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Abstract
Distance is an indispensable measure in many fields such as clustering analysis, decision making and pattern recognition, 
etc. When calculating the distance of hesitant fuzzy information, the existing methods normally only take the values of the 
attributes into consideration while ignore the preferential relationship between the options, which may not meet some actual 
situations. Thus, it is necessary to propose a new distance measure for hesitant fuzzy information considering both the two 
aspects. In order to realize this in our paper, firstly, a multi-attribute space is built, in which each attribute is given a unique 
weight from the experts to show the subjective importance; secondly, the distance vector between the hesitant fuzzy sets 
(HFSs) is constructed and a balancing coefficient is proposed; thirdly, a novel distance measure for HFS, called the hesitant 
fuzzy psychological distance measure is developed. In view of the experts’ preferences for the options, the proposed hesi-
tant fuzzy psychological distance between the alternatives can be enlarged relative to the traditional hesitant fuzzy distance 
measures, which shows a good reasonability in reflecting the experts’ subjective preferences for different alternatives. Fur-
thermore, two numerical examples are used to illustrate the effectiveness and feasibility of the hesitant fuzzy psychological 
distance measure.

Keywords  Hesitant fuzzy set · Subjective preference · Psychological distance · Clustering analysis

1  Introduction

Distance and similarity measures are two basic measures in 
hesitant fuzzy set (HFS) theory and they have been applied 
in many fields such as decision making [13, 15, 32], machine 
learning, and clustering analysis [17, 28], etc. Hesitant fuzzy 
set [22], derived from fuzzy set [29], was first introduced by 
Torra and Narukawa [23], and still in a high-speed devel-
opment [10, 14, 16]. The HFS illustrates a kind of con-
dition that the membership degree of an element to a set 
obtains several values between 0 and 1, and each value is an 

independent membership degree. Normally we prefer apply-
ing HFSs in such conditions [23, 25, 26]:

1.	 Decision makers have hesitations in making decisions;
2.	 Several decision makers cannot convince each other 

while estimating;
3.	 Some data are uncertain or incomplete.

Extended from HFSs, Chen et al. [6] further developed 
the interval-valued hesitant fuzzy sets (IVHFSs). In view 
of the significance of the distance and similarity measures, 
some widely used distance measures, such as the Hamming 
distance, the normalized Hamming distance, the Euclidean 
distance and the normalized Euclidean distance had been 
developed for fuzzy sets [5, 9, 12]. Later, Xu and Xia [27] 
developed the axioms of distance and similarity measures 
for HFSs and further proposed a series of distance measures 
for HFSs.

When computing the distance or similarity between the 
HFSs, the traditional hesitant fuzzy distance and similarity 
measures prefer only taking the values of all the attributes 
into consideration, while the subjective evaluations of the 
importance degrees of different attributes and the preference 
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relationships between different alternative options are 
neglected [27]. Nosofsky [18] firstly proposed that every 
dimension in the attribute space can obtain a unique atten-
tion given by the individuals because of their preferences for 
different attributes. Dimensions can be stretched or shrunk 
along with the attention which the individuals put on [4]. 
When considering the relationships between the alternative 
options, Huber et al. [11] proposed that there are two kinds 
of directions from one alternative option to another: the 
dominance direction and indifference direction. When cal-
culating the distances between the options, the distances in 
the dominance direction should be assigned a higher weight 
than the ones in the indifference direction.

According to the papers [1, 24], the dominance direction 
and the indifference one can be rotated when the weight 
distribution of attributes being changed. It is apparent that no 
matter how the weight distribution changes, the two direc-
tions are orthogonal. Rooderkerk et al. [20] and Berkow-
itsch et al. [1] suggested that we should give the distance 
in the dominance direction a high individual weight, while 
the weights of the distances in the indifference directions 
should be relatively lower. This method can well expand the 
influence of the dominance direction in the calculation of 
the psychological distances, so that the preferences from the 
experts for some certain alternatives can be shown. Inspired 
by the past researches, Berkowitsch et al. [1] presented a 
generalized psychological distance which can consider the 
preferential relationship between the options.

Clustering is an unsupervised classification of patterns. 
This method can organize samples with a high degree of 
similarity into a cluster. It is quite useful and has been 
applied in many fields such as information retrieval and data 
mining [8], etc. Traditional clustering methods are hard clus-
tering which can’t deal with the fuzzy information. After 
Zadeh proposed the fuzzy set, Ruspini first studied the fuzzy 
clustering problems [21], and then several fuzzy clustering 
methods were proposed, such as fuzzy C-means (FCM) clus-
tering algorithm [2], which is quite applicable in daily life 
[3, 19]. In view of clustering the hesitant fuzzy information 
in practical life, many hesitant fuzzy clustering algorithms 
have been developed, for example, the minimal spanning tree 
clustering analysis method under hesitant fuzzy environment 
[30], hesitant fuzzy agglomerative hierarchical clustering 
algorithms [31] and hierarchical hesitant fuzzy K-means 
clustering algorithm [7]. The hesitant fuzzy distance meas-
ures have played an important role in clustering the hesitant 
fuzzy information.

