
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046
https://doi.org/10.1007/s13042-020-01099-2

ORIGINAL ARTICLE

Three‑way active learning through clustering selection

Fan Min1  · Shi‑Ming Zhang1 · Davide Ciucci2 · Min Wang3

Received: 24 September 2019 / Accepted: 17 February 2020 / Published online: 3 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In clustering-based active learning, the performance of the learner relies heavily on the quality of clustering results. Empiri-
cal studies have shown that different clustering techniques are applicable to different data. In this paper, we propose the
three-way active learning through clustering selection (TACS) algorithm to dynamically select the appropriate techniques
during the learning process. The algorithm follows the coarse-to-fine scheme of granular computing coupled with three-way
instance processing. For label query, we select both representative instances with density peaks, and informative instances
with the maximal total distance. For block partition, we revise six popular clustering techniques to speed up learning and
accommodate binary splitting. For clustering evaluation, we define weighted entropy with 1-nearest-neighbor. For insuf-
ficient labels, we design tree pruning techniques with the use of a block queue. Experiments are undertaken on twelve UCI
datasets. The results show that TACS is superior to single clustering technique based algorithms and other state-of-the-art
active learning algorithms.

Keywords  Active learning · Clustering · Granular computing · Three-way decision

1  Introduction

In many real-world applications such as image classifica-
tion [1], information extraction [2] and text classification
[3], unlabeled data are abundant and easy to obtain, while
labels are costly. Active learning [4, 5] aims to achieve
higher classification accuracy with fewer labels through
human–computer interaction. The key issue is to select
critical instances to label. There are at least two views and
respective approaches. One view is that uncertain instances

are critical. Typical approaches include query-by-committee
[6], fuzzy-rough based [7], and ambiguity-based [8] algo-
rithms. The other view is that representative instances are
critical. The most typical approaches are clustering-based
[9, 10] algorithms. Naturally, combination approaches [11,
12] take advantage of both.

Three-way active learning [10, 13, 14] is a new type of
clustering-based [9] algorithm. From the viewpoint of three-
way decision [15, 16], there are three possible actions for
each block. In case that there are not enough labeled data,
representative instances of the block are queried. In case
that there are enough labeled data with the same label, other
instances in the block are classified. In case that there are
labeled data with different labels, the block is clustered for
further treatment. Since the process is iterative, the paradigm
can be better represented by sequential three-way decision
[17–19]. From the viewpoint of granular computing [20,
21], the learning process follows the coarse-to-fine scheme
[22–24]. Instances are queried or classified in the appropri-
ate granule, which is represented by a block.

Unfortunately, the performance of three-way active
learning relies heavily on the base clustering technique.
Different clustering techniques are applicable to different
data. This is also a common situation for clustering-based
active learning algorithms [5]. A natural question is: given

 *	 Fan Min
	 minfan@swpu.edu.cn

	 Shi‑Ming Zhang
	 zhangshiming@stu.swpu.edu.cn

	 Davide Ciucci
	 davide.ciucci@unimib.it

	 Min Wang
	 wangmin@swpu.edu.cn

1	 School of Computer Science, Southwest Petroleum
University, Chengdu 610500, China

2	 DISCo, University of Milano-Bicocca, viale Sarca 336/14,
20126 Milan, Italy

3	 School of Electrical Engineering and Information, Southwest
Petroleum University, Chengdu 610500, China

http://orcid.org/0000-0002-3290-1036
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01099-2&domain=pdf

1034	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

a dataset, can we find appropriate clustering techniques in
the learning process?

In this paper, we propose the three-way active learn-
ing through clustering selection (TACS) algorithm for this
issue. Figure 1 illustrates a running example of the new
algorithm. Some representative instances in the whole
block � are queried at the beginning. Since there are both
positive and negative labels, � is split in �1 and �2 using
the currently best algorithm (Density Peaks, DP [25]).
Then a few more instances are queried for �1 . Since there
are only positive labels, the remaining instances are classi-
fied as positive. More instances are queried for �2 as well.
With both positive and negative labels, �2 is split into �21
and �22 using the currently best algorithm (kMeans). This
process repeats until all instances are either queried or
classified. Note that the whole process is similar to a deci-
sion tree, but the splitting technique is different. Moreover,
the binary split structure works for any datasets, not only
for those with binary classes.

The contribution of the paper is to address four issues
of our algorithm. The first issue is: which instances should
be queried? This is also the key issue of any active learning
algorithm. In the beginning, we select some representative
instances to query. Here representativeness is measured by
both density and distance to the closest instance with higher
density [10]. These instances also help clustering technique
selection. During the iteration, we select either representa-
tive or informative instances. Here information is measured
by the total distance to labeled instances of the same block.
In this way, the number of queries is also controlled.

The second issue is: how to revise existing clustering
techniques to suit our algorithm? Since our algorithm always
split a block in two, general clustering techniques should be
revised. For both kMeans [26] and fuzzy c-means (FCM)
[27], we choose a pair of instances with large distance as
the original centers. For density peaks (DP) [25], we choose
the top two representative instances with different labels for
splitting. For Hierarchical [28], the solution is straightfor-
ward since the cluster tree is built in a bottom-up manner.
For DBScan [29], we adjust the density threshold such that
at least one core exists. For random walks (RW) [30], the
largest block does not change, and the other instances form
the second block. We also revise these techniques to speed
up the learning process.

The third issue is: how to select the most appropriate
technique to cluster the current block? Naturally, this is the
key issue of this paper. We design weighted entropy with
1-nearest-neighbor. It considers both labeled and unlabeled
data. Labeled data are trustworthy, hence their weight is 1.
Unlabeled data are first classified by 1-nearest-neighbor to
obtain pseudo-labels, whose weight is less than 1. In this
way, the weighted entropy can be calculated. Moreover,
we design the retrospective technique to recalculate the
weighted entropy after obtaining more labels.

The fourth issue is: how to deal with the lack of labels?
In real applications, the expert usually cannot provide
enough queries due to limited budget. Consequently,
we would like to query labels in larger blocks, which is
more appropriate for the clustering-based algorithm. For
this purpose, we design the breadth-first visit of the tree

(a) Learning process (b) B (c) B1 (d) B2

(e) B21 (f) B22 (g) B211 (h) B212

Fig. 1   A running example of TACS a depicts the general clustering and learning process. b, d, e depict the block and the best clustering tech-
nique. c, f, g, h depict the final blocks. Triangles indicate queried positive labels, and circles indicate queried negative labels

1035International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

depicted in Fig. 1h. This is implemented by a block queue,
in which blocks smaller than a threshold are discarded.
Compared with the depth-first visit, different blocks of the
same level have more balanced queries. When the budget
runs off, only some instances in relatively small blocks
remain unclassified. At last, they are classified using kNN.

Experiments are undertaken on twelve UCI datasets.
Results show that in most cases, TACS can find out appro-
priate base clustering techniques. It is more accurate than
supervised classification algorithms such as C4.5 [31] and
Naïve Bayes (NB) [32], active learning algorithms such
as Query-by-committee (QBC) [6] and manifold adaptive
experimental design (MAED) [33], and single clustering
technique based algorithms such as ALEC [10].

The rest of the paper is organized as follows. Section 2
introduces the basis of our algorithm, including the prob-
lem statement and revisions to some clustering techniques.
Section 3 presents our algorithmic framework and some
key issues along with corresponding techniques. Section 4
describes the experimental process and lists some results.
Section 5 discusses some related work. Finally, Sect. 6
presents conclusions and outlines further research trends.

