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Abstract

Supplier selection and evaluation is a crucial decision-making issue to establish an effective supply chain. Higher-order
fuzzy decision-making methods have become powerful tools to support decision-makers in solving their problems
effectively by reflecting uncertainty in calculations better than crisp sets in the last 3 decades. The g-rung orthopair fuzzy
(q-ROF) sets which are the general form of both intuitionistic and Pythagorean fuzzy sets, have been recently introduced to
provide decision-makers more freedom of expression than other fuzzy sets. In this paper, we introduce q-ROF TOPSIS and
g-ROF ELECTRE as two separate methods and new approaches for group decision making to select the best supplier. As
the existing distance measures in g-rung orthopair fuzzy environment have some drawbacks and generate counter-intuitive
results, we propose a new distance measure along with its proofs to use in both q-ROF TOPSIS and q-ROF ELECTRE
methods. Moreover, a comparison study is conducted to illustrate the superiority of the proposed distance measure.
Subsequently, a comprehensive case study is performed with g-ROF TOPSIS and g-ROF ELECTRE methods separately to
choose the best supplier for a construction company by rating the importance of criteria and alternatives under q-ROF
environment. Finally, a comparison and parameter analysis are performed among the proposed q-ROF TOPSIS and gq-ROF
ELECTRE methods and existing q-ROF decision-making methods to demonstrate the effectiveness of our proposed
methods.

Keywords g-Rung orthopair fuzzy set - Distance measure - Supplier selection - -ROF TOPSIS - q-ROF ELECTRE

1 Introduction

Supply chain management (SCM) supports companies
about their improvements for their business planning and
actions. The success of those companies depends to some
extent on the proper functioning of the supply activity.
Every business that wants to achieve its targets has to
manage the procurement process effectively. The evalua-
tion of suppliers is one of the most critical parts of pro-
curement management.

The earliest studies on supplier selection were proposed
by Dickson [10], which focused on the supplier selection
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criteria by meeting the purchasing manager of 273 enter-
prises. It was observed that 23 criteria ultimately impacted
supplier selection. Weber et al. [43] analyzed 74 studies on
supplier selection between 1966 and 1990 and concluded
that price, delivery time, and product quality are very
important criteria for supplier selection. Vonderembse and
Tracey [38] proposed that selecting the criteria affected the
performance of the enterprise. Wilson [45] dealt with the
relative change in the supplier selection criteria during the
last decades of the twentieth century. Shen and Yu [32]
studied strategic vendor selection. In the last decades, the
studies have concentrated on supplier selection methods.
Weber et al. [43] classified these methods in three cate-
gories as linear weighting, statistical/probability approa-
ches, and mathematical programming models. The
parameters of the supplier selection or evaluation vary
according to the type of product, its quantity, and its sup-
plier, which might be thought of as a single or multiple
supplier.
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A large number of supplier selection criteria might be
taken into consideration when purchasing new products
from known suppliers or products or services from
unknown suppliers, which requires decision-making at a
high level of uncertainty. This uncertainty is modelled by
the fuzzy set theory (FST) as supplier selection and eval-
uation are often considered multiple criteria decision-
making problems that are expected to be solved without
exact information. In the last 3 decades, FST has become a
powerful tool to solve decision-making problems effec-
tively, in which the available information is vague or
imprecise [25]. The FST offers a mathematical way to
model uncertainty preferences by adjusting the weights of
performance criteria. Chen et al. [5] integrated TOPSIS
method and fuzzy set to find the best supplier to a manu-
facturing company. Haq and Kannan [18] introduced a
fuzzy AHP method to evaluate alternative suppliers for the
rubber industry. Chou and Chang [8] suggested an
approach of fuzzy simple multi-criteria rating method to
select the most appropriate supplier in the strategic view of
supply chain management. Sanayei et al. [31] proposed
integrated fuzzy sets theory and VIKOR method to handle
the selection process of supplier for an automobile part
manufacturing company. Dengfeng and Chuntian [9] sug-
gested TOPSIS method based on the integration of
Dempster Shafer theory and fuzzy set for appropriate
supplier selection. Rezaei et al. [30] used the fuzzy AHP
method and conjunctive screening method to select the
most suitable supplier on airline retail industry. Beikkha-
khian et al. [2] suggested a method based on fuzzy AHP-
TOPSIS and interpretive structural modelling to evaluate
suppliers. Simic et al. [33] categorized the supplier
assessment and selection methods as individual fuzzy and
integrated fuzzy approaches. Rashidi and Cullinane [29]
compared the performance of fuzzy data envelope analysis
and fuzzy TOPSIS method in supplier selection.

Miscellaneous decision-making models and techniques
like mathematics, statistics and artificial intelligence are
used with fuzzy methods. After Zadeh’s [56] proposal of
the FST, which deals with vagueness and ambiguity, many
other fuzzy set theories have been proposed. For instance,
the intuitionistic fuzzy set (IFS) theory, introduced by
Atanassov [1], is an advanced version of Zadeh’s fuzzy sets
but has two additional parameters that are non-membership
degree and hesitation (indeterminacy) degree besides the
membership degree. Some studies have used higher-order
fuzzy sets [47]. Xu and Zhao [49] studied and analyzed the
intuitionistic fuzzy decision-making methods, involving
the determination of attribute weights, the aggregation of
intuitionistic fuzzy information and the ranking of alter-
natives. Gupta et al. [17] studied on an 8 step MADM
method under incomplete weight information on intu-
itionistic fuzzy and extended to interval-valued
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intuitionistic fuzzy (IVIF) information. Feng et al. [13]
proposed an algorithm for solving MADM problems using
generalized intuitionistic fuzzy soft sets. Feng et al. [14]
introduced many new lexicographic orders tools for com-
paring intuitionistic fuzzy values with the aid of the
membership function, non-membership function, score
function, accuracy function, and expectation score
function.

In the last 10 years, supplier selection problem has been
handled with methods in higher order fuzzy environment.
Boran et al. [4] proposed an intuitionistic fuzzy (IF) mul-
tiple criteria group decision making with the TOPSIS
method for supplier selection problem. Memari et al. [26]
used an intuitionistic fuzzy TOPSIS method for selecting
the suitable supplier considering thirty criteria on the spare
parts manufacturer of the automotive sector. Yu et al. [55]
extended the TOPSIS method to the interval-valued
Pythagorean fuzzy environment for group decision-making
problems in supplier selection.

The degree of information (similarity or distance)
measure on the higher-order fuzzy sets has been applied in
decision-making problems [47]. One of the early studies of
information measures was proposed by Szmidt and
Kacprzyk [34] enhanced the Hamming Distance and the
Euclidian Distance to IFS. Wang and Xin [42] had some
criticism on the studies of Szmidt and Kacprzyk [34] that
they were not effective enough. Grzegorzewski [16], Chen
[7], Hung and Yang [20] studied on extending some dis-
tance measures such as the Hamming, the Euclidean or
Hausdorff distances to IFSs and developed new similarity
measures. Li et al. [22], Liang and Shi [23] studied on
suggestions or criticisms for some new similarity measures
for IFSs. Xu and Chen [48] studied on the Hamming,
Euclidean, and the Hausdorff weighted distance measures.
Xu and Yager [50], Verma and Sharma [36] introduce a
divergence (relative information) measure, a kind of a
discrimination measure for IFS, Boran and Akay [3] also
proposed some distance measures for IFS. Verma and
Sharma [37] proposed also a measure to determine the
inaccuracy between two ‘intuitionistic fuzzy sets’.

After IFS, Pythagorean fuzzy sets (PFS) proposed by
Yager [51], which are general forms of the IFS, simply the
square sum of membership degree and non-membership
degree is less than or equal to one. Consequently, with
Pythagorean fuzzy numbers (PFNs) membership degree
and non-membership degree have been expanded when
compared to IF numbers (IFNs), such as the sum of these
degrees in PFNs might be bigger than 1. For example,
while the membership degree is (0.8), the non-membership
might be (0.6), because (0.8)* + (0.6)* <1, but it is not
possible in IFS as (0.8 +0.6) > 1. PFS can solve the
problems which give decision-maker larger area of



International Journal of Machine Learning and Cybernetics (2020) 11:1749-1780 1751

deciding that the IFS cannot do, once considering some
practical issues. Zhang and Xu [57] suggested a distance
measure of PFNs extended from that of IFNs. Li and Zeng
[21] proposed distance measures of PFN with four
parameters, which are a membership and non-membership
degree, strength, and direction of commitment. Verma and
Merigé [35] proposed a generalized hybrid trigonometric
similarity measure based on cosine and cotangent functions
and applied it to MCDM problems with Pythagorean fuzzy
information.

After the introduction of PFS, Yager [52] proposed the
g-rung orthopair fuzzy sets (q-ROFs), in which the sum of
the qth powers of the (membership and non-membership)
degrees is restricted to one [53]. The more the rung ¢ in-
creases, the more acceptable space of orthopairs increases;
hence, more orthopairs satisfy the limitations. As a result,
g-ROF numbers give us the flexibility to mean a broader
scope of fuzzy information. Namely, with the g parameter,
we can express a more comprehensive information range;
therefore, q-ROFs are more convenient for the vagueness.
As g-ROFs application range is more comprehensive than
previous fuzzy sets, in accordance with the change of the
q parameter (q > 1) shows us that g-ROF is broader, more
flexible and appropriate for the complicated and unclear
environment than PFS and IFS [39]. So, the larger a ¢ level
is determined, the more flexibility might be depicted.

Although g-ROFs provide the flexibility to express a
wider information range, there is not enough study con-
cerning distance measures and decision-making methods
with q-ROF numbers. Peng and Liu [28] studied the sys-
tematic transformation for information measures (distance
measure, entropy, inclusion measure and similarity mea-
sure) for q-ROFSs, presented new relations for information
measures and used these new ideas on clustering, medical
diagnosis and pattern recognition. Du [11] studied on
Minkowski-type distance measures (Euclid, Hamming, and
Chebyshev) for generalized orthopair fuzzy sets. Wang
et al. [40] proposed some cosine similarity measures.
However, the measures proposed by Du [11] and Wang
et al. [40] both have counter-intuitive problems. Liu and
Wang [24] proposed two decision-making methods based
on q-ROF aggregation operators; however, they have some
drawbacks. Therefore, it is obvious that a decision-making
method and a distance measure between q-ROF numbers
are required.

The originalities of this paper are threefold. Firstly, this
paper introduces a novel distance measure between q-ROF
numbers. A distance measure on -ROFs is represented and
proved. As mentioned above, existing distance measures
have some drawbacks. When compared with existing IFS
and q-ROF distance measures, it is illustrated that the
proposed distance measure has no drawbacks and counter-
intuitive results. Secondly, we proposed two new q-ROF

multiple criteria group decision-making methods by
extending TOPSIS and ELECTRE to q-ROF ELECTRE
methods to q-ROF environment using the proposed novel
distance measure. To the best of our knowledge, it is the
first time that ELECTRE method is extended to q-ROF
environment. We compared q-ROF TOPSIS and q-ROF
ELECTRE with other existing q-ROF decision-making
methods and proposed obtained better results. The advan-
tage of q-ROF ELECTRE method is it’s being parametric
concerning uncertainty. Thirdly, when investigating sup-
plier selection problem, it is the first time that q-ROF
TOPSIS and g-ROF ELECTRE methods are used in sup-
plier selection problem.

The rest of the paper is arranged as follows. We explain
the fuzzy sets from Zadeh’s classical ones to g-rung
orthopair fuzzy sets of Yager in Sect. 2. The new distance
measure, it’s proof, interpretation and comparison with
other measures are introduced in Sect. 3. g-ROF TOPSIS
and gq-ROF ELECTRE methods are explained in Sect. 4.
The application of the proposed distance measure to sup-
plier selection integrated with the proposed methods are
presented in Sect. 5 as a numerical example. We made a
conclusion in Sect. 6.

2 Preliminaries

In this section, we make an introduction for the concept of
fuzzy sets beginning with Zadeh’s classical ones to q-ROFs
which are related to our model of a different distance
measure.