As mentioned above, although the existing hesitant 
fuzzy distance measures are very useful, they cannot uti-
lize the preference relationships between different alterna-
tive options, that is to say, they can’t take full advantage of 
the background information of the alternatives. The rela-
tive influences of the alternatives do not affect the distances 

between them, in other words, the alternatives in the space 
of traditional hesitant fuzzy distance measures are isolated, 
which cannot affect each other by their superior or worse 
influences. To overcome this weakness, in this paper, we 
shall propose a novel psychological distance measure for 
HFSs, which is inspired by the idea of Berkowitsh et al.’s 
paper [1]. The alternatives in the space of psychological 
distance measure are connected to each other, relatively 
superior or weaker influences between the alternatives can 
strengthen or undermine the distances between them, in 
which case the distance measure fits the inner activities of 
people. Thus, it could be relatively more functional when 
applying the novel distance measure into some fields like 
clustering and decision analysis. In order to better construct 
the new hesitant fuzzy distance measure, two main innova-
tions are developed in the paper. The first one is that we shall 
construct the distance vectors between the HFSs, endowing 
the distances between the HFEs with the directions of plus 
or minus by the comparison method of HFEs [25]. As for 
the second one, in order to guarantee that the final hesitant 
fuzzy psychological distance measure satisfies the axiomatic 
properties of the hesitant fuzzy distance measure, we shall 
present a balancing coefficient reasonably so that the pro-
posed psychological distances for HFS are all between 0 
and 1. All the work mentioned above ensures the application 
value and the rationality of the final distance measure.

The article is organized as follows: Sect. 2 introduces 
some basic concepts of HFS and the previous researches on 
psychological distance; Sect. 3 develops the new hesitant 
fuzzy psychological distance measure, applies it in cluster-
ing analysis and then compares it with the existing hesitant 
fuzzy Hamming distance; at last, the article ends with some 
concluding remarks in Sect. 5.

2 � Preliminaries

In this section, several basic concepts should be prepared 
for introducing the new distance measure. In the following, 
we will recall the concepts of hesitant fuzzy set (HFS), the 
distance measures and similarity measures of HFSs and the 
previous work of the psychological distance measure.

2.1 � Hesitant fuzzy set

In real life, when deciding the membership degree of an 
element to a given set, different people may have different 
judgments. For example, some people may choose 0.3, 
while some others may choose 0.5. In light of the subjec-
tive differences of the decision makers, Torra [22] pre-
sented the hesitant fuzzy set (HFS) which elaborately dem-
onstrates the situation that the membership degree of an 
element to a set consists of several values between 0 and 1. 
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The HFS can be very effective when the decision makers 
have not reached an agreement or they have hesitations 
in making decisions. For example, some decision makers 
are invited to estimate the degree of an alternative fits a 
given criterion. When estimating, some decision makers 
think that the alternative strongly satisfies the criterion and 
choose 0.8, while some other ones think that it is not so 
sure to decide and choose 0.5, and the rest ones may hold a 
pessimistic attitude and choose 0.3. These three groups of 
people cannot persuade each other to change their minds, 
then the membership degree can be demonstrated as the 
form of {0.8, 0.5, 0.3} , which is a hesitant fuzzy element 
(HFE) [25]. The form is rational because it contains all the 
information that the decision makers provided.

Definition 2.1  [22] If X is a fixed set, a hesitant fuzzy set 
(HFS) A on X is in terms of a function that maps the ele-
ments in X to a subset of [0, 1].

To be easily understood, Xia and Xu [25] pro-
posed the following mathematical symbol to express 
a HFS: A = {⟨x, hA(x)⟩�x ∈ X } , where hA(x) represents 
the membership degrees of the element x to the set A , 
hA(x) includes several different values between 0 and 1, 
Xia and Xu [25] defined hA(x) as a hesitant fuzzy ele-
ment (HFE), which is the basic unit of HFS. Torra 
[22] gave some operations of HFEs as follows: (1) 
hc =

⋃
�∈h {1 − �} ; (2) h1 ∪ h2=

⋃
�1∈h1,�2∈h2

max
�
�1, �2

�
 ; 

(3) h1 ∩ h2 =
⋃

�1∈h1,�2∈h2
min

�
�1, �2

�
 , where h , h1 and h2 

are three HFEs.

Definition 2.2  [22] Suppose that h is a HFE, then the 
envelop of h is defined as Aenv(h) , and the envelop can be 
represented by a mathematical symbol (h−, 1 − h+) , where h− 
and h+ are respectively the HFE’s lower and upper bounds.

Additionally, Xia and Xu [25] defined several operations 
for HFEs: (1) h� = ∪�∈h

{
��
}
 ; (2) �h = ∪�∈h

{
1 − (1 − �)�

}
 ; 

( 3 )  h1 ⊕ h2 = ∪𝛾1∈h1,𝛾2∈h2

{
𝛾1 + 𝛾2 − 𝛾1𝛾2

}
 ;  ( 4 ) 

h1 ⊗ h2 = ∪𝛾1∈h1,𝛾2∈h2

{
𝛾1𝛾2

}
.

In order to demonstrate the main algorithm proposed in 
this paper, it is necessary to first illustrate the comparison 
method of HFEs [25].

For a HFE h , the score of h : s(h) = 1

lh

∑
�∈h � is used to 

measure the magnitude relationship between HFEs, where 
lh is the number of the elements in h . For any two HFEs, 
h1 and h2 , if s(h1) > s(h2) , which means that h1 is superior 
to h2 , denoted by h1 > h2 . If s(h1) = s(h2) , which means 
that h1 is indifferent to h2 , denoted by m1∼m2.

2.2 � The distance and similarity measures of HFSs

Firstly, some properties that the distance measures of 
HFSs should satisfy will be illustrated. Assume that 
X = {x1, x2,… , xn} is a discrete universe, A and B are two 
HFSs on X respectively, d(A,B) is the distance measure 
between A and B . Xu and Xia [27] provided several prop-
erties which d(A,B) should satisfy: (1) 0 ≤ d(A,B) ≤ 1 ; (2) 
d(A,B) = 0 , if and only if A = B ; (3) d(A,B) = d(B,A).

