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Abstract
One of the important applications of computer-aided diagnosis is the detection of connective tissue disorders through auto-
matic classification of antinuclear autoantibodies (ANAs). The recognition of ANAs is primarily done by analyzing indirect 
immunofluorescence (IIF) images of human epithelial type 2 (HEp-2) cells. In this regard, the paper introduces a novel 
approach for automatic classification of ANAs by staining pattern recognition of HEp-2 cell IIF images. Considering a set of 
HEp-2 cell images, the proposed method selects a set of relevant local texture descriptors for a pair of staining pattern classes, 
as well as identifies a set of important features corresponding to each relevant descriptor. The set of features for multiple 
classes is obtained from each of the important feature sets selected under various relevant local texture descriptors for all 
possible class-pairs. The relevance of a descriptor is evaluated based on the theory of rough hypercuboid approach, while 
the important feature set of a local descriptor is formed by reducing the impact of both noisy pixels present in an HEp-2 cell 
image and noisy HEp-2 cell images in a staining pattern class. Finally, the support vector machine is used to recognize one 
of the known staining patterns present in IIF images. The effectiveness of the proposed staining pattern recognition method, 
along with a comparison with related approaches, is illustrated on two benchmark databases of HEp-2 cell images using 
different classifiers and experimental set-up. The results show that the proposed approach performs significantly better than 
existing methods, with respect to both classification accuracy and F1 score, irrespective of the databases and classifiers used.

Keywords  HEp-2 cell staining pattern recognition · Local binary pattern · Descriptor selection · Support vector machine · 
Rough sets

1  Introduction

The main objective of computer-aided diagnosis (CAD) sys-
tems is to overcome the shortcomings of manual test pro-
cedure through proper automation. It helps to reduce both 
time and effort needed for manual analysis. Pattern recog-
nition, machine learning and image processing techniques 
are widely used to develop the CAD systems, which make 
the analysis faster, easier and more reliable. In recent years, 
one of the important applications of CAD systems is the 
diagnosis of autoimmune disorders—a group of disorders 
where the immune system malfunctions and the tissues are 

attacked by autoantibodies. Connective tissue disease (CTD) 
is one such disorder, which can be predicted by the pres-
ence of antinuclear autoantibodies (ANAs) in the serum of 
patients. The ANAs behave as markers to detect the disorder 
and hence, play an important role in the diagnosis of many 
CTDs [2, 44].

The standard method used to predict the presence of 
ANAs is indirect immunofluorescence (IIF)  [16], while 
human epithelial type 2 (HEp-2) cell is commonly used as 
cell substrate for IIF analysis of ANAs [47, 53]. The HEp-2 
cells are tissue culture cells which have two components, 
namely, nucleus and cytoplasm. The nucleus of HEp-2 cells 
is quite large, providing better microscopic observation and 
greater sensitivity in the detection of antibodies. During the 
IIF test, fluorescent labelled secondary antibodies bind with 
different ANAs (primary antibodies) present in the patient’s 
serum. As a consequence, different staining patterns are 
formed both at nucleus and cytoplasm regions of the HEp-2 
cells. If the nucleus of the cells is affected, staining patterns 
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like Centromere and Nucleolar are formed, whereas Cyto-
plasmatic pattern, surrounding the nucleus, is formed when 
cytoplasm region is affected. Figure 1 presents specimen 
IIF images of the HEp-2 cells with different staining pat-
terns. Several CTDs are mainly characterized by different 
staining patterns [1, 32, 47]. For example, Polymyositis 
and Sjogren’s Syndrome (SS) are primarily associated with 
Centromere (Fig. 1a) and Homogeneous (Fig. 1b) staining 
pattern classes, mixed CTDs and primary SS correspond to 
Speckled (Fig. 1d, e) staining patterns, while Cytoplasmatic 
(Fig. 1f) pattern is associated with Systemic Lupus Erythe-
matosus disease. So, the main objective here is to recognize 
the known staining pattern classes of ANAs, by analyzing 
IIF images of HEp-2 cells, for the diagnosis of CTDs.

In last few years, some efforts have been made for the 
development of CAD systems to recognize staining patterns 
present in HEp-2 cell IIF images. Different shape-based, 
edge-based and texture-based features [24, 40, 50] can be 
used to capture the information of surface of the HEp-2 
cells. Several global texture descriptors based on gray level 
co-occurrence matrix [20] are used in [9, 43, 45], while edge 
orientation histograms [39], histograms of oriented gradi-
ents [6], rotation-invariant Gabor features [3], and modified 
Zernike moments [41] are also found to provide important 
information of an HEp-2 cell image [9]. However, it has 
been shown in [9] that the local variations of intensity pat-
terns are more effective than global information, obtained 
from the HEp-2 cell images, in differentiating various stain-
ing pattern classes. In this background, several local texture 
descriptors, namely, local binary pattern (LBP) [36], rotation 
invariant LBP ( LBPri) [37], rotation invariant uniform LBP 
( LBPriu2) [37], completed LBP [19], co-occurrence of adja-
cent LBPs (CoALBP) [35] and rotation-invariant co-occur-
rence of adjacent LBPs [34], have been used to characterize 
an HEp-2 cell image [9, 34], while the concept of gradient-
oriented co-occurrence of LBPs has been introduced in [48]. 
For automatic recognition of mitotic cell, a combination of 
textural features obtained using LBPs and morphological 
features has been used in [14]. To capture local textural 
information, a modified version of uniform LBPs descriptor 
has been incorporated in this work. Wiliem et al. [54] have 

proposed a system for cell classification, comprising of near-
est convex hull classifier and a dual-region codebook-based 
descriptor. In order to encode gradient and textural charac-
teristics of the HEp-2 patterns, Theodorakopoulos et al. [48] 
have proposed a new descriptor, based on co-occurrence of 
uniform LBPs along directions dictated by the orientation 
of local gradient.

In general, a particular texture descriptor at a single scale 
is used to describe the characteristics of all the classes of 
HEp-2 cell images. However, the inherent texture patterns 
of HEp-2 cells are quite different from each other. The inter-
class visual similarities, intra-class variations, presence of 
noise, and ambiguity in staining pattern class definition fur-
ther enhance the difficulty in actual pattern recognition. So, 
it is expected that a specific descriptor considered under a 
particular scale may be important in differentiating a given 
pair of HEp-2 pattern classes, but may not be relevant in cap-
turing the inherent characteristics of another pair of staining 
pattern classes. In this regard, the main contributions of this 
paper are as follows: 

1.	 development of a novel approach for the diagnosis of 
connective tissue disorders through automatic identifica-
tion of ANAs, by staining pattern recognition of HEp-2 
cell IIF images;

2.	 formulation of the problem of descriptor selection to 
select a set of important local texture descriptors under 
appropriate scales for a pair of staining pattern classes, 
along with a set of relevant features corresponding to 
each selected descriptor;

3.	 computation of the relevance of a descriptor, based on 
the theory of rough hypercuboid approach;

4.	 evaluation of the importance of a feature set, corre-
sponding to a relevant descriptor, by defining an energy 
function; and

5.	 demonstrating the effectiveness of the proposed 
approach on benchmark HEp-2 cell image databases.

The proposed descriptor selection method integrates judi-
ciously the theory of rough sets and the merits of local tex-
ture descriptors for HEp-2 cell staining pattern classification. 

(a) Centromere (b) Homogeneous (c) Nucleolar (d) Coarse Speckled (e) Fine Speckled (f) Cytoplasmatic

Fig. 1   Specimen IIF images of HEp-2 cells with different staining pattern classes
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It helps in finding both the dominant features representing 
the important characteristics of each HEp-2 cell image and 
relevant feature set for each of the HEp-2 cell staining pat-
tern classes. The resultant feature set is independent of both 
noisy pixels in an HEp-2 cell image and noisy HEp-2 cell 
images in a staining pattern class. All the important fea-
tures, selected under several relevant local descriptors for 
all pairs of classes, form the final feature set for multiple 
classes. Finally, the recognition of staining patterns present 
in IIF images is done by using support vector machine. The 
effectiveness of the proposed staining pattern recognition 
method, along with a comparison with related approaches, is 
demonstrated on two benchmark HEp-2 cell image databases 
using different classifiers and experimental set-up.

