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Abstract
Clustering by fast search and detection of density peaks (DPC, Density Peaks Clustering) is a relatively novel clustering 
algorithm published in the Science journal. As a density-based clustering algorithm, DPC produces better clustering results 
while using less parameters than other relevant algorithms. However, we found that the DPC algorithm does not perform well 
if clusters with different densities are very close. To address this problem, we propose a new DPC algorithm by incorporat-
ing an improved mutual k-nearest-neighbor graph (Mk-NNG) into DPC. Our Mk-NNG-DPC algorithm leverages the distance 
matrix of data samples to improve the Mk-NNG, and then utilizes DPC to constrain and select cluster centers. The proposed 
Mk-NNG-DPC algorithm ensures an instance to be allocated to the fittest cluster. Experimental results on synthetic and real 
world datasets show that our Mk-NNG-DPC algorithm can effectively and efficiently improve clustering performance, even 
for clusters with arbitrary shapes.

Keywords  Clustering · Mutual k-nearest-neighbor graph · Density peak

1  Introduction

Clustering analysis is an unsupervised learning technique 
[1] that recognizes different groups (clusters) underlying 
data. Clustering analysis has been applied to many fields 
such as pattern recognition [2], information retrieval [3], 
business intelligence [4], and so on. In the literatures, there 
are many clustering algorithms published, see for example 
[5–15]. Among those algorithms, hierarchy-based cluster-
ing [8–10] builds a binary tree to group similar data points. 
In density-based clustering [11, 12], a cluster is defined as 
a contiguous region of high density of data in the space. 
Model-based clustering assumes that the data is generated 
by a mixture of probability models. In general, clustering 
analysis involves two phases including class and function 

(also called a model). For a given data sample D, the class 
conducts rule-based or concept-based partitioning of D, 
while the function returns an array of labels corresponding 
to different clusters of D. Despite the tremendous efforts in 
the past a few decades, clustering analysis needs continued 
efforts with the emergence of new types of data in the era 
of big data.

In this paper, we focus on the state-of-the-art density 
peaks clustering (DPC) [16, 33–35]. As a density-based 
clustering algorithm, DPC produces better results while 
using less parameters than other clustering algorithms. 
However, it is found that the performance of DPC deteri-
orates significantly if clusters with different densities are 
very near. To address this problem, we propose to incorpo-
rate the mutual k-nearest-neighbor graph into DPC, called 
Mk-NNG-DPC. This proposed method can avoid assigning 
neighboring instances belonging to different clusters into 
the same cluster. Through constructing a mutual nearest 
neighbor graph, the theoretical analysis and the experimental 
results show that our Mk-NNG-DPC algorithm outperforms 
the DPC algorithm. In addition, our Mk-NNG-DPC algorithm 
can deal with clusters with arbitrary shapes.

The rest of this paper is organized as follows. In Sect. 2, 
the classical and well-performed clustering algorithms are 
briefly reviewed. In Sect. 3, the mutual k-nearest-neighbor 
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graph and the DPC algorithm are introduced. In Sect. 4, we 
present the improved DPC algorithm, Mk-NNG-DPC, which 
combines the improved mutual k-nearest-neighbor graph 
with DPC algorithm. In Sect. 5, experimental studies are 
conducted to verify the effectiveness of our proposed algo-
rithm. Section 6 concludes the paper.

2 � Related work

Clustering analysis commonly differentiates objects from 
various groups (clusters) by the similarities or distances 
between pairs of objects. Typically, clustering algorithms 
are categorized based on a different set of rules for defining 
the similarity among data points [1, 21, 40–44, 55, 56]. As 
an example, in density-based clustering, a cluster is defined 
as an area with higher density than the other areas. The 
algorithm DBSCAN [11] is a classic density-based clus-
tering method and designed to find arbitrary-shaped clus-
ters. Through quantifying the neighborhood of a data point, 
DBSCAN can find a cluster with high dense in data space. 
The main drawback is that it is hard to systematically detect 
the density border since the cluster density decreases con-
tinuously, so that most of the parameters on density need to 
be specified manually.

Hierarchical clustering is another well-known clustering 
method. Hierarchical clustering (HC) methods represent 
data objects in a hierarchy or “tree” structure of clusters 
[15]. Hierarchical processes have two strategies: bottom-
up or agglomerative, and top-down or divisive [1, 45–47]. 
Generally, HC is categorized into distance-based method or 
density-based method. For example, Gabor et al. [21] pro-
posed a distance-based hierarchical clustering method that 
extends Ward’s minimum variance by defining a cluster dis-
tance and objective function in terms of Euclidean distance. 
On the other hand, density-based HC applied the density 
connectivity to investigate the reachable distance of all data 
points and hierarchical structures. For example, Campello 
et al. [36] proposed HDBSCAN as an improvement over 
the classic OPTICS algorithm by measuring the clustering 
stability. They formalized the problem to maximize the over-
all stability of selected clusters. In addition, there are some 
theoretical studies on the above research areas [48–54].

In recent years, there are many research works focusing 
on improving the performance of the existing algorithms. 
For example, Li et al. [37] proposed a divisive projected 
clustering (DPCLUS) algorithm to partition the dataset into 
clusters in a top-down manner for detecting correlation clus-
ters in highly noisy data. Zhang et al. [38] proposed a den-
sity-based multiscale analysis to reliably separate “noisy” 
objects from “clustered” objects and is applicable to clusters 
of arbitrary shapes. Clustering by fast search and detection 
of density peaks (abbrev. DPC) [16] is a novel algorithm 

published in Science by Rodriguez and Laio in 2014. DPC 
can find arbitrary shaped clusters without requiring multiple 
parameters. Moreover, it is insensitive to noise underlying 
the data. DPC is our interest and focus of this paper.

3 � Preliminary

In this section, we introduce the standard DPC algorithm 
and the notion of mutual k-nearest-neighbor graph. Here, 
we will also investigate several improved DPC algorithms.

3.1 � DPC Algorithm

DPC includes two distinct procedures. In the first procedure, 
DPC uses the input parameters to compute the local density 
of a group of data points and find the density peaks, which 
are considered as cluster centers. In the second procedure, 
each data point is assigned to the nearest cluster with the 
largest density peak. The best cluster center should satisfy 
two constraints: the largest density and the maximum mar-
gin. For data sample i, its local-density �i and mini-distance 
�i are defined in Eqs. (1) and (2), respectively:

where dij is the distance between sample i and j, dc is the 
truncation distance. The piecewise function �(x) is defined 
as:

Besides Eq. (1), there is another approach to compute �i 
by using Gaussian function as follows [6]:

In Eq. (1) �i is actually the number of data samples whose 
distances to sample i is less than dc. In Eq. (3), however,�i 
is the sum of weighted distance of all samples to sample i. 
Since the probability that different samples have the same 
local densities is small, Eq. (3) is a suitable measure of local 
density, especially for small-scale datasets. The value of dc 
directly influences clustering results. In DPC algorithm, 
dc is set to such a value that the number of neighbors of 
each data sample is about one to two percent of the total 
data. DPC uses � and � to construct decision graph, and 
then selects data points with the large � and � values as the 

(1)�i =
∑

j≠i

�(dij − dc)

(2)𝛿i = min
j∶𝜌j>𝜌i

(dij)

𝜒(x)=

{
1, x < 0

0, others

(3)�i =
∑

j≠i

e
−(

dij

dc
)2
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cluster centers. Each cluster center represents a cluster, and 
each data point is assigned to its nearest cluster.

