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Abstract
Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and 
more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update 
attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus 
on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncer-
tainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for 
incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for 
incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. 
Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency 
of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete 
decision systems.

Keywords Incremental attribute reduction · Knowledge granularity · Incomplete decision system · Rough sets

1 Introduction

Rough set theory [1], as one of the effective tools to handle 
uncertainty requiring no preliminary or additional informa-
tion about data, has been applied successfully in various 
applications, such as machine learning [2–4], rule min-
ing [5], forecast [6], decision supporting [7–9], knowledge 
engineering [10, 11], disease diagnosis [12–14], genetic 
engineering [15, 16], uncertainty modelling [17–21], and 
other applications [22–25].

Attribute reduction, also called attribute selection or fea-
ture selection, as one of the most important core applications 
of rough sets, can select a few attributes with high importance 
from all attributes of information systems for many practical 
applications. Selected attributes are retained and unselected 
attributes are removed, the process of which is treated as a 
pre-processing stage of data analysis without decreasing the 
accuracy of classification. Many researchers have deeply 

studied non-incremental attribute reduction, also called clas-
sic attribute reduction or static attribute reduction, and have 
obtained many achievements. In general, non-incremental 
attribute reduction approaches can be divided into four cat-
egories: methods based on positive domain [26, 27], meth-
ods based on discernibility matrix [28–32], methods based 
on information entropy [15, 33, 34] and other attribute reduc-
tion methods [35–41]. For example, Fan et al. [26] presented 
systematic acceleration policies that can reduce the compu-
tational domain and optimize the computation of the posi-
tive region. Ni et al. [27] presented a novel accelerator based 
on the positive region for attribute reduction. Konecny [30] 
studied the problem of attribute reduction by using discern-
ibility matrix in various extensions of formal concept analysis. 
Wang et al. [31] proposed a new feature evaluation function 
for feature selection by using discernibility matrix. Dai and 
Tian [33] defined the concepts of knowledge information 
entropy, knowledge rough entropy, knowledge granulation and 
knowledge granularity measure in set-valued information sys-
tems and studied relationship between these concepts. Wang 
et al. [34] developed an information entropy based attribute 
reduction algorithm for data sets with dynamically varying 
data values. Dai et al. [36] put forward two new attribute 
reduction algorithms based on quick neighbor inconsistent 
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pairs, which can reduce the time for finding a reduct. Wang 
et al. [40] introduced distance measures into fuzzy rough sets 
by constructing a fuzzy rough set model based on distance 
measure with a fixed parameter and proposed a greedy conver-
gent algorithm for attribute reduction. Dai et al. [37] proposed 
two attribute selection algorithms from the viewpoint of the 
object pair which can ignore the object pairs that were already 
discerned by the selected attribute subsets and needed only to 
deal with part of object pairs instead of the whole object pairs 
from the discourse.

Unlike non-incremental reduction which needs to be calcu-
lated from scratch, incremental reduction approaches can use 
the previous reduction results which have been obtained from 
the original decision system, to get new reduct of the changed 
decision system. This advantage of incremental reduction 
approaches greatly satisfies current situation that data sets 
usually vary with time, which has aroused the interest of 
researchers. There are several useful findings that can handle 
three conditions: variation of object sets [42–47], variation of 
attribute sets [48] and variation of attribute values [49, 50]. 
For example, Yang et al. [46] presented an efficient incre-
mental algorithm which includes active sample selection pro-
cess and incremental attribute reduction process for dynamic 
data sets with increasing samples. Ma et al. [44] introduced 
a compressed binary discernibility matrix and developed an 
incremental attribute reduction algorithm for group dynamic 
data considering both situations of single dynamic object and 
group dynamic objects. Jing et al. [48]considered the variation 
of attribute sets in complete decision systems and presented 
the corresponding incremental algorithms for attribute reduc-
tion. Wei et al. [50] proposed a discernibility matrix based 
incremental attribute reduction algorithm which can obtain 
all the reducts of dynamic data. There are a few algorithms 
that can deal with more complex situations, for example, Jing 
et al. [51] developed incremental methods to update reducts 
when attributes and objects of the decision system increased 
simultaneously. Yang et al. [52] presented a unified incremen-
tal reduction algorithm to deal with three kinds of variations 
of decision systems, such as adding an object, deleting an 
object and modifying the object’s value.

Although researches on incremental attribute reduction can 
obtain reducts effectively and efficiently, they are based on 
the equivalence relation that could not be applied directly to 
incomplete decision systems with missing attribute values. 
To our best knowledge, a few achievements of the research on 
attribute reduction for incomplete decision systems have been 
obtained but not sufficient. Shu et al. [53, 54] focused on posi-
tive region-based incremental mechanisms for attribute reduc-
tion algorithms to get new attribute reducts when attribute 
values varied, attribute set varied and object set varied. Xie 
and Qin [55] introduced inconsistency degree to update reduct 
incrementally for dynamic incomplete decision and proved 
that the attribute reduction based on the inconsistency degree 

was equivalent to that based on the positive region. Luo 
et al. [56] proposed a model of dynamic probabilistic rough 
sets with incomplete data and presented incremental updating 
strategies and algorithms when adding and removing objects, 
respectively. Attribute reduction methods listed above obtain 
reducts for incomplete decision systems from the perspective 
of positive domain, information entropy or discrimination 
matrix. Zhang and Dai [57] proposed knowledge granular-
ity based incremental attribute reduction methods from the 
perspective of granular computing for incomplete decision 
systems with objects varying and obtained satisfactory effects. 
However, they only considered the situation that objects var-
ied one by one. Therefore, we investigate incremental mecha-
nisms of knowledge granularity to get the reducts efficiently 
when multiple objects are added to or removed from incom-
plete decision systems simultaneously in this paper.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews basic concepts in rough set theory and knowl-
edge granulation related concepts for incomplete decision 
systems. Section 3 investigates incremental mechanisms to 
calculate knowledge granularity for the cases of adding and 
deleting multiple objects respectively at a time and corre-
sponding reduction algorithms for incomplete decision sys-
tems. Experiments and comparisons on practical data sets 
have been conducted in Sect. 4. Section 5 presents conclu-
sions and points out our further research direction.

2  Preliminary knowledge

In this section, we review some basic concepts in rough set 
theory [1, 58], definitions of knowledge granulation, relative 
knowledge granularity, inner significance and outer signifi-
cance respectively for incomplete decision systems, which 
can be found in [33, 48, 59].

2.1  Basic concepts in rough set theory

An information system is a quadruple IIS = ⟨U,A,V , f ⟩ , where 
U denotes a non-empty finite set of objects, which is called 
the universe; A denotes a non-empty finite set of condition 
attributes; V is the union of attribute domains, V =

⋃
a∈A Va , 

where Va is the value set of attribute a, called the domain of 
a; f ∶ U × A → V is an information function which assigns 
particular values from domains of attribute to objects such as 
a ∈ A , x ∈ U , f (a, x) ∈ Va , where f(a, x) denotes the value of 
attribute a for object x. Each attribute subset B ⊆ A determines 
a binary indiscernible relation as follows:

By the relation IND(B), we obtain the partition of U denoted 
by U/IND(B) or U/B. For B ⊆ A and X ⊆ U , the lower 

(1)IND(B) =
{(

ui, uj
)
∈ U2|∀a ∈ B, a

(
ui
)
= a

(
uj
)}
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approximation and the upper approximation of X can be 
defined as follows:

where BX is a set of objects that belong to X with certainty, 
while BX is a set of objects that possibly belong to X.

A decision system is a quadruple DS = ⟨U,C ∪ D,V , f ⟩ , 
where D is the decision attribute set, C is the condition 
attribute set, and C ∩ D = � ; V is the union of attribute 
domain, i.e., V = VC ∪ VD . In general, we assume that 
D = {d} . If there exists an a ∈ A , x ∈ U such that f (a, x) is 
equal to a missing value, then the decision system is called 
an incomplete decision system (IDS). Thus, an incomplete 
decision system can be denoted as: IDS = ⟨U,C ∪ D,V , f ⟩ , 
where ∗∈ VC, ∗∉ VD.