2 � Proposed method for HEp‑2 cell staining 
pattern classification

During the development of a CAD system, a specific texture 
descriptor at a fixed scale is generally used to describe the 
intrinsic characteristics of all HEp-2 cell images, irrespec-
tive of their staining pattern classes. Let us consider the 
scatter plots of HEp-2 cell images corresponding to MIVIA 
database [15], presented in Fig. 2. In each plot, feature val-
ues, corresponding to the HEp-2 cell images belonging to 
a particular pair of classes, are computed by considering a 
specific descriptor under a fixed scale. The x-axis of each 
plot represents the most relevant feature, while the y-axis 
denotes the feature which provides the maximum depend-
ency or joint relevance when considered along with the most 
relevant feature at x-axis. From Fig. 2a, b, it can be seen that 
some of the HEp-2 cell images of Homogeneous and Coarse 
Speckled classes, considered under LBPri at scale 1 ( S1 ), 
overlap with each other, while they are almost separable 
under the same descriptor but at a different scale ( S4 : scale 
4). It establishes that the HEp-2 cell images, which are not 
well-separated under a specific scale, can be properly clas-
sified if a different scale is considered keeping the descrip-
tor fixed. However, Fig. 2c depicts that the cell images of 

another class-pair, namely, {Homogeneous, Centromere}, 
are poorly classified if same descriptor ( LBPri ) under the 
same scale ( S4 ) is considered, while Fig. 2d shows that 
they become more distinguishable if a different descriptor 
(CoALBP) at a different scale ( S2 ) is considered. So, it can 
be concluded that the information obtained from a particular 
modality may found to be relevant in differentiating samples 
from a specific class-pair, but may not be significant in cat-
egorizing samples from another pair of classes. In the pro-
posed method, a modality refers to a particular local texture 
descriptor considered under a specific scale.

Hence, the proposed method selects important features 
from the relevant modalities for each pair of classes, and 
finally forms the resultant feature set for multiple staining 
pattern classes. Figure 3 depicts the block diagram of the 
proposed method for HEp-2 cell staining pattern classifica-
tion. At first, the histogram of feature values corresponding 
to each modality is obtained for each of the input HEp-2 
cell images. Then, class specific feature set is formed for 
each of the HEp-2 cell staining pattern classes under each 
modality. Thereafter, the class-pair specific feature sets are 
obtained for each modality, from each of the class specific 
feature sets, for all possible class-pairs. The relevance of 
each class-pair specific feature set under a particular modal-
ity is evaluated using the concept of rough hypercuboid 
approach. After selecting a set of most relevant feature sets 
for each class-pair, the final feature set for multiple staining 
pattern classes is formed, which is further used for training 
the support vector machine. Each of these steps is elaborated 
next one by one.

2.1 � Generation of class specific feature set

Let X = {x1,… , xk,… , xn} be a set of n training HEp-2 
cell images, where each image xk ∈ ℜm is represented 
by a set F = {f1,… , fj,… , fm} of m features. So, the set 
hk = {hk1,… , hkj,… , hkm} , containing m feature values, 
describes the image xk , where hkj = xk(fj) is the value of the 
feature fj corresponding to the image xk . In the proposed 
research work, four local descriptors, namely, LBP [38], 
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Fig. 2   Scatter plots of HEp-2 cell images, under different descriptors and scales, for different class-pairs of MIVIA database
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LBPri  [37], LBPriu2 [37], and CoALBP  [35], are consid-
ered. Hence, hk represents the normalized histogram of xk , 
corresponding to one of the four texture descriptors. Let, 
h̃k = {h̃k1,… , h̃kj,… , h̃km} be the sorted hk , in descending 
order, such that h̃k1 ≥ ⋯ ≥ h̃kj ≥ ⋯ ≥ h̃km , where the set 
Ik = {Ik1,… , Ikj,… , Ikm} preserves the corresponding fea-
ture index of h̃k . Let us consider that each of the HEp-2 cell 
images of X belongs to one of the c staining pattern classes 
{�1,… ,�i,… ,�c}.

The textural properties of a cell image xk can be primarily 
described in terms of the feature values of the set hk . In the 
proposed work, it is assumed that all the feature values of hk 
do not contribute equally in representing the intrinsic textural 
patterns of the image xk . Indeed, a subset Vk of the feature set 
F can precisely capture the significant characteristics of xk , 
which is termed as the dominant feature set of xk . However, 
different images have their own characteristics, which can 
be represented by different dominant feature sets. In order to 
identify the dominant features of each cell image xk from the 
corresponding hk , the following function is defined:

where �(xk, q) ∈ [0, 1] and �(xk,m) = 1,∀xk ∈ X . Here, � is 
known as the energy function. It depicts the amount of total 
energy, present in the sorted normalized histogram h̃k , pre-
served by the first q features of xk . Hence, the energy of xk , 
computed from h̃k , expresses the relevant information about 
the cell image xk.

In order to achieve a pre-specified fraction of energy �given 
from the sorted histogram h̃k , the required number of dominant 
features for the sample xk can be computed as follows:

(1)𝜗(xk, q) =

q∑

j=1

h̃kj;

(2)dk = arg min
q∈{1,2,…,m}

{�(xk, q)|�(xk, q) ≥ �given}.

So, the average number of dominant features for the entire 
set of samples X is given by

while the set of dominant features Vk , corresponding to the 
sample xk , is defined as

Hence, the set Vk ⊆ F contains only the dominant features 
of xk , which can sufficiently represent the important charac-
teristics of the image xk.

Generally, the samples belonging to a particular class 
are expected to exhibit similar characteristics, which can be 
reflected in the corresponding dominant feature sets of the 
samples. In other words, the samples from same class will have 
similar sets of dominant features, while the samples belong-
ing to different classes will have different sets of dominant 
features. However, if a noisy sample is present in a class �i , 
the dominant feature set of that sample may contain certain 
features which do not provide any important characteristics 
of the class �i . Presence of such features in the dominant set 
of the sample may delude classification of the samples of �i . 
So, it is necessary to identify those features from the dominant 
sets of samples that represent significant properties of a class 
to which the samples belong. To address the above mentioned 
problem, the probability of occurrence p(fj|�i) of a feature 
fj in the dominant sets of samples of a particular class �i is 
computed as follows:

(3)d =
1

n

n∑

k=1

dk;

(4)Vk = {fj | Ikq = j and q ≤ d}.

(5)p(fj|�i) =
1

|�i|
∑

xk∈�i

vkj;

Fig. 3   Block diagram of the proposed method
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Here, |�i| denotes the number of samples belonging to the 
class �i . So, the features with low probability of occurrence 
values in a particular class �i can be assumed to occur inad-
vertently in the dominant sets of samples belonging to �i and 
hence, can be discarded from the set without much loss of 
information. In order to discard those features, a threshold 
parameter � is used here, and class specific feature set N(�i) 
for the class �i is formed, based on the value of � , as follows:

So, the set N(�i) represents the important characteristics 
specific to the class �i . A feature fj will only be present in 
the set N(�i) if it is dominant in most of the samples of �i 
as well as bears significant amount of information regarding 
the characteristics of class �i.

2.2 � Pairwise class specific and final feature sets

Let, the pairwise class specific feature set be denoted by 
N({�i,�r}) , corresponding to the pair of classes {�i,�r} . So, 
N({�i,�r}) should contain information that is relevant for 
both the classes �i and �r . Let, N(�i) and N(�r) be the class 
specific feature sets, computed using (7), corresponding to the 
classes �i and �r , respectively. Then, N({�i,�r}) is defined 
in terms of N(�i) and N(�r) as follows:

Hence, N({�i,�r}) contains the features that represent sig-
nificant characteristics, common to the particular pair of 
classes �i and �r.