2 � Basis

This section presents some basis of the work, including
the data model, the problem statement, and some issues
of the clustering techniques. Table 1 lists some notations
used throughout the paper.

2.1 � The data model

Let � = (xij)n×m be the data matrix, where n is the num-
ber of instances, m is the number of conditional attributes,
and �i = (xi1 , xi2 , ..., xim ) is the ith instance. Let further
� = (y1, y2,… , yn)

T be the class label vector. In our active
learning scenario, the value of yi ∈ [1..c] ( 1 ≤ i ≤ n ) is
unknown. It should be either queried or classified.

The set of all instances is � = {�i|1 ≤ i ≤ n} . For brevity,
we also denote it using the indices, i.e., � = [1..n] . In this
way, any block is a subset of [1..n].

2.2 � Problem statement

Since a query requires an oracle’s effort, we assume that
the number of queries is limited. The problem, which is the
same as that of [10], is stated as follows.

Problem 1  Active learning with fixed number of labels.
Input: The data � , and the proportion of queried

instances qi.
Output: The set of queried instances � ⊂ � , the classi-

fied labels for � ⧵�.
Optimization objective: Maximize the classification

accuracy.

First, we assume that no label is known at the beginning
of the learning process. In this way, it is easy to compare
the classification accuracy of different algorithms. Sec-
ond, it is required that ��� ≤ ⌊n × qi⌋ . When ��� < ⌊n × qi⌋ ,
the queries are not used up. This situation rarely occurs in

Table 1   Notations Notation Meaning Comments

� = (xij)n×m The data Input/data model
�i The ith instance Data model
� = (y1, y2,… , yn)

T Class labels Data model
c The number of classes Data model
� = [1..n] The whole dataset Data model
� , �1 , �2 ⊆ � Blocks in the learning process Algorithm variable
�i The neighborhood of �i Algorithm variable
�i The local density of �i Algorithm variable
�i The distance to its master of �i Algorithm variable
�i The representativeness of �i Algorithm variable
�̂ = (ŷ1, ŷ2,… , ŷn)

T The queried/classified labels Algorithm output
ST Small block threshold Algorithm setting
rt Cutoff distance ratio Algorithm setting
dc Cutoff distance Algorithm setting
qi The proportion of queried instances Algorithm input
qr The proportion of representative instances Algorithm setting
� The set of queried instances Algorithm output

1036	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

applications because the number of queries is usually insuf-
ficient. Third, the classification accuracy only accounts for
classified instances.

2.3 � Revised clustering techniques

Our algorithm is based on six popular clustering techniques.
These include two prototype-based techniques (kMeans [26]
and FCM [27]), two density-based techniques (DBScan [29]
and DP with Guassian kernel [25]), one hierarchical tech-
nique (Hierarchical [28]), and one graph-based technique
(RW [30]). Instead of explaining them from the very begin-
ning, we will focus on the following issues:

(1)	 How to revise the techniques for binary splitting shown
in Fig. 1b?

(2)	 For big datasets, how to decrease the space and/or time
complexity?

(3)	 How to initialize clustering centers if needed? and
(4)	 How to balance clusters if needed?

In the following context, the current block will be denoted
by � , and the sub-blocks will be denoted by �1 and �2 ,
respectively.

2.3.1 � Prototype‑based techniques

kMeans and fuzzy c-means (FCM) are popular prototype-
based clustering techniques. Both require some initial cent-
ers, which often affect the results. Since two initial centers
are required, we would like to choose the pair of instances
with the maximal distance for this purpose. That is

where dij is the distance between �i and �j . The time com-
plexity of computing dij is O(m) if we use simple measures
such as Manhattan and Euclidean distance. Hence the time
complexity of Eq. (1) is O(m|�|2) = O(mn2) , which is rather
high.

In reality, a pair of far enough instances usually helps to
obtain good clusters. It is unnecessary to find the instance
pair with the maximal distance. Here we design an alterna-
tive approach. We randomly choose some pairs of instances
from � to form

The pair with the maximal distance in P is

(1)(�i∗ , �j∗) = argmax
(i,j)∈�×�

dij,

(2)P ⊆ � × �.

(3)(�i∗ , �j∗) = argmax
(i,j)∈P

dij.

In this way, the time complexity is reduced to O(m|P|) . In
our experimentation, |P| = 10|�| , and the time complexity
is O(mn).

2.3.2 � Density‑based techniques

Density-based techniques [25, 29] require the computation
of the density of each instance. There are two popular ker-
nels, one is cutoff, and the other is Gaussian. With the cutoff
kernel, the neighborhood of �i is

where dc is the neighborhood distance threshold. The local
density of �i is

where | ⋅ | indicates the cardinality of a set.
With the Gaussian kernel, the local density of �i is rede-

fined as

The cutoff kernel only considers the neighborhood, while
the Gaussian kernel mainly considers the neighborhood.
The cutoff kernel produces an integer value density, while
the Gaussian kernel produces a real value density. The cut-
off kernel often produces the same density for different
instances, making the master tree sensitive to data order,
which is rarely faced by the Gaussian kernel.

Now we consider the time complexity of density com-
putation. The time complexity of computing dij is O(m).
According to Eqs. (4), (5) and (6), the time complexity of
computing the instance density is O(mn) with either kernel.
To compute the density of all instances, the time complexity
will be O(mn2) , which is rather high.

In applications, there is essentially no need to con-
sider instances far from the current one. Hence we pro-
pose the following approach. First, the dataset is clustered
into ⌊n∕n�⌋ blocks using the kMeans algorithm. Since
kMeans only iterates a few rounds, the time complexity is
O(mnn∕n�) = O(mn2∕n�) . Second, when computing the den-
sity of an instance, we only consider instances in the same
block. The time complexity is O(mn�) . So the time complex-
ity of computing the density of all instances is O(mnn�) . If
we set n� =

√
n , the total time complexity will be reduced

to O(mn(n∕n� + n�)) = O(mn1.5).
With the cutoff kernel, this acceleration method may pro-

duce a density value that is slightly different from the origi-
nal definition. With the Gaussian kernel, there will always
be small differences. Fortunately, for our learning task, such

(4)�i = {j ≠ i|dij ≤ dc},

(5)�i = |�i|,

(6)�i =
∑

j≠i

e
−
(

dij

dc

)2

.

1037International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

difference rarely influences the final results especially when
n is big.

Now we discuss some implementation issues of DBScan.
Instance �i is called a core iff

where MinPts is the density threshold.
The setting of dc and MinPts is an important issue. In our

implementation, MinPts =
√
��� + 1 where � is the current

block. Similar to Eq. (3), to save the runtime, we set

where rt ∈ (0, 1) is a distance ratio with an initial value such
as 0.1. If there is no core, we will increase rt to 1.5rt until at
least one core exists.

DBScan generates a number of clusters. To obtain exactly
two clusters, the largest cluster forms �1 , and �2 = � ⧵ �1.

For density peaks [25], we have some more issues to han-
dle. Let msi = {j|𝜌j > 𝜌i} be the set of instances with higher
density than �i . The master of �i is

With mi , we organize all instances using a tree, where the
master of �i is its parent. This tree, which will be called the
master tree, will be used in the algorithm. The distance to
master is

The representativeness of �i is measured by [10]

To split � into �1 and �2 , we sort labeled instances in � in
descending order according to �i . Let the label of the first
instance be lf. Let further the first instance with label dif-
ferent from lf be �f  . �f and all its offsprings in � form �1 .
Naturally, �2 = � ⧵ �1.

