
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2020) 11:729–745
https://doi.org/10.1007/s13042-019-01030-4

ORIGINAL ARTICLE

Large‑scale evolutionary optimization: a survey and experimental
comparative study

Jun‑Rong Jian1,2 · Zhi‑Hui Zhan1,2  · Jun Zhang1,2

Received: 27 August 2019 / Accepted: 29 October 2019 / Published online: 14 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In the last decades, global optimization problems are very common in many research fields of science and engineering and
lots of evolutionary computation algorithms have been used to deal with such problems, such as differential evolution (DE)
and particle swarm optimization (PSO). However, the algorithms performance rapidly decreases as the increasement of the
problem dimension. In order to solve large-scale global optimization problems more efficiently, a lot of improved evolution-
ary computation algorithms, especially the improved DE or improved PSO algorithms have been proposed. In this paper,
we want to analyze the differences and characteristics of various large-scale evolutionary optimization (LSEO) algorithms
on some benchmark functions. We adopt the CEC2010 and the CEC2013 large-scale optimization benchmark functions
to compare the performance of seven well-known LSEO algorithms. Then, we try to figure out which algorithms perform
better on different types of benchmark functions based on simulation results. Finally, we give some potential future research
directions of LSEO algorithms and make a conclusion.

Keywords  Differential evolution · Particle swarm optimization · Large-scale global optimization · Large-scale evolutionary
optimization algorithms

1  Introduction

In recent years, global optimization is a very important field
in science and engineering because it often appears in many
real-world optimization problems [1, 2]. To deal with such
problems, lots of evolutionary computation (EC) algorithms
includes evolutionary algorithms (EAs) such as genetic algo-
rithm (GA) [3], differential evolution (DE) [4–7], and esti-
mation of distribution algorithm (EDA) [8, 9], and swarm
intelligence (SI) such as particle swarm optimization (PSO)
[10, 11], ant colony optimization (ACO) [12], and artificial
bee colony (ABC) [13] have been proposed. These algo-
rithms have been shown great advantages on many numeri-
cal and combination optimization problems. However, most
EC algorithms still suffer from the “curse of dimensionality”
[14, 15], meaning that as the dimension of these problems

increase, the performance of the EC algorithms will deterio-
rate rapidly. In real life, many optimization problems become
more and more complex due to the increase of dimension.
So, how to design and improve EC algorithms for large-scale
optimization problems has attracted great attention from the
scholars all over the world. This has aroused a popular and
rapid developed research topic in EC community called
large-scale evolutionary optimization (LSEO).

Generally speaking, there are two approaches that can
improve the ability of EC to develop LSEO algorithms for
solving large-scale optimization problems, namely, decom-
position and non-decomposition. According to such a classi-
fication, the typical LSEO algorithms can be categorized as
decomposition algorithms based on cooperative co-evolution
(CC) method and non-decomposition algorithms that all the
variables are considered as a whole, as shown in Fig. 1.

In the decomposition approach, the intuitive idea is to
decompose an entire large-scale optimization problem into
a number of smaller subproblems which are easier to be
solved, and then optimize all the subproblems to achieve
the purpose of optimizing the large-scale optimization prob-
lem. This idea is also known as “divide-and-conquer” which
was first appeared in René Descartes’ book A Discourse on

 *	 Zhi‑Hui Zhan
	 zhanapollo@163.com

1	 School of Computer Science and Engineering, South China
University of Technology, Guangzhou 510006, China

2	 State Key Laboratory of Subtropical Building Science, South
China University of Technology, Guangzhou 510006, China

http://orcid.org/0000-0003-0862-0514
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-019-01030-4&domain=pdf

730	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

Method [16]. The CC method which has been proposed by
Potter and De Jong [17] is a famous and common method
to decompose large-scale optimization problems. They first
used this method in GA, termed as cooperative co-evolution
GA (CCGA) [17], and decomposed an n-dimensional prob-
lem into n 1-dimensional problems. Liu et al. [15] proposed
the fast evolutionary programming (FEP) algorithm with
CC method, termed as FEPCC. However, FEPCC performs
poorly in nonseparable functions because it often traps in
a local optimal. Van den Bergh and Engelbrecht [18] were
the first to apply the CC method to PSO and developed
CCPSO. Unlike CCGA that separates all dimensions sepa-
rately, the CCPSO decomposes an n-dimensional problem
into k s-dimensional problems (s ≪ n). In order to improve
the diversity of the population and avoid local optimal, Li
and Yao [19] proposed an improved CCPSO variant called
CCPSO2 based on a random grouping (RG) strategy which
proposed by Yang et al. [20]. In addition to the RG strat-
egy, CCPSO2 also employs the Gaussian and Cauchy-based
update rules with a local neighborhood topology to enhance
the search ability. The CC method was also applied in DE
to designed the DECC algorithm by Shi et al. [21]. They
proposed a new decomposition strategy, called splitting-in-
half strategy, which decomposed the decision variables into

two subcomponents with equally size and each was evolved
by a separate subpopulation [21]. To further reduce the scale
of the problem, Yang et al. [20] proposed a new algorithm
called DECC-G, where G means grouping. Similar to CPSO,
DECC-G also uses the RG strategy to decompose a large-
scale problem into several small-scale problems. Besides,
DECC-G uses adaptive weighting for co-evolution among
subproblems to improve the performance of the algorithm.
However, DECC-G has a parameter which is difficult to be
determined, that is, the size of the subproblems. In other
word, the parameter is also called group size. To deal with
this problem, multilevel cooperative co-evolution (MLCC)
method was proposed by Yang et al. [22]. In MLCC, a set of
possible group sizes are provided based on the RG strategy
instead of using a fixed value. In addition to the RG strategy,
various decomposition strategies combined with DE have
been proposed, such as delta grouping strategy (DECC-D)
[23], differential grouping (DG) strategy (DECC-DG) [24],
and graph-based DG strategy (DECC-gDG) [25]. Moreo-
ver, Omidvar et al. [23] proposed a DECC-D variant called
DECC-DML that self-adapted the group sizes. The develop-
ment roadmap of the decomposition algorithms based on CC
method is illustrated as Fig. 2.

LSEO
algorithms

DECC-G[20],
MLCC[22],

CCPSO2[19]

DECC-D[23],
DECC-DG[24],
DECC-gDG[25]

LMDEa[26],
LMRDEa[27]

CSO[28],
SLPSO[29],
MPGDE[30]

DMS-L-PSO[31],
IHDELS[32]

SOUPDE[33],
DDE-AMS[34],

GOjDE[35]

Decomposition
algorithms based on

CC method

Non-decomposition
algorithms

Random grouping
strategy

Grouping strategy
based on variable

correlation

Self-adapt control
parameters

Design new
operators

Embed local search
strategy

Introduce structured
population and

migration strategy

Fig. 1   Major categories of LSEO algorithms

731International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

There is no doubt that CC method is the most intuitive
way to solve large-scale optimization problems and has
achieved great success. However, CC method is highly sen-
sitive to the decomposition strategies and has poor perfor-
mance for nonseparable functions.

So, many researchers also considered the non-decom-
position approach to tackle large-scale optimization prob-
lems. Unlike the decomposition approach, this approach
considers all the decision variables of large-scale optimi-
zation problems as a whole instead of decomposing them.

In the non-decomposition approach, researchers often solve
large-scale optimization problems by (1) self-adapting
control parameters [26, 27], (2) designing new operators
[28–30], (3) embedding local search strategy [31, 32], and
(4) introducing structured population and migration strat-
egy [33–36]. Among the numerous EC algorithms, DE and
PSO have more advantages than other algorithms because
of their simplicity and efficiency. Therefore, many non-
decomposition strategies based on these two algorithms have
been proposed. Herein, according to the algorithms listed in

Fig. 2   The development
roadmap of the decomposition
algorithms based on CC method

Year

CC method

CCPSO[18]
(RG strategy)

FEPCC[15]
(n-dimension
decompose

n 1-dimension)

DECC[21]
(splitting-in-half

strategy)

CCPSO2[19]
(RG strategy)

PSO EDPEFGA

CCGA[17]
(n-dimension
decompose

n 1-dimension)

+ New
update rules
and topology

DECC-G[20]
(RG strategy)

MLCC[22]
(RG strategy)

+ Multilevel
(control group

size)

DECC-D[23]
(Delta grouping

strategy)

DECC-DML[23]
(Delta grouping

strategy)

+ Multilevel
(control group

size)

DECC-DG[24]
(DG strategy)

DECC-gDG[25]
(graph-based DG

strategy)

+ Graph theory

+

1994

2004

2005

2008

2010

2012

2014

2016

2001

EC
algorithms

732	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

Fig. 1, we survey the LSEO algorithms based on the above
four categories.

1.	 Firstly, on self-adapting control parameters, DE with
landscape modality detection and a diversity archive
(LMDEa) was proposed by Takahama and Sakai [26].
LMDEa can self-adapt the control parameters dynami-
cally by modality detection and shows competitive result
for the large-scale optimization problems. In order to
enhance a more well-balanced exploration and exploita-
tion ability, Kushida et al. [27] proposed an LMDEa var-
iant which introduced an idea based on ranking, called
LMRDEa. In LMRDEa, we can control the parameters
as well as mutation strategy by detecting the landscape
modality.