Considering a set of t number of modalities 
M = {M1,… ,Mp,… ,Mt} , the proposed method com-
putes the relevance �p({�i,�r}) of each pairwise class spe-
cific feature set Np({�i,�r}) , corresponding to the pair of 
classes {�i,�r} under the pth modality Mp . The theory of 
hypercuboid equivalence partition matrix of rough hyper-
cuboid approach [27] is employed to compute the relevance, 
which is illustrated in Sect. 2.4. The relevance of the feature 
set Np({�i,�r}) represents the relevance of the pth modality 
Mp , with respect to the class-pair {�i,�r}.

After computing the relevance of each pairwise class 
specific feature set Np({�i,�r}) corresponding to t modali-
ties for each class-pair {�i,�r} , t̃ most relevant feature sets 
{Np({�i,�r})} are chosen, and the set Ñir = {Np({𝜔i,𝜔r})} 
is formed for the pair of classes �i and �r . Finally, the feature 
set D for all possible pairs of classes is defined as

(6)where vkj =

{
1, if fj ∈ Vk;

0, otherwise.

(7)N(�i) = {fj | p(fj|�i) ≥ �}.

(8)N({�i,�r}) = N(�i) ∩N(�r).

(9)D =
⋃

Ñir.

The support vector machine (SVM) is used to train and pre-
dict the staining patterns present in IIF images of HEp-2 
cells, based on the final feature set D.

2.3 � Novelty of the proposed approach

In this regard, it should be noted that the method due to Liao 
et al. [26], termed as dominant LBP (DLBP), defines the 
most frequently occurring local textural patterns as dominant 
patterns of an image. The method considers the occurrence 
values of dominant patterns to form the feature vector of an 
image, without considering the information of pattern types. 
In effect, a particular dimension of the feature vector may 
correspond to different patterns for different images, while 
two different dimensions of two feature vectors may indicate 
same pattern type. So, different texture images are repre-
sented by occurrence values of different sets of patterns. As 
DLBP method disregards the pattern type information while 
generating feature vector, it fails to account the discrimina-
tive properties of individual patterns, which are essential to 
classify images properly.

Guo et al. [18], on the other hand, proposed a three-lay-
ered model to learn the most discriminative patterns, from 
the original set of patterns, for representing a texture image. 
At the first layer, the most frequently occurring patterns, 
which occupy a certain percentage of total occurrence, are 
identified for all the training images. The set of such pat-
terns is considered to reflect the important textural proper-
ties of an image and termed as the dominant pattern set of 
that image. As opposed to the DLBP method, this method 
encodes the pattern types, together with the pattern occur-
rences, for computing the dominant pattern set. Since the 
dominant pattern sets may vary greatly for different images 
of the same class, the discriminative pattern set for each 
class is formed at the second layer by taking the intersec-
tion of dominant pattern sets over all the training images 
belonging to the same class. At the last layer, union of all the 
discriminative pattern sets, corresponding to all the classes, 
forms the final feature set. As the discriminative pattern set 
of a class �i is formed with the features having probability 
of occurrence 1 with respect to dominant pattern sets of 
all images belonging to �i , the set is exactly same with the 
class specific feature set N(�i) , introduced in the proposed 
method, with � = 1 as in (7). It can be assumed that a pattern, 
which bears important characteristics of a class �i , will be 
dominant in all samples of �i . However, if a noisy sample 
is present in the class �i , then the pattern may not be domi-
nant in the noisy sample, and hence will not be selected as 
a discriminative pattern of class �i if we set � = 1 . So, the 
discriminative pattern set, obtained using the method of Guo 
et al. [18], is comparatively smaller in size, but has less dis-
criminative information.
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In order to have a compact representation of class specific 
feature set N(�i) for the class �i , the proposed method com-
putes the probability of occurrence of a feature in the dominant 
feature sets of samples belonging to �i and the class specific 
feature set N(�i) is formed with features which are dominant 
in most of the samples of �i as mentioned in (7). Also, in the 
proposed method, different modalities are considered for dif-
ferentiating different pairs of classes, based on the relevance 
of the modalities, while the methods of Liao et al. [26] and 
Guo et al. [18] consider only the information of a fixed set of 
modalities to distinguish the samples belonging to different 
classes.

2.4 � Computation of relevance

Let � = {x1,… , xk,… , xn} be the finite set of n samples 
or objects, ℂ = {f1,… , fj,… , fm} be the condition attrib-
ute set in � , and � be the decision attribute set, where 
�∕� = {�1,… ,�i,… ,�c} denotes the c equivalence classes 
or information granules of � generated by the equivalence rela-
tion induced from the decision attribute set � . Given a set 
𝜔i ⊆ � , in general, it may not be possible to describe �i pre-
cisely in the approximation space < 𝕌,ℂ ∪ 𝔻 > . The class �i 
can be approximated using the equivalence relation induced 
from each condition attribute or feature fj ∈ ℂ by constructing 
the ith hypercuboid equivalence partition of � corresponding 
to �i . So, for c classes, c-hypercuboid equivalence partitions 
of the universe can be obtained and arrayed as (c × n) matrix 
ℍ(fj) = [�ik(fj)] . The matrix ℍ(fj) is termed as the hypercuboid 
equivalence partition matrix of the feature fj , where each �ik(fj) 
can be obtained as follows [27]:

Here, �ik(fj) represents the membership of object xk in the 
ith equivalence partition, based on the equivalence relation 
induced by fj . The interval [Lij,Uij] is the value range of the 
feature fj with respect to the class �i . It is spanned by the 
objects with class label �i . So, the feature value xk(fj) of each 
object xk with class label �i , corresponding to the feature 
fj , falls within the interval [Lij,Uij] , which implies that an 
equivalence partition is nonempty.

Each row of ℍ(fj) is a hypercuboid equivalence partition 
corresponding to a particular class, induced by the feature fj . 
The ith hypercuboid equivalence partition, corresponding to 
the class �i , is denoted as:

Here, ‘+’ represents the union set operation. Each class �i 
can be approximated using only the information contained 
within the feature fj by constructing the A-lower and A-upper 
approximations of �i [27]:

(10)�ik(fj) =

{
1, if xk(fj) ∈ [Lij,Uij];

0, otherwise.

(11)�i(fj) = {�i1∕x1 +⋯ + �ik∕xk +⋯ + �in∕xn}.

where equivalence relation A is induced from fj.
The hypercuboid equivalence partition matrix ℍ(ℂ) , 

induced by the condition attribute set ℂ , can be computed 
as [27]:

Hence, the equivalence partition �i(ℂ) represents a hyper-
cuboid in m-dimensional Euclidean space, where each 
dimension corresponds to a certain feature. The m-dimen-
sional hypercuboid is defined as the Cartesian product of 
m orthogonal intervals at m respective dimensions, corre-
sponding to class �i . As each hypercuboid corresponds to a 
particular class, c hypercuboids will be formed for c given 
classes. Figure 4 presents an example of two hypercuboids, 
corresponding to two HEp-2 cell staining pattern classes, 
namely, Centromere and Homogeneous. Each hypercuboid 
encompasses the objects, that is, HEp-2 cell images, belong-
ing to a particular class, considering two features selected 
under CoALBP at scale S2.

However, in real-life data analysis, uncertainty arises 
due to overlapping class boundaries. So, every two hyper-
cuboids may intersect with each other. The intersection of 
two hypercuboids forms an implicit hypercuboid (shaded 
region of Fig. 4), which encloses the misclassified objects 
that belong to more than one equivalence partitions 
with respect to a set of attributes. The relevance of the 
set of condition attributes or features with respect to the 
decision attribute set depends on the cardinality of the 
implicit hypercuboid. It can be observed that the relevance 

(12)A(�i) = {xk| �ik(fj) =1 and �lk(fj) = 0 ∀l ≠ i};

(13)and A(�i) ={xk| �ik(fj) = 1};

(14)ℍ(ℂ) =
⋂

fj∈ℂ

ℍ(fj), where �i(ℂ) =
⋂

fj∈ℂ

�i(fj).
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increases with the decrease in the cardinality of implicit 
hypercuboids.

