and has been proven in [53]. Then, we 
have

When Zt,Et, Jt and Qt are given. The optimal value of Pt+1 
derives from the SVD decomposition on QT

t
XZtY

T , which 
continuously reduces the objective function value. There-
fore, we have

When Zt,Et, Jt and Pt are given, the solution derived by 
partial deviation provides the optimal Qt+1 . Finally we have

which completes the proof. □

We will present some experimental results to show the 
convergence property of DLRP in the following sections. In 
fact, the proposed algorithm can converge fast even within 
5 iterations.

4.2  Computation complexity

The major time-consuming computations are

(1) the matrix inverse operation to solve Z and Q in step 1 
and 6;

(2) the SVT to solve the values of J in step 3;
(3) the SVD to solve the value of P in step 5;

Thus, we just give the complexity about these steps in 
algorithm of DLRP. Firstly, the computational complex-
ity of variable Q is about O

(
m3

)
 while computing Z needs 

O
(
n2m + nmd

)
 ; Secondly, To compute the variable J cost-

ing O
(
n3
)
 ; At last, optimizing the matrix P may cost O

(
d3
)
 

(35)
U
(
Zt,Et, Jt,Pt,Qt

)
= ‖‖Jt‖‖∗ + �‖‖Et

‖‖2,1 + �
‖‖‖Y − PtQ

T
t
XZt

‖‖‖
2

F

(36)U
(
Zt+1,Et, Jt,Pt,Qt

)
≤ U

(
Zt,Et, Jt,Pt,Qt

)

(37)U
(
Zt+1,Et+1, Jt,Pt,Qt

)
≤ U

(
Zt,Et, Jt,Pt,Qt

)

(38)U
(
Zt+1,Et+1, Jt+1,Pt,Qt

)
≤ U

(
Zt,Et, Jt,Pt,Qt

)

(39)U
(
Zt+1,Et+1, Jt+1,Pt+1,Qt

)
≤ U

(
Zt,Et, Jt,Pt,Qt

)

(40)U
(
Zt+1,Et+1, Jt+1,Pt+1,Qt+1

)
≤ U

(
Zt,Et, Jt,Pt,Qt

)

computational complexity at most. To sum up, the overall 
cost for DLRP is up to O

[
T
(
m3 + n2m + nmd + n3 + d3

)]
 , 

where T  means the number of iterations. Thus, in this case, 
PCA should be used to reduce the data dimension as pre-
processing, which could greatly degree the computational 
cost.

4.3  Difference between our method and some 
similar methods

In this section, a further explanation of the essence of DLRP 
will be presented. We compare the proposed model with the 
most related methods on their performance in feature extrac-
tion and classification. The first model is (41) proposed in 
[38] and the second is (42) proposed in [46].

It is easy to find that all of DLRP, (41) and (42) aim 
to seek a projection matrix Q to reduce the dimension of 
original data X in low-rank subspace and use the low rank-
ness to improve robustness to the noise for feature extrac-
tion simultaneously. However, our model (10) is essentially 
different from the models (41) and (42). Although model 
(41) can reduce the negative impact from the occlusions 
and corruptions by integrating l2,1-norm loss function and 
low-rank property, the subspace it obtained does not capture 
the expected properties, e.g., utilizing supervised informa-
tion to improve the discriminating power of recovered data. 
Furthermore, (41) cannot solve the small-class problem 
obviously. Model (42) is very similar to our model, both 
two models aim to obtain the discriminant low-rankness 
representation Z as well as the robust projecting subspace 
Q . From (42), we can find that ‖‖Y − QTX‖‖

2

F
 aims to fit the 

class label matrix Y with the low-dimensional representation 
QTX . While the term ‖‖Y − PQTXZ‖‖

2

F
 in (10) can not only 

keep closely correlated to the label indicator Y with low-rank 
and low-dimensional representation PQTXZ in discriminant 
subspace but also release the small-class problem with PQT . 
In general, it can be seen that (42) cannot completely solve 
the small-class problem in essence for the regression task. 
In addition, in order to strengthen the recognition power and 
representation ability of the data, we append some additional 
constraints on (10), which is different from (41) and (42).

Figure 1 presents the recognition performance of LPP, 
RPCA, UDFS, LatLRR, DLRP, model (41) (LRE) and (42) 

(41)
min
Z,P

‖Z‖∗ + �
���Q

TX − QTXZ
���2,1

s.t. QTQ = I

(42)

min
P,Q,Z,E

1

2

���Y − QTX
���
2

F
+

1

2
�1‖Q‖2F + �2‖E‖1 + �3‖Z‖∗

s.t. X = PQTXZ + E,PTP = I
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(SALRP) on the PIE face database with 5 × 5 block noise. 
From Fig. 1, it is can be found that DLRP and model (41) 
behave significantly superior to the model (42) on corrupted 
datasets, which indicates that integrating low-rank property 
and l2,1-norm as the distance metric can greatly improve the 
robustness to the contaminated image samples.

