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Abstract
Community detection is one of the most important topics in complex network analysis. Among a variety of approaches for 
detecting communities, the label propagation algorithm (LPA) is the simplest and time-efficient approach. However, the 
original label propagation algorithm is not stable due to the randomness in its propagation process. In this paper, we propose 
a graph-based label propagation algorithm (GLPA) to detect communities incorporating the node similarity and connectiv-
ity information during the propagation of the labels. First, we define node similarity between adjacent nodes, and change 
each node’s label to that of its most similar neighbor node. Based on the label propagation process, GLPA constructs a label 
propagation graph to get candidate communities. Then, GLPA calculates the connected components of the label propagation 
graph. Each connected component is treated as a candidate community in the next step. Second, GLPA constructs a weighted 
graph to obtain final communities, in which each connected component are treated as a super-node, and the number of edges 
lying between the corresponding components as the weight of edges. We compute the merging factor for each node in the 
weighted graph and merge super nodes with higher merging factor to its most similar node iteratively to reach the maximum 
complementary entropy. Compared with 8 other classical community detection algorithms on LFR artificial networks and 
12 real world networks, the proposed algorithm GLPA shows preferable performance on stability, NMI, ARI, modularity.

Keywords Complex network · Community detection · Label propagation algorithm

1 Introduction

Complex network analysis has a wide range of from physi-
cal, technological, biological, to social sciences [1–9]. Com-
munity detection is one of the most important topics in com-
plex network analysis. The purpose of community detection 
is to group nodes into different clusters, where nodes in the 
same cluster are more linked with each other than with nodes 
outside the cluster.

Many researchers have put forward various methods to 
detect clusters in complex networks. Label propagation 
based community detection algorithms such as LPA [10], 
require only local information and have shown highly effi-
cient. However, label propagation algorithms might produce 

unstable results due to its random tie breaking strategy, 
which is highly undesirable in practice and prohibits its 
extension to other applications.

In this paper, we propose a graph-based label propaga-
tion algorithm called GLPA for non-overlapping commu-
nity detection based on graph-based representation of label 
propagation process and community detection process. The 
main steps of GLPA proceeds as follows. First, we define the 
node similarity between a node and its neighbors, then we 
change each node’s label to that of its most similar neigh-
bor node. We construct graph-based representation for label 
propagation progress, and obtain connected components of 
the resulted graph. We call each connected component a 
candidate community. Second, we construct graph-based 
representation for community detection, in which each can-
didate community is contracted to a super node, and the edge 
weights between corresponding super nodes are defined as 
the number of edges between two communities in original 
network. We compute the merging factor of each node in the 
resulted network. Then, we get the final results of the com-
munities by merging the small scale communities in decreas-
ing order of their merging factors. The proposed algorithm 
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GLPA reduce the instability of the original LPA. Compared 
with other classical community detection algorithm on some 
real networks and artificial networks, the proposed algorithm 
shows preferable performance on stability, NMI, ARI and 
modularity.

The organization of the rest of this paper is as follows. 
Section 2 gives a brief introduction of the basic concepts of 
graph theory and the definition of some existing nodes’ simi-
larity measures. In Sect. 3, the proposed graph based label 
propagation algorithm (GLPA) is introduced in detail. Sec-
tion 4 investigates the effectiveness of the proposed method 
based on 12 real networks. Section 5 is the conclusion of 
this paper.

2  Preliminaries

2.1  Definitions and notations

Considering an unweighted and undirected simple network 
G = (V ,E) with node set V and edge set E. Let A = (aij)|V|×|V| 
be the adjacency matrix of G. The open neighborhood of 
a node v ∈ V  is written as Nv = {u ∈ V|(u, v) ∈ E} . The 
degree of a node v in G, denoted by dv , is the number of 
nodes in Nv , i.e., dv = |Nv| . The subgraph of G induced by 
U, denoted by G[U], is the subgraph with node set U and 
edge set {(u, v)|u, v ∈ U ∧ (u, v) ∈ E} . So, G[U] contains 
all nodes of U and all edges of G whose end nodes are both 
in U. We write [U] to denote the induced subgraph by node 
subset U when without causing confusion.

A connected subgraph, if it is unconnected to the other 
parts of the same graph, is called a (connected) component 
of the graph G, denoted as C(G). We can also get the con-
nected components of a subgraph.