In the current study, the relevance of pairwise class spe-
cific feature set Np({�i,�r}) , corresponding to the pair 
of classes {�i,�r} , is to be computed. In this case, c = 2 
as only a particular class-pair {�i,�r} is considered at a 
time. So, n = |�i| + |�r| , that is, the samples belonging to 
{�i,�r} constitute the universe � and the condition attrib-
ute set ℂ is given by ℂ = Np({�i,�r}) . As the number of 
equivalence partitions reduces to 2, the relevance of the 
feature set Np({�i,�r}) with respect to the class labels of 
samples from {�i,�r} is redefined from the hypercuboid 
equivalence partition matrix ℍ(Np({�i,�r})) as follows:

Therefore, the relevance is obtained as the XOR output 
of two equivalence partitions corresponding to the pair of 
classes. If an object belongs to both the equivalence par-
titions, then the corresponding XOR value becomes zero. 
This validates the fact that the object is enclosed by the 
implicit hypercuboid, formed at the intersection of two 
equivalence partitions, and thus, cannot be classified cor-
rectly using the equivalence relation induced by the feature 
set. However, if the object belongs to exactly one of the 
two possible partitions, then XOR operation produces an 
output 1, demonstrating that the object outside the implicit 
hypercuboid contributes in the computation of relevance of 
the feature set. Thus, the relevance measure proposed in (16) 
significantly reduces the computational complexity of the 
earlier measure reported in [27]. From (16), it can be seen 
that if � (Np({�i,�r})) = 1 , then no implicit hypercuboid 
exists and both the classes �i and �r can be defined pre-
cisely using the knowledge of Np({�i,�r}) . On the other 
hand, if � (Np({�i,�r})) = 0 , then both of them cannot be 
defined using the information of Np({�i,�r}) . However, 
if � (Np({�i,�r})) ∈ (0, 1) , then �i and �r can be approxi-
mated using the feature set Np({�i,�r}).

The pairwise class specific feature set Np({�i,�r}) may 
consists of redundant features that do not provide any sig-
nificant information in classifying the samples of class 
�i from that of �r . So, prior to computing the relevance 
� (Np({�i,�r})) of the feature set Np({�i,�r}) , insignifi-
cant and irrelevant features are discarded from the set, 
based on maximum relevance-maximum significance cri-
terion reported in [29]. The basic steps of the proposed 
method to select the feature set D for HEp-2 cell classifica-
tion are outlined in Algorithm 1. 

(15)� (Np({�i,�r})) =
1

|�|
||A(�i) ∪ A(�r)

||

(16)=
1

n

n∑

k=1

{𝜇ik(Np({𝜔i,𝜔r}))⊕ 𝜇rk(Np({𝜔i,𝜔r}))}.

Algorithm 1 Method for HEp-2 Cell Classification
Input: Set of training cell images X , energy ϑgiven and
threshold δ.
Output: Final feature set D.
1: for each modality Mp ∈ M do
2: for each sample xk ∈ X do

(i) Obtain normalized histogram hk for the sample
xk under modality Mp.
(ii) Sort the normalized histogram in descending or-

der and compute the number of dominant features dk
for the given energy ϑgiven using (2).

3: Determine the average number of dominant features
d over the set X .

4: for each xk ∈ X do
• Select the first d features from the set Ik to form

the dominant feature set Vk for the sample xk.
5: for each class ωi do

(i) Calculate the probability of occurrence of fea-
tures in the dominant feature sets of samples belong-
ing to the class ωi using (5).
(ii) Form the class specific feature set Np(ωi) for

the class ωi under the modality Mp with features
having probability of occurrence greater than given
threshold δ, using (7).

6: for each pair of classes {ωi, ωr} do
(i) Compute the pairwise class specific feature set

Np({ωi, ωr}) from the class specific feature sets
Np(ωi) and Np(ωr) for the classes ωi and ωr, re-
spectively.
(ii) Apply maximum relevance-maximum signifi-

cance criterion to eliminate irrelevant and insignifi-
cant features from the set Np({ωi, ωr}).
(iii) Evaluate the relevance Γ (Np({ωi, ωr})) of pair-
wise class specific feature set Np({ωi, ωr}) using (16).

7: for each pair of classes {ωi, ωr} do
• Select t̃ number of most relevant modalities from

the given set of t modalities and form the set Ñir =
{Np({ωi, ωr})}.

8: Form the final feature set D as the union of Ñir ’s, ob-
tained for each pair of classes.

9: Stop.

3 � Experimental results and discussions

The performance of the proposed method is extensively 
analyzed and corresponding results are presented in this 
section. Several local texture descriptors, namely, local 
binary patterns (LBP) [38], rotation invariant LBPs ( LBPri ) 
[37], rotation invariant uniform LBPs ( LBPriu2 ) [37] and 
co-occurrence among adjacent LBPs (CoALBP) [35], com-
puted at different scales, such as scale 1 ( S1 ), scale 2 ( S2 ), 
scale 3 ( S3 ), scale 4 ( S4 ), concatenation of S1 , S2 and S3 
( S123 ), concatenation of S1 , S2 and S4 ( S124 ), are used in the 
current study to demonstrate the efficacy of the proposed 
method in HEp-2 cell classification. For CoALBP, 4-neigh-
borhood is considered, while 8-neighborhood is considered 
for other local descriptors. The performance of the proposed 
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method is extensively compared with that of dominant LBP 
(DLBP) [26], discriminative features for texture descrip-
tion (DFTD) [18], and several multimodal data integration 
methods. Different classifiers such as SVM [51] with lin-
ear, polynomial, and radial basis function (RBF) kernels, 
extreme learning machine (ELM) [23], restricted Boltz-
mann machine (RBM) [21], discriminative RBM (DRBM) 
[25], fuzzy RBM (FRBM) [13], random forest (RF) [4] and 
K-nearest neighbors (KNN) algorithm [10] are also used for 
evaluating the performance of the proposed approach.

Both training–testing and tenfold cross-validation (CV) 
methods are performed to validate the performance of 
the proposed method as well as the existing approaches. 
Results obtained from training–testing are pictorially pre-
sented using bar graphs and performance of tenfold CV is 
studied through box-and-whisker plots and tables of mean, 
median, standard deviation and p-values computed using 
paired-t (one-tailed) and Wilcoxon signed-rank (one-tailed) 
tests, with 95% confidence level. In box-and-whisker plots, 
median is represented by central line of the box, upper and 
lower boundaries depict upper and lower quartiles, respec-
tively. Whiskers are drawn from mean to three standard 
deviations, so that extreme points can also be included. The 
outliers are plotted with ‘+’, individually.

3.1 � Description of data sets

Two HEp-2 cell image databases, namely, MIVIA data set 
[15] (ICPR 2012 HEp-2 cell classification contest data set) 
and SNP HEp-2 database [54], are considered to validate the 
performance of various approaches. The images of two data-
bases were captured at different assay and microscopic con-
figurations. The MIVIA database contains images of 1455 
cells obtained from 28 slides, out of which 721 cells are 
used as the training set while the rest of 734 cells comprise 
the test set. The entire set is divided into six staining pat-
tern classes, namely, Centromere, Homogeneous, Nucleolar, 
Coarse Speckled, Fine Speckled and Cytoplasmic. On the 
other hand, the SNP HEp-2 database contains 1806 labelled 
cells, which is partitioned into training and test sets with 
869 and 937 cells, respectively. Each of the cells belongs to 
one of the five staining pattern classes, namely, Centromere, 
Homogeneous, Nucleolar, Coarse Speckled and Fine Speck-
led. Both the MIVIA and SNP HEp-2 cell data sets are split 
into ten distinct folds for cross-validation, where the cell 
images are almost equally distributed with respect to each 
of the classes.