Definition 1 [58] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, ∀B ⊆ C , the binary tolerance relations 
between objects that are possibly indiscernible in terms of 
values of attributes in B is defined as

T(B) is reflexive and symmetric, but not necessarily 
transitive.

Definition 2 [58] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, x ∈ U and B ⊆ C , the tolerance class 
of the object x with respect to attribute set B is defined by:

2.2  Knowledge granulation in incomplete decision 
systems

Definition 3 [33] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, B ⊆ C . TB(ui) is the tolerance class of 
object ui with respect to B. The knowledge granularity of B 
on U is defined as follows:

where |U| stands for the number of objects in U.

Example 1 Example for computing of the knowledge 
granularity.

Table  1 shows an incomplete decision system 
IDS = ⟨U,C ∪ D,V , f ⟩ ,  where U = {u1, u2, u3, u4, u5} , 

BX =
{
ui ∈ U|

[
ui
]
B
⊆ X

}

BX =
{
ui ∈ U|

[
ui
]
B
∩ X ≠ �

}
,

(2)
T(B) = {(x, y)|∀a ∈ B, f (a, x) = f (a, y)

∨ f (a, x) =∗ ∨f (a, y) =∗}

(3)TB(x) = {y|(x, y) ∈ T(B)}

(4)GKU(B) =
1

|U|2
|U|∑

i=1

|TB(ui)|

C = {a1, a2, a3, a4, a5} and D = {d} . According to Definition 2, 
we have TC(u1) = {u1} , TC(u2) = {u2, u4} , TC(u3) = {u3, u4} , 
TC(u4) = {u2, u3, u4} , TC(u5) = {u5} . According to Defini-
tion 3, we have GKU(C) =

1

52
(1 + 2 + 2 + 3 + 1) =

9

25
 . Simi-

larly, we can get GKU(C ∪ D) =
5

25
.

Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incomplete system, 
P,Q ⊆ C . If P ⊆ Q , then GKU(P) ≥ GKU(Q) [57]. Thus, the 
measure of knowledge granularity has the monotonicity with 
respect to attributes and is reasonable for the uncertainty 
measure in rough set theory.

Definition 4 [48] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, B ⊆ C . T(B) and T(B ∪ D) are the tol-
erance relations for attribute set B and B ∪ D , respectively. 
The knowledge granularity of B relative to D on U is defined 
as follows:

Definition 5 [48] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, B ⊆ C and a ∈ B . TB , TB−{a} , TB∪D and 
T(B−{a})∪D are the tolerance relations for B, B − {a} , B ∪ D 
and (B − {a}) ∪ D , respectively. The significance measure 
(inner significance) of a in B on U is defined as follows:

Definition 6 [59] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, the core of IDS is defined as follows:

If ∀a ∈ C, Siginner
U

(a,C,D) = 0 , then CoreC = �.
Where a denotes any one attribute in C.

Example 2 (Continued from Example 1) According to Defi-
nition 4, we have GKU(D|C) =

9

25
−

5

25
=

4

25
 . Similarly, we 

can get GKU(D|C − {a1}) =
4

25
 , GKU(D|C − {a2}) =

6

25
 , 

GKU(D|C − {a3}) =
4

25
 ,  GKU(D|C − {a4}) =

4

25
 a n d 

GKU(D|C − {a5}) =
4

25
 . Then according to Definition 5, we 

can get Siginner
U

(a1,C,D) =
4

25
−

4

25
= 0 , Siginner

U
(a2,C,D) =

(5)GKU(D|B) = GKU(B) − GKU(B ∪ D)

(6)Siginner
U

(a,B,D) = GKU(D|(B − {a})) − GKU(D|B)

(7)CoreC = {a ∈ C|Siginner
U

(a,C,D) > 0}

Table 1  Incomplete decision 
system 1

U a1 a2 a3 a4 a5 d

u1 1 * 0 0 1 0
u2 0 0 1 * 1 0
u3 0 0 * 1 0 0
u4 * 0 1 1 * 1
u5 0 1 1 1 0 1
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6

25
−

4

25
=

2

25
 , Siginner

U
(a3,C,D) =

4

25
−

4

25
= 0 , Siginner

U
(a4,C,D)

=
4

25
−

4

25
= 0 , Siginner

U
(a5,C,D) =

4

25
−

4

25
= 0 . Then, we 

have CoreC = {a2}.

Definition 7 [48] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, B ⊆ C . TB , TB∪D , TB∪{a} and T(B∪{a})∪D 
are the tolerance relations for B, B ∪ D , B ∪ {a} and 
(B ∪ {a}) ∪ D , respectively. Then ∀a ∈ (C − B) , the signifi-
cance measure (outer significance) of a in B on U is defined 
as follows:

Definition 8 [48] Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system, B ⊆ C . B is a relative reduct based on 
the knowledge granularity of IDS if 

(1) GKU(D|B) = GKU(D|C)
(2) ∀a ∈ B,GKU(D|(B − {a})) ≠ GKU(D|B).

3  Incremental attribute reduction 
for incomplete decision systems 
when multiple objects arrive 
simultaneously

Incremental attribute reduction algorithms for incomplete deci-
sion systems which objects are added to and deleted from one 
by one were discussed in [57]. After investigating the incre-
mental mechanisms to compute knowledge granularity for 
incomplete decision systems when multiple objects are added 
at a time and multiple objects are deleted at a time, this sec-
tion introduces two incremental attribute reduction algorithms 
based on knowledge granularity for the addition of multiple 
objects and the deletion of multiple objects respectively.

3.1  An incremental mechanism to calculate 
knowledge granularity for IDS when adding 
multiple objects

This section investigates the changes of knowledge granu-
larity, relative knowledge granularity, inner significance and 
outer significance, and then introduces the incremental mech-
anisms for calculating knowledge granularity when multiple 
objects are added to an incomplete decision system at a time.

Proposition 1 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system. U = {u1, u2,… , un} denotes a non-
empty finite set containing n objects. U� = {u�

1
, u�

2
,… , u�

s
} 

denotes the incremental object set containing s objects that 

(8)Sigouter
U

(a,B,D) = GKU(D|B) − GKU(D|(B ∪ {a}))

will be added to IDS, and TU+

C
 is the tolerance relation on 

U+ = U ∪ U� . The knowledge granularity of C on U+ is

where TU
C
(u�

j
) =

{
ui|

(
u�
j
, ui

)
∈ TU+

C
, 1 ≤ i ≤ n, 1 ≤ j ≤ s

}
 

and TU�

C
(u�

j
) =

{
u�
i
|
(
u�
j
, u�

i

)
∈ TU+

C
, 1 ≤ i ≤ s, 1 ≤ j ≤ s

}
.

Proof When u�
j
(1 ≤ j ≤ s) is adding to U, the tolerance class 

of ui(1 ≤ i ≤ n) on U+ is

We can get

and

Then we have

and

If u�
j
∈ TU�

C
(ui) then ui ∈ TU

C
(u�

j
), 1 ≤ i ≤ n, 1 ≤ j ≤ s and vice 

versa, because tolerance relation is symmetric. Obviously, 
we can get 

∑�U�
i=1

�TU�

C
(ui)� =

∑�U��
j=1

�TU
C
(u�

j
)� . According to 

Definition  3, the knowledge granularity of C on U+ is 
described as following:

  ◻

(9)

GKU+(C) =
1

(n + s)2
(n2GKU(C) + 2

s∑

j=1

|TU
C
(u�

j
)| +

s∑

j=1

|TU�

C
(u�

j
)|)

TU+

C
(ui) =

{
TU
C
(ui) ∪ {u�

j
}, (ui, u

�
j
) ∈ TU+

C

TU
C
(ui), (ui, u

�
j
) ∉ TU+

C

TU+

C
(ui) = TU

C
(ui) ∪ TU�

C
(ui), 1 ≤ i ≤ n

TU+

C
(u�

j
) = TU

C
(u�

j
) ∪ TU�

C
(u�

j
), 1 ≤ j ≤ s.

|TU+

C
(ui)| = |TU

C
(ui)| + |TU�

C
(ui)|, 1 ≤ i ≤ n

|TU+

C
(u�

j
)| = |TU

C
(u�

j
)| + |TU�

C
(u�

j
)|, 1 ≤ j ≤ s.