Note that for each block, we will build a new master tree.
However, the density of each instance will not be recom-
puted. The reason is that pairwise distance computation is
very time consuming, and recomputing is unnecessary.

We have tested two versions of the density peaks cluster-
ing technique based on cutoff and Gaussian kernels, respec-
tively. It is observed that the cutoff kernel rarely defeats the
Gaussian kernel. Hence we will only use the Gaussian kernel
in our experimentation.

2.3.3 � Hierarchical technique

The hierarchical clustering technique works in a bottom-up
manner. Let �i and �j be two blocks, and their centers be

(7)�i ≥ MinPts,

(8)dc = rt × max
(i,j)∈P

dij,

(9)mi = argmin
j∈msi

dij.

(10)�i = dimi
= min

j∈msi
dij.

(11)�i = �i�i.

�′
i
 and �′

j
 , respectively. Here �′

i
 and �′

j
 may not be true data

points. The distance between �1 and �2 is defined as the
distance between �′

i
 and �′

j
.

Let B = {�1,�2,… ,�n� } be the current round set
of blocks. At the beginning, �i = {�i} for 1 ≤ i ≤ n and
n� = n . Let B′ be the next round set of blocks initialized
as ∅ . One round of merging repeats the following two
steps ⌊ n′

2
⌋ times: Step 1. Take out �i and �j from B such

that their distance is minimal. B = B ⧵ {�i,�j} . Step 2.
B
� = B

� ∪ {�i ∪ �j} . If ⌊
n′

2
⌋ ≠ ⌈ n′

2
⌉ , the last element of B is

added to B′ directly.
In the first round, the n nodes are merged into ⌈ n

2
⌉ blocks.

In the following rounds, the current n′ blocks are merged into
⌈ n′

2
⌉ bigger ones. In our implementation, the process stops

when there are exactly 2 blocks.

2.4 � Graph‑based technique

In graph-based techniques, the data is organized as a
weighted graph, where each edge represents a direct con-
nection between nodes (i.e., instances). To use this tech-
nique, we should first construct a weighted graph for a data
matrix, as defined in the beginning of this section. During
the learning process, we should construct a weighted graph
for the current block �.

For instance �i , we find out its k nearest neighbors to
build direct connections. In our experiments, we set k = 2 .
Let instance �j be one of the k nearest neighbors. The edge
between �i and �j has the weight

where MW is a constant which is set to 10,000 in our experi-
mentation. By assigning 0 to all other weights, we obtain the
initial adjacent matrix W = (wij)|�|×|�|.

Next, we let wij = max{wij,wji} . In this way, W becomes
a symmetric matrix, which is the standard input for graph-
based techniques.

We adopt the simple version of random walks described
in [30]. The number of blocks cannot be controlled by the
algorithm. Hence in our implementation, the largest block
is assigned to �1 , and the other instances form �2 = � − �1.

3 � The algorithm

In this section, we first present the algorithm framework.
Then we analyze some key issues of the algorithm, including
instance selection strategies, clustering quality evaluation,
and other special case handling techniques.

(12)wij =

{
MW, if dij = 0;

1∕dij, otherwise,

1038	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

3.1 � Algorithm description

Algorithm 1 Active learning through clustering selection (TACS)
Input: A data matrix X, cutoff distance ratio rt, the proportion of queried instances qi,
the proportion of representative instances qr, small block threshold ST .
Output: Queried/classified labels ŷ = (ŷ1, . . . , ŷn).

1: B = [1..n]; // Initialized as the block containing all instances
2: ŷ = (−1, . . . ,−1)n; //Initialized as unknown
3: Nq = �n× qi�; //Number of queries
4: Nr = �Nq × qr�; //Number of representatives

// Step 1. Select representative instances to label
5: Compute ρi for 1 ≤ i ≤ n according to Eqs. (6) and 8;
6: Compute δi for 1 ≤ i ≤ n according to Eq. (10);
7: γ ← (γ1, · · · , γN) ← ρ · δ; //Hadamard product for representativeness
8: Query N = Nr instances with the highest γi; // Current number of queries

//Step 2. Query informative instances and classify
9: q.enqueue(B); // The original queue with only one block
10: while (q �= ∅ && N ≤ Nq) do
11: B = q.dequeue(); //Take a block from the head
12: if (|B| ≤ ST) then
13: continue; //Process small blocks later
14: end if
15: Query up to

√
|B| instances according to Eq. (14) or (15) and update N ;

16: if (B is pure) then
17: For all i ∈ B, li = the label of queried instances in the block;
18: continue; //No need to split further
19: end if
20: Cluster B to (B1,B2) using the current best algorithm;
21: q.enqueue(B1);
22: q.enqueue(B2);
23: end while
24: if (N < Nq) then
25: query (Nq −N) unlabeled instances according to γi;
26: end if
27: Classify unlabeled instances using kNN;
28: return ŷ ← [ŷi]n×1;

Algorithm 1 lists the TACS algorithm. The initialization is
implemented in Lines 1–3. Line 1 sets the current block �
as the whole dataset. Line 2 indicates that all instances are
unlabeled. Line 3 calculates the number of queries Nq . Line
4 calculates the number of representatives Nr . The user does
not specify Nq and Nr directly, since qi is easier specified by
the users, and qr can be dataset independent.

Instance selection strategies are implemented in Lines
5–7, 14 and 24. Inspired by the density peaks algorithm
[25], the representativeness of an instance is qualified by
the multiplex of its density and distance. The informative-
ness of an instance is qualified by the total distance from
labeled instances of the same block. These measures will be
discussed in more detail in Sect. 3.2.

According to the tree structure of the learning process,
there are two possible implementations. One is depth-first
using a stack, while the other is breadth-first using a queue.
Since there is often lack of labels, the depth-first approach
tends to label small blocks of some branches. In contrast,
the breadth-first approach distributes labels more evenly to
different big blocks. Therefore, we choose it for balanced
query. Line 9 initializes the queue. Line 10 judges whether
all impure blocks are processed. Line 11 takes a block out of
the queue. Lines 21–22 append two sub-blocks to the queue.

There are two pruning techniques. The first one deals with
small blocks. As indicated in Lines 12–14, small blocks are
abandoned in the while loop. This is because small blocks
are not suitable for clustering-based active learning. The sec-
ond one deals with lack of labels. As indicated by the second

condition of Line 10, if the number of queries reaches Nq ,
remaining blocks in q are suspended. Due to these pruning
techniques, some instances are still not handled. They are
classified using kNN, as indicated in Line 27.

3.2 � Instance selection strategies

As shown in Line 15 of the algorithm, in each round, the
active learner should select a number of critical instances to
query. This is done by sorting unlabeled instances according
to their representativeness in descending order. In the cur-
rent block � , let the set of labeled instances be �l and the
other part be �u . We propose two strategies to calculate the
representativeness of each instance � ∈ �u.

The local density �i of �i ∈ �u is computed in Eq. (6). As
discussed in Sect. 2.3.2, it is adopted directly for reducing
time complexity. The distance to master is redefined as

With the density peak strategy, the representativeness of �i
in � is measured by

With the distance-sum-based strategy, the representativeness
of �i in the current block is measured by

In a word, the density peak strategy tends to query central
instances, while the distance-sum-based strategy tends to
query informative ones.