3.2 � Importance of local texture descriptors

In this section, the performance of different texture descrip-
tors is analyzed in characterizing the staining patterns of 
HEp-2 cell images. The corresponding results on MIVIA 

and SNP databases are reported in Table 1 for training–test-
ing. Several global texture descriptors such as discrete cosine 
transform (DCT) [49], fast Fourier transform (FFT) [33], 
rotation invariant Gabor features [3], gray level co-occur-
rence matrix (GLCM) [20] and histograms of oriented gra-
dients (HOG) [6] are used to represent the inherent textural 
properties of HEp-2 cell images. Similarly, various local tex-
ture descriptors, namely, LBP [38], LBPri [37], LBPriu2 [37] 
and CoALBP [35] have been used to characterize the HEp-2 
staining pattern classes. From the results reported in Table 1, 
it can be observed that local variations of intensity patterns 
are proved to be more effective in differentiating staining 
pattern classes, than the global information obtained from 
the HEp-2 cell images. This observation also resembles the 
results reported in [9]. Hence, local texture descriptors are 
considered for further analysis in the current study.

3.3 � Illustrative example

In order to illustrate the proposed method, let us consider 
HEp-2 cell images from training and test sets of MIVIA 
database [15], where the staining pattern classes of 734 test 
cell images need to be predicted based on the information 
of final feature set D , obtained from the 721 training cell 
images. Six staining pattern classes are represented by the 
set {�1,… ,�i,… ,�6} , where each �i corresponds to one of 
the six possible classes, namely, Centromere, Homogeneous, 
Nucleolar, Coarse Speckled, Fine Speckled and Cytoplas-
mic, in the specified order. In this example, the parameters 
�given and � are considered as 0.9 and 0.1, respectively.

Based on the assumption that all the features of a par-
ticular modality are not dominantly present in a sample, it 
is required to identify the set of dominant features for each 
sample of the training set using (2), which preserves 90% of 
the total energy present in the histogram of the sample. The 

Table 1   Comparative performance analysis of local and global tex-
ture descriptors

Bold signifies the highest value

Different descriptors MIVIA SNP

Global
   DCT 21.93 26.15
   FFT 23.71 24.65
   Gabor 24.39 26.47
   GLCM 34.88 34.90
   HOG 34.33 50.59

Local
   LBP 49.46 59.77
   LBPri 61.72 60.19

   LBPriu2 59.40 57.95
   CoALBP 53.41 50.59
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average number of dominant features ( d ) obtained for each 
modality is tabulated in Table 2, which indicates that in case 
of modalities with large number of features, only a small 
portion of the feature set carries important information.

After obtaining the dominant feature set for each sample, 
the probability of occurrence of a feature in the dominant 
sets of samples of a particular class is computed. The class 
specific feature set is formed for each class with only the 

features having probability of occurrence value greater than 
or equal to 0.1 in that class. Table 3 reports the cardinality of 
class specific feature set for two classes �1 (Centromere) and 
�2 (Homogeneous). From the given six classes of MIVIA 
data set, 

(
6

2

)
 or 15 pairwise class specific feature sets are 

obtained for each modality. For each pair of classes, the 
irrelevant and insignificant features are eliminated from 
the pairwise class specific feature set using the maximum 
relevance-maximum significance criterion [29], and finally 
the relevance of the reduced class specific feature set is com-
puted using (16). Table 3 presents an instance of cardinali-
ties of initial and reduced pairwise class specific feature sets, 
along with the relevance of the reduced set computed for 
each of the 15 modalities, corresponding to the class-pair 
{�1,�2}.

From Table 3, it can be observed that the irrelevant and 
insignificant features can be effectively removed using 
maximum relevance-maximum significance criterion. The 
relevance values of different modalities suggest that all 
the local descriptors and scales are not effective in differ-
entiating samples belonging to two classes �1 and �2 . For 
example, LBP at S4 is more relevant than LBP computed 
at other scales to classify samples of �1 from that of �2 . 
However, CoALBP at S2 is found to be the best modality 
for classifying samples belonging to {�1,�2} . Three most 
relevant modalities, along with the corresponding number of 
selected features for each class-pair, are arrayed in Table 4, 
where J(K) represents the Jth most relevant modality with 
K number of pairwise class specific features. For example, 
based on the relevance values reported in Table 3, CoALBP 
at S2 having 11 features, CoALBP at S1 with 10 features, 

Table 2   Cardinality of initial feature set and average number of domi-
nant features for each modality

Modalities Number of features

Descriptors Scales Initial (m) Dominant ( d)

LBP S
1

256 70
S
2

256 97
S
3

256 99
S
4

256 97
LBP

ri S
1

36 12
S
2

36 16
S
3

36 16
S
4

36 16
LBP

riu2 S
1

10 7
S
2

10 8
S
3

10 8
S
4

10 8
CoALBP S

1
1024 380

S
2

1024 493
S
4

1024 497

Table 3   Cardinality and 
relevance of pairwise class 
specific feature sets of each 
modality for {�1,�2}

Modalities Cardinality of the set Relevance

Different descriptors Different scales N(�1) N(�2) N({�1,�2}) (� )

Initial Reduced

LBP S
1

110 110 105 9 0.42
S
2

159 163 150 15 0.63
S
3

172 175 163 9 0.69
S
4

186 182 175 12 0.72
LBP

ri S
1

16 16 16 10 0.34
S
2

19 20 17 5 0.55
S
3

23 21 21 6 0.63
S
4

24 23 22 7 0.65
LBP

riu2 S
1

7 7 7 6 0.34
S
2

9 9 9 5 0.55
S
3

10 9 9 4 0.55
S
4

10 9 9 6 0.46
CoALBP S

1
546 577 522 10 0.72

S
2

779 803 738 11 0.82
S
4

915 875 858 12 0.64
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and LBP at S4 with 12 features are selected to form the 
set Ñir = {Np({𝜔i,𝜔r})} , corresponding to the class-pair 
{�1,�2} . From both Tables 3 and 4, it is also clear that the 
spatial information, obtained using CoALBP, is more impor-
tant to differentiate �1 and �2 than the rotation invariance 
property of both LBPri and LBPriu2 . In fact, the co-occur-
rence of local textural features is an essential information 
required to discriminate Centromere class ( �1 ) from the rest 
of the staining pattern classes, while both rotation invariance 
and uniformity properties of local descriptors are found to 
be irrelevant. However, the rotation invariance characteristic 
plays a significant role, as highlighted in Table  4, for classi-
fying the samples of class-pairs {�2,�4} , {�2,�6} , {�3,�4} , 
{�3,�5} , {�3,�6} , {�4,�5} , and {�5,�6} , where either 
LBPri or LBPriu2 is selected as the most relevant modality.

For each class-pair, three most relevant modalities are 
selected, based on their relevance values. The final feature 
set D , consisting of 277 features, is obtained by taking the 
union of all the selected feature sets corresponding to all 
class-pairs. The SVM with linear kernel is used for train-
ing HEp-2 cell images, based on the final feature set D . It 
provides 100% classification accuracy on training samples, 
while 63.90% accuracy on test data set.

3.4 � Effectiveness of energy and threshold

As defined in (1), energy � of an image, which represents the 
important information specific to a particular image, is quan-
tified in terms of the feature occurrences in the image. On 
the other hand, threshold � , as mentioned in (7), signifies the 
contribution of a feature in representing the characteristics 
of a class. Based on the values of � and � , the class specific 
feature set N(�i) , corresponding to the class �i , is formed. 
Hence, it is important to find out the optimum values of both 
� and � such that an accurate representation of the class �i 
can be obtained through N(�i).