Definition 1 [56] A fuzzy set A in the universe of dis-
course X = {x1,x2,...,X,} is a set of ordered pairs:
A = {(x, s (x))|x € X} (1)

where py(x) : X — [0, 1] is the membership degree.

Definition 2 [1] An intuitionistic fuzzy set A in X can be
defined as:

A = {{x 1y (x),va(x))| x € X} (2)

where the functions u,(x) : X — [0,1] and va(x) : X —
[0,1] define membership degree and non-membership
degree of x, respectively, such that:

0<pa(x) +valx) <1 (3)
The hesitation degree of the IFS is:
a(x) = 1 — gy (x) — va(x) (4)

which shows the hesitation degree of x belonging to A or
not. It’s also true that:

0<ma(x)<1 (5)
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While the minority of 74 (x) shows the precision of our
knowledge about x, the greatness of it shows the
vagueness.

Definition 3 Yager [51] introduced Pythagorean fuzzy sets
membership degree couple of values (a, b) such that a, b €
[0, 1] as follows:

e+ <1 (6)

Here, a = Ay (x), membership degree of x in A, and
b = Ay (x) the non-membership degree of x in A. We also
see that for this pair a’ + b’= 12, in which r is the radius.

Definition 4 As Yager [52] proposed, a qth rung orthopair
fuzzy subset A of X has given below:

A = {x pa(x),valx))| x € X} (7)

where p, : X — [0,1] indicates membership degree and
va : X — [0, 1] indicates non-membership degree of x € X
to the set A with below condition:

(14 () +(va () <1 (3)

The degree of hesitancy can be defined as

ma(x) = (1 — (g ()7 — (va(x)))) /9. Yager [52], as pre-
sented in Fig. 1, proposed that Atanassov’s IFSs are
g-ROFs with q = 1, and PFS are q-ROFs with q = 2.

Definition 5 [39, 41, 44] Let A = (u(x), v(x)) be a g-ROF
number, the score function and the accuracy function of
A are respectively given below:

s(A) = (1+ u(x)? = v(x)?) /2 ©)

2<q<o

q-ROFs <1
a?+ bi<1

PFS

IFS

b 1

Fig. 1 Comparison of different fuzzy sets
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h(A) = k()" + v(x)? (10)

Definition 6 [24] Suppose o = (p(x), vi(x)), (k =
1,2,...,n) is a collection of g-ROFNs, then the g-rung
orthopair fuzzy weighted averaging operator (-ROFWA)
is given as follows:

q-ROFWA(OCl, 02y ey OC[)

! Va
= < (1 -1Ja- #k(x)q)ik> ,Hv/c(x))“k>
k=1

k=1

(11)

Definition 7 [24] Similarly as g-ROFWA, Suppose oy =
(e (x), ve(x)), (k = 1,2,...,n) is a collection of g-ROFNs,
then the g-rung orthopair fuzzy weighted geometric oper-
ator (Q-ROFWGQ) is presented as follows:

3 M[)

q-ROFWG (a1, 07, . .
! e 12
=<HWMKQ— a—wmwﬁ > .
k=1 k

In Definitions 6 and 7, A= (i],ﬂv2,137...,in)T is a
weight vector of (o, 0, ...,0), such that 0 <1, <1 and

Sl =1

Definition 8 A mapping D : gROF(X) x gROF(X) —
[0,1], D(A, B) is a distance between A € gROF(X) and B €
gROF (X) if D(A, B) satisfies:

l

1

(Al) 0<D(A,B)<1

(A2) D(A,B)=0if and only if A =B
(A3) D(A,B) = D(B,A)

(A4) IfAC BC C then D(A,C)>D(A,B)

3 A novel distance measure between g-rung
orthopair fuzzy sets

A new distance measure between q-ROFs with its proofs
and the interpretation of the proposed novel distance
measure is given in this section. Moreover, the comparison
of the proposed distance measure with the existing distance
measures is performed to illustrate the superiority of the
proposed distance measure.

3.1 Proposal and the proof of the novel distance

measure
Let A and B be two ¢-ROFs in X where
X = {x1,x2,...,%,}. The proposed novel distance measure
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1= 0t =) + k({1 =) = §/ 1=t ) [ +

Pl 1 <&

'(l—k)(vA(x,)—vB(x, +k<\/1 4 () — {1 - ﬂBx,)

is defined as follows:
where p = 1,2,...,n and

1, 3 1 5 11

= — 1 ZZ

k <2q +54 3>/(q +3q+1), ke[3,2]
(13)

Here, p is the L, norm, and k is a parameter of uncer-
tainty, are explained in detail in Sect. 3.2.

Theorem 1 D(A, B) is the distance between two g-ROFs A
and B in X.

Proof A(1) Let A and B be two q-ROFs.
It is known that 0 < 1, (x;) <1,0< puz <l and k € [},}]
then

—1<py(xi) —pp(xi) <1, 1—k>0 (14)
It is easy to see that:
k=1< (1= k)(up(xi) — pp(xi)) <1 —k (15)

Since 0<vsp(x;)<1 and O0<vp(x;)<1 then
0<vi(x)<1and 0<v}(x;) <1 are also true. Moreover,
based on 0<1—v{(x;)<1 and 0<1—v}(x)<I,

0<{/(1—vi(x))<1 and 0<{/(1—vi(x))<1 are
obtained. Consequently, we get: —1<</1—Vi(x;)—

/1 —=vE(x;) <1 and product this inequation with k we
get Eq. (16) as follows:

—k<k(\/1—vA (x) \/1—v3x,><k (16)

So, with the Egs. (15) and (16) we can have the
following inequality:

k—1—k<((1—k)(ua(xi) — pg(x:))

+k(\/1—vAxl \/1—va,>)§1—1<—|—/¢

(17)

Hence, 1 ((14) s o) -y + (T

— l—v%(x,-)))ﬁl because of the absolute value it

becomes:

0<[(1 — k) (pa(xi) — pp(xi))

+k<\/1vAx, \/1val>

Second part of the formula indicated below is also
similar with the first part,

|(1 = k)(va(xi) — vp(xi))
s (=) - /1= )

As 0<vi(x))<1, 0<vp<1l and k€ [3,é] then
—1<wva(x;) —vp(x;)) <1, 1 —k > 0, therefore, Eq. (20) is
obtained as follows:

k—1<(1—k)(valxi) —vp(xi)) <1 —k (20)

(18)

<1

! (19)

If 0 < gy (x) <1and 0< pg(x;) <1, then 0< uf(x;) <1
and 0< u%(xi) <1 are also true. Furthermore, based on
0<1—pud(x)<1 and 0<1— uf(x;) <1 the following
inequalities are obtained 0<<{/(1—pi(x;))<1 and
0< /(1= pg(x)) < 1.

Consequently, —1< \"/1 TAED) \/1 JTAED)
and product this inequality with & we get Eq. (21) as
follows:

—k<k<\/1 4 () — {1 - ,qu,>_ (21)

Integrating Eqgs. (20) and (21), the following inequality
is held:

k—1—k<((1—k)valx:) —va(x)

+k<\/1 w4 () \/1 ,qu,>>§1—k+k
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—1<((1 = k)(valx;) — va(x)

(\/1 4 () — {1 - qu,)>1 (22)

and it becomes:

0< (1 = k)(valxr) — va(x:))

({1t = )

Finally, from Egs. (18) and (23), Eq. (24) is obtained as
follows:

p <1 (23)

1>

, lz '(] = k) (pa(xi) — pp(xi)) Jrk({//l —vi(x) — {/1 - v;’,(x,»)) p+
e ‘(I*kﬂ‘%()ﬂ)*vu(xl +k<\/1 wh(x) \/lf,ug (i >

>0

(24)

Therefore, the distance between A and B we have the
inequality of 1> D(A,B) > 0.

A(2) Let A and B be two q-ROFs then p, (x;) = pg(xi),
va(xi) = vp(x;) and gy (i) — pp(xi) = 0, va(x;) — vp(x;) =
0. Thus, D(A, B) is equal to zero.

A@3) Let A and B be two q-ROFs then the first part of
the formula is as follows:

(1= &) (pa (xi) = pip(i))

+k<\/1vAx, \/1va,>p

{(1 = k) (up (i) — pa (i)

+k<“1v3x, \/1vAxl>}

Based on the absolute value, Eq. (26) is expressed as
follows:

(1= ) (pa (i) = pap (i)

+k(\/1—v1x, \/1 v (x; )

= (1 = &) (up(xi) — pa (i)
+k(</1—v[l’;(x, \/1— 4 (xi )

The second part is also similar:

=[(=1)

(25)
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‘(l—k)(VA(X,)—VB(X, +k(\/1 TAED) \/1 uh x,)

= ’(_1){(1 —k)(ve(x:) = va(x))

+k<\/1 4w) — {1 - qu,)}

Based on the absolute value, Eq. (28) is expressed as
follows:

'(1 K (v (x) — va(x) +k(q I ()
SN = 10 - D) —w)) @8)

+k(\/1 1 (x \/1 I xz)

Thus we can conclude that D(A, B) is equal to D(B, A).

A(4) Let A, B, and C be three q-ROFs, the formula of
the distance measure between A, B and A, C are
respectively given below:

(27)

D(A, B)
11 o[-0 - ey + (=0 - =g ) +
& (1= 0050 = vats) + (1= )~ §/1 =)

(29)
D(A,C) =
1= 0t = ety + ({1 =400 — 1 ) [+
nix (1= 0050 = v+ 11 i) = /1= o )|
(30)

If ACBCC then puc(x)>ug(xi)>ps(x;) and
va(xi) >vg(xi) >ve(x) and ke [t} so 1>pe
(xi) > pp(xi) > pa(xi) >0, 12>wa(xi) > vp(xi) > vel(xi) >0
and 1 > 1 — k > 0 are held.

Moreover, |puc(xi) — pa(xi)| = |pp(xi)
and Eq. (31) is obtained as follows:

(1 = B)ue(xi) — pa ()| = (1 = k)| pp(xi)

— 1y (x)| is held
— () (31)
If va(x;) >vp(x;) >ve(x;) then vi(x;) > v (x;) > v (x:)

and 1 —v1(x;) <1 —=v}(x;) <1—vE(x;). Inequality given
in Egs. (32) and (33) are easily held as follows:
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Y =) <0 — ) < —itw) ()

k(ﬂ()ﬁ) —\/1- Vﬁi@i))
S )

Consequently, with Eqgs. (31) and (33) we obtain
Eq. (34) as follows:

(1= k) (e (xi) = pa(xi))

+k<(/1 — V() — {1 vZ(xi)) ’

> [(1 = k) (g (xi) — pa(xi)

+k(\/ 40) — /1~ i (x) x,)

For the second part of the formula, as |ve(x;) —
VA(X,')| > |VB(X,') — VA(X,')| and 1>1—4k>0 Eq (35) is
held:

(1 = K)[ve(xi) —vala)[ = (1 = K)vplx) —vale)|  (35)

(33)

(34)

If 4 (xi) > pp(xi) > e (i) then g (i) > pp (xi) > ud-(x:)
and 1 — g (x;) <1 —ph(x;) <1— pl(x;) Moreover, it is

easy to see that /(1 —pd(x))<¢/(1—ph(x)) <
(1 — ut(x;)). Therefore, the following inequality is
determined as follows:

({1 =)
Zk<m(’”) —y/1- qus(xi)>

Consequently, with Egs. (35) and (36) we obtain
Eq. (37) as follows:

|(1 = k) (ve(xi) —va(xi)

+k(\/1 pE(x:) \/1 ,qu,>

= [(1 = k) (va(xi) = valxi))

+k(\/1 wh(x:) \/l—ﬂAx,>

Finally, with the Eqs. (34) and (37), it is easy to say that
D(A,C)>D(A,B). Similarly, D(A,C)>D(B,C) is also
held. As the conditions (A1)-(A4) are satisfied, D(A, B) is
a distance measure between q-ROFs A and B.

(36)

(37)

Theorem 2 D, (A,B) is a weighted distance measure
between two q-ROFs A and B in X.