5  Experiments

In this section, to systematically estimate the performance 
of our algorithm, we test the proposed algorithm on the five 
databases with the random pixel corruptions and different 
level uninterrupted occlusions. The first four databases are 
used for testing the robustness of our model in different 
cases, the last one the LFW database is used to test the per-
formance of DLRP based on deep learning features. Except 
for the proposed DLRP, the conventional low-rank repre-
sentation models RPCA, LRR and its extension LatLRR, 
LRE [38] and SALRP [46] are involved for comparisons. 
Besides, both l2,1-norm regularized unsupervised discrimina-
tive feature selection model UDFS [33] and locality preserv-
ing method LPP are also compared.

5.1  The description of datasets

The AR face dataset [54] includes 2400 face pictures col-
lected from 120 different individuals. The FERET face data-
set [55] contains 200 people’s face images and 1400 images 
in total. The Yale face database [56] includes 2414 people 
face pictures collected from 38 individuals. The CMU PIE 
face dataset has 41 368 face images which were shot from 68 
people. The LFW face dataset [57] is only selected a subset 

which includes 4324 images of 158 subjects. Similar to [58], 
the deep conventional neural network (CNN) extracted about 
1024 the deep features of original data before we use LFW 
for the recognition task.

All pictures of databases are cropped to 50 × 40 , 40 × 40 , 
32 × 32 , 32 × 32 and 112 × 96 size for the AR, FERET, 
Yale, CMU PIE and LFW face databases, respectively. Fig-
ure 2a–e display samples of the people’s face pictures on 
AR, FERET, Yale, CMU PIE and LFW face databases.

5.2  Experimental settings

In our experiments, we compare the proposed model against 
the RPCA, LPP, UDFS, LatLRR, LRE, and SALRP. We use 
the Yale, FERET, CMU PIE and AR face datasets to prove 
the robustness of DLRP when data contaminated by random 
pixel corruptions and different degree contiguous occlusion. 
According to the number of samples in different datasets, we 
randomly selected Tw images of each individual on Yale, AR, 
FERET, CMU PIE and LFW datasets as training sets and the 
remainders as the test set, where Tw = 4, 5, 6 , Tw = 4, 5, 6 , 
Tw = 2, 3, 4 , Tw = 4, 5, 6 and Tw = 5, 6, 7 respectively. The 
best parameters were determined by the validation set, which 
was also used to choose the optimal parameters for other 
compared models. The regularization parameters � and � 
is selected from 10−6 to 106 . To achieve believable results 
from experiments, all algorithms on each dataset conducted 
ten times independently and average recognition accuracy 
were shown. The optimal dimensions of low-dimensional 
subspace selected in the range [50, 200] at the intervals of 
10. After the feature extraction process, the nearest neighbor 
(1NN) classifier based on Euclidean distance as the met-
ric was utilized for accuracy of image classification. The 
average recognition rate and corresponding the number of 
dimensions of Yale, FERET, PIE databases are presented 
in the Tables 2, 3 and 4 when Tw = 6 . The average recogni-
tion rates versus the number of dimensions on LFW and AR 
databases are also reported in Fig. 5a, b.

5.3  Robustness evaluation with random pixel 
noises

To evaluate the robustness of the DLRP, RPCA, LPP, UDFS, 
LatLRR, LRE and SALRP algorithms in the case that there 
are random pixel corruptions in face pictures, we add the 
Gaussian noise in images of Yale, FERET and PIE datasets. 
Figure 3 shows original data and corrupted data images with 
0.1 densities and 0.15 densities respectively. Tables 2, 3 and 
4 present the recognition rate and the number of dimen-
sions of RPCA, LPP, UDFS, LatLRR, LRE and SALRP on 
random pixel noises with different densities of Gaussian 
noise. The robustness of DLRP to random pixel noises can 
be proven from the experimental results.

Fig. 1  Recognition rate (%) of different models on PIE face database 
with 5 × 5 block noise
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Fig. 2  Face samples of differ-
ent datasets. a AR dataset, b 
FERET dataset, c Yale dataset, 
d PIE dataset, e LFW dataset

Table 2  Best recognition rate 
and corresponding dimensions 
of different algorithms on 
contaminated Yale datasets 
(Tw = 6)

The bold values represent the highest recognition rate of all the methods in this datasets

LatLRR RPCA LPP UDFS SALRP LRE DLRP

Den = 0.1 60.1202
(150)

26.4663
(150)

56.2139
(150)

22.8125
(120)

44.2427
(150)

65.9014
(200)

67.5000
(150)

Den = 0.15 59.8798
(150)

26.6466
(150)