Figure 5 depicts the probability of occurrence values, in 
sorted order, of features present in the dominant feature sets 
of samples belonging to a particular class. While top row of 
Fig. 5 presents it for six staining pattern classes of MIVIA 
database, considering LBP at S1 , first three graphs of bottom 
row report the same for Centromere class at S2 , S3 , and S4 
for LBP, and last three graphs depict it for Centromere class 
considering LBPri , LBPriu2 and CoALBP at S1 . Results are 
reported for different values of energy � , ranging in between 
0.75 and 1.0. From the occurrence curves, it can be observed 
that as � increases, the area under the corresponding curve 
strictly increases, which is evident from the definition of 
� . While low energy provides the dominant feature sets of 
samples to a restrictive representation, high energy signi-
fies more information captured from the images and thus, 
more features are included in the dominant feature sets of 
the samples, leading to a descriptive representation of the Ta
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sets. Although it seems that samples from the same class 
will have similar sets of dominant features, but in real-life 
problems, samples belonging to the same class exhibit a 
large degree of variations among themselves due to incom-
pleteness in class definitions, overlapping characteristics of 
class boundaries, and presence of outlier and noise. Hence, 
the samples from same class are described with different 
sets of dominant features. As a consequence, probability of 
occurrence values of features in the dominant feature sets 
vary to a great extent. The features with high probability of 
occurrence values reflect common properties of the samples 
with respect to the class to which they belong. On the other 
hand, the features with relatively low probability of occur-
rence values signify the special properties of certain images, 
which are essential to distinguish the images properly.

Let us consider the occurrence curve for Centromere class 
considering LBP at S1 (first graph of top row of Fig. 5). 
Around � = 0.8 , there is a sharp fall in the probability of 
occurrence curve, which implies that the dominant feature 
sets of samples corresponding to Centromere mainly contain 
the features which signify common characteristics of the 
samples, without considering the special properties of cer-
tain samples. For � = 1.0 , the entire feature set gets selected 
as the dominant feature set for each sample of Centromere, 
which contradicts the concept of dominant feature set itself. 
The probability of occurrence graph for � = 0.9 reflects the 
presence of both common features with high probability of 
occurrence values and unique features with comparatively 
low occurrence values in the dominant feature sets of sam-
ples of the class. Hence, it is evident that low � value tends 
to complement the dominant feature sets of samples of Cen-
tromere, obtained for high � value. Now, in the proposed 
method, the class specific feature set N(�i) corresponding 
to a particular class �i is defined to contain those features 
which bear important information of most of the samples of 
�i as well as provide significant characteristics of the class 

�i . So, N(Centromere) can be appropriately formed with 
a high � value and a low � value. The inferences, drawn 
from the occurrence curves of LBP computed at S1 for the 
samples of Centromere, are equally true irrespective of the 
descriptors, scales and classes, which is evident from rest of 
the curves presented in Fig. 5. Thus, in the current study, the 
values of � and � are chosen to be 0.9 and 0.1, respectively, 
which imply that a particular class is represented by a set 
of features, which preserves 90% of total energy by at least 
10% of the samples belonging to that class. The value of 
� = 0.9 also complies with that of the method proposed by 
Guo et al. [18].

Figure 6 presents the variation of classification accuracy 
with respect to both energy � and threshold � , considering 
different kernels of SVM, namely, linear, polynomial, and 
radial basis function. Results are reported for � ∈ [0.75, 1.00] 
with a gap of 0.05 and � ∈ [0.0, 0.5] with a gap of 0.1. Both 
training–testing and tenfold CV are performed, consider-
ing both MIVIA and SNP databases. From all the results 
reported in Fig. 6, it can be seen that the classification accu-
racy of the proposed method increases with the increase in 
energy � , while it decreases in increase of threshold � . The 
proposed method attains better performance at � = 0.90 and 
� = 0.1 , irrespective of the experimental set-up, classifiers, 
and data sets used.

3.5 � Relevance of support vector machine

In the current study, the SVM with linear kernel is 
employed to evaluate the performance of the proposed 
texture descriptor selection method. In order to establish 
the importance of using SVM with linear kernel for clas-
sification, extensive experiments are carried out and cor-
responding results are reported in Table 5 with respect 
to different kernels of the SVM. Table 5 compares the 
classification accuracy (ACC) obtained using the proposed 

Fig. 5   Variation in probability of occurrence of features present in dominant feature sets with respect to different energy values, considering dif-
ferent local descriptors, scales, and HEp-2 cell staining pattern classes
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method at � = 0.90 and � = 0.1 with that of maximum 
accuracy (Best) obtained from all possible combinations 
of � and � . In Table 5, both highest accuracy and lowest 
difference between best and obtained accuracy ( � = Best 
− ACC) are marked in bold. Finally, the quality of each 
kernel is evaluated by the following measure:

As both lower value of � and higher value of ACC are desir-
able, the lower value of � indicates better classifier. From 
the results reported in Table 5, it can be seen that the SVM 
with linear kernel outperforms the SVM with other kernels 

(17)� =
√
� × [100 − ACC].
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Fig. 6   Variation of classification accuracy with respect to both energy � and threshold � , considering different kernels of SVM as classifiers (first 
row: linear kernel; second row: radial basis function kernel; last row: polynomial kernel)

Table 5   Comparison of best 
classification accuracy and 
accuracy at {0.90, 0.1} (ACC) 
for different kernels of SVM

Data sets Experiment Classification accuracy Measure

Set-up Kernels Best ACC​ � �

MIVIA Training- testing Linear  64.58   63.90  0.68 29.80
RBF 64.17 63.08 1.09 38.54
Polynomial 49.46 46.19 3.27 97.31

Tenfold CV Linear 93.61 93.27 0.34 3.93
RBF 94.76 94.29 0.48 3.94
Polynomial 87.96 86.94 1.02 13.19

SNP Training-testing Linear 63.61 61.79 1.81 51.46
RBF 63.71 61.69 2.03 54.56
Polynomial 49.31 48.13 1.17 56.20

Tenfold CV Linear 80.71 79.89 0.82 18.21
RBF 83.22 81.86 1.37 21.20
Polynomial 73.01 70.16 2.84 50.29
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for both training–testing and tenfold CV, on both MIVIA and 
SNP databases. Also, the accuracy obtained at � = 0.90 and 
� = 0.1 is comparable with the best accuracy in this case.

In order to assess the performance of the proposed 
method, different classifiers are employed to obtain the 
classification accuracy for both training–testing and tenfold 
CV using the feature set D , obtained in (9). In this experi-
ment, the accuracy obtained using SVM with linear kernel 
is compared with that of ELM [23], RBM [21], DRBM [25], 
FRBM [13], RF [4] and KNN [10], and the corresponding 
results are outlined in Table 6 for both MIVIA and SNP 
databases. The features extracted by the RBM are classified 
using SVM with linear kernel, while the value of K, for 
the KNN algorithm, is considered as 5 through extensive 
experimentation by varying it from 1 to 9.

From the results reported in Table 6, it can be noted that 
both RBM and proposed method with SVM perform better 
than other classifiers, in classifying staining patterns present 
in HEp-2 cell images of two data sets. Both ELM and FRBM 
also achieve satisfactory classification results, whereas 
DRBM, RF and KNN fail to identify the staining patterns 
of HEp-2 cell images. Since HEp-2 cell pattern classes are 
imbalanced in nature and histogram of textural patterns is 
considered as feature vector in the current study, the RF 

does not proved to be efficient in classifying staining pattern 
classes. However, if global features like DCT and FFT are 
considered to construct the RF classifier, its classification 
accuracy is increased to 25.61% and 29.16%, respectively, 
for MIVIA data set and 24.87% and 25.19%, respectively, for 
SNP database, in case of training–testing. In brief, the SVM 
with linear kernel exhibits better performance with reference 
to rest of the classifiers, irrespective of experimental set-up 
and data sets used. Hence, in the proposed work, the SVM 
with linear kernel is used to classify HEp-2 cell staining 
pattern classes.