Du(A,B) =
b, (1= 0t = o)+ (100 — 1= )|+
=l '(1 _k)(vA(x,»)—vB<xi))+k<{’/1 # (x) \/1 Hs Xx)
(38)
where p= 1.2,...n and k= (3¢* +3q— 1) /(¢* + 3q+

1), ke[i.4] also w; is the weights of the features (x;)
€0,1] and > 7 w; =1

Proof A(1) If we obtain the product of Eq. (18) with w;,
then we can easily have:

0 <wil(1 — k) (s (x;) — pp(xi))

+k(\/1—vAx, \/1—va,)

The following inequality, based on Eq. (39), can be
written as:

0< Zw,\ (1—k
+%V1\mm“1%w0

(39)

<Wi

) (1ta (xi) — g (xi)

So, it’s easy to see that > ., w; is equal to 1 since
>, w; = 1. Equivalently, if we product Eq. (23) with w;,
we have:

0 <wi|(1 = k)(va(x;) — va(x;))

({1 - 1= )

The following inequality, based on Eq. (41), can be
written as:

0< znjw,-u — 1) (v (1) — v ()

+k(\/l 14 () \/1 ,qu,)p

P 41
<w, (41)

(42)

< iwi
i=1

So, it’s easy to see that >_; , w; is equal to 1 in since
>i,w; = 1. Finally, we obtain the following inequality
using Egs. (40) and (42) that:
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0<

nlzn: ) ‘(uk)(qu, +k<\/17vAx,)—\/],val>
. ‘(1_k)(VA(x')_VB(’“' +"<\/1 ) = /1 - qu,>
<1

(43)

Thus, 0<D,,(A,B) <1.

A(2) Let A and B be two q-ROFs then p, (x;) = pg(xi),
va(x;) = vp(x;) and gy () — pp(xi) = 0, va(x;) — vp(x;) =
0. Therefore, the weighted distance measure D, (A, B) is
equal to zero.

A(3) If we product both sides defined in Egs. (26) and
(28) with w; we have Egs. (44) and (45) as follows:

wil (1 —= k) (g (xi) — g (xi))

+k<</1—vj(xi)— \ 1—V%(Xi)> ’ "
= wil(1 — k) (up(xi) — pa(x:)) o
+k(\/l—v3xl \/I—VAX1>

wil (1 — k) (va(x;) — va(x:))
+k<\/1 4 () — {1 — wy (o > )

= wi|(1 — k) (vp(x;) — va(x:))

+k(\/1 Wb (x:) \/l wh x,)

Thus, D,,(A,B) = D,,(B,A).
A(4) If we product Egs. (34) and (37) with w;, we have

wil (1= k) (g (i) = pe (xi))

+k<(" 1—v;{(x,-)) — 1—v‘é(xi)>

>wi| (1 — k) (g (xi) — (i)

wi( (3= - 1= )

P

(46)

p

wil (1 — k) (va(x:) — ve(xi)

+k((ﬂ(xi)> — ¢ l_ﬂ(é(xi)>

>l (1 = k) (v () = v ()

+k((M()€t)) —y/1- /J%(xi))

p

P
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Fig. 2 Proposed distance measures

Since all w; >0, consequently, we obtain the following
inequality D, (A, C) > D,,(A, B). Similarly, D,,(A,C) > D,,
(B, C) is also held. So, finally, we conclude that D,,(A, B)
is a distance measure between q-ROFs A and B since
D, (A, B) satisfies (A1)—(A4).

3.2 Interpretation of the novel distance measure

Under this sub-section, we interpret the proposed distance
measure and analyze the usage of parameter k defined in
the formula.

Let (pt4(x),va(x)) and (pg(x),vp(x)) be two q-ROFNSs.
The basic formula of distance measure is:

, 1 n . X i ,
= ﬂg{lm — 1) Hva () — v} (48)

As can be easily seen in Fig. 2:

iy (xi) = pa (x; +k<\"/1 — VA () — pa(x; )
Vi (%) = va(xi) (" 1—u )
V(%) = vp(x; +k<"1,u3x, )
where

1, 3 1 5 11
= (= e — 1 ~ 2
k <2q +2q 3>/(q +3g+1), ke{yz]

The parameter k is related to the shape of the area
construed by order of q. If q = 1 then q-ROFs is IFS and

(49)
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the area of ROP becomes a triangle. Then the parameter
k is equal to % using the formula. When q = 2, q-ROFs is

)1 =8+ k(3T

Pythagorean fuzzy set, and the area of ROP becomes a , .
quarter circle. Consequently, parameter k is equal to —up(xi)(1 — k) — k( 1 - VB(xi)>’ (51)
0.424242 using the formula. For q = oc, the area of ROPS
. | = (1 = k) (pa(xi) — pp(xi))
becomes a rectangle, and then the parameter & is equal to 5

since limy .o {(1¢* +3g—1)/(* +3¢+ 1)} =1 Actu- —|—k<</1 —vi (%) — /1 —v%(x,))'
ally, the formula for k gives the centre of gravity of dif-
ferent shapes that are constructed by different qth order. We can use the same method for the second part:

It is observed that the hesitation degree (m) in a g-ROF
set is bigger than in PFS and IFS as the g increases. In
order to solve this problem, the hesitation degree is dis-
tributed to the membership (¢) and non-membership (v)
degrees in the abovementioned distance measure. Based on
this idea, we get the following equation as follows:

b izn: ‘(MA(xin(” 1 —vi(x) —m(%))) <u3 Xi +k(\“/1 — vi(xi) — pp(xi )> + |
PE | (ot + (=0 =t ) ) = (vt + (1= -t} )| | 60
o
) 1Thf:n we can simplify the first part of the equation as (5) 4k ( o ,uq( ) ( ))
clow. va(x; V1= 1l (x) = valx;
)+ ({1 ) — ) (vt + £(§/T= ) — o))
_<u3(xi) +k<" L= v (x) —uB(xi)> ‘ i - —k(vA(xi))Jrk(" 1—vj§(x,-))
= a0 k) + # (314000 —vato) + RO () — (/1= ) )| )

)+ K{u) — k(31000 )

va(x)(1 —k) + k< (/1 — uj(x,-))

—vp(x)(1 — k) — k( V1 - u%(m))‘
= |(1 — k) (va(x:) — va(x))

(- i-7)

Therefore with the abovementioned Eqs. (51) and (52),
we can easily get the simplified distance measure as below:

D(A,B) =

1o [ = 006 - we -+ 1(T =10 - 1= ) [+
>
T =0t = va + k(Y= - 1= i )

@ Springer
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Table 1 (continued)

q-ROF similarity measures

(b) Authors

12
Skuctia(A,B) =1 — (% (14 (xi) — ,uj_{;(x,-))z-&-% (v (i) — v;’;(x,-))2>

Du [11]

() — 10| + [ (x) — v%(xo»)}

q
A

(I

g-ROFC'(A,B) =

1
2

SHamming(AyB) =1- {

X (i) + v (i) x v ()

14 ()

n

S

Wang et al. [40]

(x))*

SRR

() +(v

SR

(v))” x \/(

o=

(x,-))er(v

o=

(u

]

n

4 () X p () + v () x vE () + 7 () x h(x)

where p = 1,2,3,...,n and
1, 11

= (37 +30-3) [ @ v el 69

3.3 A comparison of the similarity measures

In this subsection, a comparison between our proposed
distance measure and existing measures in the literature
(Table 1) is conducted. Most of the distance measures are
proposed for IFS; however, we also take into consideration
the study of Du [11] for Minkowski-type distance measures
for generalized orthopair fuzzy sets.

3.3.1 IFS similarity measures

In order to use the same term, we convert our proposed
distance measure to similarity measure [S(A, B)] using the
below formula:

S(A,B) =
S(A,B)=1—-D(A,B)

P
+

1y o (=0 = st + (=0 - =)
1- Z;

P

1= twnta) = v + (/1= ) = /1= )
(54)

Table 2 presents a comparison of the similarity measures
with counter-intuitive examples (p = 1 in Sy, S8, S7, SZ). Itis
obvious that the second axiom (A2) is not satisfied by S¢ (A,
B), Spc (A, B), Cizs (A, B) since Sc (A, B) = Spc (A,
B) = Cirs (A, B) = 1 when A = (0.3,0.3) and B = (0.4, 0.4).
In a similar way (A2) is not satisfied by Sc (A, B), Spc (A,
B) when A =(05, 0.5), B=(0, 0) and A = (04, 0.2),
B = (0.5, 0.3). Some similarity measures do not distinguish
positive difference from negative difference, Sy (A, B) = Sy
(C, D) =0.9 when A = (0.3, 0.3), B=(04, 04), C = (0.3,
0.4) and D = (0.4, 0.3). The same counter-intuitivity might be
seen in So, Sus, ¢, S}, Sky, S%y and S3,,. Another counter-
intuitive problem occurs when A = (1,0), B = (0,0), C =
(0.5,0.5) so both Si(A, B) and Sy (C, B) are equal to 0.5. It
also occurs for Syp, SP and Cjps. Likewise S;, (A, B) = S, (A,
C) =0.95 when A = (04, 0.2), B = (0.5, 0.3), C = (0.5, 0.2).

Another problem occurs when we take A = (0.4, 0.2),
B = (0.5, 0.3), C=(0.5, 0.2). We expect the similarity
between A and B should be equal or greater than the sim-
ilarity between A and C, since C>B>A according to
score function and accuracy function. However, it does not
occur when Sy, So, Spp, S and Sﬁ are used.

3.3.2 Comparison of existing q-ROF similarity measures

There are a few similarity measures related to q-ROF
numbers. Du [11] mentioned as Minkowski-type similarity
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Table 2 The comparison of

similarity measures (numbers ! 2 3 4 > 6
are taljfn Ifmnpl [331) ® =11 in \ (0.3, 0.3) (0.3, 0.4) (1, 0) (0.5, 0.5) 0.4, 0.2) (0.4, 0.2)
f: f)’ufi;lig’sjrhezﬂf -as (0.4, 0.4) 0.4, 0.3) (0, 0) 0, 0) 0.5, 0.3) 0.5,0.2)
Se 1 0.9 0.5 1 1 0.95
S 0.9 0.9 0.5 0.5 0.9 0.95
S 0.95 0.9 0.5 0.75 0.95 0.95
So 0.9 0.9 0.3 0.5 0.9 0.93
Spe 1 0.9 0.5 1 1 0.95
Sus 0.9 0.9 0.5 0.5 0.9 0.95
s 0.9 0.9 0.5 0.5 0.9 0.95
A 0.95 0.9 0.5 0.75 0.95 0.95
A 0.93 0.933 0.5 0.67 0.93 0.95
sh, 0.9 0.9 0 0.5 0.9 0.9
2, 0.85 0.85 0 0.38 0.85 0.85
3y 0.82 0.82 0 033 0.82 0.82
Cirs 1 0.96 0 0 0.9971 0.9965
Spg 0.951 0.94 0.5 0.748 0.952 0.968

measures Hamming (Sxamming) and Euclid (Sgyciiq). Wang
et al. [40] proposed two similarity measures based on
cosine measures. In the comparison study, the value of ¢ is
equal to 3 for all similarity measures, and the value of p is
equal to 1 in the proposed distance measure.

When the results of the Hamming (Sgamming) are
examined, it is observed that many counter-intuitive results
exist. It is easy to see that Hamming similarity measure
does not satisfy the fourth axiom (A4) in the first four cases
presented in Table 3. For example, in the first case, -ROF
numbers are A = (0, 0.5), B = (0.5, 0.6) and C = (0.4, 0.2)
and it is expected that S(A, C) > S(A, B) and S(A,
C) > S(B, C) since C > B > A, according to their score
function. Therefore, S(A, C) should be smaller or equal to
both S(A, B) and S(B, C) according to the fourth axiom
(A4). However, Syamming (A, C) has the greatest value
among the three values. Similar counter-intuitive results
occur in the second, third and fourth cases in which C >

B > A; however, Sxamming (A, C) is greater than Syamuming
(A, B) and Sggmming (B, C). Last but not least, Hamming
similarity measure does not distinguish positive difference
from negative difference, as it is seen in fifth and sixth
groups when in fifth group A = (0.3, 0.3), B = (0.4, 0.4)
and in the sixth group A = (0.3, 0.4) and B = (0.4, 0.3) and
their both results are equal as S(A, B) = 0.963.

