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Abstract
In clustering-based active learning, the performance of the learner relies heavily on the quality of clustering results. Empiri-
cal studies have shown that different clustering techniques are applicable to different data. In this paper, we propose the 
three-way active learning through clustering selection (TACS) algorithm to dynamically select the appropriate techniques 
during the learning process. The algorithm follows the coarse-to-fine scheme of granular computing coupled with three-way 
instance processing. For label query, we select both representative instances with density peaks, and informative instances 
with the maximal total distance. For block partition, we revise six popular clustering techniques to speed up learning and 
accommodate binary splitting. For clustering evaluation, we define weighted entropy with 1-nearest-neighbor. For insuf-
ficient labels, we design tree pruning techniques with the use of a block queue. Experiments are undertaken on twelve UCI 
datasets. The results show that TACS is superior to single clustering technique based algorithms and other state-of-the-art 
active learning algorithms.

Keywords  Active learning · Clustering · Granular computing · Three-way decision

1  Introduction

In many real-world applications such as image classifica-
tion [1], information extraction [2] and text classification 
[3], unlabeled data are abundant and easy to obtain, while 
labels are costly. Active learning [4, 5] aims to achieve 
higher classification accuracy with fewer labels through 
human–computer interaction. The key issue is to select 
critical instances to label. There are at least two views and 
respective approaches. One view is that uncertain instances 

are critical. Typical approaches include query-by-committee 
[6], fuzzy-rough based [7], and ambiguity-based [8] algo-
rithms. The other view is that representative instances are 
critical. The most typical approaches are clustering-based 
[9, 10] algorithms. Naturally, combination approaches [11, 
12] take advantage of both.

Three-way active learning [10, 13, 14] is a new type of 
clustering-based [9] algorithm. From the viewpoint of three-
way decision [15, 16], there are three possible actions for 
each block. In case that there are not enough labeled data, 
representative instances of the block are queried. In case 
that there are enough labeled data with the same label, other 
instances in the block are classified. In case that there are 
labeled data with different labels, the block is clustered for 
further treatment. Since the process is iterative, the paradigm 
can be better represented by sequential three-way decision 
[17–19]. From the viewpoint of granular computing [20, 
21], the learning process follows the coarse-to-fine scheme 
[22–24]. Instances are queried or classified in the appropri-
ate granule, which is represented by a block.

Unfortunately, the performance of three-way active 
learning relies heavily on the base clustering technique. 
Different clustering techniques are applicable to different 
data. This is also a common situation for clustering-based 
active learning algorithms [5]. A natural question is: given 
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a dataset, can we find appropriate clustering techniques in 
the learning process?

In this paper, we propose the three-way active learn-
ing through clustering selection (TACS) algorithm for this 
issue. Figure 1 illustrates a running example of the new 
algorithm. Some representative instances in the whole 
block � are queried at the beginning. Since there are both 
positive and negative labels, � is split in �1 and �2 using 
the currently best algorithm (Density Peaks, DP [25]). 
Then a few more instances are queried for �1 . Since there 
are only positive labels, the remaining instances are classi-
fied as positive. More instances are queried for �2 as well. 
With both positive and negative labels, �2 is split into �21 
and �22 using the currently best algorithm (kMeans). This 
process repeats until all instances are either queried or 
classified. Note that the whole process is similar to a deci-
sion tree, but the splitting technique is different. Moreover, 
the binary split structure works for any datasets, not only 
for those with binary classes.

The contribution of the paper is to address four issues 
of our algorithm. The first issue is: which instances should 
be queried? This is also the key issue of any active learning 
algorithm. In the beginning, we select some representative 
instances to query. Here representativeness is measured by 
both density and distance to the closest instance with higher 
density [10]. These instances also help clustering technique 
selection. During the iteration, we select either representa-
tive or informative instances. Here information is measured 
by the total distance to labeled instances of the same block. 
In this way, the number of queries is also controlled.

The second issue is: how to revise existing clustering 
techniques to suit our algorithm? Since our algorithm always 
split a block in two, general clustering techniques should be 
revised. For both kMeans [26] and fuzzy c-means (FCM) 
[27], we choose a pair of instances with large distance as 
the original centers. For density peaks (DP) [25], we choose 
the top two representative instances with different labels for 
splitting. For Hierarchical [28], the solution is straightfor-
ward since the cluster tree is built in a bottom-up manner. 
For DBScan [29], we adjust the density threshold such that 
at least one core exists. For random walks (RW) [30], the 
largest block does not change, and the other instances form 
the second block. We also revise these techniques to speed 
up the learning process.

The third issue is: how to select the most appropriate 
technique to cluster the current block? Naturally, this is the 
key issue of this paper. We design weighted entropy with 
1-nearest-neighbor. It considers both labeled and unlabeled 
data. Labeled data are trustworthy, hence their weight is 1. 
Unlabeled data are first classified by 1-nearest-neighbor to 
obtain pseudo-labels, whose weight is less than 1. In this 
way, the weighted entropy can be calculated. Moreover, 
we design the retrospective technique to recalculate the 
weighted entropy after obtaining more labels.

The fourth issue is: how to deal with the lack of labels? 
In real applications, the expert usually cannot provide 
enough queries due to limited budget. Consequently, 
we would like to query labels in larger blocks, which is 
more appropriate for the clustering-based algorithm. For 
this purpose, we design the breadth-first visit of the tree 

(a) Learning process (b) B (c) B1 (d) B2

(e) B21 (f) B22 (g) B211 (h) B212

Fig. 1   A running example of TACS a depicts the general clustering and learning process. b, d, e depict the block and the best clustering tech-
nique. c, f, g, h depict the final blocks. Triangles indicate queried positive labels, and circles indicate queried negative labels
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depicted in Fig. 1h. This is implemented by a block queue, 
in which blocks smaller than a threshold are discarded. 
Compared with the depth-first visit, different blocks of the 
same level have more balanced queries. When the budget 
runs off, only some instances in relatively small blocks 
remain unclassified. At last, they are classified using kNN.