3.6 � Importance of rough hypercuboid approach

The proposed method assumes that the modalities with 
high relevance values are effective in differentiating the 
samples of class �i from that of class �r . The relevance 
of a modality is computed using (16), based on hyper-
cuboid equivalence partition matrix of rough hyper-
cuboid approach. Based on the relevance measure �  , 
three pairwise class specific feature sets, corresponding 
to best three modalities, are considered to form the set 
Ñir for each pair of classes {�i,�r} . In order to estab-
lish the importance of �  measure of rough hypercuboid 
approach, the relevance of pairwise class specific fea-
ture set, corresponding to each modality and each pair 
of classes {�i,�r} , is computed and presented in Fig. 7a. 
The SVM with linear kernel is used to train the samples 
of {�i,�r} , based on the pairwise class specific feature 
set corresponding to that modality. Finally, the SVM is 
used to predict the staining pattern classes of the samples 
belonging to the test set of each { �i,�r }. The classifica-
tion accuracy on test data is presented in Fig. 7b. From 
Fig. 7a, b, it is evident that in most of the cases, a high �  
value corresponds to a high test accuracy, which indicates 
that �  and accuracy values are highly correlated with 
each other. The values of both �  and classification accu-
racy, obtained for different modalities corresponding to 
two representative class-pairs {Centromere, Cytoplasmic} 
and {Homogeneous, Cytoplasmic}, are plotted in Fig. 7c, 

Table 6   Performance analysis of the proposed method using different 
classifiers

Bold signifies the highest value

Different clas-
sifiers

MIVIA SNP

Train–Test Tenfold CV Train–Test Tenfold CV

SVM 63.90 93.27 61.79 79.89
ELM 58.86 85.17 53.15 69.67
RBM 60.08 90.27 57.42 80.77
DRBM 39.24 41.63 38.63 45.41
FRBM 57.36 82.72 58.16 64.26
RF 20.30 24.49 21.77 23.01
KNN 19.75 20.34 20.92 20.65

(a) (b) (c) (d)

Fig. 7   Correlation between relevance measure �  and classification accuracy obtained using SVM with linear kernel for pairs of classes of 
MIVIA database
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d, respectively. The Pearson correlation coefficient � for 
the two aforementioned class-pairs are found to be 0.95 
and 0.94, respectively.

In order to discard irrelevant and insignificant features 
from each pairwise class specific feature set, Step 6(ii) 
of the proposed algorithm uses maximum relevance-max-
imum significance (MRMS) criterion of feature selec-
tion [29]. Using the above criterion, the proposed method 
reduces the cardinality of feature set drastically, keeping 
the value of �  unchanged. Table 7 establishes the impor-
tance of using MRMS criterion in the proposed method. 
The means and standard deviations of the cardinalities 
corresponding to initial and reduced pairwise class spe-
cific feature sets are reported in Table 7, which are com-
puted considering all possible class-pairs and different 
scales of a particular descriptor. All the results indicate 
that MRMS criterion reduces the dimensions of feature 
sets to a great extent, especially for the descriptors with 
large number of features. Also, statistical significance 
analysis, based on both paired-t test and Wilcoxon signed 
rank test, reveals that the cardinality of reduced pairwise 
class specific feature set, corresponding to a particular 
descriptor, is significantly lower as compared to that of 
initially obtained feature set, irrespective of the descrip-
tors used.

To compute the relevance of a class-pair specific fea-
ture set, several other feature evaluation measures such as 
class separability (CS) index [10], Davies-Bouldin (DB) 
index [7], and Dunn index  [11] can be used. In order 
to establish the importance of rough hypercuboid (RH) 
approach over CS, DB and Dunn indices, extensive exper-
iment is carried out on two data sets and corresponding 
results are reported in Table 8. From the results reported 
in Table 8, it can be seen that the proposed method using 
�  measure, based on rough hypercuboid approach, per-
forms better in most of the cases for both MIVIA and 
SNP databases, irrespective of experimental set-up used. 
It establishes the effectiveness of �  measure, computed 
based on the concept of rough hypercuboid approach, in 
selecting the relevant modalities corresponding to each 
pair of classes.

3.7 � Significance of class‑pair specific modalities

In the proposed method, a modality refers to a specific local 
texture descriptor considered under a particular scale. Gen-
erally, a fixed set of modalities for all the classes is consid-
ered by the existing approaches for HEp-2 cell classification, 
while the proposed method selects class-pair specific modal-
ities during the analysis of HEp-2 cell images. To establish 
the effectiveness of class-pair specific modalities over uni-
form modalities for all the classes, extensive experiment is 
carried out on two HEp-2 cell image databases, considering 
fifteen modalities corresponding to LBP, LBPri , LBPriu2 , 
and CoALBP, along with their four scales. Figures 8 and 9 
and Table 9 present the comparative performance analysis 
between existing approaches and proposed method, consid-
ering both single and multiple modalities for two HEp-2 
cell image databases. From the results reported in top row 
of Fig. 8, it can be seen that the proposed method attains 
highest classification accuracy of training–testing in all the 
cases, irrespective of the data sets, descriptors, scales and 
number of modalities used. The results reported in top row 
of Fig. 9 also confirm that the proposed method achieves 
highest F1 score in all the cases, except for CoALBP at S2 
on MIVIA dataset.

For tenfold CV, the comparative performance analysis is 
reported in middle and bottom rows of Fig. 8 for classifica-
tion accuracy and Fig. 9 for F1 score using box-and-whisker 
plots and in Table  9 based on mean, median, standard 

Table 7   Cardinality of initial and reduced pairwise class specific feature sets

Different descriptors MIVIA SNP

Initial Reduced P value Initial Reduced P value

 Mean   SD   Mean   SD   Paired-t   Wilcoxon   Mean   SD   Mean   SD   Paired-t   Wilcoxon 

LBP 141.60 30.01 9.27 3.17 5.59E−41 8.12E−12 156.80 10.70 16.68 9.91 1.44E−41 1.77E−08
LBP

ri 18.45 2.80 6.52 2.29 6.58E−39 7.66E−12 20.40 1.52 9.98 3.62 5.53E−22 1.71E−08

LBP
riu2 8.65 0.92 5.15 1.62 7.82E−24 1.42E−11 9.33 0.47 7.05 1.68 4.05E−11 1.01E−07

CoALBP 670.27 129.52 9.31 4.49 7.90E−34 2.58E−09 829.30 47.59 16.53 9.15 1.15E−38 8.64E−07

Table 8   Comparative performance analysis of rough hypercuboid and 
other indices

Bold signifies the highest value

Different 
indices

MIVIA SNP

Train–Test Tenfold CV Train–Test Tenfold CV

CS 64.31 92.59 53.04 78.85
DB 62.26 91.16 54.00 76.67
Dunn 62.67 90.20 54.54 76.17
RH 63.90 93.27 61.79 79.89
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Fig. 8   Classification accuracy using bar graphs (top row: training–testing) and box-and-whisker plots (tenfold cross-validation) of the proposed 
method and different local texture descriptors at different scales (middle row: MIVIA; bottom row: SNP)

Fig. 9   F1 score using bar graphs (top row: training–testing) and box-and-whisker plots (tenfold cross-validation) of the proposed method and 
different local texture descriptors at different scales (middle row: MIVIA; bottom row: SNP)
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deviation and p-values computed through both paired-t test 
and Wilcoxon signed rank test. All the results reported here 
confirm that the proposed method provides higher mean 
and median values of both classification accuracy and F1 
score than that of all other methods for the two data sets, 
except CoALBP at S124 for SNP database. Also, the pro-
posed method attains significantly better accuracy as well as 
F1 score in 78 cases each, considering 95% confidence level, 
out of total 88 cases each, and better but not significant in 8 
cases each. All the results establish the fact that both classi-
fication accuracy and F1 score can be increased significantly 
by considering class-pair specific modalities, instead of tak-
ing into account a fixed set of modalities for all the classes.