GKU+(C)

=
1

|U+|2
|U+|∑

i=1

|TU+

C
(ui)|

=
1

|U+|2

(|U|∑

i=1

|TU+

C
(ui)| +

|U�|∑

j=1

|TU+

C
(u�

j
)|
)

=
1

|U+|2

(|U|∑

i=1

|TU
C
(ui)| +

|U|∑

i=1

|TU�

C
(ui)| +

|U�|∑

j=1

|TU
C
(u�

j
)|

+

|U�|∑

j=1

|TU�

C
(u�

j
)|
)

=
1

(n + s)2
(n2GKU(C) + 2

s∑

j=1

|TU
C
(u�

j
)| +

s∑

j=1

|TU�

C
(u�

j
)|)
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If U� = {u�
1
} , that denotes adding objects one by one to 

the original object set U, then Eq. (9) can be written as 
1

(n + 1)2
(n2GKU(C) + 2|TU

C
(u�

1
)| + |TU�

C
(u�

1
)|)  .  F r o m 

TU
C
(u�

1
) = TU+

C
(u�

1
) − {u�

1
} and u�

1
∈ TU+

C
(u�

1
) ,  we get 

|TU
C
(u�

1
)| = |TU+

C
(u�

1
)| − 1 . Since TU�

C
(u�

1
) = {u�

1
} , we have 

|TU�

C
(u�

1
)| = 1 .  Then we get  2|TU

C
(u�

1
)| + |TU�

C
(u�

1
)| =

2(|TU+

C
(u�

1
)| − 1) + 1 = 2|TU+

C
(u�

1
)| − 1 . Therefore, Eq. (9) 

degenerates into Eq. (9) in [57]. In other words, the case of 
incrementally getting the knowledge granularity under the 
circumstance of adding objects one by one is a special case 
of adding multiple objects at a time.

Example 3 (Continued from Example 1) Table 2 shows an 
incremental data set U� = {u�

1
, u�

2
, u�

3
, u�

4
} . According to Defi-

nit ion  2,  we have TU
C
(u�

1
) = {u1} ,  TU

C
(u�

2
) = {u1} , 

TU
C
(u�

3
) = {u2, u3, u4, u5} , TU

C
(u�

4
) = � , TU�

C
(u�

1
) = {u�

1
, u�

2
} , 

TU�

C
(u�

2
) = {u�

1
, u�

2
} , TU�

C
(u�

3
) = {u�

3
} , TU�

C
(u�

4
) = {u�

4
} . Accord-

ing to Example 1, we have GKU(C) =
9

25
 . Then, we can get 

GK
U+(C) =

1

(5+4)2
(52 ×

9

25
+ 2(1 + 1 + 4 + 0) + (2 + 2 + 1

+1)) =
27

81
.

Proposition 2 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incomplete 
decision system. U� = {u�

1
, u�

2
,… , u�

s
} is the incremental 

object set. TU
C
(u�

j
) and TU

C∪D
(u�

j
) are the tolerance classes of 

u′
j
 with respect to attribute sets C and C ∪ D on U, respec-

tively. TU�

C
(u�

j
) and TU�

C∪D
(u�

j
) are the tolerance classes of u′

j
 

with respect to attribute sets C and C ∪ D on U′ , respectively. 
The knowledge granularity of C relative to D on U+ is

where |.| denotes the cardinality of a set.

Proof According to Definition 4 and Proposition 1, we have

(10)

GKU+(D|C) = 1

(n + s)2
(n2GKU(D|C)

+ 2

s∑

j=1

(|TU
C
(u�

j
)| − |TU

C∪D
(u�

j
)|)

+

s∑

j=1

(|TU�

C
(u�

j
)| − |TU�

C∪D
(u�

j
)|))

  ◻

If U� = {u�
1
} , that denotes adding objects one by one to 

the original object set U, then Eq. (10) can be written as

From TU
C
(u�

1
) = TU+

C
(u�

1
) − {u�

1
} and u�

1
∈ TU+

C
(u�

1
) , we get 

|TU
C
(u�

1
)| = |TU+

C
(u�

1
)| − 1 . Similarly, |TU

C∪D
(u�

1
)| = |TU+

C∪D
(u�

1
)| − 1 . 

Since TU�

C
(u�

1
) = {u�

1
} , we have |TU�

C
(u�

1
)| = 1 . Similarly, 

|TU�

C∪D
(u�

1
)|)| = 1 . Finally, Eq. (10) can be written as 

1

(n + 1)2
(n2GKU(D|C) + 2(|TU+

C
(u�

1
)| − |TU+

C∪D
(u�

1
)|)) . There-

fore, Eq. (10) can degenerate into Eq. (10) in [57]. In other 
words, the case of incrementally getting the relative knowl-
edge granularity under the circumstance of adding objects one 
by one is a special case of adding multiple objects at a time.

Example 4 (Continued from Example 3) According to Defi-
nition  2, we have TU

C∪D
(u�

1
) = {u1} ,  TU

C∪D
(u�

2
) = � , 

TU
C∪D

(u�
3
) = {u2, u3} ,  TU

C∪D
(u�

4
) = �  ,  TU�

C∪D
(u�

1
) = {u�

1
} , 

TU�

C∪D
(u�

2
) = {u�

2
} , TU�

C∪D
(u�

3
) = {u�

3
} , TU�

C∪D
(u�

4
) = {u�

4
} . Accord-

ing to Example 2, we have GKU(D|C) =
4

25
 . Then, we get 

GK
U+(D|C) = 1

(5+4)2
(52 ×

4

25
+ 2(1 − 1 + 1 − 0 + 4 − 2 + 0

−0) + (2 − 1 + 2 − 1 + 1 − 1 + 1 − 1)) =
12

81
.

Proposition 3 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incomplete 
decision system. U� = {u�

1
, u�

2
,… , u�

s
} is the incremental 

object set. TU
C
(u�

j
) , TU

C∪D
(u�

j
) , TU

C−{a}
(u�

j
) and TU

(C−{a})∪D
(u�

j
) are 

the tolerance classes of u′
j
 with respect to attribute sets C, 

C ∪ D , C − {a} and (C − {a}) ∪ D on U, respectively. 
TU�

C
(u�

j
) , TU�

C∪D
(u�

j
) , TU�

C−{a}
(u�

j
) and TU�

(C−{a})∪D
(u�

j
) are the toler-

ance classes of u′
j
 with respect to attribute sets C, C ∪ D , 

GKU+(D|C)
= GKU+(C) − GKU+(C ∪ D)

=
1

(n + s)2
(n2GKU(C) + 2

s∑

j=1

|TU
C
(u�

j
)|

+

s∑

j=1

|TU�

C
(u�

j
)|) − 1

(n + s)2
(n2GKU(C ∪ D)

+ 2

s∑

j=1

|TU
C∪D

(u�
j
)| +

s∑

j=1

|TU�

C∪D
(u�

j
)|)

=
1

(n + s)2
(n2GKU(D|C) + 2

s∑

j=1

(|TU
C
(u�

j
)|

− |TU
C∪D

(u�
j
)|) +

s∑

j=1

(|TU�

C
(u�

j
)| − |TU�

C∪D
(u�

j
)|))

1

(n + 1)2
(n2GKU(D|C) + 2(|TU

C
(u�

1
)| − |TU

C∪D
(u�

1
)|)

+ (|TU�

C
(u�

1
)| − |TU�

C∪D
(u�

1
)|)).