Experiments are undertaken on twelve UCI datasets. 
Results show that in most cases, TACS can find out appro-
priate base clustering techniques. It is more accurate than 
supervised classification algorithms such as C4.5 [31] and 
Naïve Bayes (NB) [32], active learning algorithms such 
as Query-by-committee (QBC) [6] and manifold adaptive 
experimental design (MAED) [33], and single clustering 
technique based algorithms such as ALEC [10].

The rest of the paper is organized as follows. Section 2 
introduces the basis of our algorithm, including the prob-
lem statement and revisions to some clustering techniques. 
Section 3 presents our algorithmic framework and some 
key issues along with corresponding techniques. Section 4 
describes the experimental process and lists some results. 
Section 5 discusses some related work. Finally, Sect. 6 
presents conclusions and outlines further research trends.

2 � Basis

This section presents some basis of the work, including 
the data model, the problem statement, and some issues 
of the clustering techniques. Table 1 lists some notations 
used throughout the paper.

2.1 � The data model

Let � = (xij)n×m be the data matrix, where n is the num-
ber of instances, m is the number of conditional attributes, 
and �i = (xi1 , xi2 , ..., xim ) is the ith instance. Let further 
� = (y1, y2,… , yn)

T be the class label vector. In our active 
learning scenario, the value of yi ∈ [1..c] ( 1 ≤ i ≤ n ) is 
unknown. It should be either queried or classified.

The set of all instances is � = {�i|1 ≤ i ≤ n} . For brevity, 
we also denote it using the indices, i.e., � = [1..n] . In this 
way, any block is a subset of [1..n].

2.2 � Problem statement

Since a query requires an oracle’s effort, we assume that 
the number of queries is limited. The problem, which is the 
same as that of [10], is stated as follows.

Problem 1  Active learning with fixed number of labels.
Input: The data � , and the proportion of queried 

instances qi.
Output: The set of queried instances � ⊂ � , the classi-

fied labels for � ⧵�.
Optimization objective: Maximize the classification 

accuracy.

First, we assume that no label is known at the beginning 
of the learning process. In this way, it is easy to compare 
the classification accuracy of different algorithms. Sec-
ond, it is required that ��� ≤ ⌊n × qi⌋ . When ��� < ⌊n × qi⌋ , 
the queries are not used up. This situation rarely occurs in 

Table 1   Notations Notation Meaning Comments

� = (xij)n×m The data Input/data model
�i The ith instance Data model
� = (y1, y2,… , yn)

T Class labels Data model
c The number of classes Data model
� = [1..n] The whole dataset Data model
� , �1 , �2 ⊆ � Blocks in the learning process Algorithm variable
�i The neighborhood of �i Algorithm variable
�i The local density of �i Algorithm variable
�i The distance to its master of �i Algorithm variable
�i The representativeness of �i Algorithm variable
�̂ = (ŷ1, ŷ2,… , ŷn)

T The queried/classified labels Algorithm output
ST Small block threshold Algorithm setting
rt Cutoff distance ratio Algorithm setting
dc Cutoff distance Algorithm setting
qi The proportion of queried instances Algorithm input
qr The proportion of representative instances Algorithm setting
� The set of queried instances Algorithm output
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applications because the number of queries is usually insuf-
ficient. Third, the classification accuracy only accounts for 
classified instances.

2.3 � Revised clustering techniques

Our algorithm is based on six popular clustering techniques. 
These include two prototype-based techniques (kMeans [26] 
and FCM [27]), two density-based techniques (DBScan [29] 
and DP with Guassian kernel [25]), one hierarchical tech-
nique (Hierarchical [28]), and one graph-based technique 
(RW [30]). Instead of explaining them from the very begin-
ning, we will focus on the following issues: 

(1)	 How to revise the techniques for binary splitting shown 
in Fig. 1b?

(2)	 For big datasets, how to decrease the space and/or time 
complexity?

(3)	 How to initialize clustering centers if needed? and
(4)	 How to balance clusters if needed?

In the following context, the current block will be denoted 
by � , and the sub-blocks will be denoted by �1 and �2 , 
respectively.

2.3.1 � Prototype‑based techniques

kMeans and fuzzy c-means (FCM) are popular prototype-
based clustering techniques. Both require some initial cent-
ers, which often affect the results. Since two initial centers 
are required, we would like to choose the pair of instances 
with the maximal distance for this purpose. That is

where dij is the distance between �i and �j . The time com-
plexity of computing dij is O(m) if we use simple measures 
such as Manhattan and Euclidean distance. Hence the time 
complexity of Eq. (1) is O(m|�|2) = O(mn2) , which is rather 
high.

In reality, a pair of far enough instances usually helps to 
obtain good clusters. It is unnecessary to find the instance 
pair with the maximal distance. Here we design an alterna-
tive approach. We randomly choose some pairs of instances 
from � to form

The pair with the maximal distance in P is

(1)(�i∗ , �j∗ ) = argmax
(i,j)∈�×�

dij,

(2)P ⊆ � × �.

(3)(�i∗ , �j∗ ) = argmax
(i,j)∈P

dij.

In this way, the time complexity is reduced to O(m|P|) . In 
our experimentation, |P| = 10|�| , and the time complexity 
is O(mn).

2.3.2 � Density‑based techniques

Density-based techniques [25, 29] require the computation 
of the density of each instance. There are two popular ker-
nels, one is cutoff, and the other is Gaussian. With the cutoff 
kernel, the neighborhood of �i is

where dc is the neighborhood distance threshold. The local 
density of �i is

where | ⋅ | indicates the cardinality of a set.
With the Gaussian kernel, the local density of �i is rede-

fined as

The cutoff kernel only considers the neighborhood, while 
the Gaussian kernel mainly considers the neighborhood. 
The cutoff kernel produces an integer value density, while 
the Gaussian kernel produces a real value density. The cut-
off kernel often produces the same density for different 
instances, making the master tree sensitive to data order, 
which is rarely faced by the Gaussian kernel.