The prominent advantage of DPC algorithm is that it 
can detect noisy data more precisely than other algorithms. 
DPC defines the boundary of a cluster as the member data 
points of the cluster. DPC considers the maximum density 
in a boundary of one cluster as the upper bound �b of local 
density for this cluster. Then the data whose density is less 
than �b is defined as noisy data.

DPC can find clusters with arbitrary shapes and dimen-
sionalities. It works well in finding convex clusters. For clus-
ters with very different densities, DPC cannot work well 
with the unique parameter � and the unique parameter �.

Figure 1 illustrates two clustering results obtained by 
Eqs. (1) and (3), respectively. In the dataset, there are three 
clusters with different densities including a ring structure 
and two circular structures. The density peaks of three 
cluster structures are greatly different, but their boundaries 
are not obvious. The result in Fig. 1a is generated by the 
algorithm using Eq. (1), where point A is a data point with 
maximum value of local density. Point B is another point 
with larger local density value than point A and is close to 
point A. Based on the assignment criterion of DPC, point 
A should be assigned to the circular cluster centered by 
Center1 that point B belongs to. Obviously, this is incor-
rect because point A belongs to the ring cluster centered by 
Center3. The clustering result illustrated in Fig. 1b reveals 
the similar problem.

3.2 � Mutual k‑nearest‑neighbor graph

A k-nearest-neighbor (abbrev. k-NN) graph [26] is a directed 
graph Gk-NN = (V, E), where V is the set of vertexes, each of 
which is a group of data points, and E is the set of edges. 
There is a connection from vertex Xi to Xj if Xj is the k-NN 

of Xi. Like the k-NN algorithm, in k-NN graph, the choice of 
k is crucial for a good performance.

In a k-NN graph Gk-NN = (V, E), for two arbitrary vertexes 
vq and vp, they are called k-mutual-neighbor if vq belongs to 
k-NN (vp) and vp belongs to k-NN (vq). For a dataset with the 
size n, a k-nearest-neighbor graph Gk-NN = (V, E) is called 
mutual k-nearest-neighbor graph [26, 27] (abbrev. Mk-NNG) 
if and only if vq and vp are k-mutual-neighbor, which is writ-
ten as:

From Eq.  (4), we know that an edge generated in an 
Mk-NNG requires two vertexes of that edge to be k-mutual-
neighbor for each other. Information are extracted from the 
relationships of vertexes in graph. In contrast with k-nearest-
neighbor approach, information transmission of Mk-NNG is 
bidirectional and connected each other. For example, The 
data point B is one of the 2·k nearest neighbors of point A, 
while A does not belong to the set of 2·k nearest neighbors 
of point B. Then there is no connection between A and B. 
In other words, the condition that A is connected to B is that 
A and B belong to the set of the other 2·k nearest neighbors 
at the same time. So Mk-NNG is an undirected graph, while 
k-NN graph is a directed graph.

4 � Our approach

The above examples show that the standard DPC algorithm 
incorrectly groups the data as illustrated in Fig. 1. One rea-
son is that the standard DPC has limitation in data assign-
ment. When clusters with different densities are very close, 

(4)

Mk−NNG(vp, vq) =

{
1, if vq ∈ k − NN(vp) and vp ∈ k − NN(vq)

0, otherwise

Fig. 1   Clustering results by DPC
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a data instance in the boundary region can be easily assigned 
incorrectly to a cluster with higher density. For example, in 
Fig. 1a, the point A locates at the area with higher density. In 
fact, A belongs to the ring-shape cluster with lower density. 
According to the chained allocation criteria of DPC algo-
rithm the data point A will be assigned to the cluster that B 
locates in because that cluster has the highest density near to 
A. This will cause the consequent misallocation. Figure 1b 
illustrates the clustering result by using another estimation 
approach of local density, the estimation of Gaussian kernel 
function. Also, it is can be seen that the point C is errone-
ously assigned to the nearest cluster with higher density that 
D locates in.

Xie et al. proposed an improved DPC algorithm KNN-
DPC to address the problem discussed above [28]. Although 
KNN-DPC considers the strength of k-nearest-neighbor 
approach, other problems emerge. First, when the densities 
of clusters are irregular, inappropriate assignment strategy 
may result in unreliable output. That is, the data instances 
in the lower density cluster are probably assigned to higher 
density cluster. Second, the existing DPC-based algorithms 
use a single instance as the cluster center (the representa-
tive of a cluster), which may be insufficient to represent the 
actual shape of the cluster.

To address these problems, we can consider the mutual 
k-nearest-neighbor graph (Mk-NNG). However, we found that 
if Mk-NNG is directly applied to DPC, the result is not much 
ideal, which will be illustrated in the following section. In 
this paper, we improve the basic Mk-NNG and fuse it into 
DPC to develop a novel DPC-based algorithm.

4.1 � Mk‑NNG and novel DPC

If the basic Mk-NNG is directly applied to clustering analysis, 
we find the benefit is limited. We illustrate this problem by 
using an experiment with a two-dimensional dataset shown 
in Fig. 2. There are four clusters with different densities and 
shapes in this dataset, but the marginal similarity between 
arbitrary two clusters is very high. In other words, the 
objects in the boundary regions are highly similar or “close 
to” each other.

There are two possible scenarios when using the basic 
Mk-NNG to deal with the dataset shown in Fig. 2. Figure 3 
shows the clustering results when the parameter k is set to 
3 and 4, respectively. For low-density clusters, if k is set as 
smaller values than the actual value, some points in low-
density sections may become isolated points or clusters, for 
example, region C in Fig. 3a. If k is set as larger values, the 
points in the boundary regions may be connected to the same 
graph (the same cluster) even if they belong to different clus-
ters. Region D in Fig. 3b is just such an example.

To address the limitations of the basic Mk-NNG in han-
dling clustering problems, we develop an improved version 

of Mk-NNG. Figure 4 shows the clustering result using the 
improved Mk-NNG. If k = 2 and k = 3, the improved Mk-NNG 
leads to better clustering results than the basic Mk-NNG.

We now explain how to improve the basic Mk-NNG. We 
firstly give the following definitions.

Definition 1  Let i and j represent different data samples, 
and DSknn(i) is a set which is formalized as Eq. (5). DSknn(i) 
is a k-nearest-neighbor sample set, where knn(i) is the set 
containing k nearest neighbors of i, and 2·knn(j) represents a 
set having 2·k nearest neighbor samples of sample j.

DSknn(i) is an index set of other different data samples 
connected to sample i. According to Eq. (5), the size of 
DSknn(i) is uncertain because of the different densities of 
data distribution. For those samples in a high-density space, 
there exists a great deal of nearest-neighbor samples of a 
sample i and the size of DSknn(i) may be greater than 2·k. 
otherwise, for those samples in a low density space, DSknn(i) 
may only include a few elements.