Euclid distance also does not satisfy the fourth axiom
(A4). As it is seen in Table 4, in the first case, A = (0.1,
0.9), B=(.1, 06), C=(0.7, 0.8) and C>B > A
according to their score function. Sg,c;is (A, C) should be
the smallest value; however, Sg,iq (A, C) is greater than
both Sg,cia (A, B) and Sg,.;i0 (B, C). Therefore, Euclid
distance does not satisfy the fourth axiom (A4). Similarly,
in the second, third and fourth cases C > B > A, Sg,iq (A,
C) is the greatest among three similarities and therefore,
the first four cases do not satisfy the fourth axiom (A4).
Euclid similarity measure does not distinguish positive

Table 3 The comparison of

Hamming distance-based ! 2 3 4 > 6
similarity and the proposed- A (0, 0.5) 0.2, 0.7) (0.5, 0.4) 0.2, 0.5) 03,03)  (0.3,0.4)
distance based similarity
B (0.5, 0.6) (0.7, 0.8) (0.8, 0.6) (0.5, 0.6) (04,04) (0.4,03)
c 0.4, 0.2) (0.5, 0) 0.7, 0.2) (0.4, 0.1) - -
Ranking * C>B>A C>B>A C>B>A C>B>A B>A B>A
SHamming (A, B) 0.892 0.748 0.7305 0.896 0.963 0.963
Stamming (B, C) 0.8655 0.635 0.8115 0.862 - -
Stamming (A, C) 09095 0.77 0.863 0.91 - -
Spp (A, B) 0.8546 0.88 0.9154 0.9084 0.95142 0.93981
Sps (B, C) 0.8861 0.7964 0.8999 0.8594 - -
Sps (A4, O) 0.7953 0.6889 0.8669 0.8226 - -

Counter-intuitive cases are in bold

*means rankings are calculated according to score and accuracy function
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Table 4 The comparison of
Euclid distance—bfsed similarity ! 2 3 4 > 6
and the proposed distance-based (0.1, 0.9) (0.4, 0.5) (0.1, 0.7) (0.6, 0.9) 03,03)  (03,0.4)
similarity B 0.1, 0.6) (0.8, 0.7) (0.7, 0.8) 03, 0.5) 04,04)  (04,03)
c 0.7, 0.8) (0.7, 0.4) (0.5, 0.3) (0.8, 0.7) - -
Ranking* C>B>A C>B>A C>B>A C>B>A B>A B>A
Spweiia (A, B)  0.6372 0.6477 0.73 0.5524 0.963 0.963
Seuetia (B, ) 0.68 0.7693 0.624 0.624 - -
Sewetia (A, ©) 07135 0.798 0.76 0.656 - -
Sps (A, B) 0.8557 0.9 0.853 0.896 095142  0.93981
Spg (B, C) 0.8492 0.9347 0.876 0.876 - -
Sps (A, C) 0.7496 0.8614 0.744 0.81 - -

Counter-intuitive cases are in bold

*means rankings are calculated according to score and accuracy function

difference from negative difference like Hamming mea-
sure. For example, in the fifth and the sixth groups
respectively A = (0.3, 0.3), B = (0.4, 0.4) and A = (0.3,
0.4), B = (0.4, 0.3). Even they are all different numbers,
their similarity results are equal as Sg,.iq (A, B) = 0.963.

Wang et al. [40] proposed two g-ROF cosine similarity
measures called -ROFC' and g-ROFC? which have many
counter-intuitive results. For example, the “division by zero”
problem occurs in both Sé_ROFC and SZ_ROFC as indicated in
the sixth case presented in Table 5. Another problem is
observed both in Sé_ROFC and Sﬁ_ROFC, in the fourth and fifth
cases in which C > B > A according to their score and
accuracy function. Therefore S(A, C) should be smaller or
equal to both S(A, B) and S(B, C) considering the fourth
axiom (A4). However, in the fourth cases where A = (0.7,
0.8), B=(0.1, 0.2), C=(0.8, 0.2), as C>B > A, both
similarity measures SCII,ROFC and Sé—ROFC do not satisfy the
fourth axiom (A4) as S(A,C) has the greatest value among all.

The same problem occurs in the fifth case in both similarity
measures of SCII_ROFC and Sczl_Ropc.

Moreover, the Sé_ROFC does not distinguish similarity in
the first three cases presented in Table 5. In the second and
third cases, S}]_ROFC is equal to one, means that two q-ROF
numbers are the same numbers, which is unreasonable. This
result violates the second axiom (A2), which requires
“S(A,B) =1 if and only if A = B”. For example, the num-
bers given as A = (0.2, 0.1), B = (0.8, 0.4), C = (0.4, 0.2) in
the second case and A = (0.4, 0), B = (0.8, 0), C = (0.5, 0) in
the third case are different -ROF numbers. Another counter-
intuitive result is seen in the first case as the numbers are
A =(08, 0), B=(0, 0.3), C=(0.9, 0) the similarity mea-
sures are S(A, B) = S(B, C) = 0 which is also an unreason-
able result. Therefore, it is obvious that all existing q-ROF
similarity measures have many counter-intuitive results which
can be easily seen in Tables 3, 4 and 5. Finally, our proposed
g-ROF distance measure has no counter-intuitive situation.

Table 5 The comparison of

Cosine similarity and the ! 2 3 4 > 6
Elr;ll’gri‘y distance-based A (0.8, 0) 0.2, 0.1) (0.4, 0) (0.7, 0.8) (0.6, 0.9) (0.9, 0.5)
B (0, 0.3) (0.8, 0.4) (0.8, 0) (0.1, 0.2) (0.1, 0.3) (0, 0)
c (0.9, 0) (0.4, 0.2) (0.5, 0) (0.8, 0.2) (0.8, 0.6) -
Ranking ** C>A>B B>C>A B>C>A C>B>A C>B>A A>B
Syrorc (A, B) 0 1 1 0.8934 0.9686 *
Shrorc (B, CO) 0 1 1 0.1395 0.4225 -
Shrorc (A, O 1 1 1 0.5694 0.6344 -
SZ rorc (A, B)  0.8389 0.8653 0.9169 0.838 0.8235 #
82 gorc (B, O 0.7739 0.9172 0.9479 0.8451 0.8546 -
S2 rorc (A, € 0.9938 0.9933 0.9963 0.866 0.8668 -
Sp (A, B) 0.65 0.808 0.8476 0.75 0.7969 0.7097
Spg (B, C) 0.5911 0.8847 0.8798 0.7612 0.7922 -
Spg (A, C) 0.94 0.9233 0.9678 0.743 0.7705 -

Counter-intuitive cases are in bold

*means division by zero error

**means rankings are calculated according to score and accuracy function

@ Springer



1762 International Journal of Machine Learning and Cybernetics (2020) 11:1749-1780

4 Application of novel distance measure
for proposed models

In this section, we propose two new and separate q-ROF
MCDM methods which are q-ROF TOPSIS and q-ROF
ELECTRE methods. We used our novel distance measure
in both proposed methods.

fha, (X1),va, (1), 7, (X1) g, (2), V4, (%2), e, (2)
fa, (X1)5va, (1), Ty (X1)  fa, (X2),Va, (%2), A, (2)

tha, (X1),va, (x1), a, (¥1)  fa, (X2), V4, (X2), T, (x2)

CI—ROFVVA(CXI7 02yt oy OC])

I A\ Ve
= < (1 -1Ja- ﬂk(x)q)/‘k> 7HV1<(X)M>
k=1

k=1

(56)

The aggregated q-ROF decision matrix (R) can be
described as follows:

Ha, (Xn), va, (Xn), A, (Xn)
Ha, (Xn), VA, (xn), A, (%n)

Ha,, (xn ) y VAn (xn )> A, (x,,)

4.1 Application of g-ROF TOPSIS method

Let A = {A,A3,As,...,A,} be a set of alternatives and
X = {X1,X5,X3,...,X,} be a set of criteria, the steps of
the TOPSIS method for q-Rung Orthopair Fuzzy Sets are
given below [4]:

Step 1. Determine the weights of decision-makers
(DMs).

The ranking of DMs is declared as linguistic terms are
expressed in q-rung orthopair fuzzy numbers. Let D, =
[ (%), vi(x), e (x)] be a q-ROF number to evaluate the
performance of kth of the [ decision-maker. The score
function [41, 44] of the q-ROF number introduced in
Eq. (9) can be used to rate the kth decision-maker as
follows:

() — )
St (1 (i) — v (x1))

and Yp_, Jx = 1.

Step 2. Aggregate the ratings of alternatives based on
DMs opinions.

At the beginning DMs rate the alternatives with the
linguistic terms. Then, these terms converted to a q-ROF
number. Suppose o = (p(x), ve(x))(k =1,2,3,...,]) is a
collection of q-ROF numbers are aggregated with DM
weights (4;) with ¢-ROFWA operator proposed by [Liu
and Wang [24]] indicated as follows:

Lk

(55)

MAIW(xl)a va,w(x1), Ta,w(xr)

R, 'uAZW(xl)’VAZW(xl)7nAzW(xl)

ta,w (X1)s va,w(x1), 7ta,w(x1)

”AIW(x2)7 vaw (x2), Ta,w(x2)
Hagw (X2), Vayw (x2), Ta,w(x2)

Ha,w (X2), va,w(x2), Tta,w(x2)

R = (rij)mxm where (:uAi (xj>a VA, (xj)’ TA; (x/)) >
(i=1,2,...,mj=1,2,..., n).

Step 3. Determine the importance weights of the eval-
uation criteria.

The criteria might have different importance degrees. W
indicates an importance degree. To obtain W, we get the
ratings of all DMs individually in linguistic terms, convert
them into q-ROF numbers and calculate their score func-
tions with below formula of Eq. (57):

S A+ ) - )
! Z;‘l:l W; Zizl AU+ () = vi ()

W:[W|—|—W2+W3,...,Wj]

(57)

W= (‘uﬁv.]-’n;i)(j = 1,2,3, . .,l’l)

Step 4. Build an aggregated weighted q-ROF decision
matrix.

After q-ROF decision matrix is implemented with the
weights, the aggregated weighted ¢-ROF decision
matrix (R’) is built as follows [24]:

wio = <(1 —(1— 'ul(x>q)wk)l/q7vl(x)wk>

) = (1= a ()~ () (58)

r; = (s Vi 1) = (1w (55), vaw (), ma,w (%)) s an ele-
ment of the aggregated weighted q-ROF decision matrix

where (i=1,23,...,m;j= 1273, ..., n).

:uAIW(xn)’ VA]W(xn)7 TTa,w (%)
,UAZW(xn)a Vayw (Xn ), Ta,w (Xn)

ta,w (Xn)s va,w(Xn), ta,w(Xa)
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Step 5. Defining the q-ROF Positive Ideal Solution (q-
ROFPIS, A*), and the q-ROF Negative Ideal Solution (g-
ROFNIS, A7):

When g-ROFPIS allows maximizing the benefit and
minimizing the cost, contrarily, -ROFNIS minimizes the
benefit and maximizes the cost attributes. Let JyandJ,
respectively, be benefit and cost criteria. A* is q-ROFPIS
and A~ is g-ROFNIS. So, A* and A~ can be obtained as:

Ax = (i (%), vasw(xj))  and (59)
A" = (:uA*W(xj)v VA’W(xj))
Haw (X7) = ((miax Haw ()l € Jl), (miin s ()i € Jz))
(60)

(mva w(x)|j € Jl) (max vaw(x)lj € Jz)>

VAsW x]

(61)

(62)

Va- W.Xj

-
et ((rmman ). (et .2))
-

<max vaw ()l € Jl) (mln vaw () € J2>)
(63)

Step 6. Calculate the separation measures to the positive
and negative ideal solutions.