Now we consider the time complexity of density com-
putation. The time complexity of computing dij is O(m). 
According to Eqs. (4), (5) and (6), the time complexity of 
computing the instance density is O(mn) with either kernel. 
To compute the density of all instances, the time complexity 
will be O(mn2) , which is rather high.

In applications, there is essentially no need to con-
sider instances far from the current one. Hence we pro-
pose the following approach. First, the dataset is clustered 
into ⌊n∕n�⌋ blocks using the kMeans algorithm. Since 
kMeans only iterates a few rounds, the time complexity is 
O(mnn∕n�) = O(mn2∕n�) . Second, when computing the den-
sity of an instance, we only consider instances in the same 
block. The time complexity is O(mn�) . So the time complex-
ity of computing the density of all instances is O(mnn�) . If 
we set n� =

√
n , the total time complexity will be reduced 

to O(mn(n∕n� + n�)) = O(mn1.5).
With the cutoff kernel, this acceleration method may pro-

duce a density value that is slightly different from the origi-
nal definition. With the Gaussian kernel, there will always 
be small differences. Fortunately, for our learning task, such 

(4)�i = {j ≠ i|dij ≤ dc},

(5)�i = |�i|,

(6)�i =
∑

j≠i

e
−
(

dij

dc

)2

.
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difference rarely influences the final results especially when 
n is big.

Now we discuss some implementation issues of DBScan. 
Instance �i is called a core iff

where MinPts is the density threshold.
The setting of dc and MinPts is an important issue. In our 

implementation, MinPts =
√
��� + 1 where � is the current 

block. Similar to Eq. (3), to save the runtime, we set

where rt ∈ (0, 1) is a distance ratio with an initial value such 
as 0.1. If there is no core, we will increase rt to 1.5rt until at 
least one core exists.

DBScan generates a number of clusters. To obtain exactly 
two clusters, the largest cluster forms �1 , and �2 = � ⧵ �1.

For density peaks [25], we have some more issues to han-
dle. Let msi = {j|𝜌j > 𝜌i} be the set of instances with higher 
density than �i . The master of �i is

With mi , we organize all instances using a tree, where the 
master of �i is its parent. This tree, which will be called the 
master tree, will be used in the algorithm. The distance to 
master is

The representativeness of �i is measured by [10]

To split � into �1 and �2 , we sort labeled instances in � in 
descending order according to �i . Let the label of the first 
instance be lf. Let further the first instance with label dif-
ferent from lf be �f  . �f  and all its offsprings in � form �1 . 
Naturally, �2 = � ⧵ �1.

Note that for each block, we will build a new master tree. 
However, the density of each instance will not be recom-
puted. The reason is that pairwise distance computation is 
very time consuming, and recomputing is unnecessary.

We have tested two versions of the density peaks cluster-
ing technique based on cutoff and Gaussian kernels, respec-
tively. It is observed that the cutoff kernel rarely defeats the 
Gaussian kernel. Hence we will only use the Gaussian kernel 
in our experimentation.

2.3.3 � Hierarchical technique

The hierarchical clustering technique works in a bottom-up 
manner. Let �i and �j be two blocks, and their centers be 

(7)�i ≥ MinPts,

(8)dc = rt × max
(i,j)∈P

dij,

(9)mi = argmin
j∈msi

dij.

(10)�i = dimi
= min

j∈msi
dij.

(11)�i = �i�i.

�′
i
 and �′

j
 , respectively. Here �′

i
 and �′

j
 may not be true data 

points. The distance between �1 and �2 is defined as the 
distance between �′

i
 and �′

j
.

Let B = {�1,�2,… ,�n� } be the current round set 
of blocks. At the beginning, �i = {�i} for 1 ≤ i ≤ n and 
n� = n . Let B′ be the next round set of blocks initialized 
as ∅ . One round of merging repeats the following two 
steps ⌊ n′

2
⌋ times: Step 1. Take out �i and �j from B such 

that their distance is minimal. B = B ⧵ {�i,�j} . Step 2. 
B
� = B

� ∪ {�i ∪ �j} . If ⌊
n′

2
⌋ ≠ ⌈ n′

2
⌉ , the last element of B is 

added to B′ directly.
In the first round, the n nodes are merged into ⌈ n

2
⌉ blocks. 

In the following rounds, the current n′ blocks are merged into 
⌈ n′

2
⌉ bigger ones. In our implementation, the process stops 

when there are exactly 2 blocks.

2.4 � Graph‑based technique

In graph-based techniques, the data is organized as a 
weighted graph, where each edge represents a direct con-
nection between nodes (i.e., instances). To use this tech-
nique, we should first construct a weighted graph for a data 
matrix, as defined in the beginning of this section. During 
the learning process, we should construct a weighted graph 
for the current block �.

For instance �i , we find out its k nearest neighbors to 
build direct connections. In our experiments, we set k = 2 . 
Let instance �j be one of the k nearest neighbors. The edge 
between �i and �j has the weight

where MW is a constant which is set to 10,000 in our experi-
mentation. By assigning 0 to all other weights, we obtain the 
initial adjacent matrix W = (wij)|�|×|�|.

Next, we let wij = max{wij,wji} . In this way, W becomes 
a symmetric matrix, which is the standard input for graph-
based techniques.

We adopt the simple version of random walks described 
in [30]. The number of blocks cannot be controlled by the 
algorithm. Hence in our implementation, the largest block 
is assigned to �1 , and the other instances form �2 = � − �1.