Table 2  Incremental data set to 
the incomplete decision system 
1 in Table 1

U a1 a2 a3 a4 a5 d

u′
1

1 0 0 0 * 0
u′
2

1 0 0 * 0 1
u′
3

0 * 1 0 1 0
u′
4

* 1 1 0 1 1
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C − {a} and (C − {a}) ∪ D on U′ , respectively. Then ∀a ∈ C , 
the inner significance of a in C on U+ is

Proof According to Definition 5 and Proposition 2, we can get

  ◻

Similarly, if U� = {u�
1
} , then Eq. (11) can be written as

(11)

Siginner
U+ (a,C,D) =

1

(n + s)2
(n2Siginner

U
(a,C,D)

+ 2

s∑

j=1

(|TU
C−{a}

(u�
j
)| − |TU

(C−{a})∪D
(u�

j
)|

− |TU
C
(u�

j
)| + |TU

C∪D
(u�

j
)|) +

s∑

j=1

(|TU�

C−{a}
(u�

j
)|

− |TU�

(C−{a})∪D
(u�

j
)| − |TU�

C
(u�

j
)| + |TU�

C∪D
(u�

j
)|))

Siginner
U+ (a,C,D)

= GKU+(D|C − {a}) − GKU+(D|C)

=
1

(n + s)2
(n2GKU(D|C − {a})

+ 2

s∑

j=1

(|TU
C−{a}

(u�
j
)| − |TU

(C−{a})∪D
(u�

j
)|)

+

s∑

j=1

(|TU�

C−{a}
(u�

j
)| − |TU�

(C−{a})∪D
(u�

j
)|))

−
1

(n + s)2
(n2GKU(D|C) + 2

s∑

j=1

(|TU
C
(u�

j
)|

− |TU
C∪D

(u�
j
)|) +

s∑

j=1

(|TU�

C
(u�

j
)| − |TU�

C∪D
(u�

j
)|))

=
1

(n + s)2
(n2Siginner

U
(a,C,D) + 2

s∑

j=1

(|TU
C−{a}

(u�
j
)|

− |TU
(C−{a})∪D

(u�
j
)| − |TU

C
(u�

j
)| + |TU

C∪D
(u�

j
)|)

+

s∑

j=1

(|TU�

C−{a}
(u�

j
)| − |TU�

(C−{a})∪D
(u�

j
)|

− |TU�

C
(u�

j
)| + |TU�

C∪D
(u�

j
)|))

From TU
C
(u�

1
) = TU+

C
(u�

1
) − {u�

1
} and u�

1
∈ TU+

C
(u�

1
) , we get 

|TU
C
(u�

1
)| = |TU+

C
(u�

1
)| − 1 . Similarly,|TU

C∪D
(u�

1
)| = |TU+

C∪D
(u�

1
)| − 1 , 

|TU
C−{a}

(u�
1
)| = |TU+

C−{a}
(u�

1
)| − 1 and |TU

(C−{a})∪D
(u�

1
)| = |TU+

(C−{a})∪D

(u�
1
)| − 1 . Since TU�

C
(u�

1
) = {u�

1
} , we have |TU�

C
(u�

1
)| = 1 . Simi-

larly, |TU�

C∪D
(u�

1
)|)| = 1 , |TU�

C−{a}
(u�

j
)| = 1 and |TU�

(C−{a})∪D
(u�

j
)| = 1 . 

Finally, Eq. (11) can be written as

Therefore, Eq. (11) degenerates into Eq. (11) in [57]. In 
other words, the case of incrementally getting the inner sig-
nificance under the circumstance of adding objects one by 
one is a special case of adding multiple objects at a time.

Proposition 4 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incomplete 
decision system. U� = {u�

1
, u�

2
,… , u�

s
} is the incremental 

object set. TU
B
(u�

j
) , TU

B∪D
(u�

j
) , TU

B∪{a}
(u�

j
) and TU

B∪{a}∪D
(u�

j
) are 

the tolerance classes of u′
j
 with respect to attribute sets B, 

B ∪ D , B ∪ {a} and B ∪ {a} ∪ D on U, respectively. TU�

B
(u�

j
) , 

TU�

B∪D
(u�

j
) , TU�

B∪{a}
(u�

j
) and TU�

B∪{a}∪D
(u�

j
) are the tolerance 

classes of u′
j
 with respect to attribute sets B, B ∪ D , B ∪ {a} 

and B ∪ {a} ∪ D on U′ , respectively. Then ∀a ∈ (C − B) , the 
outer significance of a in B on U+ is

Proof According to Definition 7 and Proposition 2, we can 
get

1

(n + s)2
(n2Siginner

U
(a,C,D) + 2(|TU

C−{a}
(u�

1
)|

− |TU
(C−{a})∪D

(u�
1
)| − |TU

C
(u�

1
)| + |TU

C∪D
(u�

1
)|)).

1

(n + s)2
(n2Siginner

U
(a,C,D) + 2(|TU+

C−{a}
(u�

1
)| − |TU+

C
(u�

1
)|

− |TU+

(C−{a})∪D
(u�

1
)| + |TU+

C∪D
(u�

1
)|)).

(12)

Sigouter
U+ (a,B,D) =

1

(n + s)2
(n2Sigouter

U
(a,B,D)

+ 2

s∑

j=1

(|TU
B
(u�

j
)| − |TU

B∪D
(u�

j
)| − |TU

B∪{a}
(u�

j
)|

+ |TU
B∪{a}∪D

(u�
j
)|) +

s∑

j=1

(|TU�

B
(u�

j
)| − |TU�

B∪D
(u�

j
)|

− |TU�

B∪{a}
(u�

j
)| + |TU�

B∪{a}∪D
(u�

j
)|))
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  ◻

Similarly, if U� = {u�
1
} , then Eq. (12) can be written as

Therefore, the case of incrementally getting the outer sig-
nificance under the circumstance of adding objects one by 
one is a special case of adding multiple objects at a time.

3.2  An incremental reduction algorithm for IDS 
when adding multiple objects

The traditional heuristic attribute reduction algorithm based 
on knowledge granularity for decision systems (THA) 
was discussed in detail in [57]. Based on the incremental 
mechanisms of knowledge granularity above, this subsec-
tion introduces an incremental attribute reduction algorithm 
(see Algorithm 1) using knowledge granularity when adding 
multiple objects to the decision system. At last, a brief com-
parison of time complexity between incremental reduction 
algorithm and traditional heuristic reduction algorithm is 
given.

Sigouter
U+ (a,B,D)

= GKU+(D|B) − GKU+(D|(B ∪ {a}))

=
1

(n + s)2
(n2GKU(D|B) + 2

s∑

j=1

(|TU
B
(u�

j
)|

− |TU
B∪D

(u�
j
)|) +

s∑

j=1

(|TU�

B
(u�

j
)| − |TU�

B∪D
(u�

j
)|))

−
1

(n + s)2
(n2GKU(D|B ∪ {a})

+ 2

s∑

j=1

(|TU
B∪{a}

(u�
j
)| − |TU

B∪{a}∪D
(u�

j
)|)

+

s∑

j=1

(|TU�

B∪{a}
(u�

j
)| − |TU�

B∪{a}∪D
(u�

j
)|))

=
1

(n + s)2
(n2Sigouter

U
(a,B,D) + 2

s∑

j=1

(|TU
B
(u�

j
)|

− |TU
B∪D

(u�
j
)| − |TU

B∪{a}
(u�

j
)| + |TU

B∪{a}∪D
(u�

j
)|)

+

s∑

j=1

(|TU�

B
(u�

j
)| − |TU�

B∪D
(u�

j
)| − |TU�

B∪{a}
(u�

j
)|

+ |TU�

B∪{a}∪D
(u�

j
)|))

1

(n + 1)2
(n2Sigouter

U
(a,B,D) + 2(|TU+

B
(u�

j
)| − |TU+

B∪D
(u�

j
)|

− |TU+

B∪{a}
(u�

j
)| + |TU+

B∪{a}∪D
(u�

j
)|).

Algorithm 1 Knowledge Granularity based In-
cremental Reduction algorithm when Adding Multiple
objects(KGIRA-M)
Input: An incomplete decision system IDS =

U,C ∪D,V, f , the reduct REDU on U , the in-
cremental object set U .

Output: A new reduct REDU+ on U+ after adding U to
IDS.