Definition 2  If the size of DSknn(i) is larger than or equal 
to k, a distance-upper-bound point pDUB(i) is the kth larger 
number, otherwise, pDUB(i) is the data point of the most 
far nearest-neighbor. The description of pDUB(i) is formal-
ized as Eq. (6), where | DSknn(i)| is the size of DSknn(i), and 
distance(i, j) is a function which is used to calculate the 
distance of sample i and j.

(5)DSknn(i) = {j|i ∈ 2 ⋅ knn(j)}

(6)

pDUB(i) =

{
kth nearest neighbor from DSknn(i), |DSknn(i)| ≥ k

argmax
j∈DSknn(i)

(distance(i, j)), otherwise

Fig. 2   Plot of a two-dimensional dataset
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Definition 3  The distance between sample i and pDUB(i) 
is called distance level, dislevel(i), which is formalized as 
Eq. (7).

We use the nearest-neighbor set DSknn to estimate the dis-
tance level of each data sample. According to Eq. (7), distance 
level dislevel(i) is actually a measure of density that can be used 
to distinguish those regions with different densities.

Definition 4  If the distance between sample i and j is less 
than the distance level dislevel(i) and dislevel(j), all such sam-
ples j constitute a set called mutual k-nearest-neighbor set 
( SMk−NN

 ), which is formalized as Eq. (8). The graph generated 
from SMk−NN

 is the improved Mk-NNG.

(7)dislevel(i) = distance(i, pDUB(i))

According to Eq. (8), there is no upper bound of the con-
nectivity for some nodes in the improved Mk-NNG because 
the number of mutual nearest neighbors for some samples 
in high density region may be greater than k.

The improved Mk-NNG has high significance to lift the 
clustering capacities, especially for density-based tech-
nique. When sample i is in the boundary of a high-density 
region and sample j is in the region of low-density, if i and 
j are “near”, the value of dislevel(i) is small and the value of 
dislevel(j) is large. Conseqently, i and j are not the mutual 
neighbors.

We next illustrate how to construct an improved Mk-NNG. 
When k = 2, Fig. 5a is the nearest neighbor graph of sam-
ples C and G, and (b) is the improved version of (a). For 

(8)
SMk−NN

(i) = {j|distance(i, j) < dislevel(j) ∧ distance(i, j) < dislevel(i)}

Fig. 3   Clustering results when using the basic Mk-NNG

Fig. 4   Clustering results when using the improved Mk-NNG
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samples C and G, pDUB(C) = {B, D, F, E}, and pDUB(G) = {B, 
H}. According to Eq.  (6) and (7), dislevel(C) = 

√
2 , and 

dislevel(G) = 3. Figure 5 (b) can then be obtained according 
to Eq. (8). Because sample C is located in a high-density 
region, its mutual nearest neighbors are more than 2 k (k is 2, 
but the total number of neighbors is 5). For sample G, how-
ever, it is in a low-density region, and only has one neighbor.

Figure 6 illustrates the results of using the basic Mk-NNG 
and its improved version to cluster the two-dimensional 
dataset illustrated in Fig. 2. Figure 6a, b are the results of 
the improved DPC algorithm with the improved Mk-NNG and 
the basic Mk-NNG, respectively. Obviously, the result in (a) is 
more accurate than the result in (b).

We also test the DPC algorithm with the improved 
Mk-NNG using real-world datasets. Table 1 shows the NMI 
(Normalized Mutual Information) [30] results. By using 
the improved Mk-NNG, the DPC achieves much better 
results than it basic version for six real datasets.

The above results shows that DPC algorithm combined 
with the improved Mk-NNG outperforms the basic Mk-NNG. 
In the improved Mk-NNG, the distance level of each sam-
ple i must be calculated to decide whether two arbitrary 
samples are mutual nearest neighbors. We give Theorem 1 
to state the relationship of mutual nearest neighbors and 
distance level.

Fig. 5   Illustration of Mk-NNG 
and its improved version

Fig. 6   Results of the improved DPC algorithm with the basic Mk-NNG and its improved version (k = 3)

Table 1   NMI Results of the 
improved DPC algorithm 
with different Mk-NNG on real 
datasets

DPC algorithm Datasets

Seeds WDBC Glass Movement Ecoli Iris

Improved Mk-NNG 72.73 72.02 53.13 63.09 67.13 90.09
Basic Mk-NNG 69.08 67.94 33.45 43.25 54.19 88.46
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Theorem 1  Samples i and j are mutual nearest neighbors, 
if and only if the distance between i and j is less than their 
distance levels dislevel(i) and dislevel(j).

Proof  Given an arbitrary sample i, let knn(i) be the set 
containing k nearest neighbors of i. According to the defi-
nition of DSknn(i), if the size of DSknn(i) is larger than k, 
written as | DSknn(i)| > k, knn(i) ⊂ DSknn(i); if | DSknn(i)| = k, 
knn(i) = DSknn(i); if | DSknn(i)| < k, DSknn(i) ⊂ knn(i). There-
fore, if we want to prove that distance(i, j) ≤ dislevel(i) and 
distance(i, j) ≤ dislevel(j) hold, we need to prove that i belongs 
to knn(j) and j belongs to knn(i).

According to Definition 3, when |DSknn(i)| ≥ k, the dis-
tance level dislevel(i) indicates the distance between sample i 
and the kth ordered neighbor in DSknn(i); when | DSknn(i)| < k, 
the dislevel(i) is the largest distance between sample i and 
the farthest neighbor. For sample i, let MaxDis(i) Eqals to 
maxj∈DSknn(i) (distance(i,j)) , where j is an arbitrary sample 
in DSknn(i). If distance(i, j) ≤ dislevel(i), j belongs to knn(i) 
according to Definition 3, thereby obtaining distance(i, 
j)≤ MaxDis(j). Similarly, j belongs to knn(i) and thereby 
obtaining distance(i, j)≤ MaxDis(i).

According to the above, we can prove that Theorem 1 
holds.

Comparing the improved Mk-NNG with the basic Mk-NNG 
for DPC, the improved one prefers to those samples with 
similar density. Towards this nature, a traditional constraint 
should be added to the improved DPC algorithm.

Constraint 1  If samples i and j can be clustered together, 
one of the necessary constraints is that they are mutual 
k-nearest-neighbor.

Based on Constraint 1, the arbitrarily shaped and complex 
clusters can be obtained.

4.2 � Assignment strategy

Through the above analysis, we know that the Mk-NNG for 
DPC needs Constraint 1 to improve its clustering perfor-
mance. Thus, besides measuring the local density, distance 
and finding the cluster centers by decision graph, the DPC 
algorithm based on the improved Mk-NNG can take the 
advantage of the theories stated in Sect. 4.1 to assign data 
instances to those nearest clusters with the highest local den-
sities. Especially, we need reasonable assignment strategy 
for those data instances in the boundary of clusters. We give 
Definition 5.

Definition 5  Let C1, C2, …, Cm be m different clusters, a set 
is called a cluster boundary if satisfying Eq. (9), 

where i1, i2, …, im are m instances taken from C1, C2, …, 
Cm, respectively.