3 � The algorithm

In this section, we first present the algorithm framework. 
Then we analyze some key issues of the algorithm, including 
instance selection strategies, clustering quality evaluation, 
and other special case handling techniques.

(12)wij =

{
MW, if dij = 0;

1∕dij, otherwise,
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3.1 � Algorithm description

Algorithm 1 Active learning through clustering selection (TACS)
Input: A data matrix X, cutoff distance ratio rt, the proportion of queried instances qi,
the proportion of representative instances qr, small block threshold ST .
Output: Queried/classified labels ŷ = (ŷ1, . . . , ŷn).

1: B = [1..n]; // Initialized as the block containing all instances
2: ŷ = (−1, . . . ,−1)n; //Initialized as unknown
3: Nq = �n× qi�; //Number of queries
4: Nr = �Nq × qr�; //Number of representatives

// Step 1. Select representative instances to label
5: Compute ρi for 1 ≤ i ≤ n according to Eqs. (6) and 8;
6: Compute δi for 1 ≤ i ≤ n according to Eq. (10);
7: γ ← (γ1, · · · , γN ) ← ρ · δ; //Hadamard product for representativeness
8: Query N = Nr instances with the highest γi; // Current number of queries

//Step 2. Query informative instances and classify
9: q.enqueue(B); // The original queue with only one block
10: while (q �= ∅ && N ≤ Nq) do
11: B = q.dequeue(); //Take a block from the head
12: if (|B| ≤ ST ) then
13: continue; //Process small blocks later
14: end if
15: Query up to

√
|B| instances according to Eq. (14) or (15) and update N ;

16: if (B is pure) then
17: For all i ∈ B, li = the label of queried instances in the block;
18: continue; //No need to split further
19: end if
20: Cluster B to (B1,B2) using the current best algorithm;
21: q.enqueue(B1);
22: q.enqueue(B2);
23: end while
24: if (N < Nq) then
25: query (Nq −N) unlabeled instances according to γi;
26: end if
27: Classify unlabeled instances using kNN;
28: return ŷ ← [ŷi]n×1;

Algorithm 1 lists the TACS algorithm. The initialization is 
implemented in Lines 1–3. Line 1 sets the current block � 
as the whole dataset. Line 2 indicates that all instances are 
unlabeled. Line 3 calculates the number of queries Nq . Line 
4 calculates the number of representatives Nr . The user does 
not specify Nq and Nr directly, since qi is easier specified by 
the users, and qr can be dataset independent.

Instance selection strategies are implemented in Lines 
5–7, 14 and 24. Inspired by the density peaks algorithm 
[25], the representativeness of an instance is qualified by 
the multiplex of its density and distance. The informative-
ness of an instance is qualified by the total distance from 
labeled instances of the same block. These measures will be 
discussed in more detail in Sect. 3.2.

According to the tree structure of the learning process, 
there are two possible implementations. One is depth-first 
using a stack, while the other is breadth-first using a queue. 
Since there is often lack of labels, the depth-first approach 
tends to label small blocks of some branches. In contrast, 
the breadth-first approach distributes labels more evenly to 
different big blocks. Therefore, we choose it for balanced 
query. Line 9 initializes the queue. Line 10 judges whether 
all impure blocks are processed. Line 11 takes a block out of 
the queue. Lines 21–22 append two sub-blocks to the queue.

There are two pruning techniques. The first one deals with 
small blocks. As indicated in Lines 12–14, small blocks are 
abandoned in the while loop. This is because small blocks 
are not suitable for clustering-based active learning. The sec-
ond one deals with lack of labels. As indicated by the second 

condition of Line 10, if the number of queries reaches Nq , 
remaining blocks in q are suspended. Due to these pruning 
techniques, some instances are still not handled. They are 
classified using kNN, as indicated in Line 27.

3.2 � Instance selection strategies

As shown in Line 15 of the algorithm, in each round, the 
active learner should select a number of critical instances to 
query. This is done by sorting unlabeled instances according 
to their representativeness in descending order. In the cur-
rent block � , let the set of labeled instances be �l and the 
other part be �u . We propose two strategies to calculate the 
representativeness of each instance � ∈ �u.

The local density �i of �i ∈ �u is computed in Eq. (6). As 
discussed in Sect. 2.3.2, it is adopted directly for reducing 
time complexity. The distance to master is redefined as

With the density peak strategy, the representativeness of �i 
in � is measured by

With the distance-sum-based strategy, the representativeness 
of �i in the current block is measured by

In a word, the density peak strategy tends to query central 
instances, while the distance-sum-based strategy tends to 
query informative ones.

3.3 � Clustering quality evaluation

There are both internal and external methods to evaluate the 
quality of a clustering algorithm. Internal methods do not 
rely on any class label, while external methods rely on the 
labels of all instances. During the active learning process, 
parts of the labels are queried. We now propose a new meas-
ure to evaluate the quality of clustering.

Suppose that with the clustering algorithm, a block � ⊆ � 
is partitioned into a set of blocks B = {�1,�2,…�k} , i.e., 
∪k
i=1

�i = � and ∀1 ≤ i < j ≤ k , �i ∩ �j = � . Let the set of 
labeled instances in �i be �i for any 1 ≤ i ≤ k.

Given xl ∈ �i ⧵�i , the label of xl is unknown. Let 
n(xl,�i) be the nearest neighbor of xl in �i , namely

Inspired by 1 nearest neighbor (1NN), let d�(x) = d(n(x,�i)) , 
now every instance in �i ⧵�i has a pseudo label.

(13)𝛿i(�) = min
j∈�,𝜌j>𝜌i

dij.

(14)�i(�) = �i�i(�).

(15)dsi(�l) =
∑

�j∈�l

dij.

(16)n(xl,�i) = argmin
xm∈�i

dlm.