1: B ← REDU ;
2: Compute |U |

j=1 |TU
B (uj)|,

|U |
j=1 |TU

B∪D(uj)|,
|U |
j=1 |TU

B (uj)|,
|U |
j=1 |TU

B∪D(uj)|,
|U |
j=1 |TU

C (uj)|,
|U |
j=1 |TU

C∪D(uj)|,
|U |
j=1 |TU

C (uj)| and
|U |
j=1 |TU

C∪D(uj)|.
3: Compute GKU+(D|B) and GKU+(D|C)(according to

Proposition 2);
4: if GKU+(D|B) = GKU+(D|C) then
5: go to 18;
6: end if
7: while GKU+(D|B) = GKU+(D|C) do
8: for each (ai) ∈ (C −B) do
9: Compute Sigouter

U+ (ai, B,D)(according to Propo-
sition 4);

10: end for
11: a0 = max{Sigouter

U+ (ai, B,D), ai ∈ (C −B)};
12: B ← (B ∪ {a0});
13: end while
14: for each (ai) ∈ B do
15: if GKU+(D|(B − {a})) = GKU+(D|C) then
16: B ← (B − {ai});
17: end if
18: end for
19: REDU+ ← B;
20: return REDU+ ;

In Algorithm 1, U+ denotes the object set of the new decision 
system after adding the incremental object set U′ to the original 
object set U. The detailed execution process of Algorithm 1 is 
as follows. In Step 1, the reduct REDU on U is assigned to B. In 
Step 2, 

∑�U��
j=1

�TU
B
(u�

j
)� , ∑�U��

j=1
�TU

B∪D
(u�

j
)� , ∑�U��

j=1
�TU�

B
(u�

j
)� , 

∑�U��
j=1

�TU�

B∪D
(u�

j
)�  ,  

∑�U��
j=1

�TU
C
(u�

j
)�  ,  

∑�U��
j=1

�TU
C∪D

(u�
j
)�  , 

∑�U��
j=1

�TU�

C
(u�

j
)� and 

∑�U��
j=1

�TU�

C∪D
(u�

j
)� are calculated respectively. 

In Step 3, the knowledge granularity of B relative to D on U+

(GKU+(D|B) ) and the knowledge granularity of C relative to D 
on U+(GKU+(D|C) ) are calculated respectively according to 
Proposition  2. In Step 4, GKU+(D|B) is compared with 
GKU+(D|C) , if they are equal, then the algorithm flow skips to 
Step 19, which indicates that the reducts of U+ and U are identi-
cal. Otherwise, the loop consisting of Steps 7–13 executes. 
Steps 8–10 constitute a loop to calculate the outer significance 
of an certain ai ∈ (C − B) which is Sigouter

U+ (ai,B,D) according 
to Proposition 4. In Step 11, a0 is used to store the attribute that 
has the maximum value of outer significance. In Step 12, a0 is 
added to B. Steps 14–18 are actually used to delete attributes 
that satisfy the second condition in Definition 8 through a loop 
with |B| times. In Step 15, GKU+(D|(B − {a})) is compared 
with GKU+(D|C) , if they are equal, then ai is deleted from B, 
which indicates that ai is redundant and can not be in the reduct 
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of U+ . In Step 19, B is assigned to REDU+ . In Step 20, REDU+ 
is returned as the result of Algorithm 1.

The  t ime  complex i ty  of  Algor i thm  1  i s 
O(|U�||U||B|(|C| − |B|)) . According to Definition 2, the 
time complexity of computing TU

B
(u�

j
) is O(|U||B|). Then the 

t ime complexity of computing 
∑�U��

j=1
�TU

B
(u�

j
)� is 

O(|U�||U||B|) . Similarly, we get the time complexity of 
computing 

∑�U��
j=1

�TU�

B
(u�

j
)� , ∑�U��

j=1
�TU

C
(u�

j
)� , ∑�U��

j=1
�TU�

C
(u�

j
)� , 

∑�U��
j=1

�TU
B∪D

(u�
j
)� ,  ∑�U��

j=1
�TU�

B∪D
(u�

j
)� ,  ∑�U��

j=1
�TU

C∪D
(u�

j
)� and 

∑�U��
j=1

�TU�

C∪D
(u�

j
)� in Step 2 respectively. According to Proposi-

tion 2, the time complexity of Steps 2–3 is O(|U�||U||B|+
|U�||U|(|B| + 1) + |U�|2|B| + |U�|2(|B| + 1) + |U�||U||C|+
|U�||U|(|C| + 1) + |U�|2|C| + |U�|2(|C| + 1)) ≈ O(|U�||U||C|) . 
According to Proposition 4, the time complexity of comput-
ing Sigouter

U+ (ai,B,D) is O(|U�||U||B|) . Then the time com-
plexity of Steps 7–13 is O(|U�||U||B|(|C| − |B|)) . Similarly, 
the time complexity of Steps 14–18 is O(|U�||U||B|2) . 
Hence, the time complexity of Algorithm 1 is O(|U�||U||C|
+|U�||U||B|(|C| − |B|) + |U�||U||B|2) ≈ O(|U�||U||B|(|C|
−|B|)).

Two algorithms for comparison with algorithm KGIRA-M 
were introduced in [57]. One is the non-incremental algorithm 
called algorithm THA which is converted as algorithm THA-M 
in this paper to be suitable for incomplete decision systems under 
the situation of adding multiple objects at a time. Another is 
incremental algorithm called algorithm KGIRA which is called 
as algorithm KGIRA-S in this paper for incomplete decision sys-
tems under the situation of adding one object at a time. Since the 
number of objects is |U+| after adding the incremental object set 
U′ to the original object set U, the time complexity of THA-M 
is actually O(|U+|2|C|2) . Because |U�| ≤ |U+| , |U| ≤ |U+| 
and |B| ≤ |C| , O(|U�||U||B|(|C| − |B| is much lower than 
O(|U+|2|C|2) . Hence, the time complexity of algorithm 
KGIRA-M is much smaller than that of algorithm THA-M. 
Since the number of objects is |U+| after adding the object set U′ 
to the original object set U, the time complexity of KGIRA-S is 
O(|U�||U||C|2) . Because |B| ≤ |C| , O(|U�||U||B|(|C| − |B|)) 
is lower than O(|U�||U||C|2) . Hence, the time complexity of 
algorithm KGIRA-M is smaller than that of algorithm KGIRA-
S. Since |U�| ≪ |U+| and |U| < |U+| , we can draw the conclu-
sion that the time complexity of KGIRA-S is also much smaller 
than that of algorithm THA-M.

3.3  An incremental mechanism to calculate 
knowledge granularity for IDS when deleting 
multiple objects

For the sake of convenience, let U = {u1, u2,… , un} be 
the original object set in the incomplete decision system 
IDS = ⟨U,C ∪ D,V , f ⟩ . U�� = {u��

1
, u��

2
,… , u��

t
} ⊂ U denotes 

the object set whose objects will be deleted from U. For 
simplicity, U− denotes U − U�� in the following.

Proposition 5 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incomplete 
decision system. TU−

C
(u��

j
) and TU��

C
(u��

j
) are the tolerance 

classes of u′′
j
 with respect to attribute set C on U− and U′′ , 

respectively. The knowledge granularity of C on U− is

Proof When u��
j
(1 ≤ j ≤ t) is deleted from U, the tolerance 

class of ui(1 ≤ i ≤ n − t) on U− is

Then we can get

and

Since TU��

C
(ui) ⊂ TU

C
(ui) , we can get

Similarly, we can get

If u��
j
∈ TU��

C
(ui) then ui ∈ TU−

C
(u��

j
), 1 ≤ i ≤ n − t, 1 ≤ j ≤ t 

and vice versa, because tolerance relation is symmetric. 
Obviously, we can get 

∑�U−�
i=1

�TU��

C
(ui)� =

∑�U���
j=1

�TU−

C
(u��

j
)� . 