Suppose that A and B are two HFSs over X , Xu and Xia 
[27] defined the similarity measure between A and B as 
s̄(A,B) , and pointed out that the similarity measure should 
satisfy several properties as follows: (1) 0 ≤ s̄(A,B) ≤ 1 ; 
(2) s̄(A,B) = 1 if and only if A = B ; (3) s̄(A,B) = s̄(B,A).

According to Xu and Xia [27], s̄(A,B) = 1 − d(A,B) . 
Therefore, if we develop a distance measure based on 
HFSs, we can easily gain the corresponding similarity 
measure.

Each of xi(i = 1, 2,… , n) on the universe X can have 
a unique importance degree. w =

(
w1,w2,… ,wn

)T  is 
defined as the weight vector of those elements. The weight 
vector should satisfy: wi ≥ 0 , and 

∑n

i=1
wi = 1 , for any 

i = 1, 2,… , n . For two HFSs A and B , Xu and Xia [27] 
defined several distance formulas based on the traditional 
Hamming distance and Euclidean distance:

1.	 The generalized hesitant weighted distance:

where h�(j)
A

(xi) and h�(j)
B

(xi) are respectively the j th larg-
est values in hA(xi) and hB(xi).

	   When � = 1, 2 , Eq. (1) can respectively reduce to the 
hesitant weighted Hamming distance and the hesitant 
weighted Euclidean distance.

2.	 Hesitant fuzzy weighted Hamming distance:

where h�(j)
A

(xi) and h�(j)
B

(xi) are respectively the j th largest 
values in hA(xi) and hB(xi).

3.	 Hesitant fuzzy weighted Euclidean distance:

(1)

d1(A,B) =

⎡⎢⎢⎣

n�
i=1

wi

⎛
⎜⎜⎝
1

lxi

lxi�
j=1

���h
�(j)

A
(xi) − h

�(j)

B
(xi)

���
�
⎞
⎟⎟⎠

⎤
⎥⎥⎦

1∕ �

(2)d2(A,B) =

n�
i=1

wi

⎡⎢⎢⎣
1

lxi

lxi�
j=1

���h
�(j)

A
(xi) − h

�(j)

B
(xi)

���
⎤⎥⎥⎦

(3)

d3(A,B) =

⎡⎢⎢⎣

n�
i=1

wi

⎛
⎜⎜⎝
1

lxi

lxi�
j=1

���h
�(j)

A
(xi) − h

�(j)

B
(xi)

���
2
⎞
⎟⎟⎠

⎤
⎥⎥⎦

1∕ 2
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where h�(j)
A

(xi) and h�(j)
B

(xi) are respectively the j th larg-
est values in hA(xi) and hB(xi).

	   Particularly, when w =
(

1

n
,
1

n
,… ,

1

n

)T

 , Eqs. (2) and 
(3) can respectively reduce to the normalized hesitant 
fuzzy weighted Hamming distance and the normalized 
hesitant fuzzy weighted Euclidean distance:

4.	 Normalized hesitant fuzzy weighted Hamming distance:

5.	 Normalized hesitant fuzzy weighted Euclidean distance:

2.3 � Previous work about psychological distance

Berkowitsch et al. [1] proposed a generalized psychological 
distance measure for real number field. The new distance 
measure takes not only the decision maker’s preferences 
of alternative options into account but also the subjective 
importance for all the attributes. Considering the indiffer-
ence vectors and the dominance vector, it is necessary to 
give a higher weight to the dominance vector relative to the 
indifference vectors for the dominance vector’s higher influ-
ence in making decisions.

The first step of calculating the distance is to assign 
values to all the attributes of all the alternative options. In 
order to precisely compare those values, standardizing all 
the attribute values is essential to guarantee that all the val-
ues have the same range. Then the directions and lengths of 
the indifference vectors and the dominance vectors should 
be calculated. Since the dominance vector is orthogonal to 
all the indifference vectors, we only need to calculate the 
directions of all the indifference vectors. Indifference vec-
tors contain a kind of information called “exchange ratios”, 
which show that how many units that are worth for an attrib-
ute to be given up and added to another attribute by one 
unit. Directions of the indifference vectors depend on those 
exchange ratios. Berkowitsch et al. [1] pointed out that the 
number of indifference vectors lies on the number of attrib-
utes, so does the number of the exchange ratios. Since there 
is only one dominance vector no matter how many attributes, 
and the dominance vector is necessary to be given a higher 
weight than those indifference vectors, that is, a parameter 
bigger than 1 is acquired to the dominance direction.

Then, the distance between every two options should 
be expressed by distances in the dominance direction 

(4)d4(A,B) =
1

n

n�
i=1

⎡
⎢⎢⎣
1

lxi

lxi�
j=1

���h
�(j)

A
(xi) − h

�(j)

B
(xi)

���
⎤
⎥⎥⎦

(5)

d5(A,B) =

⎡⎢⎢⎣
1

n

n�
i=1

⎛
⎜⎜⎝
1

lxi

lxi�
j=1

���h
�(j)

A
(xi) − h

�(j)

B
(xi)

���
2
⎞
⎟⎟⎠

⎤
⎥⎥⎦

1∕ 2

and distances in the indifference directions. In the stand-
ard attribute plane, the line between two options can be 
expressed as a distance vector. Next, the distance vector 
should be expressed by the dominance vector and the indif-
ference vectors. In order to achieve this, a change of basis 
is necessary.

The last step is to calculate the final distance. To realize 
this, the distance in the dominance direction should be mul-
tiplied with a weight to boost its influence in the final result 
after calculating the Euclidean distance of the transformed 
distance vector. The weight should be equal or bigger than 
1, which depends on the actual impact of the dominance 
direction. If the weight is equal to 1, the final distance will 
reduce to the distance that does not take the impact of the 
dominance direction into consideration.