3.3 � Clustering quality evaluation

There are both internal and external methods to evaluate the
quality of a clustering algorithm. Internal methods do not
rely on any class label, while external methods rely on the
labels of all instances. During the active learning process,
parts of the labels are queried. We now propose a new meas-
ure to evaluate the quality of clustering.

Suppose that with the clustering algorithm, a block � ⊆ �
is partitioned into a set of blocks B = {�1,�2,…�k} , i.e.,
∪k
i=1

�i = � and ∀1 ≤ i < j ≤ k , �i ∩ �j = � . Let the set of
labeled instances in �i be �i for any 1 ≤ i ≤ k.

Given xl ∈ �i ⧵�i , the label of xl is unknown. Let
n(xl,�i) be the nearest neighbor of xl in �i , namely

Inspired by 1 nearest neighbor (1NN), let d�(x) = d(n(x,�i)) ,
now every instance in �i ⧵�i has a pseudo label.

(13)𝛿i(�) = min
j∈�,𝜌j>𝜌i

dij.

(14)�i(�) = �i�i(�).

(15)dsi(�l) =
∑

�j∈�l

dij.

(16)n(xl,�i) = argmin
xm∈�i

dlm.

1039International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

The number of actual labels of the jth class in �i is

and the number of pseudo labels of the jth class in �i is

Let

where � ∈ [0, 1] is a weight, and

The weighted information entropy of �i is given by

Finally, the weighted information entropy of B is given by

Now we discuss the computation of information entropy
through a running example.

Example 1  As illustrated in Fig. 2, � is partitioned into
B = {�1,�2} . There are only positive labels in �1 , so
the other 6 instances have positive pseudo labels, and
H0.7(�1) = 0.

There are 12 unlabeled instances in �2 , 4 are close to the
positive and 8 are close to the negative instance. So there
will be 5 positive and 2 negative labels, including both
pseudo and actual ones. We have H0.7(�2) = −

1+8×0.7

2+12×0.7
log

1+8×0.7

2+12×0.7
−

1+4×0.7

2+12×0.7
log

1+4×0.7

2+12×0.7
= −

6.6

10.4
log

6.6

10.4
+ −

3.8

10.4
log

3.8

10.4
= 0.285.

Finally, H0.7(B) = 0 +
2+12×0.7

4+18×0.7
H(�2) = 0 + 0.178 = 0.178.

3.4 � Other issues

Three more issues are handled as follows.

(1)	 How to control the number of queries? According to the
problem statement, the maximal number of queries is
⌊n × qi⌋ . Therefore, the while loop should terminate
as long as the given query runs out. In fact, Line 15
should be extended in the algorithm implementation
to enable loop termination.

(17)l(�i, j) = |{x ∈ �i|d(x) = lj}|,

(18)l�(�i, j) = |{x ∈ �i ⧵�i|d�(x) = lj}|.

(19)f�(�i, j) =
l(�i, j) + �l�(�i, j)

|�i| + �|�i ⧵�i|
,

(20)g�(�i, j) =

{
0, if f (�i, j) = 0;

f (�i, j) log f (�i, j), otherwise.

(21)H�(�i) = −

c∑

j=1

g(�i, j).

(22)H�(B) =

k∑

i=1

|�i|
|�| H�(�i).

(2)	 How to classify small cluster blocks? The generation
of small cluster blocks indicates that our approach is
not suitable for them. Hence we left them alone in the
while loop, and use kNN to classify them at the end of
the algorithm.

(3)	 How to classify the remaining unprocessed instances?
With limited number of queries, after the while loop,
there are often some unprocessed blocks. We also use
kNN to classify instances in them. Note that the neigh-
bors are searched globally instead of within the current
block.

4 � Experiments

In this section, we report the results of experiments to
analyze the effectiveness of the TACS algorithm. Through
the experiments, we aim to answer

(1)	 Is the TACS algorithm more accurate than popular
supervised classification algorithms?

(2)	 Is the TACS algorithm more accurate than popular
active learning algorithms?

(3)	 Is the TACS algorithm more accurate than single clus-
tering technique based algorithms?

(4)	 Can the TACS algorithm select appropriate base clus-
tering techniques?

(5)	 Is the TACS algorithm efficient?

The experimental environment is a Windows 10 64-bit oper-
ating system, 8 GB memory, Intel (R) Core 2 Quad CPU
Q9500@2.83 GHz. The source code with a graphical user
interface (GUI) written in Java is available at github.com/
fansmale/tacs.

B
B1

B2
B

B1

B2

Fig. 2   An example of data and label distribution

1040	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

4.1 � Dataset and parameter setting

Table 2 summarizes 12 datasets used for our experiments.
Three of the synthetic datasets come from [25], and the other
10 are from the UC Irvine ML repository [34]. The appli-
cation area ranges from biological to life. The number of
attributes for a dataset ranges from 2 to 10,000.

The initial value of rt is also presented in the table. It
was discussed in Eq. (8). Some datasets are sorted by class
label. For example, in the Iris dataset, the first 50 instances
have the label “Iris-setosa”, the second 50 instances have
the label “Iris-versicolor”, and the last 50 instances have
the label “Iris-virginica”. Other datasets such as Spiral have
the same characteristics. Unfortunately, the result may be
influenced by the order. One reason is that when multiple
instances have the highest (lowest) value, we tend to use the
first instance. To break this bias, we reordered the dataset
before the learning process. This is fulfilled by randomly
swapping some instance pairs. Through this operation, the
results tend to be different in different runs. Memory over-
flow occurs while testing TACS and comparing algorithms
on large datasets. Hence for DLA, we sampled 1% of the
instances to form new datasets. Class distribution is main-
tained after sampling.

4.2 � Comparison with supervised classification
algorithms

Table 3 compares TACS with nine popular supervised clas-
sification algorithms. These algorithms were implemented in
the Weka platform1. C4.5 is the implementation of the C4.5
algorithm [31, 35]. NB is the implementation of the Naïve

Bayes algorithm [32]. CVR is the implementation of Clas-
sification Via Regression algorithm [36]. RF is the imple-
mentation of Random Forest algorithm [37]. ABM is the
implementation of Discrete AdaBoost algorithm [38]. LB is
the implementation of LogitBoost algorithm [39]. Bagging
is the implementation of Bagging algorithm [31]. MCC is
the implementation of Multiple Class Classifier algorithm
[40]. FC is the implementation of Filtered Classifier algo-
rithm [41].

For these algorithms, we randomly select the training set
with the size indicated in Table 2. The average ranks were
obtained by applying a Friedman test [42], which is the most
well-known non-parametric test. The Friedman test analyzes
whether there are significant differences among the algo-
rithms. The best results are highlighted in boldface. Here
are some detailed observations. (a) TACS generally out-
performed existing supervised classification algorithms. In
particular, the TACS algorithm had the highest accuracy on
seven datasets. Through statistical analysis, the mean rank is
2.16. For the Spiral datasets, the accuracy reached 100%. For
the other eleven algorithms, the accuracy did not reach 100%
with only 10% labels. (b) There were a few cases in which
TACS performed worse than some of the other algorithms.
For example, the NB algorithm had a better accuracy than
TACS on the Twonorm and DLA datasets. However, the
difference in the classification accuracy was less than 1%.