56.0817
(150)

58.0409
(110)

44.8197
(150)

67.9808
(200)

72.3558
(150)

5 × 5 57.0673
(150)

26.9315
(150)

60.3606
(150)

55.1322
(120)

51.6707
(150)

61.8630
(200)

72.6803
(150)

7 × 7 50.4087
(150)

26.7548
(150)

55.2404
(150)

49.3269
(100)

48.2692
(150)

53.5216
(200)

70.1082
(150)

Table 3  Best recognition rate 
and corresponding dimensions 
of different algorithms on 
contaminated FERET datasets 
(Tw = 4)

The bold values represent the highest recognition rate of all the methods in this datasets

LatLRR RPCA LPP UDFS SALRP LRE DLRP

Den = 0.1 74.7833
(150)

65.9833
(148)

76.5333
(150)

75.3512
(140)

66.2667
(150)

82.0167
(150)

77.7833
(150)

Den = 0.15 75.3167
(150)

66.0000
(148)

75.3167
(150)

77.5612
(140)

65.8167
(150)

76.9833
(150)

77.8833
(150)

5 × 5 70.5667
(150)

66.7167
(145)

70.5667
(150)

77.3500
(145)

65.2000
(150)

72.8833
(150)

74.6500
(150)

7 × 7 67.7167
(150)

65.9667
(148)

69.6833
(150)

71.8667
(145)

65.1167
(150)

71.8667
(150)

72.4667
(150)

Table 4  Best recognition rate 
and corresponding dimensions 
of different algorithms on 
contaminated CMU PIE 
datasets (Tw = 6)

The bold values represent the highest recognition rate of all the methods in this datasets

LatLRR RPCA LPP UDFS SALRP LRE DLRP

Den = 0.1 76.4951
(150)

34.2801
(140)

68.0392
(145)

73.0229
(200)

63.3660
(200)

78.2761
(145)

78.5212
(200)

Den = 0.15 76.3889
(150)

34.5670
(140)

69.4853
(145)

73.5376
(200)

62.1243
(200)

76.2827
(145)

79.0114
(200)

5 × 5 71.7565
(150)

35.3595
(140)

78.4804
(145)

71.4297
(200)

49.1830
(200)

75.5964
(145)

84.9183
(200)

7 × 7 66.9199
(150)

34.5180
(140)

69.3137
(145)

60.8578
(200)

47.0507
(200)

67.8023
(145)

83.3333
(200)
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5.4  Robustness evaluation with random block 
corruptions

To estimate the robustness of the DLRP, RPCA, LPP, 
UDFS, LatLRR, LRE and SALRP algorithms in the case 
that there are various level contiguous noises and corrup-
tions in face pictures, we add some blocks with random 
positions in images. Figure 4 shows original data and sam-
ples of Yale, FERET and PIE datasets with block size 5 × 5 
and 7 × 7 . Tables 2, 3 and 4 display the best recognition 
rates of RPCA, LPP, UDFS, LatLRR, LRE and SALRP. As 

shown in Tables 2, 3 and 4, DLRP achieves the best results 
among all compared algorithms in most cases. Thus, the 
robustness of our model to contiguous occlusions has been 
proved.

5.5  Experimental analysis on AR face dataset

To investigate the performance of our model and its com-
peting models in the case that there are some variations in 
expressions of face, conditions of light and different degrees 
of occlusion, such as sunglasses and scarf. For all we know, 

Fig. 3  Some examples of the 
original and noise images with 
different densities (Den) of 
Gaussian noise on Yale, FERET 
and PIE databases

Database Clear data Den=0.1 Den=0.15 

Yale 
( 32 32× pixel) 

FERET 
( 40 40× pixel) 

PIE 
( 32 32× pixel) 

Fig. 4  Some examples of the 
original and noise images with 
different sizes of block noise on 
Yale, FERET and PIE datasets

Dataset Clear data Block size= 5 5× -pixel Block size= 7 7× -pixel 

Yale 
( 32 32× pixel) 

FERET 
( 40 40× pixel) 

PIE 
( 32 32× pixel) 
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the AR face database is a challenging dataset for recogni-
tion tasks for most of the regression methods. However, our 
proposed DLRP can outperform its competitions in most 
situations just as Fig. 5a presents.

5.6  Experimental analysis on LFW database in deep 
learning conditions

The LFW database is utilized to test the recognition results 
of our model and the compared models on the deep learning 
circulation. CNN was utilized as a first step to extract the 
deep features, then the subspace learning techniques were 
used to extract the features (i.e. RPCA, SPCA, LPP, UDFS, 
LatLRR, LRE and ALRP). The experimental results on rec-
ognizing deep features are shown in Fig. 5b. It shows that 
DLRP is still the best choice among all the methods.