2.	 Secondly, on designing new operators, Cheng and Jin
proposed a competitive swarm optimizer (CSO) [28] and
a social learning PSO (SLPSO) [29] for large-scale opti-
mization by designing new operators. In CSO, a pair-
wise competition mechanism is introduced to increase
the population diversity and address premature conver-
gence. In SLPSO, a social learning mechanism is intro-
duced and each particle learns from any better particles
instead of personal best and global best in the whole
swarm. In addition, SLPSO also adopts a dimension-
dependent parameter control method to ease the burden
of parameter settings. Yang et al. [30] proposed a mul-
tiple parents guided DE (MPGDE) algorithm for large-
scale optimization problems without using the decom-
position approach.

3.	 Thirdly, on embedding local search strategy, the local
search strategy is introduced to improve the perfor-
mance of the EC algorithms. Zhao et al. [31] proposed
a dynamic multi-swarm PSO with local search (DMS-L-
PSO). Not only do the particles exchange information by
regrouping subswarms frequently to avoid trapping into
the local optimal, but also the Quasi-Newton method is
adopted to speed up the convergence in DMS-L-PSO.
Similarly, Molina and Herrera [32] proposed an iterative
hybridization of DE algorithm with local search to solve
large-scale optimization problems, called IHDELS.

4.	 Fourthly, on introducing structured population and
migration strategy, many researchers adopt multi-
population strategies which can achieve parallelization
and distribution to deal with large-scale optimization
problems and some appropriate population migration
strategies are introduced to further improve the algo-
rithms. Ge et al. [33] proposed a distributed DE based
on adaptive mergence and split (DDE-AMS) for large-
scale optimization problems. DDE-AMS designs a novel
mergence and split operators to make full use of popu-
lation resource which can improve the performance of
large-scale optimization problems. Weber et al. [34] pro-

posed a shuffle or update parallel DE (SOUPDE) which
characterized by multi-population to avoid premature
convergence. SOUPDE adopts a shuffling operation by
randomly rearranging the individuals over the subpopu-
lations and updating the parameters of the subpopula-
tions. Similarly, Wang et al. [35] proposed a parallel DE
variant for solving large-scale optimization problems,
which called GOjDE. Moreover, Liang and Suganthan
[36] proposed a dynamic multi-swarm PSO (DMS-
PSO), which enhanced the diversity of population by
constantly changing the neighborhood structure.

Overall, the above LSEO algorithms have their own advan-
tages and disadvantages. It is no doubt that no algorithm can
perform best on every kind of problems because of the “no free
lunch” theorem [37]. In order to further understand the perfor-
mance of different algorithms for different kinds of large-scale
optimization problems, we choose seven representative LSEO
algorithms (i.e., DECC-G, MLCC, DECC-DG, CCPSO2,
CSO, SLPSO, and DMS-L-PSO) for comparison on some
large-scale optimization functions, including CEC2010 test
suits [38] and CEC2013 test suits [39]. Among the seven algo-
rithms, there are four decomposition algorithms based on CC
framework, including random grouping strategy (DECC-G,
MLCC, and CCPSO2) and grouping strategy based on vari-
able relationship (DECC-DG), and three non-decomposition
algorithms which all the variables are considered as a whole.
Among three non-decomposition algorithms, two algorithms
adopt new operators (CSO and SLPSO), while the other adopts
the operator of standard PSO (DMS-L-PSO). However, DMS-
L-PSO adopts multi-population strategy and introduces local
search strategy. We try to investigate and find out whether
these seven algorithms have any preferences and difficulties
on some kinds of test functions. Therefore, in this paper, we
first list the experimental results of each algorithm on test
suits through experiments. Then we analyze and investigate
the performance of seven algorithms on different kinds of the
problems based on experimental results. Finally, the conclu-
sion and the discussion are presented.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the seven LSEO algorithms which are
used to compare in this paper. Sections 3 and 4 present the
experimental results of the seven algorithms on CEC2010 test
suits and CEC2013 test suits respectively. The future research
directions of LSEO algorithms are discussed in Sect. 5. In the
end, Sect. 6 summarizes and concludes this paper.

2 � Preliminaries

In this section, we are going to briefly introduce the
LSEO algorithms which are used for comparison. Due to
the simplicity and efficiency of DE and PSO, the LSEO

733International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

algorithms we use for comparison are all variants of DE
and PSO. Therefore, we first present the standard DE and
PSO algorithms, and then briefly review the seven LSEO
algorithms for experimental comparative study.

2.1 � DE

DE was first proposed by Storn and Price [4] as a popula-
tion-based algorithm to search for the potential solutions.
In initialization, NP individuals in a population P = {xi,
i = 1, 2, …, NP} are randomly generated within a search
space, where i is the individual index. Each individual
i refer as xi = {xi1, xi2, …, xiD}, where D is the problem
dimension.

After initializing the population, the evolutionary process
is carried out. Generally speaking, there are three operators
during the evolutionary process, namely mutation, crossover,
and selection. In mutation operator, each individual i create
a mutation vector vi = {vi1, vi2, …, viD}. So far, many muta-
tion strategies have been proposed in the literature. Among
them, two widely used mutation strategies in DE are listed
as follows:
DE/rand/1:

DE/best/1:

where parameter r1, r2, and r3 are distinct integer and also
different from the index i which are randomly selected
within [1, NP]; xbest is the global best individual found so far
and parameter F is the amplification factor which controls
the differential information between two random individuals.

After mutation, DE performs the crossover operation,
which create a trial vector ui = {ui1, ui2, …, uiD} for each
individual from vector xi and vi. Crossover operation can be
formulated as:

where rand(0, 1) is a uniform value within [0, 1]; j denotes
the dimension; CR is the crossover rate and jrand is an integer
randomly selected from [1, D] which is used to make sure
that at least one dimension of the ui is different form xi.

Finally, selection operation is performed. DE choose the
better individual into the next generation by comparing the
fitness of xi and ui. For minimization problems, the selection
operation can be formulated as:

(1)vi = xr1 + F ⋅ (xr2 − xr3)

(2)vi = xbest + F ⋅ (xr2 − xr3)

(3)uij =

{
vij, if rand(0,1) ≤ CR or j = jrand
xij, otherwise

where f() is the fitness function of the problems.

2.2 � PSO

PSO was introduced by Kennedy and Eberhart [10, 11] in
1995, which used a swarm of particles to simulate the swarm
intelligence behaviors of birds flocking to find the optimal
solution. In PSO, each particle i has three vectors, position
vector xi = {xi1, xi2, …, xiD}, velocity vector vi = {vi1, vi2,
…, viD} and personal historical best position vector pbesti =
{pi1, pi2, …, piD}, where D is the dimensions of the problem.
In the initialization, the position and velocity of each particle
are randomly set within the corresponding ranges. The per-
sonal historical best position vector pi is set to xi. The best
particle’s position vector of the whole swarm by calculating
the fitness values of all the particles is denoted as the global
best position vector gbest = {gi1, gi2, …, giD}.

During the evolutionary process, the velocity and the
position of the particle i on dimension j are updated as
follows:

where ω is the inertia weight [40], c1 and c2 are the accel-
eration coefficients [11], and rand1 and rand2 are the two
uniformly distributed random numbers which are generated
within [0, 1] independently for the dimension j; pbestij is the
jth dimension of the best position found by particle i so far.
The gbestj is the jth dimension of the best position found by
all particles so far.

Generally, PSO algorithms are divided into two version,
global-version PSO (GPSO) and local-version PSO (LPSO)
[11]. They use global best particle gbest to guide all parti-
cles to update their velocity and position in GPSO while
use local best particle lbest in LPSO. Therefore, in LPSO,
neighborhood is constructed with a small group of particles
and lbest is the best position found by all particles in the
neighborhood so far.

2.3 � DECC‑G

The DECC-G algorithm was introduced by Yang et al.
[20]. which is one of the earliest algorithms to apply DE
with CC method. This algorithm attempts to decompose
a large-scale optimization problem into several subprob-
lems which are much smaller than the whole problem
by random grouping. In other words, an n-dimensional

(4)xi =

{
ui, if f (ui) ≤ f (xi)

xi, otherwise

(5)
vij = � ⋅ vij + c1 ⋅ rand1j ⋅ (pbestij − xij) + c2 ⋅ rand2j ⋅ (gbestj − xij),

(6)xij = xij + vij

734	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

problem vector is decomposed into m (m ≪ n) s-dimen-
sional subcomponents, and random grouping means that
each variable has an equal chance to be assigned to any of
the subcomponents. After that, we use a variant of DE, the
Self-adaptive Neighborhood Search DE (SANSDE) [41] to
optimize all the subcomponents independently. Obviously,
it is much more efficient and effective to optimize sub-
components than to optimize an entire large-scale prob-
lem. When all the subcomponents are optimized, they are
combined again to construct the solution vector. It should
be noted that in DECC-G, the grouping structure will be
changed dynamically, that is, the random grouping opera-
tion should be carried out before each generation starts.
The motivation behind this is to increase the chance of
optimizing interacting variables together.

Furthermore, an adaptive weighting strategy has been
proposed in DECC-G. Some interdependent subcompo-
nents can coadaptation by adaptive weighting strategy. A
weight is applied to each of the subcomponents after the
evolution process in each generation and all the weights
will construct a weight vector. Then, the weight vector will
be evolved with standard DE algorithm.