In order to calculate separation between alternatives on
g-ROFs, the new distance measure that we suggested in
Sect. 3 is used for q-ROF numbers. The separation
measures, S and S;, of each alternative from q-ROFPIS
and q-ROFNIS are calculated in Eq. (64):

where p =1, 2, ...,n and

1, 3 1\/, 11
— - 1 -z
k <2q +54 3>/(q +3q+1), kEL,z]

Step 7. Calculate the relative closeness coefficient
(Cis).
C;. is calculated for the q-ROF ideal solution as follows:

(64)

S
Ci = ! 0<C-<1 65
St+S- - (65)

where

Step 8. Rank the alternatives.

After the relative closeness coefficients are determined,
to make the decision, we can rank the alternatives using a
descending order of C;,’s.

4.2 Application of q-ROF ELECTRE method

Q-ROF ELECTRE method has eight steps which are pre-
sented as follows [46].

Step 1. Determine the q-ROF ELECTRE decision
matrix.

As we did in TOPSIS Step 2 DMs rate the alternatives
with the linguistic terms, and they converted to a q-ROF
number given as in step 2 of TOPSIS method. The
aggregated q-ROF decision matrix can be described as
follows:

1Y '(1 = k) (aw (%) = ttaaw (%5)) +k< (1= () — (/1 _ VZ*W(xj)) p+
= 00 0mw5) — vaa) + 4§~ o)~ 41— s )
R N e )

= '(1 — k) (vaw () = va-w(x)) +k(q 1= 1,w(x) \/1 Hiow )
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ta, (x2),va, (x2), 7a, (x2)
ta, (%2), va, (x2), 7a, (x2)

fha, (X1), v, (x1), 7a, (x1)

r Ta, (X1), va, (x1), 7a, (1)

ta, (X1); VA, (x1), T4, (X1) W4, (X2), V4, (x2), T4, (x2)

Ha, (x,,), VA, (xn)a A, (xn)
Ha, ()C,,), VA, (xn)a TA, (xn)

Ha, (xn)a VA, (xn)a A, (xn)

R = (1)),,,,, Where (14, (), va, (7). 4, (), (1= 1,2, ...
,m;j=1,2,..., n).

The attributes have subjective importance, W, like g-
ROF TOPSIS, the sum of the weight of attributes x; to x,, is
equal to 1.

Step 2. Determine the sets of concordance and
discordance.

Concordance sets show the preferences in each pair of
the alternatives like Alternate k to Alternate 1 and can be
classified as strong, moderate and weak concordance sets.

The strong concordance set Cy; of Ay and A; is com-
posed of the criteria in which Ay is better than A; and can
be formulated as

Cu= {,lej > Hyjs Vig <Vji and T < TE[]‘} (66)
The moderate concordance set Cj; is:
Clu = {1y = pyj, vig <vy and my > m;} (67)

The weak concordance set CZI is:
Cl = {my >y and v > vy} (68)

On the contrary of concordance sets, discordance set Dy
shows the criteria for which Alternative k is not preferred
to Alternative 1. So, the strong discordance set Dy; can be
formulated as:

Dy = {,ukj </vtlj7 Vij > Vij and Tkj > ﬂ[j} (69)
The moderate discordance set D}, can be formulated as:
D, = {,ukj<,ulj,vkj >vy; and my <m;} (70)

Finally, the weak discordance set D}, can be formulated
as:

Dy = { iy <y and vig <v;} (71)

The decision-makers give the weight of these sets
according to their importance. The weights of
Cu, Cj;» Cj, and Dy, D;,, DJ are
We, We, Wer, Wp, Wy and Wy respectively.

Step 3. Calculate the concordance matrix.

The concordance set is calculated based on concordance
index, which is equal to the sum of the weights related to

@ Springer

the criteria in the concordance set. The concordance index
might be calculated as follows:

Cu=Wc x Zj:C;d VVJ + We X ijq’ VV] + Wer

X Zj:cg, Wj
(72)

where W; is the weight of attributes defined in Step 1 and
We, W, W are weights which are defined in Step 2.
Step 4. Calculate the discordance matrix.
The discordance index dy; is formulated as:
5 is( Xy, Xy
B max Wj, x dis(Xy, Xij)

dy —
M max dis(X;;, Xij)
jel

(73)

For dis(Xy;, X;;) distance measure which was proposed in
Sect. 4 is used.

Step 5. Calculate the concordance dominance matrix.

The concordance dominance matrix is obtained based on
the threshold value of the concordance index, which is the
average value of the matrix. When the concordance index Cy
exceeds the threshold value ¢, as an example, ¢y > ¢, and

. Zk:l.k;ﬁl Zz:u# Cii
mx (m—1)

(74)

Based on ¢, the concordance dominance matrix ' might
be constructed, the elements of which can be defined as:

if cy > ¢, fu=1; elsefiu =0 (75)

Then each element of 1 in matrix F' shows the domi-
nance of one alternative to another.

Step 6. Calculate the discordance dominance matrix.

Similar to the previous matrix it is determined by a
threshold value d and the elements of gj; of the discordance
dominance matrix G is defined as:

. Zzlzl,kyél Z;n:l,l;ék du
mx (m—1)

(76)

Step 7. Calculate the aggregate dominance matrix.
In this step, the intersection of both concordance and
discordance dominance matrices is determined as an
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Table 6 Evaluation criteria

Table 8 Linguistic terms for all ratings

Criteria no Criteria name

Criteria group name Linguistic terms u v

Economic X4 Quality Extremely high (EH) 0.95 0.15
X5 Delivery time Very high (VH) 0.85 0.25
X3 Technological capability High (H) 0.75 0.35
Xy Cost Medium high (MH) 0.65 0.45

Environmental X5 Pollution control Medium (M) 0.55 0.55
X6 Green product usage Medium low (ML) 0.45 0.65
X7 Water/energy consumption Low (L) 0.35 0.75

Social X3 Employee rights Very low (VL) 0.25 0.85
Xo Stakeholders rights Extremely low (EL) 0.15 0.95
Xio Labor safety and health

aggregate dominance matrix, E, its elements defined e;; by
the formula of:

e = fu X 8u (77)

Step 8. Eliminate the less favorable alternatives.

In matrix E, ej; = 1 implies that A, is preferred to A; by
utilizing both concordance and discordance dominance
matrices values; however, A; might be dominated by the
other alternatives. If any column of the matrix E has at least
one value of 1, it is “ELECTREcally” dominated by the
related row(s). Therefore; we  eliminate any
column(s) which has the value of 1.

4.3 Using g-ROF TOPSIS for ranking
the alternatives

If ELECTRE method cannot rank all the alternatives as
required, we may use some of the steps of q-ROF TOPSIS
to rank the alternatives. It is better to integrate TOPSIS
index to our q-ROF ELECTRE with below steps starting
from Step 5.

Step 5b. Calculate concordance dominance matrix using
positive ideal solution of TOPSIS.

As c* is the biggest value in the matrix, we calculate:

Then the concordance dominance matrix D’ is obtained.

Step 7b. Calculate the aggregate dominance matrix U.

The aggregate dominance matrix U is constructed based
on Egs. (80) and (81) as follows:

Unl  Um2  Up(m—1)

Any element () of U is defined as:

/

_ dy
Up = /7[1/
Cy T dy

(81)

Step 8b. Determine the best option.
The average value of uy is computed in Eq. (82) as
follows:
_ 1 X
Up=—" Mkl,kzl,z,...,m (82)
m= 1 i

The best alternative A* can be determined by Eq. (83) as
follows:
A" = max{iu} (83)

Then the alternatives are ranked in descending order of
Aj’s.
j

cy=C¢"—cu (78)
Then the concordance dominance matrix C is . .
5 A numerical example for supplier
constructed. .
Step 6b. Calculate discordance dominance matrix like selection
in Step 5b. . . . o .
As d* is the biggest value we calculate: In this s.ectl.on, a numerical example is given to illustrate
the application of the proposed models both g-ROF TOP-
dy=d" — dy (79) SIS and q-ROF ELECTRE, and then compare the result of
Fake 7 To Ipore of o o, o,
Linguistic term Extremely high (EH) High (H) Very high (VH)
q-ROF value 0.95, 0.15 0.75, 0.35 0.85, 0.25
Weight 0.384 0.285 0.331
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Table 9 Ratings of the alternatives with linguistic terms

Criteria Supplier ~ DM1 DM2 DM3  Criteria Supplier ~ DM1 DM2  DMs3
Xi-quality Al EH H EH Xg-green product usage Al M VH M
A2 VH H MH A2 H MH ML
A3 M H H A3 VH M MH
A4 MH ML MH A4 EH H MH
AS M MH VH A5 VH M M
A6 H VH H A6 H H VH
A7 ML ML MH A7 EH H EH
A8 MH MH H A8 H VH VH
X,-delivery time Al H H VH X;-water/energy consumption Al VH H VH
A2 H L M A2 H MH MH
A3 VH VH H A3 VH VH H
A4 M EH MH A4 VH H H
AS ML ML MH A5 H VH VH
A6 MH VH MH A6 ML L H
A7 EH H EH A7 VH H M
A8 VH H VH A8 EH VH VH
X;-technological capability Al M H M Xg-employee rights Al H EH VH
A2 EH ML ML A2 MH H MH
A3 MH M H A3 H VH H
A4 H H H A4 MH MH MH
A5 M H H A5 H VH MH
A6 H H ML A6 ML L VH
A7 EH VH H A7 ML MH M
A8 M MH VH A8 H VH VH
X4-cost Al MH H MH Xo-stakeholders rights Al EH H H
A2 VH M H A2 MH VH M
A3 EH H VH A3 H VH MH
A4 MH H MH A4 ML L VH
A5 MH M VH A5 EH H MH
A6 M MH H A6 MH VH H
A7 H VH M A7 M MH M
A8 EH VH VH A8 H VH VH
Xs-pollution control Al H M H Xjo-labor safety and health Al MH H MH
A2 H H H A2 EH H H
A3 EH H VH A3 MH EH H
A4 MH VH H A4 M MH VH
AS H H MH A5 M MH M
A6 EH VH H A6 MH H VH
A7 H L MH A7 M ML L
A8 ML H VH A8 H VH VH

the proposed models with the existing models in the liter-
ature. Furthermore, the effect of parameters p and ¢ in both
methods is dealt with in this section.

@ Springer

5.1 Numerical example with q-ROF TOPSIS

A construction company intends to select the best supplier
for construction materials like concrete, marble, ceramics,
and installation of these materials to its structures. After
pre-evaluation, eight suppliers qualified for the final eval-
uation. So, three DMs have been selected as an expert to
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Table 10 DMs ratings of

. . Criteria groups
criteria group weights

Decision makers ratings

Group weights

DM1 DM2 DM3
DMs weights 0.384  0.384  0.285 0.285 0.331 0.331
Economic (criteria 1-4) 0.95 0.15 0.95 0.15 0.85 0.25 0.409
Environmental (criteria 5-7) 0.55 0.55 0.65 0.45 0.65 0.45 0.257
Social (criteria 8—10) 0.75 0.35 0.85 0.25 0.75 0.35 0.333
Zrailt);fi; ;;?;ﬁ:s ratings of each Criteria Decision Makers Ratings Weights  Overall weight
DM1 DM2 DM3
DMs weights 0.384 0.384 0.285 0.285 0.331 0.331
Quality 095 015 085 025 08 025 0277 0.113
Delivery time 085 025 09 015 075 035 0261 0.107
Technological capability 065 045 075 035 095 0.15 0.238 0.097
Cost 075 035 08 025 065 045 0.225 0.092
Pollution control 065 045 055 055 075 035 0.341 0.088
Green product usage 055 055 065 045 065 045 0317 0.082
Water/energy consumption 0.75 0.35 0.65 045 055 055 0342 0.088
Employee rights 095 0.15 085 025 085 025 0428 0.143
Stakeholders rights 075 035 065 045 055 055 0302 0.101
Labor safety and health 065 045 055 055 055 055 0.270 0.090
Table 12 Weights of criteria Criteria groups Weights Subcriteria Weights Overall weight
Economic 0.4092 Quality 0.2766 0.113
0.4092 Delivery time 0.2607 0.107
0.4092 Technological capability 0.2382 0.097
0.4092 Cost 0.2245 0.092
Environmental 0.2574 Pollution control 0.3410 0.088
0.2574 Green product usage 0.3174 0.082
0.2574 Water/energy consumption 0.3416 0.088
Social 0.3334 Employee rights 0.4279 0.143
0.3334 Stakeholders rights 0.3021 0.101
0.3334 Labor safety and health 0.2700 0.090
evaluate these eight suppliers. Ten evaluation criteria are (140.95% — 0.15%)/2
determined under three criteria groups of [15] economic, Apm, = (0.927 + 0.690 + 0.799) =0.384
env1ronmegtal, and social criteria are listed in Table 6 (The (1-40.75% — 0.35%) /2
value of ¢ is equal to 3): Apm,= 0.927 + 0.690 + 0.799) = 0.285
Step 1. Determine the weights of DMs ) 3' 3'
The multiple criteria group decision making importance p - (1+0.85" — 0.25%)/2 — 0331
degrees of DMs were shown in Table 7. Linguistic terms (0.927 +0.690 + 0.799)

used for the ratings of the DMs and criteria are given in
Table 8. DMs weighting formula introduced in Eq. (55) is

calculated as follows:

Step 2. Aggregate the ratings of alternatives based on
DMs opinions.
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Three DMs evaluate eight suppliers concerning ten
criteria. Linguistic terms of DMs evaluation are converted
to q-ROF numbers according to Table 8. The ratings of the
alternatives both in linguistic terms are shown in Table 9.