4.3 � Comparison with other active learning
algorithms

In this section, we compare the TACS algorithm with three
state-of-the-art active learning algorithms, including Query-
by-committee (QBC) [6], kernel version of QBC algorithm
(KQBC) [43], and MAED [33]. QBC is probably the most
noticeable algorithm in active learning [6]. It is an integrated
approach that requires the establishment of a voting commit-
tee [5]. Gilad-Bachrach et al. [43] presented the KQBC algo-
rithm to decrease the runtime. MAED [33] is a uncertainty-
based active learning algorithm. It minimizes the expected
error to select the most discriminative instances for labeling.

For QBC, KQBC, and MAED, we adopted the source
code provided by the authors and the best settings given in
reference [6, 33, 43] to ensure the best performance. For
KQBC and MAED, the code was run on the Matlab plat-
form, while for QBC, the code was on the JAVA platform.
QBC and KQBC use integrated classifiers, including KNN,
J48 and NB. The final result is determined by the relevant
strategic vote.

Figure 3 describes the learning curves of the TACS algo-
rithm and three active learning algorithms. Each value is the
average of 50 runs of the corresponding algorithm. Some
detailed observations are described as follows. (a) TACS
converges faster than other algorithms. For example, for the

Table 2   Dataset information

Dataset |�| |�| Area rt qi

Seeds 210 8 Life 0.19 0.1
Thyroid 215 6 Life 0.25 0.1
Heart 270 14 Life 0.05 0.1
Spiral 312 3 Synthetic 0.3 0.1
Ionosphere 350 35 Physical 0.04 0.1
R15 600 3 Synthetic 0.2 0.1
USps_2_6 2200 257 Image 0.2 0.1
Waveform 5000 22 Physical 0.1 0.1
Credit 5987 66 Financial 0.35 0.1
Twonorm 7400 21 Synthetic 0.3 0.1
DLA0.1 16,563 18 Society 0.05 0.1
Letter 20,000 17 Computer 0.4 0.1

1  www.weka.com.

http://www.weka.com

1041International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

Flame dataset, the classification accuracy reached 100%
accuracy by labeling only 10% of the instances, while the
QBC, MAED and KQBC algorithms were unable to reach
100% accuracy. This indicates that TACS is more appropri-
ate for the cold-start situation. (b) In 9 out of 12 datasets,
TACS is more accurate than other algorithms. (c) There are
also some cases that TACS performs worse. For example,
MAED outperforms TACS in the R15, Heart and USps_2_6
datasets.

4.4 � Comparison with clustering‑based active
learning algorithms

We compare the new approach with the ones based on only
one clustering technique. Table 4 shows the accuracy of the
TACS algorithm with six clustering-based active learning
algorithms. Each algorithm runs ten times to obtain aver-
age accuracy and variance. These six methods adopt the
same active learning strategy as TACS. The difference is
that the six methods adopt a single classical clustering algo-
rithm, while the TACS adopts a clustering selection strategy.
Table 5 shows the average number of times each clustering
technique was selected. It not only shows how often each
clustering technique is used, but also indicates the actual
number of iterations of the active learning process.

From Tables 4 and 5, we observe that the TACS algorithm
selects the appropriate base clustering techniques. Accord-
ing to the Friedman test, TACS generally outperforms the
other algorithms, with an average rank of 1.58, which is
the highest on these datasets. For each of the 12 datasets,
TACS achieved the best performance on eight of them, and
kMeans achieved good performance on the Twonorm, and
Ionosphere datasets. In some cases, different clustering tech-
niques produce the best result for the given block and respec-
tive counters are all added by 1.

4.5 � Algorithm efficiency

The efficiency of TACS depends mainly on the base clus-
tering techniques. As shown in Table 5, for DLA and Let-
ter datasets, TACS only needs to run less than 100 rounds
of clustering techniques. Therefore, the time complexity of
TACS can be regarded as approximately the same as the
sum of base clustering techniques. Specifically, in our imple-
mentation, the time complexity is O(mn2) when RW is not
selected.

Figure 4 depicts the runtime of the DLA dataset with the
change of the number of instances n. TACS indicates that
these five clustering techniques are employed for selection.
Other versions are for specific clustering techniques. For
example, TACS-kMeans indicates that only kMeans is avail-
able for splitting each block. Note that RW was not selected
for this experiment for two reasons. (a) RW is very time con-
suming since we need to construct a graph from the original
data. Hence it is inappropriate for large datasets. (b) RW
rarely outperforms other clustering techniques. This issue
has been analyzed in more detail in Sect. 4.4.

Here are some detailed observations. (a) When the
number of instances is doubled, the runtime will increase
to about 4 times. This shows that the time complexity is
proportion to O(n2) . In other words, the TACS algorithm is
scalable. (b) Different versions share the same trend, show-
ing the effectiveness of the acceleration techniques presented
in Sect. 2. (c) The runtime of TACS is smaller than the sum
of other versions. This is due to the fact that some overhead
is shared.

Table 3   Accuracy comparison
with nine supervised algorithms
(in %)

The best and second best results are highlighted in boldface and italic, respectively

Dataset C4.5 NB CVR RF ABM LB Bagging MCC FC TACS

Seeds 50.26 60.84 82.01 84.65 79.89 82.53 57.67 85.18 50.26 91.53
Thyroid 76.68 93.78 77.72 87.56 86.52 90.15 90.67 84.97 69.43 95.20
Heart 73.66 74.48 72.83 78.60 76.13 74.48 70.78 74.48 71.60 79.36
Spiral 55.51 34.87 40.21 70.10 32.38 68.32 49.11 34.87 32.38 100.00
Ionosphere 86.34 84.76 80.95 90.79 87.93 86.03 75.87 85.39 86.03 87.01
R15 73.88 89.44 71.29 92.59 12.03 75.00 88.88 63.51 82.96 98.58
USps_2_6 88.08 93.48 88.28 95.90 93.98 92.92 93.08 95.85 86.46 96.36
Waveform 81.64 85.08 85.51 88.60 82.75 85.64 86.00 86.80 83.71 87.83
Credit 77.72 68.55 84.66 84.07 78.65 84.00 82.90 82.20 81.03 82.54
Twonorm 80.76 97.67 86.24 95.90 85.58 85.57 90.16 97.52 79.60 96.67
DLA0.1 91.42 77.78 91.99 96.90 54.22 90.42 92.61 83.31 86.28 94.36
Letter 71.43 62.83 77.43 85.07 6.80 70.79 75.67 69.88 65.99 80.06
Meanrank 7.08 5.66 5.75 2.16 7.50 4.75 5.50 5.91 7.16 2.16

1042	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

0.01 0.05 0.1

Proportion of queries (qi)

76

77

78

79

80

81

82

83

84

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(a) Seeds

0.01 0.05 0.1

Proportion of queries (qi)

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(b) Thyroid

0.01 0.05 0.1

Proportion of queries (qi)

40

45

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(c) Heart

0.01 0.05 0.1

Proportion of queries (qi)

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(d) Spiral

0.01 0.05 0.1

Proportion of queries (qi)

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(e) Cleveland

0.01 0.05 0.1

Proportion of queries (qi)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(f) R15

0.01 0.05 0.1

Proportion of queries (qi)

84

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(g) USps 2 6

0.01 0.05 0.1

Proportion of queries (qi)

80

81

82

83

84

85

86

87

88

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(h) Waveform

0.01 0.05 0.1

Proportion of queries (qi)

76

77

78

79

80

81

82

83

84

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(i) Credit

0.01 0.05 0.1

Proportion of queries (qi)

86

88

90

92

94

96

98

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(j) Twonorm

0.01 0.05 0.1

Proportion of queries (qi)

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(k) DLA0.1

0.01 0.05 0.1

Proportion of queries (qi)

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (i
n

%
)

KQBC
MAED
QBC
TACS

(l) Letter

Fig. 3   Comparison of the learning curve of TACS and three popular active learning algorithms

1043International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

4.6 � Discussions

Now we can answer the questions proposed at the beginning
of this section.