The modularity Q [11], defined as Eq. (1), compares the 
real density of intra-module links and the expected density 
in a random network without any community structure called 
a null model.

where aij is a component in the adjacency matrix, didj
2|E| repre-

sents the total expected number of edges between nodes i 
and j. �i,j = 1 if node vi and vj are in the same community, 
otherwise �i,j = 0 . A high value of Q means that the partition 
is markedly different from a random network, thus it has 
strong community structure.

The complementary entropy [12] is another index to 
measure the quality of communities in a complex network. 
Let Vr(1 ≤ r ≤ k ) denote community r in the interesting net-
work, Li(Vr) be the number of nodes in Vr adjacent to node 

(1)Q =
1

2|E|
∑

ij

(
aij −

didj

2|E|

)
�i,j

vi , and fi(Vr) =
Li(Vr)

|Vr|  is the fraction of nodes in Vr adjacent 
to vi . Then the the complementary entropy is defined as

where hi =

�
∑k

r=1

�
fi(Vr)∑k

j=1fi (Vj )

�2

 represents the degree to 

which node vi is separated from other communities, and 
Ii =

∑k

r=1
Li(Vr) × fi(Vr) evaluates how close the node vi is 

to other communities.
For further details about concepts of graph theory, readers 

are referred to [6].

2.2  Related works

Researchers have proposed various methods for community 
detection recent years. Newman and Girvan defined a quality 
function modularity Q and optimized it to detect communi-
ties [11, 13]. Since then, modularity-based methods have 
been widely used to detect communities by maximizing the 
modularity value. For example, the fast unfolding algorithm 
proposed by Blondel et al. [14] is a fast heuristic method for 
the modularity optimization.

Raghavan et al. [10] proposed the framework of label 
propagation algorithm (LPA). LPA initializes every node 
with unique labels and propagates each node’s label to that 
of most of its neighbors belonging to. LPA is a simple and 
unsupervised near linear algorithm without any parameters, 
and does not need any information about the size and num-
ber of communities in advance. Hence, LPA may be suitable 
for partitioning large networks in real time.

Because a random factor exists in LPA when there is more 
than one most frequent label, one might obtain different 
results after multiple runs. This disadvantage may prevent 
LPA from being widely used in practice. In addition, LPA 
may produce a meaningless solution in which all nodes are 
assigned to one community. In order to solve this problem, 
Barber et al. [15] proposed a modularity-specialized LPA 
called LPAm. LPAm might stuck in a local optimum and 
lead to inaccurate partitions. LPAm+ [16] is an improved 
approach to obtain the highest modularity value and can 
effectively avoid local maxima. Li et al. proposed LPA-S 
[17], in which labels are propagated by similarity. Although 
LPA has distinct advantages for community detection, there 
have also been many superior LPA-based methods, and 
there is still room for partitioning real-world networks more 
accurately.

Raghavan et al. [10] pointed out that 95% of nodes or 
more are classified correctly in 5 iterations. However, 
determining the speed of LPA-based methods is still an 
open problem. Asynchronous LPA is not suitable for very 

(2)F =

k∑

i=1

hiIi
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large scale network, whilst updating labels synchronously 
might lead to oscillation of labels and prevent the update 
procedure from converging. Although there are some 
methods to avoid non-convergent behaviors, label oscil-
lation still exists in some cases.

3  GLPA: a graph‑based label propagation 
algorithm

Let G be the complex network whose nodes to be clus-
tered. In this section, we propose a Graph-based Label 
Propagation Algorithm (GLPA) for detecting communi-
ties in G by graph-based representation of the label propa-
gation process and the community detection process. The 
proposed GLPA modifies the label propagation pattern 
and is divided into two sections as follows.

(1) Constructing label propagation graph L(G) to get can-
didate communities. We first define node similarity 
between adjacent node pairs and find the most simi-
lar neighbor node for each node. GLPA updates the 
labels of nodes based on the similarity measure. We 
construct a label propagation graph, in which the edges 
are designed to record the label propagating process. 
Then, GLPA calculates the connected components in 
the resulted label propagation graph. Each connected 
component is treated as a candidate community in the 
next step.