These ratings, which are q-ROF numbers, are aggre-
gated with DM weights (4;) with q-ROFWA operator
proposed by Liu and Wang [24] indicated in Eq. (55).

11 and 12.

Consequently, we might obtain an aggregated q-ROF
decision matrix (Rtopsis), which is shown below.

Rropsis =

Xi
(0.923,0.191,0.590)
(0.775,0.334,0.792)
(0.694,0.416,0.840)
(0.609,0.500, 0.866)
(0.724,0.400,0.823)
(0.786,0.318,0.785)
(0.539,0.576,0.868)
(0.689,0.414,0.844)

X
(0.692,0.439,0.836
(0.657,0.461,0.852
(0.741,0.380,0.813
(0.860,0.275,0.700
(0.724,0.406,0.821
(0.791,0.313,0.780
(0.923,0.191,0.590

)
)
)
)
)
)
)
(0.819,0.284,0.753)

Xz
(0.791,0.313,0.780)
(0.627,0.505,0.855)
(0.824,0.279,0.748)
(0.804,0.355,0.758)
(0.539,0.576,0.868)
(0.733,0.378,0.820)
(0.923,0.191,0.590)
(0.828,0.275,0.744)

X7
(0.828,0.275,0.744)
(0.695,0.409,0.842)
(0.824,0.279,0.748)
(0.796,0.308,0.775)
(0.819,0.284,0.753)
(0.590,0.552,0.856)
(0.761,0.357,0.801)
(0.903,0.205,0.634)

functions with the Eq. (57). After the criteria group
weights are determined, each of the ten individual criteria
weights are calculated with the same procedure. All cal-
culations for the weights of criteria are shown in Tables 10,

Step 4. Construct an aggregated weighted g-rung
orthopair fuzzy decision matrix.

X3
(0.629,0.483,0.861)
(0.821,0.370,0.734)
(0.669,0.439,0.851)
(0.750,0.350,0.812)
(0.694,0.416,0.840)
(0.690,0.430, 0.840)
(0.887,0.230,0.661)
(0.724,0.400,0.823)

Xs
(0.871,0.246,0.687)
(0.684,0.419,0.846)
(0.786,0.318,0.785)
(0.650, 0.450,0.859)
(0.763,0.346,0.801)
(0.673,0.494,0.831)
(0.556,0.554,0.870)
(0.819,0.284,0.753)

Xy
(0.684,0.419,0.846)
(0.767,0.350,0.797)
(0.890,0.226,0.657)
(0.684,0.419, 0.846)
(0.729,0.392, 0.820)
(0.662,0.447,0.853)
(0.748,0.369,0.810)
(0.903,0.205,0.634)

Xo
0.872,0.253, 0.685)
0.715,0.407, 0.828)
0.763,0.346,0.801)
0.673,0.494,0.831)
0.860,0.275,0.700)
0.759,0.350, 0.804)
0.584,0.519,0.871)
0.819,0.284,0.753)

o~ o~ o~ o~ o~ o~ o~ —~

o~~~ o~ o~ o~ —~

0.765,0.345,0.799
0.473,0.639,0.859
0.819,0.284,0.753

Xs
0.710,0.398, 0.833)
0.750,0.350,0.812)
0.890,0.226,0.657)
0.759,0.350, 0.804)
0.722,0.380,0.828)
0.887,0.230, 0.661)
0.654,0.473, 0.850)
0.736,0.397,0.814)

X10
(0.684,0.419,0.846
(0.872,0.253,0.685
(0.833,0.303,0.734
(0.724,0.400, 0.823
(0.584,0.519,0.871
(
(
(

)
)
)
)
)
)
)
) |

Step 3. Determine the importance weights of the eval-

uation criteria.

Table 13 The separation measures (for p = 1, q = 3)

Ratings of all DMs individually in linguistic terms are Al
converted into q-ROF numbers and calculate their score A2
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Alternatives S* N Ci*
0.0523 0.0744 0.5874
0.0652 0.0537 0.4517
A3 0.0624 0.0669 0.5173
A4 0.0697 0.0534 0.4338
A5 0.0775 0.0477 0.3808
A6 0.0503 0.0650 0.564
A7 0.0726 0.0579 0.4436
A8 0.0649 0.0662 0.505
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R =

X
(0.544,0.829,0.646
(0.409,0.883, 0.623
(0.356,0.906, 0.597
(0.306,0.925, 0.566
(0.374,0.902, 0.599
(0.417,0.878, 0.630
(0.267,0.939,0.534
(0.353,0.905,0.599

Xe
0.354,0.935,0.517

( )
(0.333,0.939,0.514)
(0.386,0.924,0.535)
(0.476,0.900, 0.547)
(0.375,0.929,0.526)
( )
( )
( )

)
)
)
)
)
)
)
)

0.420,0.909,0.558
0.544,0.874,0.557
0.442,0.902,0.563

X,
0.412,0.884,0.622
0.310,0.930, 0.550
0.437,0.873,0.631
0.422,0.895,0.591
0.262,0.943,0.524
0.373,0.902,0.598
0.534,0.838,0.637
0.440,0.871,0.632

X7
0.449,0.893,0.583

)
0.356,0.924,0.549)
0.446,0.894,0.582)
0.425,0.902,0.576)
)
)
)
)

,.\,.\AA/.\/.\,.\/.\
NN NG NG NI NI NN

0.442,0.895,0.581
0.295,0.949, 0.492
0.399,0.913,0.558
0.519,0.870, 0.586

o~ o~~~ o~ o~ o~ —

X3
0.302,0.932,0.547
0.423,0.908, 0.561
0.324,0.923,0.565
0.373,0.903,0.597
0.339,0.918,0.572
0.336,0.921, 0.566
0.480,0.866,0.621
0.357,0.915,0.574

X
0.487,0.819,0.695

0.350,0.883,0.645
0.417,0.849, 0.681
0.329,0.892, 0.633
0.401,0.859, 0.670
0.343,0.904, 0.604
0.276,0.919, 0.587
0.442,0.836,0.691

AAAAAAA,_\
NN NS NN N NN

,_\,_\/_\/_\/_\/_\AA
—_ — — T D o T

X4
0.327,0.923,0.563
0.377,0.908, 0.583
0.473,0.872,0.613
0.327,0.923,0.563
0.353,0.918,0.568
0.314,0.929,0.552
0.365,0.913,0.576
0.487,0.865,0.620

Xo
0.487,0.871,0.608

0.369,0.913,0.573
0.401,0.898, 0.595
0.343,0.931,0.533
0.476,0.878,0.599
0.398,0.900, 0.593
0.292,0.936, 0.537
0.442,0.881,0.612

A~ N S S S S S

)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)

~ N N N S S /S

X5
0.337,0.922,0.562
0.361,0.912,0.579
0.466,0.878,0.606
0.367,0.912,0.577
0.344,0.919,0.569
0.464,0.879,0.605
0.305,0.936,0.532
0.352,0.922,0.556

Xio
0.350,0.925,0.550

)
0.487,0.884,0.579)
0.453,0.898,0.568)
0.374,0.921,0.550)
)
)
)
)

AA/.\/.\/.\/.\/.\,.\
N NN N NI N NN

0.292,0.943,0.516
0.402,0.909, 0.570
0.232,0.961, 0.466
0.442,0.893, 0.586

o~ o~ o~ o~~~ o~ —

After the weights of criteria (W) and the aggregated
g-ROF decision matrix are implemented, the aggregated
weighted ¢-ROF decision matrix (R’) is built with

Egs. (57) and (58) and indicated above.

Step 5. Defining the q-ROF Positive—Negative Ideal

Solutions

All criteria other than C4 (Cost) and C7 (Water/Energy
Consumption) are benefit criteria. Then the q-ROF posi-
tive-ideal solution A* and the q-ROF negative-ideal solu-
were obtained with the Egs. (59)-(63) and

tion A~

presented as follows:

X
Xz
X3
X4
Xs
X
X7
X3
X9
Xio

[(0.544,0.829,0.646

)
( )
( )
( )
( )
(0.544,0.874,0.557)
( )
( )
( )

L( )]

0.534,0.838,0.637
0.480, 0.866,0.621
0.314,0.929,0.552
0.466,0.878,0.606

0.295,0.949,0.492
0.487,0.819,0.695
0.487,0.871,0.608
0.487,0.884,0.579

calculated.
1(0.267,0.939,0.534) ]
X1 1 (0.262,0.943,0.524)
X
X2 (0.302,0.932,0.547) D(A, A%) =
g :
X, | (0:487,0.865,0.620)
Xs | (0.305,0.936,0.532)
Xo | (0.333,0.939,0.514)
X7 1 (0.519,0.870,0.586)
X.
X* (0.276,0.919,0.587)
9
Xy, | (0:292,0.936,0.537)
| (0.232,0.961,0.466) |

Step 6. Calculate the separation measures to the positive
and negative ideal solutions.

A
Az
Az
Ay
As
Ae
Ay
As

A
Ar
Az
Ay

As
Ag
Az
As

Xi X5
0.000  0.067
0.077
0.108

0.133
0.053
0.138
0.100
0.071
0.162
0.109

0.072
0.158
0.092
0.000
0.051
Xo X,
0.106  0.093
0.116  0.041
0.087  0.091
0.040  0.079
0.095 0.089
0.065  0.000
0.000 0.062