It is worthy of pointing out that Berkowitsch’s et al. [1] 
method is only suitable for real numbers. Inspired by the 
idea of Berkowitsch’s et al. [1] distance measure, in the next 
section, we shall construct a new psychological distance 
under the hesitant fuzzy environment, to extend the advan-
tage of the Berkowitsch’s et al. [1] method to the hesitant 
fuzzy distance measure.

3 � Psychological distance for hesitant fuzzy 
information

Past researches for distance measures of hesitant fuzzy infor-
mation have been providing some good properties that indi-
cate how a distance measure between any two HFSs should 
be proposed. For example, Distance formulas for HFSs 
based on the traditional Hamming distance and Euclidean 
distance [27]. However, one thing that the past researches on 
distance measure for HFS fail to consider is the subjective 
preferential relationship between the alternatives. Motivated 
by the idea of the Berkowitsch’s et al. [1] method, in the 
following, we shall construct a novel distance measure for 
hesitant fuzzy information to solve this problem.

3.1 � The psychological distance for HFSs

Firstly, assume that there are n options, and B = {B1,B2,…Bn} 
is the set of those options. A = {A1,A2 …Am} is a set of m 
attributes to comprehensively measure those options. To bet-
ter estimate the actual values of m attributes for each option, 
suppose that several experts are invited as decision makers. 
For any attribute of any option, the decision makers may 
have different judgments about what scores need to be pre-
sented, and thus, every attribute of every option can obtain 
more than one value. In order to better calculate, it is neces-
sary to scale all those scores to satisfy the standard of HFS, 
which means that all the scores should be between 0 and 1. 
Once they satisfy this standard, every attribute of every option 
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becomes a HFE. Then, since those attributes are not equally 
important, which means that some attributes have relatively 
higher significance than the others, each attribute should be 
given a unique weight to show its importance. We define 
wi(i = 1, 2,… ,m) as the corresponding m weights of those m 
attributes, where 0 ≤ wi ≤ 1 , for all i = 1, 2,… ,m , and they 
satisfy: 

∑m

i=1
wi = 1 . For those n options, each of which is a 

HFS. In order to calculate the psychological distance between 
HFSs, we just need to calculate the psychological distance 
between those options.

Next, in order to have the exchange ratios, we compare 
each attribute with one of themselves, normally we choose 
the first attribute. Since the weights of those attributes are 
already known, we first calculate each indifference vector, 
these m-dimensional indifference vectors show the direc-
tions on which options are competitive to each other:

where 1 is the (j + 1) th component.
Apparently, there are m − 1 indifference vectors, and 

the exchange ratio is just the two non-zero entries. The 
exchange ratio in j th indifference vector represents the 
number of units that the (j + 1) th attribute obtains in 
exchange of giving up on one unit from the first attribute. 
Next, we propose the dominance vector, which shows the 
dominance relationship between the options on the domi-
nance direction. It can be easily deprived, since the domi-
nance vector is orthogonal to all the m − 1 indifference 
vectors: d ⋅ vj = 0 , for any j = 1, 2,… ,m − 1 , and thus, the 
dominance vector is:

Then, the n × n matrix B∗ , which contains those n − 1 indif-
ference vectors v1, v2,… , vm−1 and the dominance vector d , 
can be constructed as B∗ = [v1, v2,… vm−1, d].

The next step is to standardize all the indifference vec-
tors and the dominance vector so that the lengths of all the 
vectors can be kept as 1. Then we have:

where ‖‖‖vj
‖‖‖ (for any j = 1, 2,… ,m − 1 ) and ‖d‖ are the 

Euclidean lengths of vj and d . Obviously, all the m − 1 indif-
ference vectors and the dominance vector have been stand-
ardized in the matrix B . B is actually a matrix that is com-
posed of m unit vectors.

(6)

v
j
=

(
−
w
j+1

w1

, 0,… , 0,
w1

w1

, 0,… , 0

)
T

=

(
−
w
j+1

w1

, 0,… , 0, 1, 0,… , 0

)
T

, j = 1, 2,… ,m − 1

(7)d =

(
w1

w1

,
w2

w1

,… ,
wm

w1

)T

(8)B =

�
v1

��v1��
,

v2
��v2��

,… ,
vm−1

��vm−1��
,

d

‖d‖
�

According to the n options Bi(i = 1, 2,… , n) , each 
option is a HFS, and each attribute of each option is a 
HFE. Since all the HFSs have the same number of attrib-
utes in our discussion, based on Berkowitsch’s method [1], 
we should calculate the distances between the correspond-
ing HFEs of those options. In order to have a better result, 
here we define the concept of distance vector for HFSs, 
which we label as distA.

When calculating the distance vector distA between two 
HFSs, the distances between every two corresponding 
HFEs should be calculated first. Considering the direc-
tion from one HFS to the other, every distance between 
HFEs can be plus or minus, which is determined by the 
comparison method for HFEs [25]. If the direction is from 
one HFE to another greater one, then the distance is plus; 
if the direction is from one HFE to another lesser one, the 
distance is minus. For example, there are two HFSs:

based on the comparison method, there are magnitude rela-
tionships as follows:

and di(i = 1, 2, 3) separately express the hesitant fuzzy 
Hamming distances of those three pairs of HFEs: 
d1 = 0.1, d2 = 0.167, and d3 = 0.1 .  Hence, we get 
distA(S1S2) = (0.1, −0.167, −0.1)T.