(1)	 TACS is more accurate than popular supervised clas-
sification algorithms, including C4.5, NB, RF, etc. This
is validated by Table 3. Unfortunately, on some data-
sets such as Ionosphere, it is significantly worse than
some other algorithms such as RF. The reason may be
that clustering techniques do not perform well on those
datasets.

(2)	 TACS is more accurate than popular active learning
algorithms, including QBC, MAED, and KQBC. This
is validated by Fig. 3. It was also defeated by MAED
on the Heart dataset. The reason may be that for some

Table 4   Accuracy comparison
with algorithms based on single
clustering technique (mean ±
std in %)

The best and second best results are highlighted in boldface and italic, respectively

Dataset DP-Gaussian kMeans Hierarchical DBScan FCM RW TACS

Seeds 90.47 ±0.00 90.31 ±0.94 89.36 ±1.55 90.31 ±0.24 85.18 ±1.91 90.31 ±0.24 91.53 ±1.56
Thyroid 93.91 ±0.44 95.00 ±0.23 93.35 ±0.90 93.81 ±0.46 94.22 ±1.27 93.71 ±0.50 95.20 ±1.30
Heart 76.83 ±0.86 76.83 ±0.86 76.83 ±0.86 76.25 ±0.78 79.13 ±1.07 78.47 ±1.47 78.93 ±0.73
Spiral 100.00 ±0.00 79.60 ±1.87 78.57 ±4.16 69.78 ±1.85 81.77 ±3.44 58.71 ±0.00 100.00 ±0.00
Ionosphere 85.39 ±0.00 87.04 ±0.98 86.44 ±2.16 83.68 ±0.29 85.39 ±2.00 83.74 ±0.31 87.01 ±0.55
R15 98.88 ±0.00 97.49 ±0.49 97.81 ±0.89 96.46 ±1.15 97.50 ±0.78 98.20 ±0.67 98.57 ±0.69
USps_2_6 96.34 ±0.40 94.70 ±0.49 91.05 ±4.23 86.18 ±1.55 81.33 ±12.59 96.01 ±1.88 97.62 ±1.37
Waveform 85.51 ±0.66 86.96 ±0.35 86.20 ±0.44 84.11 ±0.37 85.79 ±0.83 84.69 ±0.34 87.75 ±0.51
Credit 80.39 ±1.50 80.43 ±0.61 80.68 ±0.75 80.25 ±1.40 79.75 ±1.51 80.47 ±1.22 82.54 ±0.95
Twonorm 94.26 ±1.48 97.54 ±0.22 94.62 ±0.94 88.25 ±2.20 94.55 ±0.33 90.22 ±4.48 96.45 ±1.63
DLA0.1 90.69 ±2.02 92.63 ±1.22 94.60 ±0.86 91.30 ±0.36 87.86 ±3.40 87.96 ±0.94 94.36 ±0.67
Letter 69.45 ±2.35 76.49 ±0.78 68.66 ±0.65 65.85 ±1.76 65.01 ±1.93 62.79 ±1.57 80.06 ±1.03
Meanrank 3.33 3.16 4.00 6.00 4.83 4.66 1.33

Table 5   The average number of
times each clustering technique
was selected

The highest and second highest values are highlighted in boldface and italic, respectively

Dataset DP-Gaussian kMeans Hierarchical DBScan FCM RW

Seeds 0.1 0.3 0.4 0.0 0.3 0.0
Thyroid 0.6 0.2 0.4 0.0 0.1 0.0
Heart 0.2 0.9 0.4 0.0 0.3 0.0
Spiral 2.0 0.0 0.0 0.0 0.0 0.0
Ionosphere 0.9 0.5 0.1 0.0 0.5 0.0
R15 1.6 1.7 0.5 0.8 1.1 0.0
USps_2_6 0.9 0.5 0.1 0.0 0.2 1.2
Waveform 31.6 25.4 26.1 0.6 23.3 0.2
Credit 30.6 16.2 25.9 2.7 17.5 3.6
Twonorm 11.4 7.6 8.9 0.0 7.0 0.6
DLA0.1 62.8 28.6 81.8 14.2 20.4 0.0
Letter 34.4 31.2 26.2 10.2 13.0 0.3

0 1 2 3 4 5

Number of instances (×104)

0

200

400

600

800

1000

1200

1400

R
un

tim
e

(in
 s

ec
on

ds
)

TACS-kMeans
TACS-DP-Gaussian
TACS-Hierarchical
TACS-DBScan
TACS-FCM
TACS

Fig. 4   The runtime of TACS with different base clustering techniques

1044	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

datasets, informative instances are more important than
representative ones.

(3)	 TACS is more accurate than single clustering technique
based algorithms. This is validated by Table 4. It is the
best, or the second best one on all datasets.

(4)	 In most cases, TACS can find out the appropriate base
clustering techniques. This is validated by Table 5.

(5)	 TACS is efficient as long as we do not employ ineffi-
cient clustering techniques. This is validated by Table 5
and Fig. 4.

5 � Related work

This section discusses some related work, including active
learning, clustering-based active learning and three-
way decision. Their relationships with this work will be
emphasized.

5.1 � Active learning

Active learning [4, 44] is a special form of semi-supervised
learning [45, 46], which in turn is a special form of classifi-
cation. Classification tasks typically require a large amount
of labeled data to form a training set for building a classi-
fier. However, labeled data are difficult, expensive, or time
consuming to obtain [46]. Semi-supervised learning uses
abundant unlabeled data with a few labeled ones to build a
better classifier. When man–machine interaction is available,
active learning obtains key tags to further improve classifica-
tion accuracy.

The key issue for active learning is: which instances are
critical and therefore should be labeled? General answers
include informative ones [6, 47], diverse ones [7, 48], rep-
resentative ones [10, 49], and their combinations [11, 12,
48]. Uncertain sampling [50], Query-by-committee [6],
and query by margin [51] are classical approaches to find
informative instances. Fuzzy-rough approaches [7, 48] have
been developed to find diverse ones. Clustering-based active
learning [10, 49], as the basis of this work, tends to find
representative ones.

There are a number of typical active learning scenarios.
The classical scenario [10] specifies the number of labels
provided by oracle. It is explicitly defined in Problem 1. The
cost-sensitive active learning scenario [13] involves query
cost and misclassification costs. The learning task is to
achieve a trade-off between them to minimize the total cost.
The active learning from data streams scenario [52] involves
dynamic nature of the data. The learner should query
instances based on the data observed so far to maximize
the classification accuracy on future instances. Moreover,

instances usually should be queried immediately to save the
storage.