2.4 � MLCC

In order to overcome the shortcomings of DECC-G, Yang
et al. [22] proposed a new framework called multilevel
cooperative coevolution (MLCC) for large-scale optimi-
zation problems. In DECC-G, one of major disadvantages
is that it has a parameter which is difficult to determine,
called the group size and this parameter has a great impact
on the performance of different types of problems. The
small group size is good for separable problems while
large group size is proper for nonseparable problems. So,
MLCC was proposed to improve DECC-G from the per-
spective of framework by assigning a set of group sizes.

In MLCC, several problem decomposers with different
group sizes are designed to construct a decomposer pool.
Each decomposer in the pool represents different interac-
tion levels between variables. At the beginning of each
generation, MLCC need to select a problem decomposer
from the decomposer pool based on their probability. And
then, similar to DECC-G, random grouping strategy with
the selected decomposer and evolving each subcompo-
nent with SANSDE will be carried out. At the end of each
generation, the performance growth rate of the selected
decomposer will be calculated and updated. Note that,
each decomposer in the pool will record the performance
growth rate. If the performance growth rate is high, the
probability of this decomposer being selected is high; on
the contrary, if the performance growth rate is low, this
decomposer has less chance to be selected. With such

strategy, MLCC is able to self-adapt to select decomposer
with proper group size according to the problem features
and the evolution state. The details of the MLCC frame-
work can be referred to [22].

2.5 � DECC‑DG

In order to further explore the interaction between the
decision variables, Omidvar et al. [24] proposed an auto-
matic decomposition strategy called differential grouping.
Similarly, this decomposition strategy is also applied in
CC method and combined with DE algorithm, which is
called DECC-DG. Unlike DECC-G and MLCC which use
random grouping without the prior knowledge of the prob-
lems, DECC-DG decompose the large-scale optimization
problems by differential grouping which can detect the
interaction between decision variables, so that the inter-
acting variables are assigned to the same subcomponents
and the interdependence between subcomponents is kept
to a minimum.

Differential grouping is an effective way to identify
interaction between two decision variables and group the
interacting variables together. We can judge whether the
two decision variables xi and xj are interaction by the fol-
lowing formula:

where a, b1, and b2 are three arbitrary values; b1 is not equal
to b2 and δ ≠ 0; f() is the fitness function of the problems. If
(7) is satisfied, xi and xj can be considered to be interaction,
and these two decision variables can be grouped in the same
subcomponent. In other words, if xi and xj are interacting
variables, the value of function is change by add a perturba-
tion to xi for different values of xj.

In fact, DECC-DG is similar to some DECC algorithm
variants, except that before the evolutionary process starts,
the differential grouping strategy is carried out to decom-
pose large-scale problems into several subcomponents.
Later, each subcomponents will be optimized with SAN-
SDE algorithm.

2.6 � CCPSO2

The CCPSO2 algorithm was proposed on the basis of
CCPSO algorithm by Li and Yao [19]. CCPSO algorithm
is similar to DECC-G algorithm which incorporate random
grouping strategy and adaptive weighting strategy. The
only difference is in the selection of evolutionary algo-
rithm. CCPSO uses standard PSO algorithm while DECC-
G uses SANSDE algorithm. In order to further improve

(7)
Δ�,xi

f (x)|xi=a,xj=b1 ≠ Δ�,xi
f (x)|xi=a,xj=b2 ,

Δ�,xi
f (x) = f (… , xi + �,…) − f (… , xi,…)

735International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

the performance and reliability of CCPSO, CCPSO2 was
proposed which adopted several new strategy.

In CCPSO2, Li and Yao improve the standard PSO
algorithm by introducing Gaussian and Cauchy distribu-
tions, and remove the adaptive weighing strategy which
is adopted in CCPSO. Moreover, an lbest ring topology
structure is adopted in CCPSO2 to increase the diversity
of the population and avoid convergence prematurely. For
the novel PSO model, the velocity vector does not need to
be used, but instead, it generate the new particle positions
by using Gaussian and Cauchy distributions which can
sampling around the personal best and the neighborhood
best. Each particle position xi is updated by:

where C(1) and N(0, 1) is the number that is generated based
on Cauchy distribution and Gaussian distribution, and their
standard deviation are both set | yij − yij

’ |; j denotes the dimen-
sion; rand is a random number generated uniformly from [0,
1]; p is a specified probability; pbestij denotes the jth dimen-
sion of the personal best of the ith particle; lbestij denotes
the jth dimension of the local neighborhood best of the ith
particle. The local neighborhood best is chosen among three
particles (the current ith particle and its immediate left and
right neighbors) based on ring topology structure.

Besides, similar to MLCC, a different group size in a
set can be randomly chosen at each generation instead of
using a fixed group size in CCPSO2. However, CCPSO2
uses a simpler approach. If the global best fitness value
does not improve after a generation, a new group size from
the set is randomly chosen again, otherwise, the group size
remains unchanged.

2.7 � CSO

In order to achieve a good balance between exploration
and exploitation and address premature convergence,
Cheng and Jin [28] proposed a novel competitive swarm
optimizer (CSO) based on PSO for large-scale optimiza-
tion. In consideration of the fact that most PSO variant
update particles based on the global best position gbest
and the personal best position pbest which lead to conver-
gence prematurely, the update of particles in CSO is driven
by a pairwise competition mechanism between two parti-
cles instead of using gbest and pbest. This mechanism can
address premature convergence and maintain the diversity
of the population because each particle has a chance to
learn from any particles.

In CSO, all the particles are randomly allocated in pairs
in each generation. Assume that the swarm size is m which

(8)xij =

{
yij + C(1)|pbestij − lbestij|, if rand ≤ p

y
�

ij
+ N(0, 1)|pbestij − lbestij|, otherwise

is an even number, so there are m/2 pairs of particles. In
each pairs, a pairwise competition is carried out between
two particles. The winner (the particle which has better
fitness value) goes to the next generation directly while
the loser (the particle which has worse fitness value) will
update its velocity and position by learning from the win-
ner as follows:

where r1, r2, and r3 are three random numbers generated uni-
formly from [0, 1]; xwj, xlj and vwj, vlj denote the jth dimen-
sion of the position and velocity of the winner and loser
respectively; x̄j denotes the mean position value of the jth
dimension of all particles in current swarm; � is a parameter
that controls the influence of x̄j .Therefore, only half of the
particles position in swarm are updated in each generation
in CSO which can save some fitness evolution.

2.8 � SLPSO

Cheng and Jin [29] proposed a another new PSO variant
called Social Learning PSO (SLPSO), where neither the per-
sonal best position pbest nor global best position gbest will
be used to update the particle position like CSO. In SLPSO,
each particle learns from any better particles in the current
swarm instead of learning from historical best particle posi-
tion. The social learning mechanism make the particles learn
from each other dynamically and interactively which can
maintain the diversity of the swarm and avoid premature
convergence.

At the beginning of each generation, sort all the parti-
cles in the swarm according to their fitness value. Then,
each particle, except for the best one, will learn from the
particles that better than itself. Note that, if the number of
the better particles is more than one, select one of them ran-
domly. Assume that the current updated particle is i, and
the selected particle for learning is k. The learning process
is shown as follows:

where j is the dimension of the vector; r1, r2, and r3 are three
random numbers generated uniformly from [0, 1]; xij, xkj and
vij, vkj denote the jth dimension of the position vector and
velocity vector of particle i and k respectively; x̄j denotes the
mean position value of the jth dimension of all particles in

(9)vlj = r1vlj + r2(xwj − xlj) + �r3(xj − xlj)

(10)xlj = xlj + vlj

(11)vij = r1vij + r2(xkj − xij) + �r3(xj − xij)

(12)xij =

{
xij + vij, if pi(t) ≤ Pi

xij, otherwise

736	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

current swarm; ε is a parameter that controls the influence of
x̄j. In (12), Pi is called the learning probability which control
whether the particles are updated or not. Each particle have
their own learning probability. Generally speaking, the bet-
ter the fitness value of a particle is, the lower the learning
probability will be. pi(t) is a randomly generated number
from [0, 1].

In addition, SLPSO adopts a dimension-dependent param-
eter control method in order to ease the burden of parameter
settings.

2.9 � DMS‑L‑PSO

DMS-L-PSO is a dynamic multi-swarm particle swarm opti-
mizer with local search which is proposed by Zhao et al. [31].
In order to increase the diversity of population, the population
is divide into small sized swarms and each subswarm evolved
independently in DMS-L-PSO. In addition, every R (called
regrouping period) generation, the population is regrouped
randomly which can dynamically change the subswarms
structure and exchange the information among the particles
to enhance the diverstiy. At the same time, a new PSO variant
is introduced in DMS-L-PSO. In the new PSO variant, when
updating the positions of the particles, half of the dimension
are the same as its personal best position pbest and the other
half of the dimensions are updated as follows:

where ω is the inertia weight fixed to be 0.729; c1 and c2
is the accelerate coefficient fixed to be 1.49445; r1 and r2
are two random value from [0, 1]; lbest is the best particle
position in the current subswarm; xij and vij represent the jth
dimension of position vector and velocity vector of particle
i respectively.

In order to speed up the convergence of the population
and give a better search in the better local areas, local search
is introduced in DMS-L-PSO. Every L (called local search
period) generation, the personal best position pbest of five par-
ticles will be randomly chosen to do the local search by Quasi-
Newton method. Then, the pbest which is nearest (according
to Euclidean distance) to the refined solution will be replaced
with the refined solutions if the refined solution is better.