1039International Journal of Machine Learning and Cybernetics (2020) 11:1033–1046	

1 3

The number of actual labels of the jth class in �i is

and the number of pseudo labels of the jth class in �i is

Let

where � ∈ [0, 1] is a weight, and

The weighted information entropy of �i is given by

Finally, the weighted information entropy of B is given by

Now we discuss the computation of information entropy 
through a running example.

Example 1  As illustrated in Fig. 2, � is partitioned into 
B = {�1,�2} . There are only positive labels in �1 , so 
the other 6 instances have positive pseudo labels, and 
H0.7(�1) = 0.

There are 12 unlabeled instances in �2 , 4 are close to the 
positive and 8 are close to the negative instance. So there 
will be 5 positive and 2 negative labels, including both 
pseudo and actual ones. We have H0.7(�2) = −

1+8×0.7

2+12×0.7
log

1+8×0.7

2+12×0.7
−

1+4×0.7

2+12×0.7
log

1+4×0.7

2+12×0.7
= −

6.6

10.4
log

6.6

10.4
+ −

3.8

10.4
log

3.8

10.4
= 0.285.

Finally, H0.7(B) = 0 +
2+12×0.7

4+18×0.7
H(�2) = 0 + 0.178 = 0.178.

3.4 � Other issues

Three more issues are handled as follows. 

(1)	 How to control the number of queries? According to the 
problem statement, the maximal number of queries is 
⌊n × qi⌋ . Therefore, the while loop should terminate 
as long as the given query runs out. In fact, Line 15 
should be extended in the algorithm implementation 
to enable loop termination.

(17)l(�i, j) = |{x ∈ �i|d(x) = lj}|,

(18)l�(�i, j) = |{x ∈ �i ⧵�i|d�(x) = lj}|.

(19)f�(�i, j) =
l(�i, j) + �l�(�i, j)

|�i| + �|�i ⧵�i|
,

(20)g�(�i, j) =

{
0, if f (�i, j) = 0;

f (�i, j) log f (�i, j), otherwise.

(21)H�(�i) = −

c∑

j=1

g(�i, j).

(22)H�(B) =

k∑

i=1

|�i|
|�| H�(�i).

(2)	 How to classify small cluster blocks? The generation 
of small cluster blocks indicates that our approach is 
not suitable for them. Hence we left them alone in the 
while loop, and use kNN to classify them at the end of 
the algorithm.

(3)	 How to classify the remaining unprocessed instances? 
With limited number of queries, after the while loop, 
there are often some unprocessed blocks. We also use 
kNN to classify instances in them. Note that the neigh-
bors are searched globally instead of within the current 
block.

4 � Experiments

In this section, we report the results of experiments to 
analyze the effectiveness of the TACS algorithm. Through 
the experiments, we aim to answer 

(1)	 Is the TACS algorithm more accurate than popular 
supervised classification algorithms?

(2)	 Is the TACS algorithm more accurate than popular 
active learning algorithms?

(3)	 Is the TACS algorithm more accurate than single clus-
tering technique based algorithms?

(4)	 Can the TACS algorithm select appropriate base clus-
tering techniques?

(5)	 Is the TACS algorithm efficient?

The experimental environment is a Windows 10 64-bit oper-
ating system, 8 GB memory, Intel (R) Core 2 Quad CPU 
Q9500@2.83 GHz. The source code with a graphical user 
interface (GUI) written in Java is available at github.com/
fansmale/tacs.

B
B1

B2
B

B1

B2

Fig. 2   An example of data and label distribution
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4.1 � Dataset and parameter setting

Table 2 summarizes 12 datasets used for our experiments. 
Three of the synthetic datasets come from [25], and the other 
10 are from the UC Irvine ML repository [34]. The appli-
cation area ranges from biological to life. The number of 
attributes for a dataset ranges from 2 to 10,000.

The initial value of rt is also presented in the table. It 
was discussed in Eq. (8). Some datasets are sorted by class 
label. For example, in the Iris dataset, the first 50 instances 
have the label “Iris-setosa”, the second 50 instances have 
the label “Iris-versicolor”, and the last 50 instances have 
the label “Iris-virginica”. Other datasets such as Spiral have 
the same characteristics. Unfortunately, the result may be 
influenced by the order. One reason is that when multiple 
instances have the highest (lowest) value, we tend to use the 
first instance. To break this bias, we reordered the dataset 
before the learning process. This is fulfilled by randomly 
swapping some instance pairs. Through this operation, the 
results tend to be different in different runs. Memory over-
flow occurs while testing TACS and comparing algorithms 
on large datasets. Hence for DLA, we sampled 1% of the 
instances to form new datasets. Class distribution is main-
tained after sampling.

4.2 � Comparison with supervised classification 
algorithms

Table 3 compares TACS with nine popular supervised clas-
sification algorithms. These algorithms were implemented in 
the Weka platform1. C4.5 is the implementation of the C4.5 
algorithm [31, 35]. NB is the implementation of the Naïve 

Bayes algorithm [32]. CVR is the implementation of Clas-
sification Via Regression algorithm [36]. RF is the imple-
mentation of Random Forest algorithm [37]. ABM is the 
implementation of Discrete AdaBoost algorithm [38]. LB is 
the implementation of LogitBoost algorithm [39]. Bagging 
is the implementation of Bagging algorithm [31]. MCC is 
the implementation of Multiple Class Classifier algorithm 
[40]. FC is the implementation of Filtered Classifier algo-
rithm [41].