(2) Constructing a weighted graph W(G) to obtain final 
communities. We treat each connected component of 
L(G) as a super-node. If there are edges between two 
components, then there is an edge between two cor-
responding super-nodes, and the weight of the edge is 
assigned as the number of edges of G lying between 
two components. For a given super-node v ∈ W(G) , 
we choose one of its neighbors u ∈ W(G) as its most 
similar node, such that the weight on edge (u, v) is the 
largest one among those of incident edges of v. We 
compute the merging factor for each node in W(G). 
Then we merge super nodes with the highest merging 
factor to its most similar node iteratively until the maxi-
mum complementary entropy [as is shown in Eq. (2)] 
does not increase.

To illustrate how the GLPA detects communities in com-
plex networks, we use Dolphin Social network [18] to 
show the detail steps of GLPA as an example. The Dol-
phin Social network has 62 nodes and 159 edges.

3.1  Node similarity

The basic LPA adopts the label belonging to the majority 
of its neighbors, which means that it treats all neighbors 
equally. However, in practice, a node plays different roles 
depending on its location in the networks. In the real world, 
entities with high similarity tend to be gathered in the same 
group. For this perspective, community detection methods 
using an appropriate similarity metric may discover some 
valuable results in practice. The number of common neigh-
bors [19] between two nodes can reflect their similarity. The 
more common neighbors between two nodes, the more simi-
lar they are in structure. On the other hand, the node degrees 
also play an important role in detecting communities, espe-
cially for linked nodes without common neighbors. Hence, 
in our method we use a similarity Si,j between two adjacent 
nodes vi and vj based on their common neighbors Ni ∩ Nj and 
the degrees of vi and vj . The formula of the similarity Si,j is 
given as Eq. (3).

where Ni ∩ Nj denotes the set of common neighbors of adja-
cent nodes vi and vj . The similarity of two adjacent nodes 
Si,j would be determined by the number of common neigh-
bors and the node degrees. Si,j tends to be large when the 
two adjacent nodes share many common neighbors. And Si,j 
might be small when the degrees of vi and vj are large.

3.2  The steps of GLPA algorithm

3.2.1  Construction of label propagation graph L(G)

At beginning, each node is identified by a unique label which 
implies different community identifier. We construct the 
graph representation L(G) of the label propagation progress 
from a null graph, whose initial node set V(L) = V(G) and 
initial edge set E(L) = �.

Then for each node vi ∈ V(G) , we find the most simi-
lar node of vi according to Eq. (3). If there are more than 
one most similar neighbor node, we choose one ran-
domly. Let node vj be the most similar node of vi , then 
we add an edge (vi, vj) between node vi and vj to L, i.e., 
E(L) = E(L) ∪ {(vi, vj)} . We can find the most similar node 
for each node simultaneously. And we will obtain a label 
propagation graph L with |V(G)| nodes and no more than 
|E(G)| edges.

Given the form of node similarity S as Eq. (3), it is rea-
sonable to expect that the number of neighbors with high 
similarity will be much lower than the degree of a node. In 
other words, there are only a few choices of neighbor node 
for each node. This would reduce the randomness in original 

(3)Si,j =

{
|Ni ∩ Nj| +

1

didj
, if (vi, vj) ∈ E;

0, otherwise
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LPA algorithm for the reason that the number of most simi-
lar nodes is greatly reduced. And it can be easily seen that, 
if there is a path between two nodes in L, then the node pair 
should have a higher similarity.

To avoid the oscillation of the label propagation, we 
calculate the connected components of L. Let {C1,… ,Ck} 
( k ≤ |V(L)| ) be the set of connected components of L. The 
nodes in the same connected component share the same ini-
tial label. Figure 1a shows the resulted label propagation 
graph L(G) and connected components of Dolphin Social 
network. Figure 1b shows the initial communities in Dol-
phins network detected by GLPA.

For most of complex networks, the number of connected 
components might be much greater than the real number of 
communities in G. We need additional merging steps to deal 
with the over-segmentation of the network.

3.2.2  Merging initial clusters

Although, the number of nodes contained in a connected 
component is small, the similarity among these nodes might 
be high. In the second phase, we will perform merging pro-
cess to maximize the complementary entropy F of the parti-
tion by constructing a weighted graph W(G) from L(G). To 
obtain W(G), we treat each connected component in L(G) 
as a super-node.