Besides, when 90% of maximum fitness evaluations have
been used, all the particles in subswarms are reconstituted into
one population. Then, the global PSO algorithm is adopted to
continue optimizing the population until the fitness evaluations
is exhausted.

(13)
vij = � ⋅ vij + c1 ⋅ r1 ⋅ (pbestij − xij) + c2 ⋅ r2 ⋅ (lbestij − xij)

(14)xij = xij + vij

3 � Comparison studies on CEC2010

In this section, the comparisons experiments of the seven
LSEO algorithms which mentioned in Sect. 1 on CEC2010
test suits are carried out. The CEC2010 test suits contain
20 test functions. These functions can be classified into the
following five groups.

1.	 Separable functions (f1 − f3).
2.	 Single-group m-nonseparable functions (f4 − f8).
3.	 (n/2 m) group m-nonseparable functions (f9 − f13).
4.	 (n/m) group m-nonseparable functions (f14 − f18).
5.	 Nonseparable functions (f19 − f20).

where n represents the dimension of the problem and m
represents the number of variables in each nonseparable sub-
component. The specific form and characteristics of these
functions can be referred to [38].

To make a fair comparison, in our experiments, the
dimensions of the problem n are set as 1000 and the maxi-
mum number of function evaluations (MaxFEs) is set as 3e6
for all 7 LSEO algorithms. For the parameter setting of all
the algorithms, parameters are set according to their original
papers. In addition, to make the results more convincing, all
the algorithms need to run 25 times independently for sta-
tistics and calculate the mean results and standard deviation.

The experimental results of 7 LSEO algorithms on
CEC2010 test suites are shown in Table 1. For clarity, the
best results for each function are highlighted in boldface.
In addition, we count the number of functions that perform
the best for each algorithm and show them on the last line
of the results. From this statistical data, it can be seen that
among the 20 test functions, CSO has the best performance
on seven functions, DECC-DG and SLPSO both have the
best performance on five functions, while other algorithms
have poor performance. MLCC, DECC-G, CCPSO2 and
DMS-L-PSO have the best performance on only 2, 1, 0 and
0 functions respectively. However, as can be seen from the
specific experimental results in Table 1:

For the first group of three separable functions (f1 − f3),
MLCC performs better than other algorithms except f3, espe-
cially on f1. MLCC can converge to the optimal value on
f1. This may benefit from the multi-level grouping strategy
in MLCC algorithm and this strategy has great advantages
in resolving the separable functions, but on the more com-
plex separable function f3, CSO performs better than other
algorithms.

For the second group of 15 partially-separable functions
(f4 − f18), DECC-DG, CSO and SLPSO perform better than
other algorithms. On the partially-separable functions with
fewer groups (f4 − f13), the performance of CSO and SLPSO
are better than that of DECC-DG except f7 and f12 (unimodal

737International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

Table 1   Experimental results of 7 LSEO algorithms on cec2010 test suits

Fun DECC-G MLCC DECC-DG CCPSO2
Mean ± std Mean ± std Mean ± std Mean ± std

f1 1.36E−14 ± 2.22E−15 0 ± 0 1.61E+01 ± 1.89E+01 1.64E+00 ± 2.28E+00
f2 4.88E+01 ± 1.31E+01 3.18E−01 ± 5.43E−01 4.47E+03 ± 2.09E+02 7.49E+00 ± 1.74E+00
f3 1.71E+00 ± 3.33E−01 8.17E−02 ± 3.11E−01 1.67E+01 ± 3.44E−01 8.89E−03 ± 2.10E−03
f4 1.25E+13 ± 2.85E+12 1.54E+13 ± 6.57E+12 3.82E + 12 ± 6.75E + 11 1.55E + 12 ± 7.41E + 11
f5 2.60E + 08 ± 8.16E + 07 3.13E + 08 ± 1.09E + 08 1.54E + 08 ± 1.90E + 07 4.53E + 08 ± 1.18E + 08
f6 4.76E + 06 ± 6.97E + 05 1.61E + 07 ± 4.61E + 06 1.64E + 01 ± 1.92E−01 1.92E + 07 ± 1.07E + 06
f7 8.39E + 06 ± 7.56E + 06 1.81E + 06 ± 2.85E + 06 5.81E + 03 ± 2.66E + 03 1.70E + 08 ± 3.23E + 08
f8 4.72E + 07 ± 3.08E + 07 3.76E + 07 ± 3.27E + 07 3.94E + 07 ± 2.98E + 07 3.31E + 07 ± 2.97E + 07
f9 2.54E + 08 ± 1.01E + 07 1.19E + 08 ± 1.44E + 07 5.95E + 07 ± 9.21E + 06 1.14E + 08 ± 3.60E + 07
f10 9.22E + 03 ± 4.37E + 02 2.98E + 03 ± 3.70E + 02 4.55E + 03 ± 1.21E + 02 5.71E + 03 ± 1.03E + 03
f11 2.52E + 01 ± 1.18E + 00 1.96E + 02 ± 3.30E + 00 1.13E + 01 ± 5.09E−01 1.98E + 02 ± 2.74E−01
f12 3.91E + 04 ± 5.81E + 03 3.60E + 04 ± 6.49E + 03 2.53E + 03 ± 3.14E + 02 2.78E + 04 ± 7.58E + 03
f13 3.13E + 03 ± 1.15E + 03 2.37E + 03 ± 1.64E + 03 4.86E + 03 ± 2.73E + 03 1.28E + 03 ± 1.82E + 02
f14 5.77E + 08 ± 2.18E + 07 3.24E + 08 ± 1.97E + 07 3.40E + 08 ± 1.85E + 07 3.22E + 08 ± 1.46E + 08
f15 9.79E + 03 ± 2.74E + 03 7.17E + 03 ± 1.14E + 03 5.84E + 03 ± 6.02E + 01 1.02E + 04 ± 8.90E + 02
f16 8.50E + 01 ± 1.18E + 01 3.81E + 02 ± 4.93E + 01 7.23E−13 ± 5.50E−14 3.97E + 02 ± 4.60E−01
f17 1.63E + 05 ± 9.60E + 03 1.56E + 05 ± 1.03E + 04 4.18E + 04 ± 1.14E + 03 1.41E + 05 ± 5.81E + 04
f18 9.00E + 03 ± 1.09E + 03 6.83E + 03 ± 5.99E + 03 1.51E + 10 ± 1.86E + 09 2.87E + 03 ± 3.73E + 02
f19 7.33E + 05 ± 4.61E + 04 1.31E + 06 ± 1.05E + 05 1.71E + 06 ± 1.04E + 05 1.41E + 06 ± 8.90E + 04
f20 3.47E + 03 ± 2.48E + 02 2.03E + 03 ± 1.88E + 02 6.17E + 10 ± 6.59E + 09 1.97E + 03 ± 2.40E + 02
The number of

best result
1 2 5 0

Fun CSO SLPSO DMS-L-PSO
Mean ± Std Mean ± Std Mean ± Std

f1 4.50E−12 ± 5.94E−13 8.73E−18 ± 3.30E−18 4.88E + 09 ± 1.34E + 08
f2 7.42E + 03 ± 2.86E + 02 1.93E + 03 ± 1.12E + 02 6.17E + 03 ± 1.87E + 02
f3 2.60E−09 ± 2.62E−10 1.88E + 00 ± 3.30E−01 1.74E + 01 ± 5.26E−02
f4 7.25E + 11 ± 1.23E + 11 2.99E + 11 ± 7.16E + 10 3.90E + 13 ± 4.40E + 12
f5 1.15E + 07 ± 1.62E + 06 3.17E + 07 ± 6.21E + 06 1.04E + 08 ± 7.83E + 06
f6 8.21E−07 ± 2.68E−08 2.08E + 01 ± 2.63E + 00 1.66E + 06 ± 1.46E + 05
f7 2.01E + 04 ± 3.86E + 03 6.49E + 04 ± 5.60E + 04 2.42E + 10 ± 1.63E + 09
f8 3.87E + 07 ± 6.81E + 04 7.81E + 06 ± 1.56E + 06 1.43E + 08 ± 3.42E + 07
f9 7.03E + 07 ± 5.73E + 06 3.30E + 07 ± 4.46E + 06 5.79E + 09 ± 2.02E + 08
f10 9.60E + 03 ± 7.67E + 01 2.56E + 03 ± 2.17E + 02 5.88E + 03 ± 2.48E + 02
f11 4.02E−08 ± 5.12E−09 2.32E + 01 ± 2.10E + 00 1.82E + 02 ± 1.38E + 00
f12 4.37E + 05 ± 6.22E + 04 1.75E + 04 ± 9.07E + 03 2.84E + 06 ± 1.10E + 05
f13 6.29E + 02 ± 2.32E + 02 9.59E + 02 ± 3.74E + 02 9.68E + 07 ± 2.62E + 07
f14 2.49E + 08 ± 1.53E + 07 8.41E + 07 ± 6.31E + 06 5.02E + 09 ± 3.43E + 08
f15 1.01E + 04 ± 5.23E + 01 1.12E + 04 ± 8.65E + 01 6.21E + 03 ± 2.76E + 02
f16 5.89E−08 ± 5.61E−09 2.51E + 01 ± 1.16E + 01 3.39E + 02 ± 9.52E−01
f17 2.20E + 06 ± 1.55E + 05 9.00E + 04 ± 1.58E + 04 2.67E + 06 ± 1.54E + 05
f18 1.73E + 03 ± 5.22E + 02 2.77E + 03 ± 8.33E + 02 2.82E + 09 ± 5.30E + 08
f19 1.01E + 07 ± 5.64E + 05 5.10E + 06 ± 7.05E + 05 1.63E + 07 ± 6.70E + 05
f20 1.05E + 03 ± 1.49E + 02 1.85E + 03 ± 2.59E + 02 4.10E + 09 ± 7.56E + 08
The number of best result 7 5 0

738	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

function). This may be because DECC-DG consumes a lot
of unnecessary function evaluations (FEs) for differential
grouping in solving simple partially-separable functions,
resulting in less FEs for evolution. While on the partially-
separable functions with more groups (f14 − f18), such as f15,
f16, f17, DECC-DG performs better than other algorithms
thanks to the differential grouping strategy. In this kind of
partially-separable functions which is more difficult to solve,
appropriate grouping strategy like differential grouping can
get better performance.