5.7  Parameter selection and convergence study

Figure 6 draws the curves of iteration-based convergence on 
Yale dataset with 0.1 Gaussian noise, AR database and LFW 
dataset. As vividly depicted in figures, we can observe that 
the algorithm of DLRP could converge within 5 iterations 
on three databases. Similar properties on the convergence 
of the algorithm can also be discovered on other datasets.

There are two parameters in the proposed model, namely 
� and � . Figure 7 shows the classification rates versus � with 
� fixed, and � with � fixed on the AR, LFW and Yale, PIE 
and FERET dataset with 0.1 Gaussian noise when � and � 
ranged from 10−6, 10−5 … 105, 10−6 . As can be seen, DLRP 
is very robust to the values of � and � except on LFW data-
base. Therefore, all of these Experiment results prove that 
DLRP can achieve better average recognition rates when 
parameter � lies in 100 to 104 and � lies in 10−6 to 101 respec-
tively. On the other side, when � ranges from 101 to 106 and 

Fig. 5  Recognition rate (%) of algorithms on a AR database (Tw = 6) and b LFW database (Tw = 7)

Fig. 6  Convergence curves on a AR database and b Yale database with 0.1 Gaussian noise c LFW database
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� ranges from 10−6 to 100 , these two regularization terms are 
important for our models.

5.8  Experimental conclusions

Based on the experimental results on the various datasets, 
the following observations and conclusions are reached.

(1) Compared with the traditional dimension reduction 
methods, such as LPP, RPCA and UDFS, the proposed 
model can perform better when there are data specific 
corruptions on the pictures. DLRP combining the LRR 
with dimensionality reduction function is the key rea-
son for high classification accuracy.

(2) From the Tables 2, 3 and 4, we can find that when the 
degree of noises and occlusions of the data samples 
are increased, the effect of most methods are affected, 
while our method is not affected too much or even per-
forms better. This indicates our model is the best choice 
to perform on the contaminated circumstance.

(3) DLRP is superior to LRE for robust face image feature 
extraction and classification in most cases, which is 
due to the fact that our method not only fully uses the 
properties of LRR but also integrates the supervised 
information to improve discriminant ability. In addi-
tion, releasing the small-class problem and imposing 
adaptive constraints also have a positive effect on the 
recognition rates of the face image.

(4) DLRP outperforms SALRP in most cases, especially 
increasing about 30% to 40% on contaminated Yale 

database (see Table 2). The possible reason for the high 
recognition rate is that DLRP directly projects the clean 
data XZ into the label subspace while SALRP projects 
the original data X which includes more noises and 
corruptions. That means DLRP can use the low-rank 
representation to weaken the disturbance of noise in 
projected subspace, such that the learned low-dimen-
sional subspace can be more robust than SALRP.

(5) From Figs. 1 and 5a, b, we can find that DLRP cannot 
achieve the consistent winner on low-dimensional sub-
space, especially under 80 dimensions. In other words, 
DLRP is unable to classify some data with low dimen-
sionality. The major reason is that when dimensional-
ity is so low that DLRP cannot maintain the manifold 
structure of samples, which may occur the problem 
of overfitting in this situation. However, DLRP can 
perform well on data with high dimensionality, which 
means it is favorable to select DLRP for classifying the 
high dimensional data.

Based on the above experimental observations and analy-
sis, we can find that the DLPR can be superior to the clas-
sical models (i.e., LLRR, LPP, RPCA and UDFS) and most 
related models (i.e., SALRP and LRE). This indicates that 
integrating the low-rank properties with supervised infor-
mation and releasing small-class problem are significant to 
obtain the high recognition rates. Furthermore, DLRP essen-
tially inherits the advantage from the low rank representation 
to improve its robustness for corrupted datasets. Thus, the 
proposed model can learn an optimal robust subspace to 
achieve good performance in our experiments.

Fig. 7  Different properties of DLRP. Testing the variation of recognition rate with a � regularization term coefficients b � regularization term 
coefficients
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6  Conclusion

In this paper, a novel model named DLRP, which combines 
the low-rank representation with subspace learning, is pro-
posed for image classification and feature extraction. Dif-
ferent from the previous LRR-based methods, DLRP can 
not only obtain clean data under the low-rank constraint but 
also learn a robust projecting subspace. In addition, DLRP 
figures out the small-class problem that exists in the typical 
least square regression or its derivatives. Thus, the proposed 
model can capture enough projections for feature extraction. 
Moreover, we impose some adaptive constraints on low-rank 
matrix to improve the performances which the most low-
rank learning methods lack. To demonstrate the effectiveness 
and robustness of DLRP, we conducted mass comprehensive 
experiments on five benchmark datasets for comparing with 
related techniques. The limitation of our algorithm is that it 
cannot perform well on some low dimensional data, which 
we try to improve in the future.
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