Let ci for 1 ≤ i ≤ k be the super-node in W correspond-
ing to the connected component Ci of L, and k is the num-
ber of connected components. For super-nodes ci and cj , 
if there exist edges in G that have one endpoint in Ci and 

the other endpoint in Cj , then we add an edge (ci, cj) to W 
whose weight equals to the number of edges between the 
two components in G.

Then we compute the merging factor for each super-
node ci in W as follows:

where �ij represents the edge weights between node ci and 
node cj , thus �ij =

∑
x∈V(Ci)

∑
y∈V(Cj)

axy and �ii = 1.
We use merging factor to determine whether a compo-

nent should be merged into another component to form 
a larger community. If a component is dispersedly con-
nected with many other components, then the component 
would has a low merging factor and might be unlikely to 
be merged with others. On the contrary, if a component is 
intensively connected with a few other components, then 
the component would has a high merging factor and might 
be merged with another component. In the second step, 
we treat a component as a super-node. For a given super-
node v ∈ W(G) , we choose one of its neighbors u ∈ W(G) 
as its most similar node, such that the weight on edge 
(u, v) is the largest one among those of incident edges of 
v. We compute the merging factor for each node in W(G). 
We will merge super nodes with the highest merging fac-
tor to its most similar super-node iteratively to reach the 
maximum complementary entropy F [as is shown in Eq. 
(2)]. Figure 1c shows the final communities in Dolphins 
network detected by GLPA.

(4)PC(ci) =

∑k

r=1
(�ir)

2

�∑k

j=1
�ij

�2

Fig. 1  Communities detection 
of Dolphins network

(a) (b)

(c)
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3.2.3  Time complexity analysis

In GLPA, suppose the node number of graph G is n. In the 
first step, we need calculate similarities between adjacent 
node pairs. The computational complexity for computing 
nodes similarity is O(n2) . Then we construct a label pro-
gress graph L to imitate the label propagation process, and 
the computational complexity for obtaining label propaga-
tion graph is O(n2) . It takes O(n) time to obtain connected 
components of L(G). In the second step, it takes O(k2) to 
determine the weights of edges in W(G), where k is the num-
ber of components in L(G) and k ≪ n . The computational 
complexity for updating labels in this phase is O(t × (n + k)) , 
where t (t ≪ n) is the number of iterations. We compute the 
merging factors of each node of the resulted network W, 
which has a complexity O(k2) . Therefore, the total time com-
plexity of the proposed algorithm GLPA is O(n2).

4  Experiments and results

In this paper, we compare the performance of our method 
GLPA on both synthetic and real-world networks with 8 
classical algorithms LPA, LPAm, LPAm+, LPA-S, BGLL, 
ISCD+, FMM and Infomap [20] in the literature.

4.1  Evaluation criteria

4.1.1  NMI and ARI

To evaluate the performance of community detection algo-
rithm, normalized mutual information(NMI) [21], adjusted 
rand index(ARI) [22] and modularity Q are adopted.

Given a set V with n nodes, let O = {O1,O2,… ,Ok} 
represent the communities obtained by an algorithm, and 
P = {P1,P2,… ,Pk� } represent the ground truth communi-
ties. For Oi and Pj(1 ≤ i ≤ k, 1 ≤ j ≤ k�) , let nij = |Oi ∩ Pj| , 
bi =

∑k�

j=1
nij , tj =

∑k

j=1
nij . NMI is defined as

And ARI is defined as

The higher values of NMI and ARI indicate the better par-
tition quality. If NMI and ARI reach their maximal value 

(5)NMI =

−2
∑

i

∑
j nij log(

nijn

bitj
)

∑
i bi log(

bi

n
) +

∑
j tj log(

tj

n
)

(6)

ARI =

∑
ij

�
nij

2

�
−

�
∑
i

�
bi

2

�
∑
j

�
tj

2

��
∕

�
n

2

�

1

2

�
∑

i

�
bi

2

�
+
∑

j

�
tj

2

��
−

�
∑

i

�
bi

2

�
+
∑

j

�
tj

2

��
∕

�
n

2

�

(which equals 1), then the algorithm obtains exactly the 
ground truth communities.