For the third group of two nonseparable functions
(f19 − f20), DECC-G performs the best on f19 (unimodal
function) while CSO performs the best on f20 (multimodal
function). DECC-DG performs poorly on nonseparable
functions.

In addition, we rank the seven algorithms on each func-
tion according to their experimental results, as shown in
Table 2. From the ranking results, SLPSO performs the best
among the seven algorithms and CSO is ranked the second.
For the decomposition algorithms based on CC framework,
DECC-DG performs the best. DMS-L-PSO is ranked the
last and this may be caused by the evolution operator of this
algorithm which is the same as the standard PSO.

In order to further study the evolutionary process of
different algorithms on CEC2010 test suits, we select six
representative functions f1, f4, f8, f11, f16 and f20 and draw

the convergence curves of the seven algorithms on these six
functions, as shown in Fig. 3.

From Fig. 3a, we can see that only MLCC and SLPSO
have a fast convergence speed and converge to better solu-
tions. However, SLPSO will stagnate at the later stage of
evolution and only MLCC can converge to the optimal value
on f1. On partially-separable functions f4 and f8, as shown in
Fig. 3b, c, SLPSO is better than other algorithms in terms of
convergence speed and final results. On partially-separable
function f11, as shown in Fig. 3d, only CSO can converge
continuously and rapidly, while other algorithms fall into
local optimal prematurely. Besides, on partially-separable
function f16, only CSO and DECC-DG can converge to bet-
ter solutions quickly and the final result of DECC-DG is
better than that of CSO. Finally, from Fig. 3f, we can see
the convergence curves of seven algorithms on nonsepara-
ble function f20. Except DECC-DG and DMS-L-PSO, other
algorithms have the similar performance. They can find
the better solutions and have faster convergence speed than
DECC-DG and DMS-L-PSO.

To sum up, the performance of CSO and SLPSO are
better than other decomposition algorithms based on CC
framework (DECC-G, MLCC, DECC-DG, and CCPSO2).
The evolution operators of these two algorithms are differ-
ent from that of the standard PSO. The evolution operator
of CSO is based on competitive relationship, while SLPSO

Table 2   Ranking results of 7
LSEO algorithms on cec2010
test suits

Fun DECC-G MLCC DECC-DG CCPSO2 CSO SLPSO DMS-L-PSO
Rank Rank Rank Rank Rank Rank Rank

f1 3 1 6 5 4 2 7
f2 3 1 5 2 7 4 6
f3 4 3 6 2 1 5 7
f4 5 6 4 3 2 1 7
f5 5 6 4 7 1 2 3
f6 5 6 2 7 1 3 4
f7 5 4 1 6 2 3 7
f8 6 3 5 2 4 1 7
f9 6 5 2 4 3 1 7
f10 6 2 3 4 7 1 5
f11 4 6 2 7 1 3 5
f12 5 4 1 3 6 2 7
f13 5 4 6 3 1 2 7
f14 6 4 5 3 2 1 7
f15 4 3 1 6 5 7 2
f16 4 6 1 7 2 3 5
f17 5 4 1 3 6 2 7
f18 5 4 7 3 1 2 6
f19 1 2 4 3 6 5 7
f20 5 4 7 3 1 2 6
Ave. rank 4.6 3.9 3.65 4.15 3.15 2.6 5.95
Final rank 6 4 3 5 2 1 7

739International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

is based on social learning. Therefore, the good evolution
operator will greatly improve the performance of LSEO
algorithms. The poor performance of DMS-L-PSO may be
because it still adopts the evolution operator of the stand-
ard PSO. For the decomposition algorithms based on CC
framework, DECC-DG has the best overall performance,
especially in solving partially-separable functions. However,
DECC-DG performs worse on separable and nonseparable
functions than MLCC and CCPSO2 which are based on
random grouping strategy, which may be caused by exces-
sive consumption of FEs by differential grouping strategy.
Moreover, MLCC performs better than other algorithms in
solving simple separable functions.

4 � Comparison Studies on CEC2013

To further compare the ability of seven algorithms to solve
the large-scale optimization problems, we adopted another
large-scale benchmark function suites—CEC2013 test suites
to test the performance of the algorithms. The CEC2013
test suites are more complex and more difficult to solve than
CEC2010, so they can better reflect the performance of the
algorithms to solve the large-scale optimization problems.

The CEC2013 test suits contain 15 test functions. These test
functions can be classified into the following four groups.

1.	 Separable functions (f1 − f3).
2.	 Partially-separable functions (f4 − f11).
3.	 Overlapping functions (f12 − f14).
4.	 Nonseparable functions (f15).

The specific form and characteristics of these functions
can be referred to [38].

Similar to the experiments on CEC2010 test suits, in this
experiments, the dimensions of the problem n are also set as
1000 (Note: the dimensions of f13 and f14 are set as 905) and
the maximum number of function evaluations (MaxFEs) is
also set as 3e6 for all 7 LSEO algorithms.

The experimental results of seven LSEO algorithms on
CEC2013 test suites are shown in Table 3. For clarity, the
best results for each function are highlighted in boldface.
Similarly, we count the number of functions that perform
the best for each algorithm and show them on the last line
of the results. From this statistical data, it can be seen that
SLPSO has the best performance on 6 out of 15 test func-
tions, more than other algorithms. While MLCC, CCPSO2,
CSO, DECC-DG, DMS-L-PSO, and DECC-G have the best
performance of only 4, 2, 2, 1, 1 and 0 functions respectively.

(d) (e) (f)

(a) (b) (c)

Fig. 3   Convergence curves of 7 algorithms on 6 representative functions from cec2010

740	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

However, as can be seen from the specific experimental
results in Table 3:

For the first group of three separable functions (f1 − f3),
MLCC still shows great advantage and performs better than
other algorithms.

For the second group of eight partially-separable func-
tions (f4 − f11), CSO and SLPSO perform better than other
algorithms. SLPSO performs the best on 4 functions (f4,
f5, f7, f8). Although CSO performs not as well as SLPSO
on these functions, it is not much different from SLPSO in
terms of results. CSO performs the best on f9. Similar to the

experimental results on CEC2010, DECC-DG performs the
best on the complex partially-separable function f11.

For the third group of three overlapping functions
(f12 − f14), it is also the case that CSO and SLPSO perform
better than other algorithms. While the performance of
DECC-DG and DMS-L-PSO are very poor.

For the last nonseparable function (f15), the decom-
position algorithms based on CC framework (DECC-G,
MLCC, DECC-DG, and CCPSO2) performs better than
the non-decomposition algorithms (CSO, SLPSO, and
DMS-L-PSO).

Table 3   Experimental results of 7 algorithms on cec2013 test suits

Fun DECC-G MLCC DECC-DG CCPSO2
Mean ± std Mean ± std Mean ± std Mean ± std

f1 2.16E−12 ± 1.03E−12 8.10E−26 ± 1.62E−25 1.25E + 03 ± 1.78E + 03 5.26E + 00 ± 1.62E + 00
f2 4.90E + 01 ± 2.25E + 01 8.29E + 00 ± 5.58E + 00 1.28E + 04 ± 4.62E + 02 1.24E + 01 ± 1.00E + 00
f3 2.01E + 01 ± 2.27E−03 2.00E + 01 ± 1.65E−03 2.14E + 01 ± 1.52E−02 2.00E + 01 ± 4.00E−05
f4 1.42E + 11 ± 6.49E + 10 8.76E + 10 ± 2.85E + 10 5.24E + 10 ± 3.36E + 10 1.61E + 10 ± 7.64E + 09
f5 7.53E + 06 ± 1.61E + 06 1.02E + 07 ± 2.09E + 06 5.82E + 06 ± 4.39E + 05 1.70E + 07 ± 5.15E + 06
f6 1.06E + 06 ± 5.82E + 02 1.05E + 06 ± 3.67E + 03 1.06E + 06 ± 9.04E + 02 1.05E + 06 ± 9.50E + 03
f7 3.98E + 08 ± 3.03E + 08 4.30E + 08 ± 2.18E + 08 8.35E + 08 ± 7.66E + 08 1.16E + 08 ± 8.71E + 07
f8 2.94E + 15 ± 1.29E + 15 4.59E + 15 ± 3.71E + 15 4.59E + 15 ± 5.25E + 14 6.20E + 14 ± 5.84E + 14
f9 5.97E + 08 ± 1.21E + 08 8.98E + 08 ± 2.26E + 08 5.00E + 08 ± 2.44E + 07 3.18E + 09 ± 6.06E + 08
f10 9.30E + 07 ± 5.53E + 05 9.22E + 07 ± 3.84E + 05 9.46E + 07 ± 3.47E + 04 9.37E + 07 ± 4.40E + 05
f11 5.90E + 10 ± 4.91E + 10 1.20E + 11 ± 4.46E + 10 2.35E + 10 ± 1.45E + 10 9.30E + 11 ± 8.16E + 09
f12 3.36E + 03 ± 2.69E + 02 2.10E + 03 ± 1.99E + 02 1.63E + 11 ± 1.61E + 10 2.02E + 03 ± 8.87E + 01
f13 4.54E + 09 ± 6.53E + 08 8.19E + 09 ± 3.58E + 09 1.98E + 10 ± 8.21E + 09 2.04E + 09 ± 6.06E + 08
f14 7.53E + 10 ± 3.44E + 10 1.18E + 11 ± 6.86E + 10 1.86E + 10 ± 9.40E + 09 1.42E + 11 ± 9.87E + 10
f15 4.76E + 06 ± 4.16E + 05 6.70E + 06 ± 1.04E + 06 9.51E + 06 ± 9.59E + 05 3.67E + 06 ± 2.54E + 06
The number of