According to Definition 5, an instance j belonging to 
Sboundary means that j is the mutual nearest neighbor of other 
instances from multiple clusters. That is, there are multiple 
directed edges connected to node j. Then, the assignment 
strategy of j is that j is assigned to a cluster C if there are the 
maximum edges connected to it from C.

4.3 � Proposed algorithm

In this section, we apply the improved mutual nearest neigh-
bor graph and the assignment strategy for data instances to 
develop an improved DPC algorithm, called Mk-NNG-DPC. 
To avoid assigning neighboring instances belonging to differ-
ent clusters into the same cluster, it is necessary to construct a 

(9)
Sboundary = {j|j ∈ SMk−NN

(
i1
)
, j ∈ SMk−NN

(
i2
)
,… , j ∈ SMk−NN

(
im
)
,

i1 ∈ C1, i2 ∈ C2,… , im ∈ Cm}

Algorithm 1.
Input: Dataset D, the truncation distance dc, the parameter k of k-NN;
Output: Data instances with labels
Procedure:
Step 1. Derive the distance matrix M of D;
Step 2. Use M to Calculate ρ and δ according to Eq. (1), (2) and (3), respectively;
Step 3. Apply ρ and δ to construct the mutual nearest neighbor graph, and choose cluster centers from the graph;
Step 4. Derive DSknn(i) and dislevel(i) of each instance i by Eq. (5) - (7) in turn;
Step 5. Calculate 

k NNMS
–

by Eq.(8);

Step 6. Assign the data instances in the boundary by Constraint 1 and Definition 5;
Step 7. Repeat Step 5 and 6 until each instance assigned to a cluster;

Fig. 7   Description of Mk-NNG-DPC algorithm
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mutual nearest neighbor graph to distinguish such neighbors. 
The idea is to use distance (near neighbors) and distribution 
density simultaneously, as stated in Sects. 4.1 and 4.2. The 
Mk-NNG-DPC algorithm is described in Fig. 7.

4.4 � Analysis of computational complexity

For a data set D containing n instances, the computational com-
plexities of calculating the distance matrix M and the parameter 
δ are all O(n2). The complexity of calculating local-density ρ 
using Eq. (1) is O(n2) as well. It is necessary to scan D to derive 
the distances between different instances less than a threshold 
dc. If we use Eq. (3) to calculate ρ, the complexity is also O(n2) 
because the sum of weighted distances of all instances must 
be derived. Therefore, the overall complexity from Step 1–3 
is O(n2). The calculation of DSknn(i) in Step 4 involves finding 
2 k neighbors of each instance i, and thus the complexity for n 
instances is O(n2). Because the complexity of deriving pDUB(i) 
is O(2 kn), considering that the elements in pDUB(i) needs to be 
ordered, the worst-case computational complexity of calculat-
ing dislevel(i) is O(n(2 k)2), where k is usually far less than n. 
According to Eq. (8), the computational complexity of Step 5 
is O(n2). Thus, the overall complexity of the Mk-NNG-DPC algo-
rithm is O(n2). In fact, the time complexities of DPC algorithm 
and its variations are all O(n2) [16, 28, 33, 34, 36], so the com-
putational complexity of the proposed algorithm is approximate 
to or equal to the other DPC-based algorithms.

5 � Experimental analysis

In this section, we test the proposed Mk-NNG-DPC algorithm 
on 18 datasets and compare it with nine classical clustering 
algorithms.

5.1 � Experimental methodology

5.1.1 � Data sets

We test our proposed algorithm Mk-NNG-DPC with eighteen 
benchmark datasets from UCI machine learning repository 

[29]. The important statistics of the benchmark datasets are 
summarized in Table 2. The datasets listed in Table 2 are 
all real and multi-dimensional. And all the class labels are 
removed from these datasets to generate unlabeled data.

5.1.2 � Compared algorithms

We compare the Mk-NNG-DPC algorithm with nine well-
known clustering algorithms including the standard DPC 
[16], DBSCAN [11], Spectral clustering [19], BIRCH [8], 
Mean shift [18], Gaussian Mixture Model (GMM) [23], 
K-means [6], FCM [24] and Affinity Propagation (AP) [17].

DBSCAN is a representative method which models clus-
ters as dense regions in the data space and can discover arbi-
trary clusters. Spectral clustering is a representative method 
in high dimensional data applications, which combines fea-
ture extraction approaches with clustering strategies. Spec-
tral clustering uses matrix theory including affinity matrix, 
computation of eigenvectors, and transformation of vector 
spaces. BIRCH is another representative algorithm in hier-
archical clustering. BIRCH integrates bottom-up strategy 
with a kind of data structure, namely, clustering feature tree, 
resulting in multiphase hierarchical clustering. Mean shift 
clustering is a typical non-parametric feature-space analysis 
technique with the characteristics of application-independ-
ence and non-assumption of any predefined shape on data 
clusters. The GMM can be viewed as a mixture of a num-
ber of Gaussian components. The aim of GMM is to maxi-
mum the log-likelihood function. The K-means clustering 
algorithm is based on distance measurement. FCM is based 
on Euclidean distance function and associated with fuzzy 
mathematics. The AP method is one of the state-of-the-art 
methods proposed recently, which takes as input measures 
of similarity between pairs of data points. These well-known 
models apply probability-, evolution-, or ML-based ideas, 
which is also applied in our proposed approaches.

5.1.3 � Evaluation metrics

We use five metrics to evaluate the performances of the clus-
tering algorithms:

Table 2   The benchmark 
datasets used in this paper

DataSet Size/attribute Cluster/source DataSet Size/attribute Cluster/source

Compound 399/2 6/[17] Seeds 210/7 3/[23]
Atom 800/3 2/[18] Art 300/4 3/[23]
Path-based1 300/2 3/[19] Ionosphere 351/34 2/[23]
Zelnik6 238/2 3/[20] Libras Movement 360/90 15/[23]
Dim256 1024/256 16/[21] WDBC 569/30 2/[23]
Dim1024 1024/1024 16/[21] Glass 214/10 6/[23]
S3 5000/2 15/[22] Waveform 5000/21 3/[23]
S4 5000/2 15/[22] Image Segmentation 2310/19 7/[23]
Iris 150/4 3/[23] Ecoli 336/7 8/[23]
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(1) Clustering accuracy: the accuracy of a clustering algo-
rithm is the ratio of correct assignments to the whole dataset. 
The computational equation of accuracy (Acc) is

In Eq. (10), the parameter ai denotes the number of data 
objects that are correctly assigned to cluster Ci, k is the num-
ber of clusters, and |D| means the size of dataset D.

(2) Clustering F-score: a weighted average of the Preci-
sion and Recall, where it reaches its best value at 1 and 
worst at 0, or it is viewed as the harmonic mean of Precision 
and Recall. Precision means the precision of the clustering 
results, which is the degree to which repeated measurements 
show the same results if conditions unchanged. Precision 
(PR) is calculated by:

In Eq. (11), if a data set D contains k clusters, ai denotes 
the number of data objects that are correctly assigned to 
cluster Ci while the parameter bi denotes the data objects 
that are incorrectly assigned to Ci.