4.1.2  Stability coefficient

In order to evaluate the stability of the obtained results, we 
adopt the stability coefficient � proposed in [23]. For net-
work G = (V ,E) with |V| = n , we run an algorithm T times 
to show the stability of the algorithm. For 1 ≤ t ≤ T  , we 
construct an n × n matrix �t , whose elements are defined as

Then we calculate the variance matrix S of �t ( 1 ≤ t ≤ T  ). 
The element of S is defined as

The stability coefficient � of the algorithm is defined as

If an algorithm has a low stability coefficient � value, then 
the algorithm has good stability.

4.2  Experiments on computer‑generated networks

We use the LFR benchmark networks [24] as synthetic net-
works to test the performance of our algorithm. LFR bench-
mark network can create networks by several parameters: the 
number of nodes N, average degree ⟨d⟩ , maximum degree 
dmax , minimum community size cmin , maximum community 
size cmax , exponent � for the degree distribution, exponent � 
for community size distribution, and mixing parameter � . We 
test the algorithms on the networks with N ∈ {1000, 5000} , 
community size varying in the range 10–50 and 20–100, 
⟨d⟩ = 20 , dmax = 50 , � = 2 and � = 1 . The mixing parameter 
� denotes the fraction of inter-community edges of the net-
work. When 𝜇 > 0.5 , there are more inter-community links 
than intra-community links, which indicates that there might 
be no obvious communities in the network. When 𝜇 < 0.05 , 
there is few inter-community links, which indicates that the 
network might be disconnected. Hence, the LFR networks 
used here were generated by setting the mixing parameter 
� ∈ [0.05, 0.5] . We compare our GLPA with 6 classical algo-
rithms LPA, LPAm, LPAm+, LPA-S, BGLL and ISCD+ in 
this section.

We performed each algorithm 30 times on each dataset 
and obtained the average performance. Figures 2 and 3 show 
the comparison results of GLPA and comparing algorithms 

�
(t)

ij
=

{
1, if i and j in the same community,

0, otherwise.

Si,j =
1

T

T∑

t=1

(
�
(t)

i,j
−

1

T

T∑

x=1

�
(x)

i,j

)2

(7)� =
1

n2

∑

1≤i,j≤n

Si,j
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in term of NMI and ARI, respectively. When the mixing 
parameters were low ( � ∈ [0.05, 0.3] ), the community 
structure of these networks were relatively obvious, and the 
results of each algorithm were highly consistent with the 
ground truth communities in these networks. When � grows, 
the community structure of the networks were not obvious. 
The proposed GLPA chooses communities with higher par-
ticipation coefficient to merge, which ensures the quality of 
community detection and stability of the algorithm.

4.3  Experiments on real‑world networks

We test algorithms on 4 real world networks with ground 
truth communities: Zachary’s Karate Club [25], Dolphins 
Social Network [18], Polbooks [26], and US College Foot-
ball Network [27]; and we also run algorithms on 8 real-
world networks without ground truth communities: Les 
Misérables [28], NetScience [29], Email [30], Yeast [31], 
Web_spam [32], Router [32], Bio_dmela [32] and PGP 
[32]. Table 1 displays the characteristics of these real world 
networks. We compared our GLPA with LPA, LPAm, 
LPAm+, LPA-S, FMM, BGLL, Infomap and ISCD+ on 
these networks.

For 4 real-world networks with ground truth communi-
ties, we use modularity, NMI, ARI and stability coefficient 

to show the performance of the algorithms. We perform 30 
times for each algorithm on each dataset. The results are 
shown in Table 2, where k is the number of communities 
obtained.

Zachary’s Karate Club network is one of the most com-
monly used benchmark networks in community mining [25]. 
This network consists of 34 nodes and 78 links. Each mem-
ber denotes a node in the network, and a link exists between 
two nodes if these two members interact consistently outside 
the activities of the club. However, the administrator (node 
1) and instructor (node 33) fell out, and the members were 
split into two groups with either administrator or instructor. 
The proposed algorithm GLPA outputs two communities, 
as is shown in Fig. 4. Only node 10 is misclassified, and the 
value of NMI is higher than 0.8, which is much higher than 
the average of LPA, LPAm and LPAm+.

The second network is Dolphins Social Network which 
has been investigated by Lusseau [18] over several years. 
It is composed of 62 dolphins and 159 links. As shown 
in Fig. 5, GLPA detects two communities in Dolphins 
network, which is completely consistent with the ground 
truth. GLPA gets the best result on this network.