According to Definition 3, the knowledge granularity of C 
on U− is described as follows:

  ◻

(13)

GKU−(C) =
1

(n − t)2
(n2GKU(C) − 2

t∑

j=1

|TU−

C
(u��

j
)| −

t∑

j=1

|TU��

C
(u��

j
)|)

TU−

C
(ui) =

{
TU
C
(ui) − {u��

j
}, (ui, u

��
j
) ∈ TU

C

TU
C
(ui), (ui, u

��
j
) ∉ TU

C

TU−

C
(ui) = TU

C
(ui) − TU��

C
(ui), 1 ≤ i ≤ n − t

TU−

C
(u��

j
) = TU

C
(u��

j
) − TU��

C
(u��

j
), 1 ≤ j ≤ t.

|TU−

C
(ui)| = |TU

C
(ui)| − |TU��

C
(ui)|, 1 ≤ i ≤ n − t.

|TU−

C
(u�

j
)| = |TU

C
(u��

j
)| − |TU��

C
(u��

j
)|, 1 ≤ j ≤ t.

GKU−(C)

=
1

|U−|2
|U−|∑

i=1

|TU−

C
(ui)|

=
1

|U−|2

(|U|∑

i=1

|TU
C
(ui)| −

|U−|∑

i=1

|TU��

C
(ui)|

−

|U��|∑

j=1

|TU−

C
(u��

j
)| −

|U��|∑

j=1

|TU��

C
(u��

j
)|
)

=
1

(n − t)2
(n2GKU(C) − 2

t∑

j=1

|TU−

C
(u��

j
)|

−

t∑

j=1

|TU��

C
(u��

j
)|)
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If U�� = {u��
1
} , which denotes deleting objects one by one 

from the original object set U, then Eq. (13) can be written 
as 1

(n − 1)2
(n2GKU(C) − 2|TU−

C
(u��

1
)| − |TU��

C
(u��

1
)|) . Because 

TU
C
(u��

1
) = TU−

C
(u��

1
) ∪ {u��

1
} and u��

1
∉ TU−

C
(u��

1
) , we have 

|TU−

C
(u��

1
)| = |TU

C
(u��

1
)| − 1 . Then Eq. (13) can be written as 

1

(n − 1)2
(n2GKU(C) − (2|TU

C
(u��

1
)| − 1)) . Therefore, Eq. (13) 

degenerates into Eq. (13) in [57]. In other words, the case of 
incrementally getting the relative knowledge granularity 
under the circumstance of deleting objects one by one is a 
special case of deleting multiple objects at a time.

Proposition 6 Let IDS = ⟨U,C ∪ D,V , f ⟩ be an incom-
plete decision system. un is the diminishing object. TC(un) 
and TC∪D(un) are the tolerance classes of un with respect to 
attribute sets C and C ∪ D on U, respectively. The knowledge 
granularity of C relative to D on U− is

Proof According to Definition 4 and Proposition 5, we have

  ◻

If U�� = {u��
1
} , then Eq. (14) can be written as

(14)

GKU− (D|C) = 1

(n − t)2
(n2GKU(D|C) − 2

t∑

j=1

(|TU−

C
(u��

j
)|

− |TU−

C∪D
(u��

j
)|) −

t∑

j=1

(|TU��

C
(u��

j
)| − |TU��

C∪D
(u��

j
)|))

GKU−(D|C)
= GKU−(C) − GKU−(C ∪ D)

=
1

(n − t)2
(n2GKU(C) − 2

|U��|∑

j=1

|TU−

C
(u��

j
)|

−

|U��|∑

j=1

|TU��

C
(u��

j
)|) − 1

(n − t)2
(n2GKU(C ∪ D)

− 2

|U��|∑

j=1

|TU−

C∪D
(u��

j
)| −

|U��|∑

j=1

|TU��

C∪D
(u��

j
)|)

=
1

(n − t)2
(n2GKU(D|C) − 2

t∑

j=1

(|TU−

C
(u��

j
)|

− |TU−

C∪D
(u��

j
)|) −

t∑

j=1

(|TU��

C
(u��

j
)| − |TU��

C∪D
(u��

j
)|))

1

(n − 1)2
(n2GKU(D|C) − 2(|TU−

C
(u��

1
)| − |TU−

C∪D
(u��

1
)|)−

(|TU��

C
(u��

1
)| − |TU��

C∪D
(u��

1
)|)).

Since TU
C
(u��

1
) = TU−

C
(u��

1
) ∪ {u��

1
} and u��

1
∉ TU−

C
(u��

1
) , we get 

|TU−

C
(u��

1
)| = |TU

C
(u��

1
)| − 1 . Similarly, |TU−

C∪D
(u��

1
)| = |TU

C∪D

(u��
1
)| − 1 . Since TU��

C
(u��

1
) = {u��

1
} , we have |TU��

C
(u��

1
)| = 1 . 

Similarly, |TU��

C∪D
(u��

1
)| = 1 . Then Eq. (14) can be written as 

1

(n − 1)2
(n2GKU(C) − 2(|TU

C
(u��

1
)| − |TU

C∪D
(u��

1
)|)).

Therefore, Eq. (14) degenerates into Eq. (14) in [57]. In 
other words, the case of incrementally getting the relative 
knowledge granularity under the circumstance of deleting 
objects one by one is a special case of deleting multiple 
objects at a time. To sum up, all situations of handling 
objects one by one in [57] are special cases of those of han-
dling multiple objects at a time for getting new reducts in 
this paper.

3.4  An incremental reduction algorithm for IDS 
when deleting multiple objects

Based on the incremental mechanisms of knowledge gran-
ularity above, this subsection introduces an incremental 
attribute reduction algorithm (see Algorithm 2) when delet-
ing multiple objects from an incomplete decision system.

Algorithm 2 Knowledge Granularity based Incre-
mental Reduction algorithm when Deleting Multiple
objects(KGIRD-M)
Input: An incomplete decision system IDS =

U,C ∪D,V, f , the reduct REDU on U , the di-
minishing object set U .

Output: A new reduct REDU− on U− after deleting U
from IDS.

1: B ← REDU ;
2: Compute |U |

j=1 |TU−

C (uj )|,
|U |
j=1 |TU−

C∪D(uj )|,
|U |
j=1 |TU

C (uj )|,
|U |
j=1 |TU

C∪D(uj )|.
3: Compute GPU− (D|C)(according to Proposition 6);
4: for each(ai) ∈ B do
5: if GPU−(D|(B − {ai})) = GPU− (D|C) then
6: B ← (B − {ai});
7: end if
8: end for
9: REDU− ← B;
10: return REDU− ;

In Algorithm 2, U− denotes the object set of the new deci-
sion system after deleting objects in U′′ from the original 
object set U. The detailed execution process of Algorithm 2 
is as follows. In Step 1, the reduct REDU on U is assigned to 
B .  In  Step  2 ,  

∑�U���
j=1

�TU−

C∪D
(u��

j
)� ,  ∑�U���

j=1
�TU−

C
(u��

j
)� , 

∑�U���
j=1

�TU��

C∪D
(u��

j
)� and 

∑�U���
j=1

(�TU��

C
(u��

j
)� are calculated respec-

tively. In Step 3, the knowledge granularity of C relative to 
D on U−(GPU−(D|C) ) is calculated according to Proposi-
tion 6. Steps 4–8 are actually used to delete attributes that 
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satisfies the second condition in Definition 8 through a loop 
with |B| times. In Step 5, GPU−(D|(B − {ai})) is compared 
with GPU−(D|(B − {ai})) . If GPU−(D|(B − {ai})) is equal to 
GPU−(D|C) , then ai is deleted from B, which indicates ai is 
redundant and can not be in the reduct of U− . In Step 9, B is 
assigned to REDU− . In Step 10, REDU− is returned as the 
result of Algorithm 2.