Recall (RE) is the ratio of the number of data objects but 
are falsely clustered. Assuming that ci denotes the number 
of data objects belonging to the ith cluster but are falsely 
assigned to other clusters, RE is defined as:

Using Eq. (11) and (12), F-score is defined as:

(3) NMI (Normalized Mutual Information) [30]: a com-
monly used index in evaluating the effectiveness of a cluster-
ing algorithm. NMI is calculated by:

where X and Y are random variables, I(X, Y) means the 
mutual information between X and Y, and H(X) is the entropy 
of X. I(X, Y), H(X) and H(Y) are obtained by Eqs. (15), (16) 
and (17), respectively,

(10)Acc =

∑k

i=1
ai

�D�

(11)PR =

∑k

i=1

ai

ai+bi

�D�

(12)RE =

∑k

i=1

ai

ai+ci

�D�

(13)F-score =
2 ∗ PR*RE

PR + RE

(14)NMI(X, Y) =
I(X, Y)

√
H(X)H(Y)

(15)I(X, Y) =
∑k(a)

h=1

∑k(b)

l=1
nh,l log

(
n ⋅ nh,l

n
(a)

h
n
(b)

l

)

where n(a)
h

 is the number of data objects in cluster h when 
their class-label is a, and n(b)

l
 is the number of data instances 

in cluster l when their class-label is b. And nh, l is the num-
ber of objects that are in cluster h associated with a as well 
as in group l associated with b.

(4) Clustering Purity: a simple clustering index in evalu-
ating the proportion of correctly clustered samples. Purity 
is calculated by:

where mi is the number of all members in cluster i, and m is 
the number of members involved in the whole cluster parti-
tion. Pi is proportion of the largest number of members in 
cluster i to all members of this cluster. And K is the number 
of clusters.

(5) ARI (adjusted rand index): a variation of clustering 
evaluation index RI, ARI is to calculate the similarity of 
random uniform distribution between real class label and 
predicted class label. The larger ARI is, the better the clus-
tering effect is. RI and ARI are calculated by:

where a is the sample log in same label between real label 
and predicted label, b is the sample log in different label 
between real label and predicted label. Cnsamples

2
 is all possi-

ble combinations of pairs of samples. E(RI) is the expected 
value of RI.

5.2 � Results and analysis on synthesis data

We first use three two-dimensional datasets to illustrate the 
performance of the standard DPC, the basic Mk-NNG-based 
and the improved Mk-NNG-based DPC. Each of these synthe-
sis datasets contains several clusters with different shapes 
and distribution densities. In this section, we employ the 
Euclidean distance as the distance measure. To facilitate 
computation in the algorithm, the truncation distance dc 
is represented by percentages. We sort all the distances in 
ascending order based on the distance matrix, and then take 

(16)H(X) =
∑k(a)

h=1
n(a)
n

log
n
(a)

h

n

(17)H(Y) =
∑k(b)

l=1
n
(b)

l
log

n
(b)

l

n

(18)Purity =

K∑

i=1

mi

m
Pi

(19)RI =
a + b

C
nsamples

2

(20)ARI =
RI − E(RI)

max(RI) − E(RI)
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the value at position n % × size (D) of these ordered dis-
tances, where n is a tuning parameter and D is a dataset, as 
the value of dc.

Figures  8, 9, and 10 illustrate the clustering results 
on three synthesis datasets, Zelnik6, Path-based1, and 

Compound, respectively, produced by the standard DPC, 
and the proposed Mk-NNG-DPC algorithms.

Zelnik6 dataset has 238 data instances and contains 
3 clusters. The circle-shaped cluster in Zelnik6 has low-
density, as shown in Fig. 8a, the clusters obtained by the 

(a) (b) (c)

Fig. 8   Clustering results on the synthesis dataset Zelnik6

(a) (b) (c)

Fig. 9   Clustering results on the synthesis dataset Path-based1

(a) (b) (c)

Fig. 10   Clustering results on the synthesis dataset Compound
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standard DPC are not good enough (or has higher error 
rate). The main reason is that the density of this circle-
shaped cluster is low but the standard DPC cannot solve 
this problem very well. Figure 8b shows the clusters 
clustered by Mk-NNG-DPC. There are edges between the 
circle-shaped cluster and other two high-density clusters, 
but the edges are sparse. This can help Mk-NNG-DPC gen-
erate arbitrary-shaped clusters with different densities. 
Figure 8c shows the clusters generated from Mk-NNG in 
(b).

Figure 9 shows the clustering results on the synthesis 
dataset Path-based1 which contains 300 data instances 
and 3 clusters. Figure 9a shows the results obtained from 
the standard DPC. Since the boundaries of the circle-
shaped cluster and the other two clusters are not clear, the 
clusters generated by the standard DPC have many errors 
because the data instances in the boundaries are easily 
clustered erroneously. As shown in Fig. 9b, the clustering 
effect becomes much better when using the Mk-NNG-DPC 
than using the standard DPC. The result illustrated in 
Fig. 9c is generated from (b). The Mk-NNG-DPC algo-
rithm focuses on the margin sections and there are few 
edges between different clusters, thereby obtaining very 
high accurate rate.

In Fig. 10a, c illustrate the clustering results gener-
ated by the standard DPC and the Mk-NNG-DPC algo-
rithm, respectively, on dataset Compound which has 399 
instances and 6 different shaped clusters with different 
densities. In Fig. 10a, there are two clusters in the left 
lower part of the coordinate, but the standard DPC can-
not cluster them correctly because it only considers the 
factors of distance and density but does not consider the 
margin size between different clusters. The Mk-NNG-DPC 
algorithm produces the result illustrated in Fig. 10b, but 
there are only few edges in the margins of different clus-
ters. Then we can obtain the clusters shown in Fig. 10c, 
from which we can see that the clustering effect is well.

From the above experiments on those synthesis data, 
our proposed algorithm is well-performed. Although the 
standard DPC and the Mk-NNG-DPC algorithms choose the 
same cluster centers, the effects are significantly differ-
ent. This also validates the analysis for the Mk-NNG-DPC 
algorithm in Sect. 4. Due to the join of a constraint in the 
Mk-NNG-DPC algorithm, when data instances are assigned 
to a cluster, there is less chance for those instances with 
different local densities to be assigned to a same cluster. 
This alleviates the problem of the standard DPC and lifts 
the clustering performance.

5.3 � Results and analysis on the benchmark datasets

In this section, we use the benchmark datasets, compared 
algorithms, and evaluation metrics listed in Sect. 5.1 to vali-
date our proposed algorithm.

The comparison results on eight synthesis datasets are 
presented in Tables 3 and 4. These results are obtained by 
using five metrics and nine compared algorithms. From 
Table 3 the proposed algorithm Mk-NNG-DPC is better than 
most of the other algorithms.