For these algorithms, we randomly select the training set 
with the size indicated in Table 2. The average ranks were 
obtained by applying a Friedman test [42], which is the most 
well-known non-parametric test. The Friedman test analyzes 
whether there are significant differences among the algo-
rithms. The best results are highlighted in boldface. Here 
are some detailed observations. (a) TACS generally out-
performed existing supervised classification algorithms. In 
particular, the TACS algorithm had the highest accuracy on 
seven datasets. Through statistical analysis, the mean rank is 
2.16. For the Spiral datasets, the accuracy reached 100%. For 
the other eleven algorithms, the accuracy did not reach 100% 
with only 10% labels. (b) There were a few cases in which 
TACS performed worse than some of the other algorithms. 
For example, the NB algorithm had a better accuracy than 
TACS on the Twonorm and DLA datasets. However, the 
difference in the classification accuracy was less than 1%.

4.3 � Comparison with other active learning 
algorithms

In this section, we compare the TACS algorithm with three 
state-of-the-art active learning algorithms, including Query-
by-committee (QBC) [6], kernel version of QBC algorithm 
(KQBC) [43], and MAED [33]. QBC is probably the most 
noticeable algorithm in active learning [6]. It is an integrated 
approach that requires the establishment of a voting commit-
tee [5]. Gilad-Bachrach et al. [43] presented the KQBC algo-
rithm to decrease the runtime. MAED [33] is a uncertainty-
based active learning algorithm. It minimizes the expected 
error to select the most discriminative instances for labeling.

For QBC, KQBC, and MAED, we adopted the source 
code provided by the authors and the best settings given in 
reference [6, 33, 43] to ensure the best performance. For 
KQBC and MAED, the code was run on the Matlab plat-
form, while for QBC, the code was on the JAVA platform. 
QBC and KQBC use integrated classifiers, including KNN, 
J48 and NB. The final result is determined by the relevant 
strategic vote.

Figure 3 describes the learning curves of the TACS algo-
rithm and three active learning algorithms. Each value is the 
average of 50 runs of the corresponding algorithm. Some 
detailed observations are described as follows. (a) TACS 
converges faster than other algorithms. For example, for the 

Table 2   Dataset information

Dataset |�| |�| Area rt qi

Seeds 210 8 Life 0.19 0.1
Thyroid 215 6 Life 0.25 0.1
Heart 270 14 Life 0.05 0.1
Spiral 312 3 Synthetic 0.3 0.1
Ionosphere 350 35 Physical 0.04 0.1
R15 600 3 Synthetic 0.2 0.1
USps_2_6 2200 257 Image 0.2 0.1
Waveform 5000 22 Physical 0.1 0.1
Credit 5987 66 Financial 0.35 0.1
Twonorm 7400 21 Synthetic 0.3 0.1
DLA0.1 16,563 18 Society 0.05 0.1
Letter 20,000 17 Computer 0.4 0.1

1  www.weka.com.

http://www.weka.com
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Flame dataset, the classification accuracy reached 100% 
accuracy by labeling only 10% of the instances, while the 
QBC, MAED and KQBC algorithms were unable to reach 
100% accuracy. This indicates that TACS is more appropri-
ate for the cold-start situation. (b) In 9 out of 12 datasets, 
TACS is more accurate than other algorithms. (c) There are 
also some cases that TACS performs worse. For example, 
MAED outperforms TACS in the R15, Heart and USps_2_6 
datasets.

4.4 � Comparison with clustering‑based active 
learning algorithms

We compare the new approach with the ones based on only 
one clustering technique. Table 4 shows the accuracy of the 
TACS algorithm with six clustering-based active learning 
algorithms. Each algorithm runs ten times to obtain aver-
age accuracy and variance. These six methods adopt the 
same active learning strategy as TACS. The difference is 
that the six methods adopt a single classical clustering algo-
rithm, while the TACS adopts a clustering selection strategy. 
Table 5 shows the average number of times each clustering 
technique was selected. It not only shows how often each 
clustering technique is used, but also indicates the actual 
number of iterations of the active learning process.

From Tables 4 and 5, we observe that the TACS algorithm 
selects the appropriate base clustering techniques. Accord-
ing to the Friedman test, TACS generally outperforms the 
other algorithms, with an average rank of 1.58, which is 
the highest on these datasets. For each of the 12 datasets, 
TACS achieved the best performance on eight of them, and 
kMeans achieved good performance on the Twonorm, and 
Ionosphere datasets. In some cases, different clustering tech-
niques produce the best result for the given block and respec-
tive counters are all added by 1.

4.5 � Algorithm efficiency

The efficiency of TACS depends mainly on the base clus-
tering techniques. As shown in Table 5, for DLA and Let-
ter datasets, TACS only needs to run less than 100 rounds 
of clustering techniques. Therefore, the time complexity of 
TACS can be regarded as approximately the same as the 
sum of base clustering techniques. Specifically, in our imple-
mentation, the time complexity is O(mn2) when RW is not 
selected.

Figure 4 depicts the runtime of the DLA dataset with the 
change of the number of instances n. TACS indicates that 
these five clustering techniques are employed for selection. 
Other versions are for specific clustering techniques. For 
example, TACS-kMeans indicates that only kMeans is avail-
able for splitting each block. Note that RW was not selected 
for this experiment for two reasons. (a) RW is very time con-
suming since we need to construct a graph from the original 
data. Hence it is inappropriate for large datasets. (b) RW 
rarely outperforms other clustering techniques. This issue 
has been analyzed in more detail in Sect. 4.4.

Here are some detailed observations. (a) When the 
number of instances is doubled, the runtime will increase 
to about 4 times. This shows that the time complexity is 
proportion to O(n2) . In other words, the TACS algorithm is 
scalable. (b) Different versions share the same trend, show-
ing the effectiveness of the acceleration techniques presented 
in Sect. 2. (c) The runtime of TACS is smaller than the sum 
of other versions. This is due to the fact that some overhead 
is shared.