After we have the distance vector distA from one option 
to another, the next step is to transform this distance vec-
tor into a new distance vector distB . To achieve this, a 
change of basis is necessary. Here we use the basis B to 
realize this:

Just as distA , distB is a distance vector whose components 
are expressed by the ones of the indifference vector and the 
dominance vector. Moreover, distB is the important vector to 
construct the hesitant fuzzy psychological distance measure.

The next step is to present a distance measure, which is 
a key component of the final distance formula. The main 
work of this step is endowing the distance in the domi-
nance direction with a relatively higher weight, which 
guarantees that the dominance direction has a higher 
impact than those indifference vectors.

S1 =

⎧
⎪⎨⎪⎩

⟨x1, (0.1, 0.2, 0.1)⟩
⟨x2, (0.5, 0.6, 0.8)⟩
⟨x3, (0.6, 0.9, 0.9)⟩

⎫
⎪⎬⎪⎭
, S2 =

⎧
⎪⎨⎪⎩

⟨x1, (0.1, 0.4, 0.2)⟩
⟨x2, (0.3, 0.6, 0.5)⟩
⟨x3, (0.6, 0.7, 0.8)⟩

⎫⎪⎬⎪⎭

⟨x1, (0.1, 0.2, 0.1)⟩ < ⟨x1, (0.1, 0.4, 0.2)⟩,
⟨x2, (0.5, 0.6, 0.8)⟩ > ⟨x2, (0.3, 0.6, 0.5)⟩
⟨x3, (0.6, 0.9, 0.9)⟩ > ⟨x3, (0.6, 0.7, 0.8)⟩

(9)distB = B−1
⋅ distA
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where Dt is the preparatory distance measure for options. W 
is a m × m matrix as follows:

where w satisfies w > 1 , and the greater w we choose, the 
more weight is given to the distance in the dominance 
direction, which means that the weight of the distance in 
the dominance direction is w times larger than the distances 
in the indifference directions. By introducing the weight w , 
the importance of the dominance direction can be shown.

Since the distances between HFSs need to be less than or 
equal to 1, then a balancing coefficient c is proposed to ensure 
that the psychological distances meet the criterion. The final 
psychological distance formula is as follows:

where Df  is the final psychological distance, and the balanc-
ing coefficient c is set to be the maximum value of Dt.

Considering the maximum value of Dt , for every attribute, 
it is obvious that two HFEs {0, 0,… , 0} and {1, 1,… , 1} (the 
numbers of 0 and 1 depend on the number of the decision 
makers) have the longest distance, because in this condition, 
the two HFEs are extreme, all the decision makers choose the 
minimum value for one option, while they all choose the maxi-
mum value for the other, which means that the first option is 
impossible while the other one is certain. The same goes for 
HFSs. The following two HFSs:

have the longest distance (the traditional distance and the 
psychological distance), because they are two opposite 

(10)Dt =

√
dist�

B
⋅W ⋅ distB

(11)W =

⎡⎢⎢⎢⎣

1

1

⋱

w

⎤⎥⎥⎥⎦
m×m

(12)Df =
Dt

c

Bx = {⟨A1, (0, 0,… , 0)⟩, ⟨A2, (0, 0,… , 0)⟩,… , ⟨Am, (0, 0,… , 0)⟩}
By = {⟨A1, (1, 1,… , 1)⟩, ⟨A2, (1, 1,… , 1)⟩,… , ⟨Am, (1, 1,… , 1)⟩}

extremes in every attribute. When considering psychologi-
cal distance, it is necessary to distribute different attributes 
with different weights to comprehensively estimate their 
influences, and the distance in the dominance direction is 
guaranteed to be weighted greater than those distances in 
the indifference directions. However, the two HFSs above 
have the biggest gap in every attribute, which means that the 
psychological distance must be the longest no matter how 
the weights are distributed. Hence, c = Dt(Bx,By) . Clearly, 
the psychological distance for HFSs satisfies 0 ≤ Df ≤ 1 . 
For two HFSs, M and N  , if M ≡ N  , then distA(MN) = 0 
and distB(MN) = 0 , thus Df (MN) = 0 ; Oppositely, if 
Df (MN) = 0 , then Dt(MN) = 0 , obviously, distA(MN) = 0 , 
so M ≡ N  . We notice that distA(MN) = −distA(NM) , and 
distB(MN) = −distB(NM) , while it is easy to prove the fol-
lowing result:

hence, Dt(MN) = Dt(NM) and Df (MN) = Df (NM).
As shown above, the proposed distance measure can well 

satisfy the three properties for distance measures of HFSs 
illustrated earlier.

To better understand the difference between the proposed 
hesitant fuzzy psychological distance and the existing hesi-
tant fuzzy Hamming distance, we shall give some geometric 
interpretation as follows.

3.2 � Graphical comparison between the hesitant 
fuzzy psychological distance measure 
and traditional hesitant fuzzy distance 
measures

As shown in Fig. 1, a comparison is made to further show 
the superiority and the effectiveness of the proposed distance 
measure. Figure 1a shows the condition of one of the pre-
vious hesitant fuzzy distance—the hesitant fuzzy Hamming 
distance [27], which can represent most of the conditions of 
the traditional hesitant fuzzy distances, such as the normalized 

(13)
distB(MN)� ⋅W ⋅ distB(MN) = distB(NM)� ⋅W ⋅ distB(NM)

Fig. 1   Three options in the hesi-
tant fuzzy Hamming distance 
condition (a) and the hesitant 
fuzzy psychological distance 
condition (b)



2095International Journal of Machine Learning and Cybernetics (2020) 11:2089–2100	