5.2 � Three‑way decision

Three-way decision [15] is a general methodology for prob-
lem solving especially in data mining and machine learn-
ing. It was rooted in decision-theoretic rough set model
[53], while be more independent since 2010 [15], and quite
matured in 2018 with the TAO model [16]. Liu et al. [54]
enriched the theory to deal with incomplete information sys-
tems. Hu [55] established three-way decision space based on
the axiomatic definitions for decision measurement, decision
condition and evaluation function. Fang et al. [56] discussed
cost-sensitive approximate attribute reduction with three-
way decisions. Zhang et al. [57] introduced a general model
of decision theoretic three-way approximations of fuzzy sets
based on the particle swarm optimization algorithm.

It has been connected with other theories to form new
ones. Li et al. [58] investigated three-way cognitive concept
learning from the perspective of multigranularity informa-
tion fusion. Shivhare et al. [59] explored the process of
three-way cognitive concept learning to achieve a more pre-
cise recall. Qi et al. [60] proposed three-way formal concept
analysis to reveal more detailed information from formal
contexts. Zhi et al. [61] extended dual formal concept with
three-way decision.

It has also inspired the presentation or solution of
machine learning tasks. Zhang et al. [62] developed a three-
way regression approach for recommender systems. Yu
et al. [63] proposed an active three-way clustering method
via low-rank matrices for multi-view data. Li et al. [17]
designed deep neural network based sequential granular fea-
ture extraction method for image processing. Jia et al. [64]
applied the three-way decision-theoretic rough set model to
address multi-class cost-sensitive learning problems. Min
et al. [65] introduced tri-patterns and provided an efficient
mining algorithm for different types of sequential data.

Three-decision was first applied to active learning in [66].
Then three-way active learning served as a special form of
clustering-based active learning. Wang et al. [10] introduced
the first three-way active learning algorithm. It can be viewed
as a special case of the TACS algorithm where the DB-Gauss-
ian clustering technique is available. Wu et al. [13] studied
the cost-sensitive active learning scenario under the uniform
label distribution assumption. Wang et al. [14] explored dif-
ferent assumptions further and established a statistical model.
As mentioned in the introduction part, there are three pos-
sible actions for each block. Due to the iterative process, the
paradigm can be better represented by sequential three-way
decision [17, 18].

1045International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

6 � Conclusions and further work

This study has proposed the TACS algorithm to dynamically
select the appropriate clustering in the active learning pro-
cess. A number of techniques were discussed, including clus-
ter selection, query balancing, and tree pruning. Experimental
results verify the effectiveness of the algorithm.

The following research topics deserve further investigation:

(1)	 More clustering techniques in the algorithm frame-
work. Currently, only a few clustering techniques have
been incorporated into TACS. Other techniques can
be incorporated to accommodate data with different
shapes. In addition, these techniques should be fine-
tuned or modified to fit the framework of the algorithm.

(2)	 Better evaluation measures to select clustering tech-
niques. TACS uses weighted entropy to evaluate the
quality of clustering. New measures based on the Gini
indicator might be good alternatives. More sophisti-
cated measures can be designed to consider other infor-
mation such as block size ratios and data distribution.

(3)	 Clustering ensemble techniques for active learning.
TACS only selects the currently “best” clustering tech-
nique. By designing cluster ensemble techniques, new
blocks can be obtained from these different techniques.
Hence it is possible to obtain more stable blocks of bet-
ter quality. Moreover, different classification strategies
can be employed for instances inside or outside stable
blocks.

In summary, TACS is a general algorithm framework that can
be enriched in the future.

Acknowledgements  This work is in part supported by the Natu-
ral Science Foundation of Sichuan Province under Grant number
2019YJ0314, and the Sichuan Province Youth Science and Technology
Innovation Team under Grant number 2019JDTD0017.

References

	 1.	 Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ (2009)
Active learning methods for remote sensing image classification.
IEEE Trans Geosci Remote Sens 47(7):2218–2232

	 2.	 Thompson CA, Califf ME, Mooney RJ (1999) Active learn-
ing for natural language parsing and information extraction. In:
ICML, pp 406–414

	 3.	 Tong S, Koller D (2002) Support vector machine active learn-
ing with applications to text classification. J Mach Learn Res
2(1):45–66

	 4.	 Angluin D (1988) Queries and concept learning. Mach Learn
2(4):319–342

	 5.	 Settles B (2010) Active learning literature survey. Computer Sci-
ences Technical Report 1648, University of Wisconsin-Madison

	 6.	 Seung HS, Opper M, Sompolinsky H (1992) Query by com-
mittee. In: Proceeding of the fifth workshop on computational
learning theory, vol 284, pp 287–294

	 7.	 Wang R, Chen DG, Kwong S (2014) Fuzzy-rough-set-based
active learning. IEEE Trans Fuzzy Syst 22(6):1699–1704

	 8.	 Wang R, Chow CY, Kwong S (2016) Ambiguity-based multi-
class active learning. IEEE Trans Fuzzy Syst 24(1):242–248

	 9.	 Nguyen HT, Smeulders A (2004) Active learning using pre-
clustering. In: ICML, pp 79–90

	10.	 Wang M, Min F, Zhang ZH, Wu YX (2017) Active learning
through density clustering. Expert Syst Appl 85:305–317

	11.	 Du B, Wang ZM, Zhang LF, Zhang LP, Liu W, Shen JL, Tao
DC (2017) Exploring representativeness and informativeness
for active learning. IEEE Trans Cybern 47(1):14–26

	12.	 Huang SJ, Jin R, Zhou ZH (2014) Active learning by querying
informative and representative examples. IEEE Trans Pattern
Anal Mach Intell 36(10):1936–1949

	13.	 Wu YX, Min XY, Min F, Wang M (2019) Cost-sensitive active
learning with a label uniform distribution model. Int J Approx
Reason 105:49–65

	14.	 Wang M, Lin Y, Min F, Liu D (2019) Cost-sensitive active
learning through statistical methods. Inf Sci 501:460–482

	15.	 Yao YY (2012) An outline of a theory of three-way decisions.
In: RSCTC. Springer, Berlin, pp 1–17

	16.	 Yao YY (2018) Three-way decision and granular computing.
Int J Approx Reason 103:107–123

	17.	 Li HX, Zhang LB, Zhou XZ, Huang B (2017) Cost-sensitive
sequential three-way decision modeling using a deep neural
network. Int J Approx Reason 85:68–78

	18.	 Yang X, Li TR, Fujita H, Liu D (2019) A sequential three-
way approach to multi-class decision. Int J Approx Reason
104:108–125

	19.	 Qian J, Liu CH, Yue XD (2019) Multigranulation sequential
three-way decisions based on multiple thresholds. Int J Approx
Reason 105:396–416

	20.	 Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing:
perspectives and challenges. IEEE Trans Syst Man Cybern C
Appl Rev 43(6):1977–1989

	21.	 Yao YY (1999) Granular computing using neighborhood sys-
tems. In: Advances in soft computing. Springer, London, pp
539–553

	22.	 Dai JH, Hu QH, Hu H, Huang DB (2018) Neighbor inconsistent
pair selection for attribute reduction by rough set approach. IEEE
Trans Fuzzy Syst 26(2):937–950

	23.	 Sun L, Zhang XY, Qian YH, Xu JC, Zhang SG (2019) Feature
selection using neighborhood entropy-based uncertainty measures
for gene expression data classification. Inf Sci 502:18–41

	24.	 Zhao H, Wang P, Hu QH, Zhu PF (2019) Fuzzy rough set based
feature selection for large-scale hierarchical classification. IEEE
Trans Fuzzy Syst 27:1891–1903