The time complexity of Algorithm 2 is O(|U��||U−||B|2) . 
According to Definitions 1 and 2, the time complexity of com-
puting 

∑�U���
j=1

�TU−

C
(u��

j
)� is O(|U��||U−||C|) , the time complex-

ity of computing 
∑�U���

j=1
�TU−

C∪D
(u��

j
)� is O(|U��||U−|(|C| + 1)) , 

the time complexity of computing 
∑�U���

j=1
(�TU��

C
(u��

j
)� is 

O(|U��|2|C|) and the time complexity of computing 
∑�U���

j=1
�TU��

C∪D
(u��

j
)� is O(|U��|2(|C| + 1)) . Then according to 

Proposition  6, the time complexity of Steps 2–3 is 
O(|U��||U−||C| + |U��||U−|(|C| + 1) + |U��|2|C| + |U��|2
(|C| + 1)) ≈ O(|U��||U−||C|) . In Step 5, the time complexity 
of computing GPU−(D|(B − {ai})) is similar to that of 
GPU−(D|C) . Since |U��| ≪ |U−| , the time complexity of Steps 
4–8 is O(|B|(|U��||U−||B| + |U��||U−|(|B| + 1) + |U��|2|B|
+|U��|2(|B| + 1))) ≈ O(|U��||U−||B|2) . In general, if a reduct 
obtained is of practical value, |C| ≤ |B|2 should be satisfied. 
Hence, the time complexity of Algorithm  2 is 
O(|U��||U−||C| + |U��||U−||B|2) ≈ O(|U��||U−||B|2).

Two algorithms for comparison with algorithm KGIRD-
M were introduced in [57]. One is the non-incremental algo-
rithm called algorithm THA which is converted as algorithm 
THD-M in this paper to be suitable for incomplete decision 
systems under the situation of deleting multiple objects at 
a time. Another is the incremental algorithm called algo-
rithm KGIRD which is called as algorithm KGIRD-S in 
this paper for incomplete decision systems under the situ-
ation of deleting one object at a time. Since the number 
of objects is |U−| , the time complexity of THD-M is actu-
ally O(|U−|2|C|2) when deleting the object set U′′ from the 
original object set U. Because |B| ≤ |C| and |U��| ≤ |U−| , 
O(|U��||U−||B|2) is lower than O(|U−|2|C|2) . Hence, the 
time complexity of algorithm KGIRD-M is much smaller 
than that of algorithm THD-M. Since the number of 
objects is |U−| after deleting the object set U′′ from the 
original object set U, the time complexity of KGIRD-S is 
O(|U��||U−||C|2) . Because |B| ≤ |C| , O(|U��||U−||B|2) is 
lower than O(|U��||U−||C|2) . Hence, the time complexity 
of algorithm KGIRD-M is smaller than that of algorithm 
KGIRD-S. Since |U��| ≪ |U−| , we can draw the conclusion 
that the time complexity of KGIRD-S is also much smaller 
than that of algorithm THD-M.

4  Empirical experiments

4.1  A description of data sets and experimental 
environment

The proposed incremental attribute reduction algorithms are 
tested on data sets available from the University of Califor-
nia Irvine (UCI) Repository of Machine Learning Database 
(http://archi ve.ics.uci.edu/ml) and the Kent Ridge Biomedi-
cal Data Set Repository (http://leo.ugr.es/elvir a/DBCRe posit 
ory/). In order to get incomplete decision systems from com-
plete data sets, 5% of the attribute values randomly selected 
from each complete data set are deleted. The characteristics 
of the data sets are summarized in Table 3.

The proposed algorithms and comparative algorithms 
are implemented in Eclipse IDE for Java Developers with 
Neon.3 Release (4.6.3) version using JDK 1.8.0_111 version 
and they have been carried out on a personal computer with 
the following specification: Intel Core i3-3120M 2.5GHz 
CPU, 4.0 GB of memory and 64-bit Win7.

4.2  Performance comparison on computational 
time

In the comparative experiments under the condition that 
objects are added to decision systems, each original data set 
is divided into ten parts averagely according to the number 
of objects. Two parts of each original data set is set as the 
basic data set and the rest are set as the incremental data set 
which is going to be added to the basic data set in subsequent 
steps. In algorithm KGIRA-S, objects in incremental data set 
are added to basic data set one by one. Once all objects in 
one part of the original data set are added to the basic data 
set, the spent time is recorded, until all parts in the incre-
mental data set are added to the basic data set. In algorithms 
KGIRA-M and THA-M, one part in the incremental data set 
is added to the basic data set at a time which makes a note 
of the time. In each sub-figure of Fig. 1, the x-axis repre-
sents the percentage of the number of objects in the basic 
data set to that of objects in the original data set and the 
y-axis represents the value of computational time. Asterisk 
marked lines denote the computational time of algorithm 
KGIRA-M, circle marked lines denote the computational 
time of algorithm KGIRA-S and plus marked lines denote 
the computational time of algorithm THA-M.

From Fig. 1, for each data set, the computational time 
of three algorithms increases with the number of objects 
which are added to the basic data set. The computational 
time of algorithms KGIRA-M and KGIRA-S is much shorter 
than that of the algorithm THA-M, which illustrates that 
incremental algorithms are more efficient than the non-
incremental algorithm. Moreover, the computational time 

http://archive.ics.uci.edu/ml
http://leo.ugr.es/elvira/DBCRepository/
http://leo.ugr.es/elvira/DBCRepository/
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of algorithm KGIRA-M is shorter than that of algorithm 
KGIRA-S, which shows that processing multiple objects at 
a time is more efficient than processing one object at a time 
by the incremental approaches. It is clearly that the proposed 
algorithm KGIRA-M has the highest efficiency among the 
three comparative algorithms.

In the comparative experiments of deleting objects from 
the original data set, each original data set is set as basic 
data set and divided into ten parts (Part 1, Part2, ..., Part10) 
averagely according to the number of objects. In algorithm 
KGIRD-S, objects are deleted from the basic data set until 
eight parts (Part 1, Part2, ..., Part8) of the original data set 
are removed. In each part to be removed, objects are deleted 
one by one. Once one part is deleted from the basic data set, 
the accumulative computing time is recorded. In algorithms 
KGIRD-M and THD-M, objects from one part of the basic 
data set are deleted at a time which makes a note of the 
time. The x-axis represents the percentage of the number 
of objects retained to that of objects in the original data set 
and the y-axis represents the value of computational time. 
The accumulative time is recorded for all algorithms. Aster-
isk marked lines denote computational time of algorithm 
KGIRD-M, circle marked lines denote computational time 
of algorithm KGIRD-S and plus marked lines denote com-
putational time of algorithm THD-M.

From Fig. 2, for each data set, the computational time 
of three algorithms increases when the number of objects 
deleted from decision system increases. The computa-
tional time of algorithms KGIRD-M and KGIRD-S is much 
smaller than that of the algorithm THD-M, which illustrates 
that incremental algorithms are more efficient than the non-
incremental algorithm. Moreover, the computational time of 
algorithm KGIRD-M is smaller than that of the algorithm 
KGIRD-S, which shows that processing multiple objects at 
a time is more efficient than processing one object at a time 
by the incremental approaches. It should be noted that the 
computational time of algorithm KGIRD-M and algorithm 

KGIRD-S looks close for the data sets LSVT voice, Colon, 
and AMLALL. This is because the computational time of 
algorithm KGIRD-M is close to that of algorithm KGIRD-
S relative to the computational time of algorithm THD-M. 
In fact, the computational time of algorithm KGIRD-S is 
several times that of algorithm KGIRD-M on the same data 
set. For example, on the data set AMLALL, the compu-
tational time of algorithm KGIRD-S is nearly four times 
that of algorithm KGIRD-M. It is clearly that the proposed 
algorithm KGIRD-M has the highest efficiency among the 
three comparative algorithms.

4.3  Performance comparison on reduct size

In general, the number of attributes in a reduct, also called 
the size of the reduct(SR), is an important reference index 
to evaluate the effects of attribute reduction algorithms. The 
efficiency of data processing increases with SR decreasing, 
because the number of attributes participating in the calcu-
lation decreases with SR decreasing. In Table 4, the reduct 
for each data set is obtained from the data set with all of 
the objects. We can find that reducts obtained by algorithm 
KGIRA-M or KGIRA-S are not the same as those obtained 
by algorithm THA-M. Moreover, SR obtained by algorithm 
KGIRA-M or KGIRA-S is a little more than that obtained 
by algorithm THA-M on most of data sets. It is because that 
algorithms KGIRA-M and KGIRA-S get reducts through 
the previous results. However, SR obtained by algorithm 
KGIRA-M is less than that obtained by algorithm KGIRA-
S on most of data sets, because algorithm KGIRA-M get 
reducts based on the previous results in a way that multiple 
objects are processed at a time rather than one by one.