For dataset zelnink6 and Path-based1, as illustrated in 
Figs. 8a and 9a, they contain multiple clusters with different 
shapes and densities. Obviously, Mk-NNG-DPC has the best 
clustering results. Because of the deficiencies of the stand-
ard DPC algorithm, as stated in Sect. 3, the lack of samples 
can limit the capability of allocation to the corresponding 
clusters, which increases the misclassification rates when 
there are clusters with low density. K-means, FCM and AP 
algorithms can cluster convex-shaped, especially spherical-
shaped clusters, but are unsuitable for arbitrary-shaped 
ones. GMM is a Gaussian model-based algorithm, which 
can find those clusters with high density obeying normal 
distributions. However, for those sparse clusters, GMM has 
low clustering performances. Mean shift algorithm is a non-
parametric feature-space clustering technique for finding the 
maxima of a density function by iteration. The mean shift 
algorithm has been widely used in many applications and 
has good clustering effect. However, there is no rigid proof 
for the convergence of the algorithm, especially in a high 
dimensional space.

The dataset Compound contains some different clusters 
with low-density and high-density, as illustrated in Fig. 10a. 
There are sparse clusters in the Compound, so Mk-NNG-DPC 
cannot perform very well because it uses the standard DPC 
to choose cluster centers, which is difficult to obtain the ideal 
centers. But Mk-NNG-DPC obtains the best result in F-score 
index. Nevertheless, the clustering results in all indexes are 
better than the standard DPC. The dataset Atom contains 3 
features and 800 instances. Its shape looks like an atom, in 
the center of which there is the nucleus, that is, a cluster with 
the higher density than the surrounding neutrons (cluster). 
For this dataset, obviously, the distance-based clustering 
algorithms cannot perform well. Those non-distance-based 
algorithms, such as DBSCAN (density-based), Spectral 
clustering (graph-based), GMM (probability-based), and our 
proposed method, can obtain better results. Given a data-
set in some space, DBSCAN groups together data points 
that are closely packed together with many nearby neigh-
bors (“nearby” is measured by some parameters). Spectral 
clustering algorithm makes use of the eigenvalues (called 
spectrum) of the similarity matrix of the dataset to perform 
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dimensionality reduction before clustering in fewer dimen-
sions. Mk-NNG-DPC is also based on graph theory, as stated 
in the above section. The clustering results of these three 
algorithms are the best, that is, 100%.

The DIM256 and DIM1024 are two high-dimensional 
datasets, which contain 1024 and 10 clusters, 256 and 1024 
dimensionalities, respectively. The clusters of these two 
datasets are separate in space and are all convex shapes, 
so most algorithms, including our proposed algorithm, 
obtain the highest values of all indexes. It indicates that 
Mk-NNG-DPC can deal with high-dimensional datasets. 
GMM algorithm cannot find the fittest parameters due to 
the high dimensionality, so there are no results on these two 
datasets. The S3 and S4 datasets all contains 5000 samples 
and 16 clusters. Although the cluster center of each cluster 
is obvious, the margins between the neighbored clusters are 
overlapped. K-means, FCM, and AP algorithms are fit for 
such datasets like S3 and S4, and they perform well on these 
data. The mean shift algorithm employs an iterative process 
to find those regions with high density, thereby having good 
performances on S3 and S4 data. However, the mean shift 
cannot effectively deal with the overlapping problems, so 
it is not the best. The GMM and Birch algorithms perform 

worse than other algorithms because the densities of many 
different clusters are similar and the density-based algo-
rithms cannot distinguish these clusters well. Mk-NNG-DPC 
can overcome these disadvantages and improve the perfor-
mance of the standard DPC, so it has the best clustering 
results on S3 and S4 data.

The experimental results on 10 real datasets are listed in 
Tables 5 and 6. The Iris dataset has 150 instances with 4 fea-
tures and contains 3 clusters, two of which are nonlinear sep-
arable. The Mk-NNG-DPC algorithm is obviously more effi-
cient on five indexes than all other algorithms. On the other 
hand, the standard DPC, K-means, FCM, spectral clustering, 
AP, and GMM can correctly allocate most of the instances to 
their clusters, so the clustering results are not very bad. The 
Seeds is a 7-dimensional dataset containing 210 instances 
which belong to three different clusters. Experimental results 
show that both the Mk-NNG-DPC and the standard DPC are 
able to find the correct number of clusters. Because the size 
of this dataset is small and the distribution of instances in 
space is too uniform, the results of Mk-NNG-DPC are slightly 
less than the standard DPC in Acc, Purity and F-score, but 
larger than the standard DPC in NMI and ARI indexes. The 
results of the other algorithms are almost similar except for 

Table 3   The comparison of Acc, F-Score and NMI for each clustering algorithms on synthetic datasets

Bold values indicate the best results

Algorithm Compound Path-based1 Atom Zelnik6

Acc F-score NMI Acc F-score NMI Acc F-score NMI Acc F-score NMI

Mk-NNG-DPC 87.22 79.37 84.70 100 100 100 100 100 100 100 100 100
DPC 68.42 58.12 76.58 73.33 69.36 50.28 68.25 64.69 21.21 85.29 78.99 72.08
DBSCAN 89.47 73.16 80.20 65.33 35.02 76.97 100 100 100 76.47 57.66 49.91
K-MEANS 71.68 70.16 74.57 74.33 70.81 51.28 72.13 69.78 26.72 82.35 72.14 57.65
Spectral clustering 84.21 72.56 88.70 88.00 88.16 73.51 100 100 100 100 100 100
AP 71.43 69.80 74.83 74.00 70.33 50.92 65.63 61.02 17.72 82.35 73.05 57.69
FCM 65.66 58.69 71.13 74.67 71.29 51.58 74.00 72.19 28.09 82.77 73.94 58.39
GMM 70.18 58.67 75.72 72.33 72.35 54.65 99.63 99.63 96.81 98.74 98.48 94.91
Birch 76.69 49.42 72.15 73.33 71.63 47.42 64.13 63.31 6.45 80.67 69.18 55.44
Mean shift 84.46 56.63 77.26 69.67 63.66 46.68 69.75 47.74 38.13 81.51 71.13 56.58

Algorithm Dim256 Dim1024 S3 S4

Acc F-score NMI Acc F-score NMI Acc F-score NMI Acc F-score NMI

Mk-NNG-DPC 100 100 100 100 100 100 85.60 85.55 79.80 80.18 80.52 73.49
DPC 100 100 100 100 100 100 85.36 85.22 79.53 79.62 79.46 72.50
DBSCAN 100 100 100 100 100 100 35.42 27.73 45.37 28.02 17.42 64.20
K-MEANS 100 100 100 100 100 100 85.56 85.45 79.47 79.62 79.40 71.94
Spectral clustering 91.41 90.44 96.88 84.86 81.85 93.75 80.30 77.95 75.91 74.46 73.35 71.46
AP 100 100 100 100 100 100 85.60 85.48 79.48 79.22 79.00 71.59
FCM 62.50 52.34 78.90 68.75 59.38 83.34 79.32 76.86 77.15 79.70 79.49 71.89
GMM N/A N/A N/A N/A N/A N/A 64.72 62.00 70.67 57.28 56.60 62.85
Birch 43.75 38.64 48.81 100 100 100 61.32 56.99 70.41 60.16 53.99 64.39
Mean shift 100 100 100 100 100 100 82.00 84.49 76.36 74.36 71.72 69.26



1191International Journal of Machine Learning and Cybernetics (2020) 11:1179–1195	

1 3

DBSCAN that obtains the worst effect. The Art dataset has 
300 instances with four attributes and contains three clusters. 
The clustering effect of Mk-NNG-DPC is clearly better than 
other algorithms in all indexes.