1 3

Hamming distance, the Euclidean distance and the normalized 
Euclidean distance, while Fig. 1b shows the condition of the 
proposed hesitant fuzzy psychological distance space. There 
are three options, A , B and C , which separately represent three 
kinds of new products, and the two axes, x and y represent two 
attributes describing the performances of the three options, 
the values of x and y are between 0 and 1, and the greater the 
values are, the better the performances of the products will be. 
Experts are invited to estimate the performances of A , B and 
C with respect to the attributes x and y , and every attribute of 
each option has several estimation results proposed by several 
experts. Thus, A , B and C are three HFSs separately. Appar-
ently, the hesitant fuzzy Hamming distance (or the hesitant 
fuzzy Euclidean distance) between the options A and B and 
the same distance measure between the options B and C in (a) 
are exactly the same. However, for the three options above, 
the psychological distance between the options A and B and 
the psychological distance between the options B and C in 
(b) are different: The psychological distance between B and 
C is longer than the psychological distance between A and B , 
which is because A and B are dominated by C , which means 
that A and B have relatively the same level of performances, 
while C is highly superior. When comparing A and B , the loss 
in x ( y ) can be compensated by the redundant of y ( x ), and 
thus, they are comparable and a replacement from one to the 
other is acceptable. However, a replacement from C to A or 
C to B is not acceptable for the experts, because it will lead 
to a loss in both attributes. Apparently, the experts may have 
preferences for C over A and B . Seen from above, in (b), the 
options A and B are highly comparable to each other while 
they are both dominated by the option C . So the line between 
A and B is the indifference line, and the line between B and 
C is the dominance line, in which the psychological space is 
stretched; In comparison, the distance between A and B in (b) 
is equal to the distance between A and B in (a).

Clearly, A and B have a lot in common, while C differs 
a lot from A and B . Hence, it is reasonable that the psycho-
logical distance between A and B is shorter than the distance 
between either of them and C.

In the following, several steps for the algorithm procedure 
of hesitant fuzzy psychological distance are summarized.

3.3 � Hesitant fuzzy psychological distance 
procedure

Step 1 After several decision makers estimate all the val-
ues of the attributes for those options, all the scores that 
the experts give should be scaled to satisfy the standard 
of HFS. Besides, all the weights of attributes should be 
determined reasonably.
Step 2 According to the formulas (6) and (7), we calculate 
the n − 1 indifference vectors and the dominance vector 
to get the matrix B∗ = [v1, v2,… vm−1, d].

Step 3 By standardizing all those vectors as the formula 
(8), the matrix B can be calculated, in which all the 
lengths of vectors can be kept as 1.
Step 4 Calculate distA between the options, and further 
calculate distB by a change of basis according to the for-
mula (9).
Step 5 Calculate Dt by the formula (10), and further deter-
mine c.
Step 6 Calculate the final psychological distance Df  by 
the formula (12).

In order to simply demonstrate the whole process of 
calculating the psychological distance, here we give the 
following flow chart (Fig. 2):

4 � Application and comparison

In this part, two examples will be illustrated in order to 
show the computing process and application of the pro-
posed hesitant fuzzy psychological distance:

Computing process Suppose that an investigation report 
about nutritive value of fruits need to be finished. Three 

Start

Calculate        by formula (10), and further calculate 

Calculate        by formula (12)Df

D c

B*

B

t

distA distB

End

Scale all the scores so that they satisfy the standard of HFS;
Determine all the weights of attributes reasonably

Calculate the indifference vectors and the dominance vector to further have 
the matrix

Standardizing all the vectors as formula (8) to calculate matrix 

Calculate            between options, and further calculate          by a change of 
basis as formula (9)

Fig. 2   The process flow chart of calculating the psychological dis-
tance
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kinds of fruits A , B and C are going to be tested. Since 
an objective and reasonable investigation result is neces-
sary, then several experts are invited to estimate three main 
attributes: (1) the index of anti-aging; (2) the index of skin 
caring; and (3) the index of lowing blood pressure. Scores 
are between 0 and 1, where 0 represents the lowest score, 
and 1 represents the highest score. Since the expertise of 
those experts differs, then every expert only estimates a 
part of the attributes.

We can see from Table 1 that A , B and C are three HFSs, 
and each of them is made up of three HFEs. However, the 
numbers of values in those HFEs are different. To solve this 
problem in calculating distances, according to the regula-
tions given by Xu and Xia [27], the solution is to extend the 
shorter one so that all the HFEs from the same attribute can 
have the same number of values. For each HFE, the extend-
ing method is adding one of its existed value, and which one 
to be chosen depends on the risk preference of those experts. 
Once these experts are pessimists, it is better to add the mini-
mal value, while if they are optimists, adding the maximum 
one will be appropriate. Here assume that these experts are 
all pessimists, we extend the shorter HFEs by adding the 
minimal ones, the results are listed in Table 2.

Considering the importance of each attribute, the 
experts decide to distribute their subjective importance 
weights as shown in Table 3.

From the above estimation result, it is clear that B and 
C are comprehensively superior to A , while it is hard to 
choose between B and C because they are highly competi-
tive: B has a high score in the index of anti-aging while 
C has a high score in the index of lowing blood pressure. 
Thus, it is appropriate to assume that the experts are indif-
ferent between B and C , both B and C dominate the option 
A.