3.8 � Comparative performance analysis

The performance of the proposed approach is compared with 
that of several existing HEp-2 cell classification methods 
due to Cordelli and Soda [5], Strandmark et al. [46], and 
Wiliem et al. [54]. Results are reported in Fig. 10, consider-
ing ICPR 2012 contest protocol of cell level classification for 
MIVIA database [15] and fivefold training–testing for SNP 
database [54]. From the results reported in Fig. 10, it can be 
seen that the proposed method performs better than all other 
approaches for MIVIA database. In this regard, it may be 
noted that some other techniques, participated in ICPR 2012 
contest, such as the methods of Di Cataldo et al. [8], Ersoy 
et al. [12], Ghosh and Chaudhary [17], and Snell et al. [42] 
achieve classification accuracy of 48.5%, 49.2%, 59.8% and 
44.6%, respectively, on MIVIA database, which are lower 
than 63.9% accuracy obtained by the proposed method. For 
SNP database [54], the proposed method provides better 
performance than the method of Cordelli and Soda [5] and 
comparable performance with respect to the method due 

to Strandmark et al. [46]. However, the performance of the 
method due to Wiliem et al. [54] on their SNP database [54] 
is significantly better than all other approaches, whereas it 
is very poor on MIVIA database as compared to that of the 
proposed method.

Finally, the performance of the proposed method is exten-
sively compared with that of (1) two effective textural feature 
extraction methods, namely, dominant LBP (DLBP) [26] and 
discriminative features for texture description (DFTD) [18]; 
(2) four statistical multimodal data integration methods, 
namely, canonical correlation analysis (CCA) [22], regu-
larized CCA (RCCA) [52], CuRSaR [28] and FaRoC [30]; 
and (3) a CCA based method for HEp-2 cell staining pat-
tern recognition, called CanSuR [31]. In [31], the SVM with 
RBF kernel is considered to compute classification accuracy, 
while SVM with linear kernel is used for rest of the methods. 
The results, corresponding to both training–testing and ten-
fold CV, are reported in Fig. 11 and Table 10 with respect to 
accuracy and F1 score. The performance of the DLBP and 
DFTD is evaluated for both S123 and S124 , while four multi-
modal data integration methods and CanSuR, as suggested 
in [31], consider S2 and S3 of LBPri , for modality integration.

All the results reported in top row of Fig. 11 confirm 
that the proposed method attains maximum classification 
accuracy as well as F1 score for both the data sets. From 
the results reported in middle and bottom rows of Fig. 11, 
corresponding to tenfold CV on MIVIA and SNP databases, 
respectively, it is seen that the proposed method provides 
highest values of mean and median in both the cases. The 
statistical significance analysis, reported in Table 10 based 
on both paired-t test and Wilcoxon signed rank test, reveals 
that the proposed algorithm achieves significantly lower  
p values in 68 cases out of total 72 cases, and better but not 
significant p values in remaining 4 cases, with respect to 
both classification accuracy and F1 score.

The better performance of the proposed method is 
achieved due to the following facts: 

1.	 the proposed method considers class-pair specific 
modalities for analyzing HEp-2 cell images, rather than 
considering a fixed set of modalities for all the staining 
pattern classes;

2.	 the relevance of each modality is evaluated through 
hypercuboid equivalence partition matrix of rough 
hypercuboid approach, which can approximate the sam-
ple categories of staining patterns efficiently;

3.	 a set of dominant features is extracted under each rel-
evant modality, based on the probability of texture pat-
tern occurrence; and

4.	 the maximum relevance-maximum significance crite-
rion, used in the proposed method, facilitates identifica-
tion of a reduced set of discriminative features for HEp-2 
cell classification.

 40

 50

 60

 70

 80

 90

 100

MIVIA SNP

A
cc

u
ra

cy
 (

%
)

Cordelli and Soda : 

49.9

42.6

Strandmark et al. : 

48.0

56.8

Wiliem et al. : 

55.3

80.6

Proposed: 

63.9

55.7

Fig. 10   Performance of the proposed method and related approaches 
for HEp-2 cell staining pattern classification
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Fig. 11   Bar graphs (training–testing) and box-and-whisker plots (tenfold cross-validation) of different existing methods

Table 10   Performance analysis of different existing methods and proposed method using tenfold cross-validation

Bold signifies the highest value

Different measures Different methods MIVIA SNP

 Mean  Median SD Paired-t:p Wilcoxon:p  Mean  Median SD Paired-t:p Wilcoxon:p

Accuracy DLBP, S
123

71.97 73.47 3.79 2.03E−08 2.52E−03 54.37 55.19 5.17 2.42E−08 2.52E−03
DLBP, S

124
73.67 74.83 4.40 4.35E−07 2.53E−03 53.39 52.73 3.59 1.50E−08 2.47E−03

DFTD, S
123

84.97 85.37 2.23 4.96E−06 2.50E−03 72.19 71.04 6.15 1.10E−04 3.44E−03
DFTD, S

124
86.12 85.71 2.82 2.02E−05 2.50E−03 73.72 75.41 6.80 1.65E−03 4.67E−03

CCA​ 69.12 70.41 11.95 1.07E−04 2.53E−03 61.69 60.38 7.67 1.27E−05 2.53E−03
RCCA​ 69.25 70.75 11.08 5.81E−05 2.53E−03 61.75 60.66 6.87 1.32E−05 2.53E−03
CuRSaR 80.00 81.63 7.80 2.07E−04 2.53E−03 62.30 62.02 9.12 1.57E−04 2.53E−03
FaRoC 84.22 86.39 5.82 8.68E−05 2.52E−03 71.86 74.04 10.27 7.71E−03 1.04E−02
CanSuR 87.41 87.76 5.52 2.10E−03 3.46E−03 75.79 80.33 9.81 7.32E−02 6.97E−02
Proposed 93.27 93.20 1.99 79.89 80.60 6.17

F1 Score DLBP, S
123

72.43 73.37 3.69 2.46E−08 2.53E−03 55.58 56.38 5.15 1.17E−08 2.53E−03
DLBP, S

123
74.14 75.13 4.26 4.98E−07 2.53E−03 54.44 54.01 4.05 1.03E−08 2.53E−03

DFTD, S
123

84.95 85.28 2.48 7.28E−06 2.53E−03 73.41 72.34 5.98 1.13E−04 3.46E−03
DFTD, S

123
86.11 86.32 3.01 2.29E−05 2.53E−03 75.14 76.59 6.17 2.06E−03 6.26E−03

CCA​ 68.99 67.32 11.72 7.84E−05 2.53E−03 61.54 60.15 7.48 7.42E−06 2.53E−03
RCCA​ 69.56 70.51 10.65 3.89E−05 2.53E−03 61.71 60.57 6.83 8.44E−06 2.53E−03
CuRSaR 80.15 81.79 7.38 1.20E−04 2.53E−03 62.12 61.94 9.14 1.06E−04 2.53E−03
FaRoC 84.07 86.17 6.20 3.05E−04 2.53E−03 71.87 74.20 10.35 5.60E−03 1.42E−02
CanSuR 87.32 87.35 4.48 5.94E−04 3.46E−03 76.10 80.59 9.81 6.36E−02 6.97E−02
Proposed 93.34 93.18 1.65 80.43 81.25 6.07
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In effect, the proposed method provides significantly better 
performance as compared to existing methods.

4 � Conclusion

The main contribution of this paper lies in developing a 
methodology for the diagnosis of connective tissue diseases, 
by recognizing staining patterns present in HEp-2 cell IIF 
images. The proposed method judiciously integrates the 
merits of rough hypercuboid approach and local textural 
descriptors. The rough hypercuboid approach facilitates 
selection of pairwise class specific important modalities, 
while relevant and significant features under selected modal-
ities are obtained, based on the probability of occurrence 
of a feature in a class and maximum relevance-maximum 
significance criterion used in feature selection. Finally, sup-
port vector machine with linear kernel is used to recognize 
one of the known staining patterns present in IIF images. 
The effectiveness of the proposed method, along with a com-
parison with related approaches, has been demonstrated on 
two benchmark HEp-2 cell image databases.

In order to address the shortcomings of manual test pro-
cedure, one can use the proposed system to automatically 
determine the patterns in given HEp-2 cell images of a spec-
imen. It may allow performing a pre-selection of the cases to 
be examined, which will enable physician to focus attention 
only on most relevant cases.
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