0.053 0.131

X3 Xy Xs
0.102
0.046
0.088
0.058
0.080
0.083
0.000
0.072

0.000
0.081
0.039
0.091
0.050
0.098
0.129
0.024

0.008
0.035
0.090
0.008
0.021
0.000
0.028
0.099

0.072
0.057
0.000
0.055
0.067
0.001
0.094
0.068
X X0
0.000 0.073
0.067
0.046
0.089
0.008
0.048
0.109
0.021

0.000
0.021
0.063
0.107
0.045
0.142

0.021

In order to calculate separation between alternatives on
g-rung orthopair fuzzy set, a novel distance measure which
is proposed in Sect. 3 is used and below distances are
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X X2 X3 X4 Xs The separation measures, S; and S;, are calculated
0.162 0.091 0.000 0.091 0.021 according to Eq. (64) with p = 1 and shown in Table 13.
A 0.086 0026 0.056 0064 0.037 Step 7. Calculate the relative closeness coefficient (Cj,).
Az 0054 0106 0014 0009 0094 C;. is calculated with the formula presented in Eq. (65)
Az and shown in Table 13.
Ay | 0024 0.086 0.044 0.091  0.038 Step 8. Rank the alternatives.
45 1 0.062 0.000 0.022 0.079 0.026 After the separation measures S; and S; finally, the
As | 0.091 0.066 0.019 0.099 0.092 relative closeness coefficients are determined, we might
Aq 0.000 0.158 0.102 0071 0.000 rank the alternatives due to the descending order of C;,’s.
Ag 0,053 0108 0030 0000 0.06 Ranks, from best to worst suppliers are respectively,
D(A,A7) = ’ ’ ’ ’ ’ AI>As>A3>A3>A,>A;>A,> As.
Xs X7 X3 X9 Xio
A, | 0010 0038 0.129 0.109 0.069 5.2 Numerical example with q-ROF ELECTRE
A, 0.000 0.091 0.047 0.042 0.142 )
A | 0029 003 0089 0063 0121 Same case study problem is solved by th’e g-ROF .ELEC—
: TRE method. We have used the same DM’s evaluation and
Ay | 007600520035 0019 0.079 weights which are given for g-ROF TOPSIS method in the
As 0.021 0.042 0.078 0.101 0.036 previous section.
As | 0.051 0.131 0.031 0.061 0.098 Step 1. The q-ROF decision matrix (Rggctre) Was
A1 | 0116 0069 0.000 0.000 0.000 calculated in the previous section is used after cost criteria
Ag converted to benefit criteria:
0.063 0.000 0.105 0.087 0.121 |
X X, X; X, Xs
(0.923,0.191,0.590)  (0.791,0.313,0.780)  (0.629,0.483,0.861)  (0.524,0.600,0.862)  (0.710,0.398,0.833)
A, | (0.775,0.334,0.792)  (0.627,0.505,0.855)  (0.821,0.370,0.734)  (0.597,0.560,0.849)  (0.750,0.350,0.812)
A, | (0.694,0.416,0.840)  (0.824,0.279,0.748)  (0.669,0.439,0.851)  (0.654,0.571,0.811)  (0.890,0.226,0.657)
As | (0.609,0.500,0.866)  (0.804,0.355,0.758)  (0.750,0.350,0.812)  (0.524,0.600,0.862)  (0.759,0.350,0.804)
3;‘ (0.724,0.400,0.823)  (0.539,0.576,0.868)  (0.694,0.416,0.840)  (0.693,0.452,0.832)  (0.722,0.380,0.828)
4, | (0.786,0318,0.785)  (0.733,0.378,0.820)  (0.690,0.430,0.840) ~ (0.624,0.497,0.859)  (0.887,0.230,0.661)
A7 | (0.539,0.576,0.868)  (0.923,0.191,0.590) (0.887,0.230,0.661)  (0.428,0.701,0.832)  (0.654,0.473,0.850)
As | (0.689,0.414,0.844)  (0.828,0.275,0.744)  (0.724,0.400,0.823)  (0.650,0.592,0.803)  (0.736,0.397,0.814)
RELECTRE =
X X7 Xs Xo X10
Al | (0.692,0.439,0.836)  (0.657,0.547,0.821)  (0.871,0.246,0.687)  ((0.872,0.253,0.685)  (0.684,0.419,0.846)
A (0.657,0.461,0.852)  (0.519,0.608,0.860)  (0.684,0.419,0.846) (0.715,0.407,0.828)  (0.872,0.253,0.685)
As (0.741,0.380,0.813)  (0.559,0.634,0.830)  (0.786,0.318,0.785) (0.763,0.346,0.801)  (0.833,0.303,0.734)
A4 | (0.860,0.275,0.700)  (0.566,0.612,0.839)  (0.650,0.450,0.859)  (0.673,0.494,0.831)  (0.724,0.400,0.823)
32 (0.724,0.406,0.821)  (0.659,0.540,0.823)  (0.763,0.346,0.801)  (0.860,0.275,0.700)  (0.584,0.519,0.871)
A, | (0.791,0313,0.780)  (0.717,0.385,0.831)  (0.673,0.494,0.831)  (0.759,0.350,0.804) ~ (0.765,0.345,0.799)
Ag | (0.923,0.191,0.590)  (0.423,0.710,0.827)  (0.556,0.554,0.870)  (0.584,0.519,0.871)  (0.473,0.639,0.859)
) ( ( ( ) ( )

(0.819,0.284,0.753

0.650,0.592,0.803)

0.819,0.284,0.753)

0.819,0.284,0.753

0.819,0.284,0.753) |
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The weights of criteria given by the decision-makers - — — = — — 4 77
are: - - - - - 8 47 -
W =10.113,0.107,0.097,0.092, 0.088,0.082, 0.088, - - - - - -7 4
0.143,0.101,0.090] c_|- -7 - - - 47 -
M7 l7 — 4 — — 3 10 7
Step 2. Calculate the concordance and discordance sets. 74 7 — 7 — 47 7
The DM’s give the relative weight for strong, moderate e
and weak concordance and discordance sets as below: S
/ 21 21
W = [WC7WC’7WC”,WD,WD’3WD”] = 175757175,5 .
Therefore, we can determine the strong concordance
set (Cy):
I - 1,2,6,7,8,9  1,7,8,9 1,7,8,9 1,2,8,9,10 1,2,8,9 1,5,7,8,9,10 1,8,9 ]
3,4,5,10 - 1,3,10 1,4,8,9,10  1,2,3,5,10 3,10 1,5,8,9,10  1,3,5,10
2,3,4,5,6,10 2,5,6,8,9 1,2,4,5,8,9,10 2,5,6,8,10 2,5,8,9,10 1,4,5,8,9,10 5
c 3,5,6,10 2,6 3,6 - 2,3,5,6,10 2,3,6 1,5,8,9,10 3,5,6
M=1"3,4,5,6 4,6,7,8,9 1,3,7,9 1,4,7,8,9 - 4,8,9 1,4,5,7,8,9 1,9
3,4,5,6,10 1,2,5,6,7,9 1,3,6 1,4,5,7,9,10 1,2,5,6,10 - 1,5,8,9,10 1,5
2,3,6 2,3,6 2,3,6 2,3,6 2,3,6 2,3,6 - 2,3,6
12,3,4,5,6,10  2,6,7,8,9 2,3,6,7,89 1,2,4,7,8910 2,3,6,810 23,638,910 1,4,57,8,9,10 -]
In the strong concordance set, Alternative 4 is pre- r— - — 4 - — — 7
ferred to Alternative 2 strongly regarding 2nd and 6th e T
criteria values considering Cy, = {2,6}. We can deter- ~ 47 - — — 4 — 110
. ' 1" ? ’
mine the moderate (Cy;) and weak (Cy;) concordance sets ) 24 57 — — — — — _
as below: Cy= S
— - - 8 - - _ —
L- 4 - - 5 4 - - |
The strong discordance set (Dy) is obtained as follows:
I — 3,4,5,10 2,3,4,5,6,10 3,5,6,10 3,4,5,6 3,4,5,6,10 2,3,6 2,3,4,56,10 ]
1,2,6,7,8,9 - 2,5,6,8,9 2,6 4,6,7,8,9 1,2,5,6,7,9 2,36  2.6,7,8,9
1,7,8,9 1,3,10 - 3,6 1,3,7,9 1,3,6 2,3,6  2,3,6,7,8,9
b 1,7,8,9  1,4,8,9,10 1,2,4,5,8,9,10 - 1,4,7,8,9 1,4,5,7,9,10 2,36 1,2,4,7,8,9,10
M=1 128910 1,2,3,510 256,810 2,356, 10 - 1,2,5,6,10 2.3,6  2,3.6,8,10
1,2,8,9 3,10 2,5,8,9,10 2,3,6 2,8,9 - 2,3,6  2,3,6,8,9,10
1,5,7,8,9,10 1,5,8,9,10 1,4,5,8,9,10 1,5,8,9,10 1,4,5,7,8,9 1,5,8,9,10 - 1,4,5,7,8,9,10
1,8,9 1,3,5,10 5 3,5,6 1,5 1,9 2,3,6 - |
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The medium (D),) and weak (Dy,) discordance sets are
determined as follows:

- - -7 7 - - _Z
- - - - - 4 - -
- - - 7 4 71 - -

Bp=|Z 2 22 I 7 °C
- 8 - 3 - -
4 4,7 7 4,7 10 4,7 — -—
|7 - 4 - 47 1 - -

- 4,7 5,7 - — 4
e
- — 4 - — — — 4
- - L1000 - - - - -]

Step 3. Calculate the concordance matrix.
The concordance matrix is constructed as follows:

I 0.633 0.444 0.475 0.683
0.301 0.571 0.654
0.733 0.558 0.685
0.286 0.654 0.267
04 0.684 0.334
0.654 0.26

0.286

0.553
0.495
0.509
0.464

0.463
0.283

0.4157
0.388
0.217

0.367
0.556
0.423
0.417

0.579 -
0.247 0.238
0.505 0.46
0.507 0.639 0.351
0.286 0.286 0.286

0.536
0.619
0.286

0.538 —
0.286 0.286

10.556 0.55 0.617 0.733 0.548 0.65 0.714 -

To illustrate how the value in the concordance matrix,
c3g is computed as follows:

C3g = E wj

J€Css
=Ws X W +Wq X W + W X Wer + Wig X wer

2 1 1
=0.088 x 1 +0.092 x §—|—0.113 X §+0.09O X 3
=0.217

Step 4. Calculate the discordance matrix.
The discordance matrix is constructed as follows:

— 0989 0.754 0.524 0.609 0.823 0.665 0.55 ]
1 — 1 1 0.524 1 0.838 1
1 0.576 — 0.855 0.335 0.667 0.665 0.499
D— 1 0.793 1 — 0.87 1 0.7 1
1 1 1 1 — 1 1 1
1 056 0717 0375 0.613 - 0.739 1
1 1 1 1 0.66 0.951 — 1
L1 039 1 0206 02 0992 0534 - |

To illustrate how the value in the concordance matrix is
determined, d3 is computed as follows:

@ Springer

max WB X diS(Xll',X3j)
__jebis ’

d 0.144
13 = - =
max dis(Xj, X3;)

= =0.754
0.192 075

max W, X dis(Xy;, X3,
€Dy D ( 1j 31)

= max{0.027,0.03,0.058,0.144,0.04,0.105} = 0.144
max dis(X,j, X3;)

= {0.192, 0.027, 0.03, 0.058, 0.144, 0.04, 0.068,0.068,
0.085, 0.105} = 0.192

Step 5. Calculate the concordance dominance matrix
F).

The average value for concordance index is computed as
follows:

8 8
st L1 4716
8 x7

c=

The concordance dominance matrix is constructed as
follows:

— 1.0 1 1 0 1 0
0 — 0 1 1 0 1 0
11 — 1 1 1 10
F_|0 00 -0 0 10
01 01 — 0 1 0
1 1.0 1 1 — 10
000000 — 0
I T R T

Step 6. Calculate the discordance dominance matrix
G).

The average value for discordance index is computed as
follows:

8 8
d— ket 2ot

= 0.807
8 x7

The discordance dominance matrix is constructed as
follows:

-0 1 1 1 0 1 1
0 - 0 0 1 0 0 0

01 — 0 1 1 1 1
G_|0 1 0 -0 0 10
“10 00 0 - 0 0 O
01 1 1 1 — 10
0000 1 0 — 0

0o 1 0 1 1 0 1 —|
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Step 7. Determine the aggregate dominance matrix (E).
The aggregate dominance matrix is obtained as follows:

[— 0 0 1 1 0 1 0]
0 -0 0 1 0 0 0
01 — 0 1 1 10
F_|0 00 —0 0 10
0000 - 00 0
01 0 1 1 — 10
000000 — 0
01 0 1 1 0 1 —|

Step 8. Eliminate the less favourable alternatives:
In matrix E, the overranking relationships are obtained
and illustrated in Fig. 3 as follows:

Al — Ay, Al — As A — A7,Ay — A5, A3 — Ay,
A3 — As, A3 — Ag, Az — A7,A4 — A,

Ag — Az, Ag — Ay, Ag — As,Ag — A7,Ag — Ay,
Ag — Ag, Ag — As, Ag — A;

As the ranking is not certain, q-ROF TOPSIS ranking
process is used.

Step 5b. Calculate concordance outranking matrix.