The next step is calculating the indifference vec-
tors and the dominance vector by the known weights. 
The two 3-dimensional indifference vectors are 
iv1 = (−0.5, 1, 0)T  and iv2 = (−1, 0, 1)T  , the dominance 
vector is dv = (1, 0.5, 1)T , and thus, we get the matrix B∗:

Then the next step is to calculate the matrix B by stand-
ardizing the indifference vectors and the dominance vector 
so that their lengths can be kept as 1. Since the lengths 
liv1 =

√
1.25 , liv2 =

√
2 and ldv =

√
2.25 = 1.5 , then we get

Next, we should calculate the distance vectors between 
the three options based on the method mentioned before. 
Firstly, there are magnitude relationships as follows:

1.	 The index of anti-aging: A(0.3, 0.4, 0.3, 0.2) < C(0.5, 0.4,

0.3, 0.3) < B(0.7, 0.8, 0.6, 0.6);
2.	 The index of skin caring: B(0.5, 0.1, 0.2, 0.1) < C(0.2, 0.3,

0.2, 0.3) < A(0.2, 0.2, 0.3, 0.4);
3.	 The index of lowing blood pressure: A(0.3, 0.4, 0.4, 0.3) <

B(0.5, 0.3, 0.5, 0.4) < C(0.6, 0.7, 0.8, 0.6).

and the hesitant fuzzy Hamming distances of those HFEs 
are as follows:

1.	 The index of anti-aging: dAB = 0.375 , dAC = 0.075 , and 
dBC = 0.3;

2.	 The index of skin caring: dAB = 0.2 , dAC = 0.075 , 
dBC = 0.175;

B∗ =

⎛
⎜⎜⎝

−0.5 −1 1

1 0 0.5

0 1 1

⎞
⎟⎟⎠

B =

⎛⎜⎜⎜⎝

−
0.5√
1.25

−
1√
2

2

3

1√
1.25

0
1

3

0
1√
2

2

3

⎞⎟⎟⎟⎠

Table 1   Evaluation results 
given by the experts

A B C

Index of anti-aging (0.3 0.4 0.3 0.2) (0.7 0.8 0.6) (0.5 0.4 0.3)
Index of skin caring (0.2 0.2 0.3 0.4) (0.5 0.1 0.2) (0.2 0.3 0.2)
Index of lowing blood pressure (0.3 0.4 0.4) (0.5 0.3 0.5 0.4) (0.6 0.7 0.8 0.6)

Table 2   Modified evaluation 
results

A B C

Index of anti-aging (0.3 0.4 0.3 0.2) (0.7 0.8 0.6 0.6) (0.5 0.4 0.3 0.3)
Index of skin caring (0.2 0.2 0.3 0.4) (0.5 0.1 0.2 0.1) (0.2 0.3 0.2 0.3)
Index of lowing blood pressure (0.3 0.4 0.4 0.3) (0.5 0.3 0.5 0.4) (0.6 0.7 0.8 0.6)

Table 3   Distribution of subjective importance weights from the 
experts

Index of anti-aging Index of skin 
caring

Index of lowing 
blood pressure

Weights 0.4 0.2 0.4
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3.	 The index of lowing blood pressure: dAB = 0.125 , 
dAC = 0.4 , dBC = 0.25.

Then, the distance vectors can be calculated through the 
results above:

To calculate the distance vector distB that is expressed by 
the indifference vectors and the dominance vector, we need 
to conduct a change of basis according to the formula (9):

The first distance vector distB(AB) shows the fact that to 
move from the option A to the option B , we need to walk 
0.4152 unit along the first indifference vector, 0.308 unit 
along the opposite direction of the second indifference vec-
tor, and 0.5142 unit along the dominance direction. The 
analogical results for distB(AC) and distB(BC) can also be 
speculated.

Considering the importance of the dominance direction, 
w is set as 5, which means that the dominance vector is 5 
times more important than any of those indifference vectors. 
Then, the matrix W  is:

dist
A
(AB) = (0.375,−0.2, 0.125)T ,

dist
A
(AC) = (0.075,−0.075, 0.4)T ,

dist
A
(BC) = (−0.3, 0.175, 0.25)T

dist
B
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−1
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2
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Based on the formula (10), the preparatory distance meas-
ure Dt between AB , AC and BC can be calculated:

In order to get the final psychological distance Df  between 
the options, the balancing coefficient c needs to be calculated 
first. To achieve this, here two HFSs E and F are constructed 
as follows:

According to Sect. 3.2, we get c = Dt(E,F) . To calculate 
c , we can easily obtain:

and thus, based on the formula (9), we have

Then, Dt(EF) can be further calculated:

Dt(AB) =
√
distB(AB)

�
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On account of the results above, and according to the 
formula (12), the final psychological distances between AB , 
AC and BC can be easily calculated:

For comparison, the hesitant fuzzy weighted Hamming dis-
tances between AB , AC and BC are respectively 0.24, 0.205 
and 0.255. Seen from the discrepancy of the above results 
from the two distance measures, we can know that B and C 
are far more closer to each other than either of them to A 
according to the hesitant fuzzy psychological distance, while 
the hesitant fuzzy weighted Hamming distances between 
the three options are relatively close. It is because during 
the calculation process of the hesitant fuzzy psychologi-
cal distance, we endow the dominance vector with a higher 
weight so that the differences between options that along the 
dominance direction are expanded. The result confirms our 
assumption that B and C are more indifferent to each other, 
while A is dominated by B and C . Because that B and C are 
highly competitive and they are both superior to A , it is rea-
sonable to get those options like B and C that with similar 
performances relatively closer.

In the following, an application of the novel distance 
measure in clustering field is conducted to further show 
some practical significances:

Application According to the first example, in order to bet-
ter take advantage of all the nutrition and provide persuasive 
suggestions to people, there are five kinds of fruits need to 
be clustered based on their levels of comprehensive nutritive 
value. We still invite those experts to estimate the perfor-
mances of the five kinds of fruits according to the previous 
three attributes. The estimation results are listed in Table 4.