best result
0 4 1 2

Fun CSO SLPSO DMS-L-PSO
Mean ± std Mean ± std Mean ± std

f1 3.67E−12 ± 1.04E−12 1.09E−17 ± 2.50E−18 5.70E + 09 ± 1.44E + 08
f2 7.04E + 03 ± 3.56E + 02 2.13E + 03 ± 1.36E + 02 1.24E + 04 ± 2.69E + 02
f3 2.16E + 01 ± 5.44E−03 2.16E + 01 ± 1.45E−02 2.14E + 01 ± 1.92E−02
f4 1.26E + 10 ± 1.91E + 09 4.35E + 09 ± 9.48E + 08 9.00E + 11 ± 3.78E + 10
f5 8.62E + 05 ± 3.20E + 04 8.41E + 05 ± 1.75E + 05 5.49E + 06 ± 4.19E + 05
f6 1.06E + 06 ± 1.05E + 03 1.06E + 06 ± 1.48E + 03 1.03E + 06 ± 3.99E + 03
f7 7.62E + 06 ± 1.35E + 06 1.63E + 06 ± 7.05E + 05 3.55E + 09 ± 2.61E + 08
f8 3.50E + 14 ± 3.59E + 13 1.03E + 14 ± 3.62E + 13 6.79E + 15 ± 1.38E + 15
f9 3.94E + 07 ± 7.45E + 06 8.25E + 07 ± 2.03E + 07 5.05E + 08 ± 2.66E + 07
f10 9.41E + 07 ± 1.49E + 05 9.25E + 07 ± 1.67E + 06 9.31E + 07 ± 3.11E + 05
f11 3.58E + 11 ± 4.62E + 09 9.33E + 11 ± 1.46E + 10 4.96E + 11 ± 4.01E + 10
f12 1.28E + 03 ± 8.23E + 01 1.78E + 03 ± 1.74E + 02 4.42E + 09 ± 8.34E + 08
f13 8.06E + 08 ± 1.22E + 08 4.65E + 08 ± 2.35E + 08 1.16E + 11 ± 1.05E + 10
f14 5.17E + 09 ± 2.86E + 09 3.28E + 08 ± 5.17E + 08 1.25E + 12 ± 1.59E + 11
f15 1.74E + 07 ± 6.44E + 05 7.87E + 07 ± 6.50E + 06 1.60E + 09 ± 6.18E + 08
The number of best result 2 6 1

741International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

Similarly, according to their experimental results, we
also give the specific ranking of the seven algorithms on
each function in Table 4. From Table 4, we can see that
SLPSO and CSO are still ranked first and second, which
further illustrates the advantages of these two algorithms.
For the decomposition algorithms based on CC framework,
the ranking of MLCC is the best. DECC-DG loses its com-
petitiveness on CEC2013 test suits, which indicates that
when faces with more complex test functions, good group-
ing strategy does not greatly improve the performance of the
algorithms. DMS-L-PSO is still ranked the last.

Similar to the experiment on CEC2010 test suits, we also
select six representative functions f1, f4, f9, f11, f13 and f15
and draw the convergence curves of the seven algorithms
on these six functions, as shown in Fig. 4.

On separable function f1, as shown in Fig. 4(a), the con-
vergence curves of the algorithms is similar to that of f1 on
CEC2010 test suits. MLCC and SLPSO converge faster than
other algorithms. However, SLPSO will fall into the local
optimal at the later stage of evolution and MLCC can find
the better result. On partially-separable functions f4, f9 and
overlapping function f13, as shown in Fig. 4b, c, e, CSO and
SLPSO are better than other algorithms in terms of conver-
gence speed and final results. Besides, on partially-separable
function f11, as shown in Fig. 4d, although DECC-DG can
find the best solutions and have fastest convergence speed,
in fact, other algorithms are very similar to its converge
curve. Similar phenomenon also appears on nonseparable
function f15, as shown in Fig. 4f. Except DMS-L-PSO, the
convergence curves of other algorithms are very similar, but
the final result of CCPSO2 is better than other algorithms.

In conclusion, CEC2013 test functions are more complex
than CEC2010 test functions, so LSEO algorithms are less
effective in solving CEC2013 test suits. However, in terms
of the performance of each algorithm, CSO and SLPSO still
perform better than other algorithms. While DECC-DG is
not capable of solving more complicated problems and its
performance is not as good as that of other decomposition
algorithms based on CC framework. Moreover, MLCC still
highlights its advantages on separable functions.

5 � Future directions

At present, with the development of big data, artificial intel-
ligence, and high performance computing, the optimization
problems we encounter in the real world are becoming more
and more complex and large-scale. In order to solve the
large-scale optimization problems, LSEO algorithms have
attracted more and more researchers’ attention in recent
decades. Researchers have also proposed many strategies
and methods to improve the LSEO algorithms. However,
due to the complexity of large-scale optimization problems,
LSEO algorithms still face many challenges. Therefore, how
to improve the performance of LSEO algorithms will con-
tinue to be a hot topic. In this section, we will present some
future research directions of LSEO algorithms.

1.	 Perfect decomposition of large-scale optimization prob-
lem by CC method. The ultimate goal of the CC method
should group all variables into optimal or near-optimal
subcomponents, where the variables in the same sub-

Table 4   Ranking results of 7
algorithms on cec2013 test suits

Fun DECC-G MLCC DECC-DG CCPSO2 CSO SLPSO DMS-L-PSO
Rank Rank Rank Rank Rank Rank Rank

f1 3 1 6 5 4 2 7
f2 3 1 7 2 5 4 6
f3 3 1 4 1 6 6 4
f4 6 5 4 3 2 1 7
f5 5 6 4 7 2 1 3
f6 4 2 4 2 4 4 1
f7 4 5 6 3 2 1 7
f8 4 5 5 3 2 1 7
f9 5 6 3 7 1 2 4
f10 3 1 7 5 6 2 4
f11 2 3 1 6 4 7 5
f12 5 4 7 3 1 2 6
f13 4 5 6 3 2 1 7
f14 4 5 3 6 2 1 7
f15 2 3 4 1 5 6 7
Ave. rank 3.8 3.53 4.73 3.8 3.2 2.73 5.47
Final rank 4 3 6 4 2 1 7

742	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

component are with linkage while the variants in dif-
ferent subcomponents are without or with weak link-
age. Although there are many decomposition strategies
at present, such as delta grouping strategy, DG strat-
egy, graph-based DG strategy, and so on, most of the
decomposition strategies only focus on the construction
of non-separable subcomponents. That is, only consider
the related variables that are divided into a group and
do not consider the construction of separable subcom-
ponents. Therefore, the future decomposition strategies
based on CC method need to consider the construction
of both non-separable and separable subcomponents,
so as to realize the optimal decomposition and improve
the performance of the LSEO algorithms. Moreover, the
problem characteristics can be used to help decompose
the variables perfectly. For example, Zhang et al. [42]
recently proposed an efficient CC based bare-bones PSO
(CCBBPSO) with function independent decomposition
(FID) according to the different independent functional
characteristics of different variables.

2.	 Light computational burden for decomposition. The
decomposition strategies based on CC method not only
need to improve the decomposition accuracy, but also
should be better to consume as little FEs as possible, so
that more FEs can be used to the evolutionary process

and to make the algorithms perform better. For example,
DECC-DG performs poorly on completely separable
functions and non-separable functions, which may be
because it consumes too many FEs when adopting DG
strategy to group variables. In addition, for non-separa-
ble functions, even if a good decomposition strategy is
used to group the variables, all variables will eventually
be divided into one group, which is equivalent to solv-
ing the whole large-scale optimization function without
achieving the goal of “divide-and-conquer”. Therefore,
a fast method which has low consumption of FEs is
needed to determine whether the problem is a com-
pletely separable problem or a non-separable problem.
For example, some variables can be randomly selected
to judge whether there is a relationship between them.
If there is, the problem is judged to be a non-separable
problem. Other decomposition strategies that can reduce
FEs consumption need further study.