In Table 5, the reduct for each data set is obtained from 
the data set with remained objects. We can find that reducts 
obtained by algorithms KGIRD-M and KGIRD-S are obvi-
ously different from those obtained by algorithm THD-
M. Furthermore, SR obtained by algorithm KGIRA-M or 
KGIRA-S is a little more than that obtained by algorithm 
THD-M. It is because, on the one hand, algorithms KGIRD-
M and KGIRD-S get the reducts based on the previous 
results while algorithm THD-M computes the results from 
the beginning, on the other hand, results of attribute reduc-
tion for decision systems are not unique. However, reducts 
obtained by algorithm KGIRD-M are the same as those 
obtained by algorithm KGIRD-S on most data sets.

4.4  Performance comparison on classification 
accuracy

In Table 6, the classification accuracy is calculated by Naive 
Bayes Classifier (NB) and Decision Tree algorithm (REP-
Tree) with fivefold cross-validation from the reducts of algo-
rithms KGIRA-M, KGIRA-S and THA-M. From Table 6, it 

Table 3  A description of data sets

Data sets Objects Attributes Classes

1 Wine 178 13 3
2 Lymphography 148 18 4
3 Ionosphere 351 34 2
4 Dermatology 366 33 6
5 LSVT voice 126 310 2
6 Musk1 476 166 2
7 Musk2 707 166 2
8 Mice Protein 1080 80 8
9 Multiple Features 2000 216 10
10 Colon 62 2000 2
11 AMLALL 72 7129 2
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is clear that the average classification accuracy of the reducts 
found by incremental algorithms is better than that by non-
incremental algorithm. Furthermore, the average classifica-
tion accuracy of the reducts found by algorithm KGIRA-M 

is higher than that by algorithm KGIRA-S. The experimen-
tal results show that the proposed algorithm KGIRA-M can 
discover a better attribute reduct compared with algorithm 
KGIRA-S and THA-M from the viewpoint of classification 
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Fig. 1  Comparisons for computational time of different algorithms for adding objects
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performance. Moreover, algorithm KGIRA-M can discover a 
feasible attribute reduct with the shortest computational time 
compared with algorithms KGIRA-S and THA-M.

In Table 7, the classification performance is calculated 
on the reducts obtained by algorithms KGIRD-M, KGIRD-
S and THD-M. The results of classification accuracy are 
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Fig. 2  Comparisons for computational time of different algorithms for deleting objects
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calculated by Naive Bayes Classifier (NB) and Decision 
Tree algorithm(REPTree) with fivefold cross-validation. 
From Table 7, it is clear that the average classification 
accuracy of the reducts found by incremental algorithm 
KGIRD-M is slightly higher than that by algorithms 
KGIRD-S and THD-M. The experimental results show 
that the incremental algorithm KGIRD-M can discover 
a satisfactory attribute reduct from the viewpoint of clas-
sification performance. Moreover, algorithm KGIRD-M 
can discover a feasible attribute reduct with the shortest 

computational time compared with algorithms KGIRD-S 
and THD-M.

5  Conclusion

In this paper, we exploit deeper insights into incremental 
mechanisms for the attribute reduction process from granu-
lation perspective. By introducing the granulation measure 
into incomplete decision systems, we propose two incre-
mental attribute reduction approaches based on knowledge 

Table 4  Comparisons for 
reducts of different algorithms 
for adding objects

Data sets KGIRA-M KGIRA-S THA-M

SR Reduct SR Reduct SR Reduct

1 Wine 5 9, 5, 0, 1, 3 5 1, 3, 0, 2, 6 5 10, 5, 0, 4, 1
2 Lymphography 7 17, 13, 12, 14, 8 17, 13, 12, 14, 7 13, 17, 12, 1,

0, 1, 10 0, 1, 7, 5 14, 15, 0
3 Ionosphere 9 15, 21, 27, 23, 4, 10 21, 18, 6, 7, 16, 9 32, 23, 4, 33, 18,

9, 17, 12, 28 19, 5, 2,11, 13 19, 6, 17, 7
4 Dermatology 11 15, 3, 18, 2, 16, 13 15, 3, 18, 2, 14, 10 8, 3, 15, 18, 2,

0, 1, 5, 4, 8, 17 4, 6,1, 9, 5, 12, 17, 8 31, 27, 1, 16, 4
5 LSVT voice 6 82, 4, 34, 41, 23, 8 7 82, 3, 1, 13, 6, 34, 8 3 86, 300, 51
6 Musk1 13 1, 13, 130, 53, 105, 14 1, 13, 130, 3, 5, 11 91, 5, 87, 107, 13,

3, 0, 107, 115, 5, 7, 10, 2, 14, 0, 100, 93, 150, 14,157,
22, 69, 16 12,8, 22, 16 1

7 Musk2 12 118, 101, 15, 124, 19, 11 101, 15, 19, 2, 10, 9 125, 78, 91, 42, 132,
5, 7, 26, 10, 0, 11, 0, 1, 3, 6, 146, 7, 3, 1
3, 35 35

8 Mice Protein 8 46, 76, 30, 48, 2, 8 46, 76, 30, 48, 2, 7 46, 76, 49, 21, 58,
7, 4, 0 1, 3, 4 64, 1

9 Multiple Features 9 92, 151, 179, 0, 4, 10 92, 151, 12, 179, 2, 8 54, 9, 56, 151, 10,
9, 5, 6, 1 4, 1, 5, 0, 3 71, 130, 4

10 Colon 5 942, 10, 0, 1, 15 6 942, 0, 4, 2, 3, 5 3 1581, 1923, 69
11 AMLALL 4 2140, 2, 1, 3 4 2140, 2, 1, 3 2 4846, 1238

Table 5  Comparisons for reducts of different algorithms for deleting objects

Data sets KGIRD-M KGIRD-S THD-M

SR Reduct SR Reduct SR Reduct

1 Wine 4 10, 5, 0, 4 3 10, 5, 0 2 0, 6
2 Lymphography 4 13, 17, 12, 15 4 13, 17, 12, 1 3 13, 17, 0
3 Ionosphere 5 33, 18, 19, 6, 7 5 33, 18, 19, 6, 7 4 20, 7, 32, 5
4 Dermatology 6 3, 15, 2, 31, 27, 4 6 3, 15, 2, 31, 27, 4 6 15, 3, 27, 2, 4, 1
5 LSVT voice 3 86, 300, 51 3 86, 300, 51 2 86, 74
6 Musk1 8 5, 87, 107, 13, 93, 150, 14, 1 7 91, 107, 13, 93, 150, 14, 1 6 41, 96, 48, 87, 88, 0
7 Musk2 5 125, 91, 146, 7, 3 5 125, 91, 146, 7, 3 4 125, 128, 67, 0
8 Mice Protein 6 46, 76, 49, 21, 58, 64 6 46, 76, 49, 21, 58, 64 5 46, 76, 58, 3, 4
9 Multiple Features 7 54, 9, 56, 10, 71, 130, 4 7 54, 9, 56, 10, 71, 130, 4 5 54, 9, 106, 151, 75
10 Colon 3 1581, 1923, 69 3 1581, 1923, 69 1 627
11 AMLALL 2 4846, 1238 2 4846, 1238 1 256
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granularity under the situations of adding multiple objects 
and deleting multiple objects at a time, respectively. Com-
pared with existing methods, our incremental attribute 
reduction approaches can deal with variation of object sets 
in incomplete decision systems effectively.

Attribute reduction for other variations of incomplete 
decision systems is not concerned, and we plan to study 
knowledge granularity based incremental attribute reduction 
solutions for incomplete decision systems under the situation 
of variation of attribute sets or attribute values.
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