Here we apply the new distance measure into the hesitant 
fuzzy minimal spanning tree (HFMST) clustering algorithm 
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D
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= 0.1824, D
f
(AC) =

D
t
(AC)

c

= 0.1203,

D
f
(BC) =

D
t
(BC)

c

= 0.0393

[30] to see the practical performance of the new distance 
measure.

Firstly, we straightly calculate the hesitant fuzzy psycho-
logical distances of the five kinds of fruits, the results are 
listed in Table 5:

By combining Tables 4 and 5, we can easily see the rela-
tionships between the five options. According to the hesitant 
fuzzy minimal spanning tree clustering algorithm [30], the 
clustering result depending on the threshold � is showed in 
Table 6:

We can see from Table 6 that the five kinds of fruits have 
been clustered by the hesitant fuzzy minimal spanning tree 
clustering algorithm based on the hesitant fuzzy psychologi-
cal distance measure. Assume � = 0.1 , It is apparent that A 
and D are highly comparable while E , B and C are highly 
comparable, E , B and C are superior to A and D . Since the 
options that are highly comparable are more inclined to be 
clustered together, the application of the proposed distance 
measure in clustering has its rationality.

Next we shall cluster the five alternative options in hesi-
tant fuzzy Hamming distance [27].

Comparison analysis By comparing the two results with 
different distance measures, we can better analyze the prop-
erties of the proposed one. The hesitant fuzzy Hamming 
distances between the five kinds of fruits are as follows 
(Table 7).

Table 4   Evaluation results

A B C D E

Index of anti-aging (0.3 0.4 0.3 0.2) (0.7 0.8 0.6 0.6) (0.5 0.4 0.3 0.3) (0.2 0.5 0.3 0.3) (0.9 0.7 0.8 0.6)
Index of skin caring (0.2 0.2 0.3 0.4) (0.5 0.1 0.2 0.1) (0.2 0.3 0.2 0.3) (0.1 0.3 0.2 0.3) (0.7 0.8 0.8 0.9)
Index of lowing blood pressure (0.3 0.4 0.4 0.3) (0.5 0.3 0.5 0.4) (0.6 0.7 0.8 0.6) (0.4 0.2 0.2 0.2) (0.5 0.8 0.7 0.6)

Table 5   Psychological distances of the 5 options

A B C D E

A 0 0.1824 0.1203 0.0057 0.1265
B 0.1824 0 0.0393 0.1928 0.0544
C 0.1203 0.0393 0 0.1168 0.0444
D 0.0057 0.1928 0.1168 0 0.1493
E 0.1265 0.0544 0.0444 0.1493 0

Table 6   Clustering results of 5 
options

� Clustering results

0.005 {A}, {B}, {C}, {D}, {E}

0.01 {A,D}, {B}, {C}, {E}

0.04 {A,D}, {B,C}, {E}

0.1 {A,D}, {B,C,E}

0.2 {A,B,C,D,E}
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Based on the hesitant fuzzy minimal spanning tree clus-
tering algorithm [30], we can have the clustering result 
depending on the threshold � in Table 8:

Comparing the two clustering results above, we can see 
that the two results have some similarities, especially in cer-
tain thresholds. However, the differences still exist. In the 
first clustering result, the option C is inclined to be clustered 
with B (see Table 6), while C tends to be clustered with A 
and D in the second clustering result (see Table 8). From 
Table 6, we can see that E is the best of all the five alterna-
tive options, while E is harder to be clustered with other 
options in the second clustering result than in the first one. 
The reason of all of these distinctions is that the proposed 
hesitant fuzzy psychological distance measure takes not only 
the practical distances but also the comprehensive perfor-
mances estimated by the experts into account. For example, 
the options that have the same level of performances are 
likely to be clustered together, though their values in cer-
tain attributes may differ a lot. If a clustering method takes 
the proposed hesitant fuzzy psychological distance measure 
into use, it will prefer clustering those options that perform 
closely together, which is applicable in some circumstances. 
For instance, in the above example, with the novel hesitant 
fuzzy psychological distance measure, the options that have 
the same level of intuitive value tend to be clustered together 
which coincides with the practical circumstance.

5 � Concluding remarks

In this paper, we have developed a psychological distance 
measure for HFSs. The proposed distance measure is based 
on the properties of HFSs and inspired by the innovation of 

Berkowitsch et al. [1] in real number field. The preferential 
relationships between HFSs have been considered and con-
ducted by proposing two different directions: the indiffer-
ence direction and the dominance direction; the vectors in 
the dominance direction have been given greater weights rel-
ative to the vectors in the indifference vectors on account of 
their different significances. Besides, the importance degrees 
of different attributes have also been considered. Moreo-
ver, the concept of the distance vector between HFSs has 
been constructed, and a balancing coefficient has also been 
proposed in order to make sure that the final hesitant fuzzy 
psychological distance measure satisfies the conditions of 
distance measures of HFSs. Compared to the traditional 
distance measures of HFSs in the multi-attribute space, the 
novel distance measure comprehensively takes people’s sub-
jective preferences of options and individual variations of 
attributes into account, which can reflect the comprehensive 
performances of the alternative options in many fields, such 
as clustering. Two detailed examples have illustrated the 
computational processes and the application potentials of 
the hesitant fuzzy psychological distance measure.

Despite all the advantages, compared to the traditional 
distance measures for HFSs, our new distance measure still 
has some aspects that need to be improved in the future. The 
calculation of the new distance measure has a high compu-
tational complexity, which may cause an unsatisfying com-
putational time when facing a large amount of data; some 
researches about the application of the new distance measure 
still need to be conducted. In order to optimize and improve 
the new distance measure, in the future work, we will focus 
on minimizing the computational complexity and applying 
the new distance measure into several other fields such as 
data mining, information retrieval, and so on.
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