Table 3   Accuracy comparison 
with nine supervised algorithms 
(in %)

The best and second best results are highlighted in boldface and italic, respectively

Dataset C4.5 NB CVR RF ABM LB Bagging MCC FC TACS

Seeds 50.26 60.84 82.01 84.65 79.89 82.53 57.67 85.18 50.26 91.53
Thyroid 76.68 93.78 77.72 87.56 86.52 90.15 90.67 84.97 69.43 95.20
Heart 73.66 74.48 72.83 78.60 76.13 74.48 70.78 74.48 71.60 79.36
Spiral 55.51 34.87 40.21 70.10 32.38 68.32 49.11 34.87 32.38 100.00
Ionosphere 86.34 84.76 80.95 90.79 87.93 86.03 75.87 85.39 86.03 87.01
R15 73.88 89.44 71.29 92.59 12.03 75.00 88.88 63.51 82.96 98.58
USps_2_6 88.08 93.48 88.28 95.90 93.98 92.92 93.08 95.85 86.46 96.36
Waveform 81.64 85.08 85.51 88.60 82.75 85.64 86.00 86.80 83.71 87.83
Credit 77.72 68.55 84.66 84.07 78.65 84.00 82.90 82.20 81.03 82.54
Twonorm 80.76 97.67 86.24 95.90 85.58 85.57 90.16 97.52 79.60 96.67
DLA0.1 91.42 77.78 91.99 96.90 54.22 90.42 92.61 83.31 86.28 94.36
Letter 71.43 62.83 77.43 85.07 6.80 70.79 75.67 69.88 65.99 80.06
Meanrank 7.08 5.66 5.75 2.16 7.50 4.75 5.50 5.91 7.16 2.16
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Fig. 3   Comparison of the learning curve of TACS and three popular active learning algorithms
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4.6 � Discussions

Now we can answer the questions proposed at the beginning 
of this section. 

(1)	 TACS is more accurate than popular supervised clas-
sification algorithms, including C4.5, NB, RF, etc. This 
is validated by Table 3. Unfortunately, on some data-
sets such as Ionosphere, it is significantly worse than 
some other algorithms such as RF. The reason may be 
that clustering techniques do not perform well on those 
datasets.

(2)	 TACS is more accurate than popular active learning 
algorithms, including QBC, MAED, and KQBC. This 
is validated by Fig. 3. It was also defeated by MAED 
on the Heart dataset. The reason may be that for some 

Table 4   Accuracy comparison 
with algorithms based on single 
clustering technique (mean ± 
std in %)

The best and second best results are highlighted in boldface and italic, respectively

Dataset DP-Gaussian kMeans Hierarchical DBScan FCM RW TACS

Seeds 90.47 ±0.00 90.31 ±0.94 89.36 ±1.55 90.31 ±0.24 85.18 ±1.91 90.31 ±0.24 91.53 ±1.56
Thyroid 93.91 ±0.44 95.00 ±0.23 93.35 ±0.90 93.81 ±0.46 94.22 ±1.27 93.71 ±0.50 95.20 ±1.30
Heart 76.83 ±0.86 76.83 ±0.86 76.83 ±0.86 76.25 ±0.78 79.13 ±1.07 78.47 ±1.47 78.93 ±0.73
Spiral 100.00 ±0.00 79.60 ±1.87 78.57 ±4.16 69.78 ±1.85 81.77 ±3.44 58.71 ±0.00 100.00 ±0.00
Ionosphere 85.39 ±0.00 87.04 ±0.98 86.44 ±2.16 83.68 ±0.29 85.39 ±2.00 83.74 ±0.31 87.01 ±0.55
R15 98.88 ±0.00 97.49 ±0.49 97.81 ±0.89 96.46 ±1.15 97.50 ±0.78 98.20 ±0.67 98.57 ±0.69
USps_2_6 96.34 ±0.40 94.70 ±0.49 91.05 ±4.23 86.18 ±1.55 81.33 ±12.59 96.01 ±1.88 97.62 ±1.37
Waveform 85.51 ±0.66 86.96 ±0.35 86.20 ±0.44 84.11 ±0.37 85.79 ±0.83 84.69 ±0.34 87.75 ±0.51
Credit 80.39 ±1.50 80.43 ±0.61 80.68 ±0.75 80.25 ±1.40 79.75 ±1.51 80.47 ±1.22 82.54 ±0.95
Twonorm 94.26 ±1.48 97.54 ±0.22 94.62 ±0.94 88.25 ±2.20 94.55 ±0.33 90.22 ±4.48 96.45 ±1.63
DLA0.1 90.69 ±2.02 92.63 ±1.22 94.60 ±0.86 91.30 ±0.36 87.86 ±3.40 87.96 ±0.94 94.36 ±0.67
Letter 69.45 ±2.35 76.49 ±0.78 68.66 ±0.65 65.85 ±1.76 65.01 ±1.93 62.79 ±1.57 80.06 ±1.03
Meanrank 3.33 3.16 4.00 6.00 4.83 4.66 1.33

Table 5   The average number of 
times each clustering technique 
was selected

The highest and second highest values are highlighted in boldface and italic, respectively

Dataset DP-Gaussian kMeans Hierarchical DBScan FCM RW

Seeds 0.1 0.3 0.4 0.0 0.3 0.0
Thyroid 0.6 0.2 0.4 0.0 0.1 0.0
Heart 0.2 0.9 0.4 0.0 0.3 0.0
Spiral 2.0 0.0 0.0 0.0 0.0 0.0
Ionosphere 0.9 0.5 0.1 0.0 0.5 0.0
R15 1.6 1.7 0.5 0.8 1.1 0.0
USps_2_6 0.9 0.5 0.1 0.0 0.2 1.2
Waveform 31.6 25.4 26.1 0.6 23.3 0.2
Credit 30.6 16.2 25.9 2.7 17.5 3.6
Twonorm 11.4 7.6 8.9 0.0 7.0 0.6
DLA0.1 62.8 28.6 81.8 14.2 20.4 0.0
Letter 34.4 31.2 26.2 10.2 13.0 0.3
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Fig. 4   The runtime of TACS with different base clustering techniques
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datasets, informative instances are more important than 
representative ones.