US College Football network [27] is the social network 
with 115 nodes and 613 edges. All nodes in the network 
are divided into 12 communities corresponding to the 

Fig. 2  Comparison of NMI on 
LFR benchmark networks
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“conferences”. Our result is shown in Fig. 6, which con-
tains 13 communities.

Another benchmark is commonly called Polbooks which 
is a network of books about American politics compiled by 
Valdis Krebs [26]. This network involves 105 nodes, each of 
which represents a book about US politics sold on Amazon.
com. All nodes in the network were classified into three 

groups according to their political inclination: liberal, con-
servative, or centrist. If customers frequently bought two 
books at the same time, the two corresponding nodes are 
connected by an edge. The proposed GLPA detects two com-
munities, as is shown in Fig. 7a. The value of the NMI via 
our algorithm are higher than other algorithms. Because in 
the original network division as shown in Fig. 7b, the nodes 
corresponding to the “centrist” books(blue nodes) are not 
densely connected due to the lack of obvious political incli-
nation. GLPA divides the network into two communities and 
both communities were densely connected internally and 
sparsely connected externally. We think it might be reason-
able to divide the network into two communities.

Table 3 shows the experimental results on 8 real-world 
networks without ground truth communities. We compare 
the performance of each algorithm from the modularity and 
stability. It can be seen that the stability coefficient of GLPA 
is low, which indicates that it has good stability.

5  Conclusion

In this paper, we propose a graph-based label propagation 
algorithm called GLPA for non-overlapping community 
detection based on neighbor influence and connectivity 

Fig. 3  Comparison of ARI on 
LFR benchmark networks

Table 1  Characteristics of 12 real networks

Datasets Nodes Links Communities

Karate 34 78 2
Dolphins 62 159 2
Football 115 613 12
Polbooks 105 441 3
Les Misérables 77 254 –
NetScience 379 914 –
Email 1133 5451 –
Yeast 2375 11,693 –
Web_spam 4767 37,375 –
Router 5022 6258 –
Bio_dmela 7393 25,569 –
PGP 10,680 24,316 –
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information during the label propagation process. The 
main steps of GLPA proceed as follows. First, we define 
the node similarity between a node and its neighbors. Each 
node changes its label to that of its most similar neighbor 
node. We construct a label progress graph L to imitate 
the label propagation process and calculate the connected 
components of L. Next, we construct a weighted graph W 
by treating each connected component as a super node, 
and assign the number of edges between two communities 

in original network as their edge weights. We compute 
the merging factors of each node of the resulted network 
W. We get the final communities by merging the small 
scale communities with high merging factors. The pro-
posed algorithm GLPA could reduce the instability of the 
original LPA. Compared with other classical community 
detection algorithms on some real networks and artificial 
networks, the proposed algorithm shows preferable per-
formance on NMI, ARI and modularity.

Table 2  Comparison of four 
real-world networks with 
ground truth communities

Datasets Index FMM LPA BGLL LPAm LPAm+ Infomap ISCD+ LPA-S GLPA

Karate k 2 1–3 3–4 4–7 4 3 2 2–3 2
Modilarity 0.3718 0.3147 0.4047 0.3710 0.4164 0.4020 0.3715 0.3690 0.3716
NMI 0.8372 0.6574 0.6537 0.5771 0.6521 0.6995 1.0000 0.9426 0.8372
ARI 0.8823 0.6632 0.5445 0.4092 0.5245 0.7022 1.0000 0.9560 0.8823
� – 0.1214 0.0487 0.0438 0.0256 – – 0.0131 0

Dolphins k 3 2–5 4–5 8–11 4–6 6 4 2–6 2
Modilarity 0.4942 0.4920 0.5202 0.4988 0.5226 0.5158 0.4917 0.4373 0.3735
NMI 0.6058 0.6349 0.5195 0.4437 0.5086 0.5270 0.4708 0.6820 1.0000
ARI 0.4795 0.5106 0.4259 0.2308 0.3355 0.3614 0.3458 0.6442 1.0000
� – 0.0605 0.0310 0.0173 0.0308 – – 0.0785 0