3.	 Efficient allocation of computational resources to differ-
ent subcomponents. Most optimization problems in the
real world have the imbalance property. In other words,
when we decompose a large-scale optimization prob-
lem into several subproblems, the optimization of some
subproblems have a great impact on the final results of
the whole optimization problem, while the rest of the

(a) (b) (c)

(d) (e) (f)

Fig. 4   Convergence curves of 7 algorithms on 6 representative functions from cec2013

743International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

subproblems have insignificant impact on the whole
optimization problem. According to the imbalance
of the optimization problem, it is obvious to allocate
more computational resources to subprobelms which
contribute more to the whole optimization problem.
Therefore, considering the imbalance of the optimiza-
tion problems will become another research direction of
LSEO algorithms. We can introduce weights to different
subproblems to express their contribution to the whole
optimization problem. Omidvar et al. [43] proposed a
contribution-based CC method to allocate the available
computational resources to the subcomponents based on
their contributions, called CBCC (CBCC1, CBCC2).
Later, in order to find a better balance between explora-
tion and exploitation, Omidvar et al. [44] proposed an
improved CBCC variant called CBCC3. At present, the
research on the imbalance of optimization problem is
still in its infancy, which provides us with another way
to design new LSEO algorithms.

4.	 Multiple populations and distributed algorithm to
enhance global search ability. Beside the decomposi-
tion method, there is another significant method to deal
with large-scale optimization problems by consider-
ing all the variables as a whole. However, due to the
high dimension of large-scale optimization problem,
the search space of the problem is very large and there
are many local optimal solutions. Therefore, many dis-
tributed and parallel algorithms have been proposed to
deal with large-scale optimization problems. Generally
speaking, LSEO algorithms can realize distribution
by means of multi-population strategy, which a whole
population is decomposed into multiple subpopulations,
and each subpopulation evolves independently. At the
same time, an appropriate migration strategy should be
designed to further improve the diversity of the popula-
tion and the performance of the algorithms. Wang et al.
[45] proposed a variant of distributed PSO algorithm
which adopted dynamic group learning strategy, called
DGLDPSO. Wu et al. [46] also proposed a distributed
DE algorithm which based on multi-population strat-
egy, called MPEDE. MPEDE not only adopts distributed
strategy, but also integrates multiple mutation strategies
to improve the performance of the algorithms. Moreo-
ver, some LSEO algorithms use multiple processors to
achieve parallelization [47, 48]. Each subpopulation
has a processor for processing, and all subpopulations
evolve in the processor in parallel, which can reduce
the running time and accelerate the efficiency of LSEO
algorithm. In conclusion, we can consider introducing
distributed and parallel methods to deal with large-scale
optimization problems in the future.

5.	 Scalability of LSEO algorithms. At present, most of the
researchers focus on large-scale optimization problems

with 500 or 1000 dimensions. In the face of more com-
plex problems with larger dimensions (such as 2000,
3000 or even 5000 dimensions), the performance of
some LSEO algorithms drop sharply, which indicate that
the scalability of most algorithms are poor. Therefore,
scalability is very important for LSEO algorithms, and
it is also one of the future research directions.

6.	 At last, application of real-world large-scale optimi-
zation problems. In recent years, a number of LSEO
algorithms with good performance have been proposed.
However, most of the algorithms are tested by using
large-scale benchmark function sets. Therefore, an obvi-
ous question was raised that the good performance of
the algorithm on the benchmark function sets does not
mean that the algorithm can also perform well in solving
real-world problems. So, we need to apply LSEO algo-
rithm to real-world problems or design corresponding
algorithms according to the characteristics of real-world
problems. Nowadays, there are many complex problems
such as dynamic optimization problems [49, 50], multi-
modal optimization problems [51–53], and multi/many-
objective optimization problems [54, 55], and also the
real-world problems such as cloud workflow scheduling
problems [56–58], and community detection and infer-
ence [59, 60] that have drawn more and more attention
to the researchers. These problems would be much more
challenge in their large-scale version. Therefore, the
LSEO algorithms we design in the future needs to be
connected with real-world problems.

6 � Conclusion

In this paper, we first introduce the research status of large-
scale optimization problems and list some state-of-the-art
LSEO algorithms. Then, we select seven representative
algorithms and make a brief introduction, including the
decomposition algorithms based on CC framework and
non-decomposition algorithms which all the variables are
considered as a whole. In addition, we adopt two commonly
used large-scale benchmark function sets—CEC2010 test
suits and CEC2013 test suits to compare the performance
of these seven LSEO algorithms. Meanwhile, in order to
further compare these seven LSEO algorithms, their con-
vergence curves on some representative functions are plot-
ted to analyze their characteristics and advantages. From
the experimental results, SLPSO and CSO perform better
than other algorithms. While MLCC is suitable for solv-
ing simple separable functions and DECC-DG can find bet-
ter results on some relatively complex partially-separable
functions. However, when faced with some extremely com-
plex test functions, the performance of DECC-DG is not as

744	 International Journal of Machine Learning and Cybernetics (2020) 11:729–745

1 3

good as some decomposition algorithms which based on
random grouping strategy. Besides, DMS-L-PSO performs
worse than other comparative algorithms. Moreover, we also
discuss the future research directions of LSEO algorithms.
Especially, we think that the function independent decom-
position strategy is worthy studying in CC based LSEO, like
the CCBBPSO algorithm [42], and the distributed multi-
population is worthy studying in non-CC based LSEO, like
the DGLDPSO algorithm [45].

Acknowledgements  This work was supported in part by the Outstand-
ing Youth Science Foundation under Grant 61822602, in part by the
National Natural Science Foundations of China (NSFC) under Grant
61772207 and Grant 61873097, in part by the Guangdong Natural Sci-
ence Foundation Research Team under Grant 2018B030312003, and
in part by the Guangdong-Hong Kong Joint Innovation Platform under
Grant 2018B050502006.

References

	 1.	 Shi GY, Dong JL (2002) Optimization methods. Higher Education
Press, Beijing

	 2.	 Fletcher R (1987) Practical methods of optimization. Wiley-Inter-
science, New York

	 3.	 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72
	 4.	 Storn R, Price K (1997) Differential evolution: a simple and effi-

cient heuristic for global optimization over continuous spaces. J
Global Opt 11(4):341–359

	 5.	 Storn R (1996) On the usage of differential evolution for function
optimization. In: 1996 biennial conference of the North American
fuzzy information processing, pp 519–523

	 6.	 Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential
evolution algorithm with novel mutation strategies in multiple
sub-populations. Comput Oper Res 67:155–173

	 7.	 Li G, Lin Q, Cui L, Du Z, Liang Z, Chen J, Lu N, Ming Z (2016)
A novel hybrid differential evolution algorithm with modified
CoDE and JADE. Appl Soft Comput 47:577–599

	 8.	 Muhlenbein H (1996) From recombination of genes to the estima-
tion of distributions I. binary parameters. In: International Confer-
ence on Parallel Problem Solving from Nature. Springer, Berlin,
Heidelberg, pp 178–187

	 9.	 Zhang QF, Sun JY, Tsang E, Ford J (2004) Hybrid estimation
of distribution algorithm for global optimization. Eng Comput
21(1):91–107

	10.	 Kennedy J, Eberhart RC (1995) Particle swarm optimization.
IEEE Int. Conf. Neural Netw, Perth, pp 1942–1948

	11.	 Eberhart RC, Kennedy J (1995) A new optimizer using particle
swarm theory. In: the 6th Int. Symp. Micromachine Human Sci.
Nagoya, pp 39–43

	12.	 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimiza-
tion by a colony of cooperating agents. IEEE Trans Syst Man
Cybern B Cybern 26(1):29–41

	13.	 Cui L, Li G, Luo Y, Chen F, Ming Z, Lu N, Lu J (2018) An
enhanced artificial bee colony algorithm with dual-population
framework. Swarm Evol Comput 43:184–206

	14.	 Yang ZY, Tang K, Yao X (2008) Large scale evolutionary optimi-
zation using cooperative coevolution. Inf Sci 178(15):2985–2999

	15.	 Liu Y, Yao X, Zhao Q, Higuchi T (2001) Scaling up fast evolution-
ary programming with cooperative coevolution. In: IEEE Congr.
Evol. Comput., pp 1101–1108

	16.	 Descartes R (1956) Discourse on method, 1st edn. Perentice Hall,
Upper Saddle River

	17.	 Potter MA, Jong KAD (1994) A cooperative coevolutionary
approach to function optimization. In: International Conference
on Parallel Problem Solving from Nature, pp 249–257

	18.	 Bergh FV, Engelbrecht AP (2004) A cooperative approach to par-
ticle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

	19.	 Li X, Yao X (2012) Cooperatively coevolving particle swarms for
large scale optimization. IEEE Trans Evol Comput 16(2):210–224

	20.	 Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimiza-
tion using cooperative coevolution. Inf Sci 178(15):2985–2999

	21.	 Shi Y, Teng H, Li Z (2005) Cooperative co-evolutionary differen-
tial evolution for function optimization. In: International Confer-
ence on Natural Computation, pp 1080–1088

	22.	 Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevolu-
tion for large scale optimization. In: IEEE Congr. Evol. Com-
put., pp 1663–1670