The Libras movement and Ionosphere are high-dimen-
sional datasets in which the Ionosphere is an imbalanced 
dataset having 351 instances (containing one positive class 
and one negative class [31]). The Mk-NNG-DPC prefers to 
assign those smaller clusters to the larger ones. Therefore, 
for the imbalanced data, the positive instances are possibly 
merged to the negative clusters, which generates that the 
accurate rate (Acc) is slightly less than the standard DPC. 
But the clustering effects are better than other approaches 
for all indexes. The Libras movement is a time-sequential 
dataset. The spectral clustering algorithm achieves the best 
results on the F-score and NMI indexes because the spectral 
is fit for time sequence [32]. The Mk-NNG-DPC has the best 
value on the Acc and ARI indexes.

The WDBC is also a multi-dimensional dataset contain-
ing 30 features and has binary clusters. The Mk-NNG-DPC 
achieves the greater improvement than the standard DPC 
for all indexes, especially the NMI index. Some other algo-
rithms obtain good performances with the Acc and F-score 

indexes, including K-means, FCM, spectral clustering, AP, 
and GMM algorithms. The Glass data contains 6 clusters 
and 214 instances with ten features. The Mk-NNG-DPC has 
the best effect on the Acc and NMI indexes and has similar 
result with DPC on F-score index. Some other algorithms 
have the similar performances on this dataset, including 
spectral clustering, AP, FCM, GMM, while the Mean shift 
method has the worst experimental values. The sizes of the 
Waveform and Image Segmentation datasets are larger than 
other datasets. The Waveform contains noisy values, which 
is a challenge for most of the algorithms. The graph-based 
techniques should be more suitable for this challenge due to 
the capacity of handling noisy data. From the experiments 
on the Waveform, the Mk-NNG-DPC, DPC, spectral cluster-
ing, and GMM have good performances because they are all 
graph-based algorithms, among which the Mk-NNG-DPC is 
the best. The Image Segmentation is a kind of image data on 
which our proposed algorithm achieves the best effect with 
the Acc, Purity, ARI and F-score indexes and the compara-
tive result for the NMI, which is said to be able to deal with 
those complicated data. The Ecoli is a biological dataset 
containing protein localization sites. Particularly, the Ecoli 
is an imbalanced dataset that has several positive clusters, 

Table 4   The comparison of purity and ARI for each clustering algorithms on synthetic datasets

Bold values indicate the best results

Algorithm Compound Path-based1 Atom Zelnik6

Purity ARI Purity ARI Purity ARI Purity ARI

Mk-NNG-DPC 86.97 85.31 100 100 100 100 100 100
DPC 68.92 58.42 80.67 46.42 81.75 14.85 89.08 67.35
DBSCAN 92.73 86.32 70.98 17.42 100 100 86.36 20.18
K-MEANS 82.21 72.62 82.67 46.13 74.22 19.51 82.35 64.45
Spectral clustering 85.71 70.42 88.67 78.54 100 100 100 100
AP 90.47 71.77 77.33 45.82 84.38 9.09 85.29 64.22
FCM 66.42 52.25 77.00 46.50 75.75 22.97 85.71 65.06
GMM 90.23 62.10 76.67 43,98 99.63 98.50 98.74 96.84
Birch 81.70 63.22 77.00 45.38 85.88 73.85 82.77 68.18
Mean shift 90.23 75.28 80.67 46.58 80.25 37.25 83.61 59.75

Algorithm Dim256 Dim1024 S3 S4

Purity ARI Purity ARI Purity ARI Purity ARI

Mk-NNG-DPC 100 100 100 100 85.60 72.16 80.18 69.08
DPC 100 100 100 100 85.36 72.19 79.62 63.21
DBSCAN 100 100 100 100 39.30 7.56 33.42 2.18
K-MEANS 100 100 100 100 85.56 72.52 79.62 63.06
Spectral clustering 91.41 82.60 84.86 78.85 80.30 71.60 74.46 68.28
AP 100 100 100 100 85.60 72.69 79.22 62.68
FCM 100 64.12 100 70.06 79.32 68.81 79.70 63.35
GMM N/A N/A N/A N/A 64.72 55.68 57.28 44.79
Birch 100 75.42 100 100 61.32 12.52 60.16 8.65
Mean shift 100 100 100 100 82.00 67.65 74.36 58.54
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each of which only contains a few instances. The index val-
ues of the Mk-NNG-DPC exceed the counterparts of other 
algorithms. It is indicated that our proposed approach is able 
to handle the imbalanced problem and biological data. For 
those imbalanced problems, K-means, AP, FCM, and spec-
tral clustering algorithms easily assign the positive clusters 
to the negative ones, thereby obtaining fewer clusters than 
the actual number.

The running time of DPC algorithm and Mk-NNG-DPC 
algorithm on UCI datasets are listed in Table 7. Most of the 

time cost of Mk-NNG-DPC algorithm is used to establish the 
mutual neighbor graph and merge the ‘negative classes’. For 
the same dataset, the time cost of the neighbor graph estab-
lished by different parameters k is the same. If the value of 
parameter k is small, the probability that the samples in the 
nearest neighbor graph are near to each other will decrease, 
which leads to generate more ‘negative classes’, thereby 
spending more time to merge ‘positive classes’ and ‘nega-
tive classes’.

Table 5   Comparison of Acc, F-score and NMI for 10 clustering algorithms on UCI datasets

Bold values indicate the best results

Algorithm Iris Seeds Art Ionosphere

Acc F-score NMI Acc F-score NMI Acc F-score NMI Acc F-score NMI

Mk-NNG-DPC 97.33 97.33 90.09 90.48 90.28 72.73 95.00 95.00 83.91 71.23 71.21 25.20
DPC 88.67 88.33 76.97 90.95 90.76 71.61 92.00 91.92 79.82 73.22 70.70 13.06
DBSCAN 66.67 56.65 57.52 62.38 59.78 42.34 67.33 57.01 58.36 72.08 59.24 13.49
K-MEANS 88.67 88.53 73.64 89.05 89.05 67.34 87.00 87.00 70.08 70.94 69.91 12.64
Spectral clustering 90.00 89.83 76.96 90.00 89.98 69.56 92.00 91.90 80.46 N/A N/A N/A
AP 90.67 90.63 75.92 89.52 89.57 68.81 86.67 86.66 69.66 70.94 69.97 12.84
FCM 89.33 89.26 74.04 90.00 90.02 69.04 87.00 87.00 70.08 70.94 69.91 12.64
GMM 96.67 96.66 89.83 89.52 89.40 72.14 73.33 68.25 62.48 N/A N/A N/A
Birch 84.00 83.02 71.71 89.05 89.33 70.55 84.00 83.09 70.46 64.67 41.47 4.73
Mean shift 68.67 58.42 59.23 89.52 89.62 67.55 66.67 55.56 58.15 64.39 39.92 0.45