The concordance outranking matrix is obtained as
follows:

- 0.1
0.366 —
0.178 0.154
/ 0.31 0.486

0.316 0.228
0.226 0.094
0.447 0.447
10.178 0.183

0.318]
0.345
0.516
0.466
0.399
0.474
- 0.447
0.019 —

0.289
0.432

0258 0.180 0.27 0.05
0.162 0.238 0.451 0.079
- 0 0.224 0.175 0.048
0.495 — 0269 0.447 0.079
0.273 0.197 — 0.333 0.049
0.382 0.114 0.195 0.079
0.447 0.447 0.447
0.116 0 0.185

0.447
0.083

which is ¢* = 0.733.
Step 6b. Calculate discordance outranking matrix.

Fig. 3 Overrankings of the alternatives with q-ROF ELECTRE
method

The discordance outranking matrix is determined as
follows:

[— 0.011 0.246 0.476 0391 0.177 0.335 0.45 ]
0 — 0 0 0.476 0 0.162 0
0 0424 - 0.145 0.665 0.333 0.335 0.501
D — 0 0.207 0 - 0.13 0 0.3 0
0 0 0 0 - 0 0 0
0 044 0283 0.625 0.387 — 0261 0
0 0 0 0 0.34 0.049 — 0
L0 0.6l 0 0.794 0.8 0.008 0.466 -

which is d* = 1.
In Step 7b. Calculate the aggregate outranking matrix.
The aggregate outranking matrix is obtained as follows:

[— 0.102 046 0.648 0.685 0.397 0.871 0.586]
0 — 0 0 0.667 0 0.673 0
0 0.734 - 0.999 0.748 0.656 0.874 0.492
U = 0 0.299 0 — 0.325 0 0.792 0
0 0 0 0 — 0 0 0
0 0.824 0.426 0.846 0.655 — 0.768 0
0 0 0 0 0.432 0.098 — 0
L0 0.769 0 1 0.812 0.086 0.961 -
Step 8b. Determine the best alternative.
The values of the alternatives are:

iy =0.536,u; =0.191,i3 = 0.643, 44 = 0.202, 45 = 0, -
it7 = 0.076,u3 = 0.518. The optimal ranking is
A3 = Al = Ag = Ag - Ay = Ar = A7 > As.

5.3 Comparison of proposed methods
with the existing ones

5.3.1 Existing methods

Liu and Wang [24] proposed two decision-making methods
based on q-ROF aggregation operators, which are
g-ROFWA and q-ROFWG operators (Definition 6 and 7,
respectively). In both decision-making methods, the steps
are the same except the part aggregate operators are used.
The steps are briefly introduced as follows.

Step 1. Normalize the aggregated weighted q-ROF
decision matrix defined in q-ROF TOPSIS at Step 4. As
two different types of criteria, cost, and benefit exist, it is
needed to convert cost type of criteria to benefit one using
the following equation as:

’ ) = { (.u;ja V;j7 TCL)

/ ;o for benefit criteria
Ty = (:uija Viis i) = CATARA
ij Hip» i

for cost criteria
(84)

Step 2. Aggregate all criteria values to the comprehen-
sive value by q-ROFWA (first method) or q-ROFWG
(second method) operators as follows:

zi = ¢-ROFWA(ri1, riay - -, Tin) (85)
zi = ¢-ROFWG(ri1, 12, - - s Tin) (86)
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Step 3. Calculate the score function and accuracy
function defined in Eqgs. (9) and Eq. (10), respectively.

Step 4. Rank all the alternatives. The bigger z; (q-
ROFN), the better the alternative is.

The methods proposed by Liu and Wang [24] have been
applied to our supplier selection problem in the following
steps:

Step 1. To normalize the aggregated weighted q-ROF
decision matrix.

As the fourth and seventh criteria are cost criteria in our
supplier selection problem, they are converted to benefit
criteria using Eq. (66).

Step 2. Aggregated all criteria values by g-ROFWA (1st
method) and q-ROFWG (2nd method) operators.

z; (Q-ROFNs) for each alternative have been obtained
using Eq. (67) and Eq. (68) and shown in Table 14.

Step 3. Calculate the score function and accuracy
function

The score function and accuracy function of each
alternative have been calculated and presented in Table 15.

Table 14 g-ROFNs for each alternatives using q-ROFWA and
q-ROFWG operator

Alternatives Methods
1.g-ROFWA 2.q-ROFWG
u v U v

Al 0.783 0.368 0.673 0.512
A2 0.720 0.427 0.660 0.500
A3 0.752 0.392 0.641 0.562
A4 0.704 0.443 0.636 0.524
AS 0.695 0.449 0.621 0.539
A6 0.743 0.389 0.709 0.437
A7 0.744 0.433 0.611 0.551
A8 0.753 0.386 0.622 0.603
Table 15 Score and accuracy function for each alternative
Alternatives 1.g-ROFWA 2.q-ROFWG

Score Accuracy Score Accuracy
Al 0.7155 0.5305 0.5856 0.4396
A2 0.6476 0.4511 0.5812 0.4118
A3 0.6822 0.4854 0.5430 0.4418
A4 0.6309 0.4362 0.5566 0.4007
AS 0.6226 0.4259 0.5415 0.3967
A6 0.6757 0.4691 0.6368 0.4404
A7 0.6652 0.4929 0.5303 0.3953
A8 0.6850 0.4853 0.5108 0.4604
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Table 16 The ranking of alternatives

Rankings Method
g-ROF TOPSIS q-ROFWA q-ROFWG

Ist A A Ag
2nd Ag Ag Ay
3rd A, A, Ay
4th Ag Ag Ay
5th A, A, Aj
6th Ay A, As
7th Ay Ay A,
8th As As Ag

Step 4. Rank all the alternatives according to accuracy
function and compare with our proposed q-ROF TOPSIS
method.

The ranking of alternatives in three different methods
have been shown and compared in Table 16.

It can be easily observed that the result of the -ROFWA
method is close to our proposed method. Four of the eight
rankings of the q-ROFWA method are the same as the
proposed method. On the other hand, when we look at the
results of the g-ROFWG method, only the first two rank-
ings are similar (A; and Ag) but in a different order with
our proposed method. As q-ROF TOPSIS has considered
both g-ROFPIS and g-ROEFENIS, it is a compelling method
for multiple criteria decision making compared with the
g-ROFWA and the -ROFWG methods.

5.4 Effects of the parameters p and g
5.4.1 The g-ROF TOPSIS method

To analyze the effects of parameters p and g in our g-ROF
TOPSIS method, a test is performed using our case study
by taking different values of these parameters; for p = (1,
2,3,4and q=(2,3,4,5,6,7, 8,9, 10). The effects of
parameters p and g on the closeness coefficient of alter-
natives and ranking orders are presented in Fig. 4a—d.

In Fig. 4a (where p = 1) increasing g values does not
have a great effect on the C;, values and even the rankings
of the alternatives at all. Only C;. values of A; decrease
when ¢ value increases. In Fig. 4b, c, after q > 2, Cj
values of A;, Az, Ay, Ag, and Ag are suddenly increasing,
Ci. value of As is slowly increasing, C;, value of A, keeps
stable and C;« value of A; decreases. In Fig. 4d, C;, values
of A,, Ag, and Ag are suddenly increasing, C;, value of As,
A4, As are slowly increasing, C;. value of A; keeps
stable and C;, value of A; decreases when q > 2.

It is easy to see that when all figures are analyzed, A is
the only option that shows an absolute decline in rankings
while g and p parameters are increasing. When we focus on
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A, and check the aggregated q-ROF decision matrix u
values (in Sect. 5.1, step 2), we observe that the ratings of
A5 have an unstable character which changes more sharply
than the other alternatives, namely; in five of the ten cri-
teria A; has the lowest rating (Ist, 5th, and 8-10th),
whereas in three of ten criteria (2nd, 3rd, and 6th) it has the
best ratings. When g value increases, A; is far away g-
ROFPIS and close to q-ROFNIS and; therefore, C;, value
of A, decreases; on the other hand, C;, value of other
alternatives increases. Moreover, C;, value of alternatives
except for Ay increases when p value increases since the
distance measure between alternatives and PIS and NIS
converge to zero. Finally, we may infer that the increase in
the value of parameters g or p has a negative effect on
unstable rankings. Increase in p value makes the differ-
ences between rankings of the alternatives more apparent
than the increase in the g value does. The increase of both
p and ¢ values not changing the rankings supports our
models’ validity. In nearly all cases except for one (p = 4
and q = 10), A; is the best alternative and As is the worst

alternative in all situations. So, -ROF TOPSIS method is
more stable when the value of p is equal to one.

The effect of parameter q for the q-ROF TOPSIS
method is also analyzed by using Hamming and Euclid
distance measures to demonstrate the stability of our pro-
posed distance measure. A test is conducted using our case
study by taking values of q (q = 2,3,4,5,6,7,8,9, 10) for
g-ROF TOPSIS using Hamming and Euclid distance
measures. The effects are presented in Fig. 5. It can be
easily observed that our proposed distance measure is more
stable (Fig. 4) because only one alternative (Alt7) ranking
is changed for the reasons explained before. However, in
Hamming distance (Fig. 5a) ranking of 5 alternatives and
in Euclid distance (Fig. 5b) ranking of 6 alternatives
changes during the parameter range of q = (2-10).

5.4.2 The g-ROF ELECTRE method

A parameter analyses is made with q (2, 3,4, 5,6, 7, 8,9,
10) and p (1, 2, 3) values. It can be easily seen from Fig. 6
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Fig. 7 q-ROF ELECTRE method comparison with different distance measures

that g-ROF ELECTRE method is more stable than other
g-ROF methods since it is not affected by p and q
parameters. From 8 alternatives, rankings of only 1 or
maximum 2 alternatives are affected, and others remain
almost in the same values.

The effect of Hamming and Euclid distance measures in
g-ROF ELECTRE is also examined to demonstrate the
stability of our proposed distance measure. A test is con-
ducted using Hamming and Euclid distance measures. The
effects are presented in Fig. 7. It can be easily observed
that rankings which are calculated by our proposed dis-
tance measure are close with the rankings of the other two
measures.

5.4.3 Existing methods

The effects of the parameter g in the -ROFWA and the
g-ROFWG methods are also analyzed. A test is conducted
using our case study by taking different values of q (q = 2,
3,4,5,6,7,8,9, 10). The effects of parameters g on score
and accuracy function and ranking orders are presented in
Fig. 8a—d. It is easy to see that the score function in both
methods converges to 0.5 and the accuracy function in both
methods converges to 0 when the value of g increases.
Consequently, it’s clear that both methods do not have the
capability to differentiate alternatives.

6 Conclusion

Q rung orthopair fuzzy sets (q-ROFs) provides decision-
makers more freedom of expression than other fuzzy sets;
however, there are very few decision-making methods and
distance measures using q-rung orthopair fuzzy sets. To fill
this gap, in this paper, first, we proposed a new distance
measure between q-ROFs along with proofs. We compared
our measure with existing IFS and q-ROF distance mea-
sures and proved that ours has no counter-intuitive situa-
tion. On the other hand, we observe a drawback that the
hesitation degree (m) in a q-ROF set is bigger than in PFS
and IFS as the g increases. As a solution, we distributed
this hesitation to membership (u) and non-membership (v)
degrees in the proposed distance measure.

Secondly, we introduced two separate q-ROF multiple
criteria group decision-making methods by extending the
TOPSIS and ELECTRE methods to “q-ROF TOPSIS” and
“q-ROF ELECTRE” methods with the help of our novel
distance measure. We compared these two methods with
the other existing q-ROF decision-making methods by a
comprehensive case study consisting of ten criteria and
eight alternatives and then, we have got better results. The
advantage of our methods is their being parametric con-
cerning uncertainty. Our observation with the change of the
p and g parameters shows us that q-ROF TOPSIS and
g-ROF ELECTRE methods crystallize the differences
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Fig. 8 Effect of parameters q. a Score function of -ROFWA. b Accuracy function of -ROFWA. ¢ Score function of g-ROFWG. d Accuracy

function of -ROFWG

between alternatives and make the results more apparent
than the other existing methods and eventually, by differ-
entiating the alternatives they facilitate the decision-mak-
ing process. Besides these benefits, -ROF ELECTRE has
also an advantage of giving stable results in which the
rankings of alternatives are not affected by parameter
changes. In further research, our proposed distance mea-
sure might be extended to other -ROF MCDM methods.
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