Football k 5 8–13 9–10 10–14 9–10 10 13 7–18 13
Modilarity 0.5494 0.5819 0.6037 0.5821 0.6019 0.5902 0.5949 0.5291 0.5949
NMI 0.6862 0.8725 0.8740 0.9023 0.8781 0.8801 0.9254 0.8406 0.9254
ARI 0.4444 0.7390 0.7681 0.8232 0.7775 0.7601 0.8890 0.6801 0.8890
� – 0.0245 0.0103 0.0096 0.0081 – – 0.0296 0

Polbooks k 3 1–4 3–6 8–12 4–8 5 3 2–6 2
Modilarity 0.4993 0.3801 0.5210 0.4890 0.5197 0.5267 0.4973 0.4971 0.4569
NMI 0.5566 0.4231 0.5234 0.4320 0.5063 0.5369 0.5245 0.5543 0.5979
ARI 0.6563 0.4921 0.5966 0.3183 0.5366 0.6463 0.6390 0.6514 0.6671
� – 0.1228 0.0259 0.0367 0.0441 – – 0.0372 0

Fig. 4  Result of GLPA on 
Karate network



1327International Journal of Machine Learning and Cybernetics (2020) 11:1319–1329 

1 3

As future work, the authors intend to develop the graph-
based representation to detect large amounts of small-scale 
communities, whose size distribution is imbalance. In this 
case, authors aim to employ the local version of measure 

to fit the imbalance size distribution. Moreover, we need 
to develop an effective community detection algorithm 
for detecting special community structures in complex 
networks.

Fig. 5  Result of GLPA on Dol-
phins network

Fig. 6  Result of GLPA on Foot-
ball network
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Fig. 7  Comparisons on the Polbooks network

Table 3  Comparison of four real-world networks without ground truth communities

Datasets Index FMM LPA BGLL LPAm LPAm+ Infomap ISCD+ LPA-S GLPA

Les Misérables k 4 2–5 5–6 10–14 6–10 8 2 3–23 5–6
Modilarity 0.4961 0.2719 0.5461 0.5315 0.5499 0.5363 0.2540 0.4458 0.4746
� – 0.0833 0.0193 0.0103 0.0112 – – 0.0534 0.0024

NetScience k 18 31–40 18–20 68–74 64–70 7 6 4–60 14–29
Modilarity 0.8385 0.8081 0.8464 0.7175 0.7299 0.7789 0.7546 0.7537 0.8058
� – 0.0130 0.0053 0.0020 0.0035 – – 0.0573 0.0100

Email k 8 1–3 8–13 92–127 88–123 50 5 177–361 36
Modilarity 0.3461 0.0002 0.5522 0.4763 0.4841 0.5309 0.4563 0.3458 0.5151
� – 0.0015 0.0511 0.0157 0.0181 – – 0.0031 0.0002

Yeast k 30 104–131 16–24 329–354 325–350 10 4 199–656 87–118
Modilarity 0.7021 0.6639 0.7291 0.6429 0.6450 0.5269 0.5192 0.5723 0.6556
� – 0.0258 0.0294 0.0021 0.0023 – – 0.0045 0.0038

Web_spam k 58 160–199 16–22 338–397 341–386 447 9 812–1581 169–175
Modilarity 0.4700 0.1207 0.4767 0.4603 0.4616 0.2698 0.4297 0.3190 0.4014
� – 0.0447 0.0345 0.0233 0.0249 – – 0.0065 0.0001

Router k 72 1046–1106 33–49 1349–1402 1338–1389 749 14 44–253 129–214
Modilarity 0.8779 0.6908 0.8937 0.6182 0.6199 0.7132 0.1720 0.6658 0.8019
� – 0.0033 0.0502 0.0002 0.0002 – – 0.0172 0.0040

Bio_dmela k 44 203–245 31–39 1347–1512 1324–1545 690 13 4065–4352 481–543
Modilarity 0.4350 0.0548 0.4469 0.3470 0.3438 0.2905 0.0761 0.1070 0.3424
� – 0.0364 0.0252 0.0069 0.0068 – – 0.0021 0.0067

PGP k 215 1913–1994 64–77 2193–2271 2205–2263 1797 27 5233–6035 170–173
Modilarity 0.8521 0.7317 0.8785 0.7113 0.7131 0.6878 0.7463 0.4861 0.8378
� – 0.0010 0.0102 0.0006 0.0005 – – 0.0004 0.0004
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