Algorithm Libras movement WDBC Glass Waveform

Acc F-score NMI Acc F-score NMI Acc F-score NMI Acc F-score NMI

Mk-NNG-DPC 51.67 48.54 62.32 95.43 95.10 72.02 68.69 38.50 53.13 65.30 65.27 27.82
DPC 41.94 40.03 51.37 82.95 79.19 37.32 57.94 38.90 48.49 58.80 57.73 30.69
DBSCAN 30.00 30.85 34.86 63.09 39.57 0.53 54.67 41.29 39.84 N/A N/A N/A
K-MEANS 48.89 42.54 58.59 92.79 92.11 61.15 55.61 41.35 40.48 50.14 49.95 36.32
Spectral clustering 51.39 49.78 64.55 94.02 93.42 67.23 44.86 32.07 40.91 51.06 51.00 37.00
AP 45.56 44.55 57.13 92.44 91.66 60.24 58.88 37.80 49.64 53.24 52.77 36.95
FCM 18.33 10.19 21.59 92.79 92.18 60.81 53.74 30.99 43.45 49.30 48.97 32.91
GMM 48.61 48.72 57.65 95.25 91.12 71.09 48.60 21.96 35.07 64.94 63.22 32.01
Birch 28.61 27.40 32.10 67.14 50.17 6.83 43.46 23.45 25.14 53.72 53.55 34.80
Mean shift 33.61 28.78 43.14 63.09 39.57 0.53 35.98 11.28 5.05 45.28 44.60 19.88

Algorithm Image segmentation Ecoli

Acc F-score NMI Acc F-score NMI

Mk-NNG-DPC 64.55 63.00 53.78 82.74 56.37 67.13
DPC 62.77 60.19 56.76 79.76 46.34 64.10
DBSCAN 41.04 33.18 32.40 61.61 23.01 41.08
K-MEANS 58.66 56.62 51.60 60.28 54.87 56.20
Spectral clustering N/A N/A N/A 76.49 46.21 65.61
AP 56.57 48.66 48.03 77.98 46.35 63.14
FCM 62.38 62.37 51.19 53.57 43.35 48.04
GMM N/A N/A N/A N/A N/A N/A
Birch 42.34 31.00 34.16 76.49 51.52 65.74
Mean shift 40.34 31.11 31.98 63.99 41.49 43.26
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Table 6   Comparison of Purity and ARI for 10 clustering algorithms on UCI datasets

Bold values indicate the best results

Algorithm Iris Seeds Art Ionosphere

Purity ARI Purity ARI Purity ARI Purity ARI

Mk-NNG-DPC 97.33 90.38 90.48 73.65 95.00 85.22 71.23 22.04
DPC 88.67 68.64 90.95 75.45 92.00 77.23 73.22 20.79
DBSCAN 66.67 43.28 62.38 20.38 67.33 39.47 72.08 53.98
K-MEANS 88.67 71.63 89.05 70.49 87.00 67.78 70.94 17.76
Spectral clustering 90.00 70.49 90.00 71.46 92.00 75.92 N/A N/A
AP 90.67 75.65 89.52 71.51 86.67 67.79 70.94 17.27
FCM 89.33 72.87 90.00 72.66 87.00 68.40 70.94 17.27
GMM 96.67 90.37 89.52 72.34 73.33 60.38 N/A N/A
Birch 84.00 59.94 89.05 74.98 84.00 67.47 64.67 40.93
Mean shift 68.67 49.73 89.52 76.39 66.67 42.43 64.39 39.02

Algorithm Libras movement WDBC Glass Waveform

Purity ARI Purity ARI Purity ARI Purity ARI

Mk-NNG-DPC 51.67 39.17 95.43 74.32 68.69 43.93 65.30 31.64
DPC 60.00 30.12 82.95 42.04 68.22 22.56 58.80 26.52
DBSCAN 65.30 3.78 63.09 47.33 54.67 24.58 N/A N/A
K-MEANS 73.29 30.75 92.79 73.02 55.61 27.44 50.14 25.35
Spectral clustering 63.29 34.38 94.02 72.38 68.34 10.84 64.92 20.19
AP 73.89 30.43 92.44 71.78 58.88 30.02 64.92 23.07
FCM 67.83 7.83 92.79 73.05 53.74 28.28 56.98 24.36
GMM 59.29 19.47 95.25 72.03 57.49 22.37 64.94 30.04
Birch 59.35 2.30 67.14 39.27 49.74 18.36 53.72 30.84
Mean shift 73.06 21.32 63.09 48.20 60.75 9.45 60.20 17.30

Algorithm Image Segmentation Ecoli

Purity ARI Purity ARI

Mk-NNG-DPC 73.77 58.89 92.56 71.58
DPC 62.77 51.28 79.76 63.28
DBSCAN 69.23 2.93 61.61 35.67
K-MEANS 58.66 45.38 60.28 38.82
Spectral clustering N/A N/A 76.49 55.28
AP 56.57 24.23 77.98 63.98
FCM 62.38 41.60 53.57 41.19
GMM N/A N/A N/A N/A
Birch 64.39 17.95 76.49 50.51
Mean shift 69.30 44.86 63.99 41.38

Table 7   The running time of DPC algorithm and Mk-NNG-DPC algorithm on UCI datasets

Dataset Iris Seeds Art Ionosphere Ecoli Waveform

DPC 0.048 0.048 0.049 0.053 0.051 2.875
Mk-NNG-DPC 0.085 0.094 0.106 0.189 0.121 3.371

Dataset Libras movement WDBC Glass Image 
segmen-
tation

DPC 0.059 0.065 0.049 2.031
Mk-NNG-DPC 0.129 0.195 0.111 2.936
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6 � Conclusion and future work

As a widely used application field, clustering analysis is 
becoming more and more important, especially in the big 
data era. As the accumulation of data, the huge amounts of 
data mean that it is hard to obtain the training data because 
the enough labels and the actual number of classes might 
be hard to obtain, so that ‘labeled’ methods cannot be used 
normally. On the other hand, although there has been a great 
deal of clustering techniques, most of them are the specific 
data-oriented. That is, the generalization of many clustering 
algorithms is poor.

In this paper, we apply some classical and well-performed 
clustering algorithms, which can achieve good generaliza-
tion, to perform the comparative analysis. In this study, we 
focus on DPC-based approach. We emply a mutual k-near-
est-neighbor graph-based structure. The experimental analy-
sis shows that, when the basic mutual k-nearest-neighbor 
graph is applied to DPC algorithm, the effects are not ideal 
and even much poor. Therefore, we improve the basic mutual 
k-nearest-neighbor graph to lift the DPC algorithm. This 
approach is to constrain the cluster assignment for data 
instances, which can distinguish the cluster membership of 
each instance more efficiently according to the densities of 
nodes in a graph. Typically, this technique can avoid such 
a case that the instances belonging to different densities of 
clusters are misclassified into the same cluster. It not only 
lifts the capacity of the DPC, but improve the performance 
of clustering the arbitrary shaped clusters.

The DPC-based algorithms are stable and robust in clus-
tering many kinds of data. Our future work is to consider 
other complex data, such as Web data stream, video data, 
and DNA data, to be clustered by a series of the DPC-based 
algorithms.
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