(3)	 TACS is more accurate than single clustering technique 
based algorithms. This is validated by Table 4. It is the 
best, or the second best one on all datasets.

(4)	 In most cases, TACS can find out the appropriate base 
clustering techniques. This is validated by Table 5.

(5)	 TACS is efficient as long as we do not employ ineffi-
cient clustering techniques. This is validated by Table 5 
and Fig. 4.

5 � Related work

This section discusses some related work, including active 
learning, clustering-based active learning and three-
way decision. Their relationships with this work will be 
emphasized.

5.1 � Active learning

Active learning [4, 44] is a special form of semi-supervised 
learning [45, 46], which in turn is a special form of classifi-
cation. Classification tasks typically require a large amount 
of labeled data to form a training set for building a classi-
fier. However, labeled data are difficult, expensive, or time 
consuming to obtain [46]. Semi-supervised learning uses 
abundant unlabeled data with a few labeled ones to build a 
better classifier. When man–machine interaction is available, 
active learning obtains key tags to further improve classifica-
tion accuracy.

The key issue for active learning is: which instances are 
critical and therefore should be labeled? General answers 
include informative ones [6, 47], diverse ones [7, 48], rep-
resentative ones [10, 49], and their combinations [11, 12, 
48]. Uncertain sampling [50], Query-by-committee [6], 
and query by margin [51] are classical approaches to find 
informative instances. Fuzzy-rough approaches [7, 48] have 
been developed to find diverse ones. Clustering-based active 
learning [10, 49], as the basis of this work, tends to find 
representative ones.

There are a number of typical active learning scenarios. 
The classical scenario [10] specifies the number of labels 
provided by oracle. It is explicitly defined in Problem 1. The 
cost-sensitive active learning scenario [13] involves query 
cost and misclassification costs. The learning task is to 
achieve a trade-off between them to minimize the total cost. 
The active learning from data streams scenario [52] involves 
dynamic nature of the data. The learner should query 
instances based on the data observed so far to maximize 
the classification accuracy on future instances. Moreover, 

instances usually should be queried immediately to save the 
storage.

5.2 � Three‑way decision

Three-way decision [15] is a general methodology for prob-
lem solving especially in data mining and machine learn-
ing. It was rooted in decision-theoretic rough set model 
[53], while be more independent since 2010 [15], and quite 
matured in 2018 with the TAO model [16]. Liu et al. [54] 
enriched the theory to deal with incomplete information sys-
tems. Hu [55] established three-way decision space based on 
the axiomatic definitions for decision measurement, decision 
condition and evaluation function. Fang et al. [56] discussed 
cost-sensitive approximate attribute reduction with three-
way decisions. Zhang et al. [57] introduced a general model 
of decision theoretic three-way approximations of fuzzy sets 
based on the particle swarm optimization algorithm.

It has been connected with other theories to form new 
ones. Li et al. [58] investigated three-way cognitive concept 
learning from the perspective of multigranularity informa-
tion fusion. Shivhare et al. [59] explored the process of 
three-way cognitive concept learning to achieve a more pre-
cise recall. Qi et al. [60] proposed three-way formal concept 
analysis to reveal more detailed information from formal 
contexts. Zhi et al. [61] extended dual formal concept with 
three-way decision.

It has also inspired the presentation or solution of 
machine learning tasks. Zhang et al. [62] developed a three-
way regression approach for recommender systems. Yu 
et al. [63] proposed an active three-way clustering method 
via low-rank matrices for multi-view data. Li et al. [17] 
designed deep neural network based sequential granular fea-
ture extraction method for image processing. Jia et al. [64] 
applied the three-way decision-theoretic rough set model to 
address multi-class cost-sensitive learning problems. Min 
et al. [65] introduced tri-patterns and provided an efficient 
mining algorithm for different types of sequential data.

Three-decision was first applied to active learning in [66]. 
Then three-way active learning served as a special form of 
clustering-based active learning. Wang et al. [10] introduced 
the first three-way active learning algorithm. It can be viewed 
as a special case of the TACS algorithm where the DB-Gauss-
ian clustering technique is available. Wu et al. [13] studied 
the cost-sensitive active learning scenario under the uniform 
label distribution assumption. Wang et al. [14] explored dif-
ferent assumptions further and established a statistical model. 
As mentioned in the introduction part, there are three pos-
sible actions for each block. Due to the iterative process, the 
paradigm can be better represented by sequential three-way 
decision [17, 18].
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6 � Conclusions and further work

This study has proposed the TACS algorithm to dynamically 
select the appropriate clustering in the active learning pro-
cess. A number of techniques were discussed, including clus-
ter selection, query balancing, and tree pruning. Experimental 
results verify the effectiveness of the algorithm.

The following research topics deserve further investigation: 

(1)	 More clustering techniques in the algorithm frame-
work. Currently, only a few clustering techniques have 
been incorporated into TACS. Other techniques can 
be incorporated to accommodate data with different 
shapes. In addition, these techniques should be fine-
tuned or modified to fit the framework of the algorithm.

(2)	 Better evaluation measures to select clustering tech-
niques. TACS uses weighted entropy to evaluate the 
quality of clustering. New measures based on the Gini 
indicator might be good alternatives. More sophisti-
cated measures can be designed to consider other infor-
mation such as block size ratios and data distribution.

(3)	 Clustering ensemble techniques for active learning. 
TACS only selects the currently “best” clustering tech-
nique. By designing cluster ensemble techniques, new 
blocks can be obtained from these different techniques. 
Hence it is possible to obtain more stable blocks of bet-
ter quality. Moreover, different classification strategies 
can be employed for instances inside or outside stable 
blocks.

In summary, TACS is a general algorithm framework that can 
be enriched in the future.
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