	23.	 Omidvar MN, Li X, Yao X (2010) Cooperative co-evolution
with delta grouping for large scale non-separable function opti-
mization. In: IEEE Congr. Evol. Comput., pp 1762–1769

	24.	 Omidvar M, Li X, Mei Y, Yao X (2014) Cooperative co-evo-
lution with differential grouping for large scale optimization.
IEEE Trans Evol Comput 18(3):378–393

	25.	 Ling YB, Li HJ, Cao B (2016) Cooperative co-evolution with
graph-based differential grouping for large scale global optimi-
zation. In: IEEE International Conference on Natural Computa-
tion, Fuzzy Systems and Knowledge Discovery, pp 95–102

	26.	 Takahama T, Sakai S (2012) Large scale optimization by differ-
ential evolution with landscape modality detection and a diver-
sity archive. In: IEEE Congr. Evol. Comput., pp 2842–2849

	27.	 Kushida J, Hara A, Takahama T (2015) Rank-based differential
evolution with multiple mutation strategies for large scale global
optimization. In: IEEE Congr. Evol. Comput., pp 353–360

	28.	 Ran C, Jin YC (2015) A competitive swarm optimizer for large
scale optimization. IEEE Trans Cybern 45(2):191–204

	29.	 Ran C, Jin YC (2015) A social learning particle swarm optimi-
zation algorithm for scalable optimization. Inf Sci 291:43–60

	30.	 Yang Q, Xie HY, Chen WN, Zhang J (2016) Multiple parents
guided differential evolution for large scale optimization. In:
IEEE Congr. Evol. Comput., pp 3549–3556

	31.	 Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF (2008)
Dynamic multi-swarm particle swarm optimizer with local
search for large scale global optimization. In: IEEE Congr. Evol.
Comput., pp 3845–3852

	32.	 Molina D, Herrera F (2015) Iterative hybridization of DE with
local search for the cec2015 special session on large scale global
optimization. In: IEEE Congr. Evol. Comput., pp 1974–1978

	33.	 Ge YF, Yu WJ, Lin Y, Gong YJ, Zhan ZH, Chen WN, Zhang
J (2018) Distributed differential evolution based on adaptive
mergence and split for large-scale optimization. IEEE Trans
Cybern 48(7):2166–2180

	34.	 Weber M, Neri F, Tirronen V (2011) Shuffle or update parallel
differential evolution for large-scale optimization. Appl Soft
Comput 15(11):2089–2107

	35.	 Wang H, Rahnamayan S, Wu ZJ (2013) Parallel differential
evolution with self-adapting control parameters and general-
ized opposition-based learning for solving high-dimensional
optimization problems. J Parallel Distrib Comput 73(1):62–73

	36.	 Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle
swarm optimizer. In: IEEE Int. Swarm Intelligence Symposium,
pp 124–129

	37.	 Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

	38.	 Tang K, Li X, Suganthan P, Yang Z, Weise T (2009) Benchmark
functions for the cec 2010 special session and competition on
large scale global optimization. In: Technical Report, Nature

745International Journal of Machine Learning and Cybernetics (2020) 11:729–745	

1 3

Inspired Computation and Applications Laboratory, USTC,
China

	39.	 Li X, Tang K, Omidvar MN, Yang Z, Qin K (2013) Benchmark
functions for the cec 2013 special session and competition on
large scale global optimization. In: Evol. Comput. Mach. Learn.
Subpopulation, Tech. Rep. RMIT University, Melbourne

	40.	 Shi Y, Eberhart RC (1998) A modified particle swarm optimizer.
In: IEEE World Congr. Comput. Intell., pp 69–73

	41.	 Yang Z, Tang K, Yao X (2007) Differential evolution for high-
dimensional function optimization In: IEEE Congr. Evol. Com-
put., pp 3523–3530

	42.	 Zhang X, Du KJ, Zhan ZH, Kwong S, Gu TL, Zhang J (2019)
Cooperative co-evolutionary bare-bones particle swarm optimiza-
tion with function independent decomposition for large-scale sup-
ply chain network design with uncertainties. IEEE Trans Cybern.
https​://doi.org/10.1109/TCYB.2019.29334​99

	43.	 Omidvar MN, Li X, Yao X (2011) Smart use of computational
resources based on contribution for cooperative co-evolutionary
algorithms. In: Conference on Genetic and Evolutionary Compu-
tation, pp 1115–1122

	44.	 Omidvar MN, Kazimipour B, Li X, Yao X (2016) CBCC3—a
contribution-based cooperative co-evolutionary algorithm with
improved exploration/exploitation balance. In: IEEE Congr. Evol.
Comput., pp 3541–3548

	45.	 Wang ZJ, Zhan ZH, Yu WJ, Lin Y, Zhang J, Gu TL, Zhang J
(2019) Dynamic group learning distributed particle swarm
optimization for large-scale optimization and its application in
cloud workflow scheduling. IEEE Trans Cybern. https​://doi.
org/10.1109/TCYB.2019.29334​99

	46.	 Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016)
Differential evolution with multi-population based ensemble of
mutation strategies. Inf Sci 329:329–345

	47.	 Glotic A, Glotic A, Kitak P, Pihler J, Ticar I (2014) Paral-
lel self-adaptive differential evolution algorithm for solving
short-term hydro scheduling problem. IEEE Trans Power Syst
29(5):2347–2358

	48.	 Zhan ZH, Liu X, Zhang H, Yu Z, Weng J, Li Y, Gu T, Zhang J
(2017) Cloudde: a heterogeneous differential evolution algorithm
and its distributed cloud version. IEEE Trans Parallel Distrib Syst
28(3):704–716

	49.	 Liu XF, Zhan ZH, Gu TL, Kwong S, Lu Z, Duh HBL, Zhang J
(2019) Neural network-based information transfer for dynamic
optimization. IEEE Trans Neural Netw Learn Syst. https​://doi.
org/10.1109/TNNLS​.2019.29208​87

	50.	 Liu XF, Zhan ZH, Zhang J (2018) Neural network for change
direction prediction in dynamic optimization. IEEE Access
6:72649–72662

	51.	 Zhao H, Zhan ZH, Lin Y, Chen X, Luo XN, Zhang J, Kwong S,
Zhang J (2019) Local binary pattern-based adaptive differential
evolution for multimodal optimization problems. IEEE Trans
Cybern. https​://doi.org/10.1109/TCYB.2019.29277​80

	52.	 Wang ZJ, Zhan ZH, Lin Y, Yu WJ, Wang H, Kwong S, Zhang
J (2019) Automatic niching differential evolution with contour
prediction approach for multimodal optimization problems. IEEE
Trans Evol Comput. https​://doi.org/10.1109/tevc.2019.29107​21

	53.	 Wang ZJ, Zhan ZH, Lin Y, Yu WJ, Yuan HQ, Gu TL, Kwong S,
Zhang J (2018) Dual-strategy differential evolution with affinity
propagation clustering for multimodal optimization problems.
IEEE Trans Evol Comput 22(6):894–908

	54.	 Zhan ZH, Li J, Cao J, Zhang J, Chung H, Shi YH (2013) Multiple
populations for multiple objectives: a coevolutionary technique for
solving multiobjective optimization problems. IEEE Trans Cybern
43(2):445–463

	55.	 Liu XF, Zhan ZH, Gao Y, Zhang J, Kwong S, Zhang J (2019)
Coevolutionary particle swarm optimization with bottleneck
objective learning strategy for many-objective optimization. IEEE
Trans Evol Comput 23(4):587–602

	56.	 Chen ZG, Zhan ZH, Lin Y, Gong YJ, Yuan HQ, Gu TL, Kwong
S, Zhang J (2019) Multiobjective cloud workflow scheduling: a
multiple populations ant colony system approach. IEEE Trans
Cybern 49(8):2912–2926

	57.	 Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HSH, Li Y (2015)
Cloud computing resource scheduling and a survey of its evolu-
tionary approaches. ACM Comput Surv 47(4):1–33

	58.	 Liu XF, Zhan ZH, Deng D, Li Y, Gu TL, Zhang J (2018) An
energy efficient ant colony system for virtual machine placement
in cloud computing. IEEE Trans Evol Comput 22(1):113–128

	59.	 Ma L, Gong M, Liu J, Cai Q, Jiao L (2014) Multi-level learning
based memetic algorithm for community detection. Appl Soft
Comput. 19:121–133

	60.	 Ma L, Li J, Lin Q, Gong M, Coello CAC, Ming Z (2019) Reliable
link inference for network data with community structure. IEEE
Trans Cybern 49(9):3347–3361

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCYB.2019.2933499
https://doi.org/10.1109/TCYB.2019.2933499
https://doi.org/10.1109/TCYB.2019.2933499
https://doi.org/10.1109/TNNLS.2019.2920887
https://doi.org/10.1109/TNNLS.2019.2920887
https://doi.org/10.1109/TCYB.2019.2927780
https://doi.org/10.1109/tevc.2019.2910721

	Large-scale evolutionary optimization: a survey and experimental comparative study
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 DE
	2.2 PSO
	2.3 DECC-G
	2.4 MLCC
	2.5 DECC-DG
	2.6 CCPSO2
	2.7 CSO
	2.8 SLPSO
	2.9 DMS-L-PSO

	3 Comparison studies on CEC2010
	4 Comparison Studies on CEC2013
	5 Future directions
	6 Conclusion
	Acknowledgements
	References