	25.	 Rodriguez A, Laio A (2014) Clustering by fast search and find of
density peaks. Science 344(6191):1492–1496

	26.	 Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-Means
clustering algorithm. Appl Stat 28(01):100–108

	27.	 Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means
clustering algorithm. Comput Geosci 10(2):191–203

	28.	 Johnson SC (1967) Hierarchical clustering schemes. Psycho-
metrika 32(3):241–254

	29.	 Ester M, Kriegel HP, Sander J, Xu XW (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: KDD. Morgan Kaufmann Publishers Inc., San Fran-
cisco, pp 226–231

	30.	 Harel D, Koren Y (2001) On clustering using random walks. In:
FSTTCS. Springer, Berlin, pp 18–41

	31.	 Quinlan R (1996) Bagging, Boosting, and C4.5. In: AAAI/IAAI,
pp 725–730

	32.	 Irina R (2001) An empirical study of the Naïve Bayes classifier.
In: IJCAI workshop on empirical methods in artificial intelligence,
pp 41–46

1046	 International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046

1 3

	33.	 Cai D, He XF (2012) Manifold adaptive experimental design for
text categorization. IEEE Trans Knowl Data Eng 24(4):707–719

	34.	 Blake C, Merz CJ (1998) UCI repository of machine learning
databases. http://www.ics.uci.edu/mlear​n/MLRep​osito​ry.html

	35.	 Xiang ZY, Zhang L (2012) Research on an optimized C4.5 algo-
rithm based on rough set theory. In: International conference on
management of e-Commerce and e-Government, pp 272–274

	36.	 Ruan YX, Lin HT, Tsai MF (2014) Improving ranking perfor-
mance with cost-sensitive ordinal classification via regression.
Inf Retr 17(02):133

	37.	 Liaw A, Wiener M (2002) Classification and regression by ran-
domForest. R News 2–3:18–22

	38.	 Cortés EA, Martínez MG, Rubio NG (2007) Multiclass cor-
porate failure prediction by Adaboost.M1. Int Adv Econ Res
13(02):301–312

	39.	 Cai YD, Feng KY, Lu WC, Chou KC (2006) Using LogitBoost
classifier to predict protein structural classes. J Theor Biol
238(2):172–176

	40.	 Afshar S, Mosleh M, Kheyrandish M (2013) Presenting a new
multiclass classifier based on learning automata. Neurocomputing
104:97–104

	41.	 Zhang SL, Zhang TS, Liu M, Li KL, Yuan BZ (2010) An experi-
mental study of classifier filtering. In: ICWMMN, pp 361–364

	42.	 Reyes O, Altalhi AH, Ventura S (2018) Statistical comparisons
of active learning strategies over multiple datasets. Knowl-Based
Syst 145:274–288

	43.	 Gilad-Bachrach R, Navot A, Tishby N (2004) Kernel query by
committee (KQBC). Leibniz Center Technical Report 88, Hebrew
University

	44.	 Cohn DA, Ghahramani ZB, Jordan MI (1996) Active learning with
statistical models. J Artif Intell Res 4(1):129–145

	45.	 Blum A, Chawla S (2001) Learning from labeled and unlabeled
data using graph mincuts. In: ICML, pp 1–8

	46.	 Belkin M, Niyogi P (2004) Semi-supervised learning on Riemann-
ian manifolds. Mach Learn 56(1–3):209–239

	47.	 Lewis DD, Gale WA (1994) A sequential algorithm for training
text classifiers. In: SIGIR, pp 3–12

	48.	 Wang R, Wang XZ, Kwong S, Chen X (2017) Incorporating
diversity and informativeness in multiple-instance active learn-
ing. IEEE Trans Fuzzy Syst 25(6):1460–1475

	49.	 Dasgupta S, Hsu D (2008) Hierarchical sampling for active learn-
ing. In: ICML, pp 208–215

	50.	 Lewis DD, Catlett J (1994) Heterogeneous uncertainty sampling
for supervised learning. In: ICML, pp 148–156

	51.	 Campbell C, Cristianini N, Smola A (2000) Query learning with
large margin classifiers. In: ICML, pp 111–118

	52.	 Zhu X, Zhang P, Lin X, Shi Y (2007) Active learning from data
streams. In: ICDM, pp 757–762

	53.	 Yao YY, Wong S (1992) A decision theoretic framework for
approximating concepts. Int J Man Mach Stud 37:793–809

	54.	 Liu D, Liang DC, Wang CC (2016) A novel three-way decision
model based on incomplete information system. Knowl-Based
Syst 91:32–45

	55.	 Hu BQ (2014) Three-way decisions space and three-way deci-
sions. Inf Sci 281:21–52

	56.	 Fang Y, Min F (2019) Cost-sensitive approximate attribute reduc-
tion with three-way decisions. Int J Approx Reason 104:148–165

	57.	 Zhang QH, Xia DY, Liu KX, Wang GY (2020) A general model of
decision-theoretic three-way approximations of fuzzy sets based
on a heuristic algorithm. Inf Sci 507:522–539

	58.	 Li JH, Huang CC, Qi JJ, Qian YH, Liu WQ (2017) Three-
way cognitive concept learning via multi-granularity. Inf Sci
378(1):244–263

	59.	 Shivhare R, Cherukuri AK (2017) Three-way conceptual approach
for cognitive memory functionalities. Int J Mach Learn Cybern
8:21–34

	60.	 Qi JJ, Qian T, Wei L (2016) The connections between three-way
and classical concept lattices. Knowl-Based Syst 91:143–151

	61.	 Zhi HL, Qi JJ, Qian T, Wei L (2019) Three-way dual concept
analysis. Int J Approximate Reasoning 114:151–165

	62.	 Zhang HR, Min F, Shi B (2017) Regression-based three-way rec-
ommendation. Inf Sci 378:444–461

	63.	 Yu H, Wang XC, Wang GY, Zeng XH (2020) An active three-way
clustering method via low-rank matrices for multi-view data. Inf
Sci 507:823–839

	64.	 Jia XY, Li WW, Shang L (2019) A multiphase cost-sensitive
learning method based on the multiclass three-way decision-
theoretic rough set model. Inf Sci 485:248–262

	65.	 Min F, Zhang ZH, Zhai WJ, Shen RP (2020) Frequent pattern
discovery with tri-partition alphabets. Inf Sci 507:715–732

	66.	 Min F, Liu FL, Wen LY, Zhang ZH (2019) Tri-partition cost-sen-
sitive active learning through kNN. Soft Comput 23:1557–1572

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.ics.uci.edu/mlearn/MLRepository.html

	Three-way active learning through clustering selection
	Abstract
	1 Introduction
	2 Basis
	2.1 The data model
	2.2 Problem statement
	2.3 Revised clustering techniques
	2.3.1 Prototype-based techniques
	2.3.2 Density-based techniques
	2.3.3 Hierarchical technique

	2.4 Graph-based technique

	3 The algorithm
	3.1 Algorithm description
	3.2 Instance selection strategies
	3.3 Clustering quality evaluation
	3.4 Other issues

	4 Experiments
	4.1 Dataset and parameter setting
	4.2 Comparison with supervised classification algorithms
	4.3 Comparison with other active learning algorithms
	4.4 Comparison with clustering-based active learning algorithms
	4.5 Algorithm efficiency
	4.6 Discussions

	5 Related work
	5.1 Active learning
	5.2 Three-way decision

	6 Conclusions and further work
	Acknowledgements
	References

