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Abstract
In the last decades, global optimization problems are very common in many research fields of science and engineering and 
lots of evolutionary computation algorithms have been used to deal with such problems, such as differential evolution (DE) 
and particle swarm optimization (PSO). However, the algorithms performance rapidly decreases as the increasement of the 
problem dimension. In order to solve large-scale global optimization problems more efficiently, a lot of improved evolution-
ary computation algorithms, especially the improved DE or improved PSO algorithms have been proposed. In this paper, 
we want to analyze the differences and characteristics of various large-scale evolutionary optimization (LSEO) algorithms 
on some benchmark functions. We adopt the CEC2010 and the CEC2013 large-scale optimization benchmark functions 
to compare the performance of seven well-known LSEO algorithms. Then, we try to figure out which algorithms perform 
better on different types of benchmark functions based on simulation results. Finally, we give some potential future research 
directions of LSEO algorithms and make a conclusion.

Keywords  Differential evolution · Particle swarm optimization · Large-scale global optimization · Large-scale evolutionary 
optimization algorithms

1  Introduction

In recent years, global optimization is a very important field 
in science and engineering because it often appears in many 
real-world optimization problems [1, 2]. To deal with such 
problems, lots of evolutionary computation (EC) algorithms 
includes evolutionary algorithms (EAs) such as genetic algo-
rithm (GA) [3], differential evolution (DE) [4–7], and esti-
mation of distribution algorithm (EDA) [8, 9], and swarm 
intelligence (SI) such as particle swarm optimization (PSO) 
[10, 11], ant colony optimization (ACO) [12], and artificial 
bee colony (ABC) [13] have been proposed. These algo-
rithms have been shown great advantages on many numeri-
cal and combination optimization problems. However, most 
EC algorithms still suffer from the “curse of dimensionality” 
[14, 15], meaning that as the dimension of these problems 

increase, the performance of the EC algorithms will deterio-
rate rapidly. In real life, many optimization problems become 
more and more complex due to the increase of dimension. 
So, how to design and improve EC algorithms for large-scale 
optimization problems has attracted great attention from the 
scholars all over the world. This has aroused a popular and 
rapid developed research topic in EC community called 
large-scale evolutionary optimization (LSEO).

Generally speaking, there are two approaches that can 
improve the ability of EC to develop LSEO algorithms for 
solving large-scale optimization problems, namely, decom-
position and non-decomposition. According to such a classi-
fication, the typical LSEO algorithms can be categorized as 
decomposition algorithms based on cooperative co-evolution 
(CC) method and non-decomposition algorithms that all the 
variables are considered as a whole, as shown in Fig. 1.

In the decomposition approach, the intuitive idea is to 
decompose an entire large-scale optimization problem into 
a number of smaller subproblems which are easier to be 
solved, and then optimize all the subproblems to achieve 
the purpose of optimizing the large-scale optimization prob-
lem. This idea is also known as “divide-and-conquer” which 
was first appeared in René Descartes’ book A Discourse on 
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Method [16]. The CC method which has been proposed by 
Potter and De Jong [17] is a famous and common method 
to decompose large-scale optimization problems. They first 
used this method in GA, termed as cooperative co-evolution 
GA (CCGA) [17], and decomposed an n-dimensional prob-
lem into n 1-dimensional problems. Liu et al. [15] proposed 
the fast evolutionary programming (FEP) algorithm with 
CC method, termed as FEPCC. However, FEPCC performs 
poorly in nonseparable functions because it often traps in 
a local optimal. Van den Bergh and Engelbrecht [18] were 
the first to apply the CC method to PSO and developed 
CCPSO. Unlike CCGA that separates all dimensions sepa-
rately, the CCPSO decomposes an n-dimensional problem 
into k s-dimensional problems (s ≪ n). In order to improve 
the diversity of the population and avoid local optimal, Li 
and Yao [19] proposed an improved CCPSO variant called 
CCPSO2 based on a random grouping (RG) strategy which 
proposed by Yang et al. [20]. In addition to the RG strat-
egy, CCPSO2 also employs the Gaussian and Cauchy-based 
update rules with a local neighborhood topology to enhance 
the search ability. The CC method was also applied in DE 
to designed the DECC algorithm by Shi et al. [21]. They 
proposed a new decomposition strategy, called splitting-in-
half strategy, which decomposed the decision variables into 

two subcomponents with equally size and each was evolved 
by a separate subpopulation [21]. To further reduce the scale 
of the problem, Yang et al. [20] proposed a new algorithm 
called DECC-G, where G means grouping. Similar to CPSO, 
DECC-G also uses the RG strategy to decompose a large-
scale problem into several small-scale problems. Besides, 
DECC-G uses adaptive weighting for co-evolution among 
subproblems to improve the performance of the algorithm. 
However, DECC-G has a parameter which is difficult to be 
determined, that is, the size of the subproblems. In other 
word, the parameter is also called group size. To deal with 
this problem, multilevel cooperative co-evolution (MLCC) 
method was proposed by Yang et al. [22]. In MLCC, a set of 
possible group sizes are provided based on the RG strategy 
instead of using a fixed value. In addition to the RG strategy, 
various decomposition strategies combined with DE have 
been proposed, such as delta grouping strategy (DECC-D) 
[23], differential grouping (DG) strategy (DECC-DG) [24], 
and graph-based DG strategy (DECC-gDG) [25]. Moreo-
ver, Omidvar et al. [23] proposed a DECC-D variant called 
DECC-DML that self-adapted the group sizes. The develop-
ment roadmap of the decomposition algorithms based on CC 
method is illustrated as Fig. 2.
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There is no doubt that CC method is the most intuitive 
way to solve large-scale optimization problems and has 
achieved great success. However, CC method is highly sen-
sitive to the decomposition strategies and has poor perfor-
mance for nonseparable functions.

So, many researchers also considered the non-decom-
position approach to tackle large-scale optimization prob-
lems. Unlike the decomposition approach, this approach 
considers all the decision variables of large-scale optimi-
zation problems as a whole instead of decomposing them. 

In the non-decomposition approach, researchers often solve 
large-scale optimization problems by (1) self-adapting 
control parameters [26, 27], (2) designing new operators 
[28–30], (3) embedding local search strategy [31, 32], and 
(4) introducing structured population and migration strat-
egy [33–36]. Among the numerous EC algorithms, DE and 
PSO have more advantages than other algorithms because 
of their simplicity and efficiency. Therefore, many non-
decomposition strategies based on these two algorithms have 
been proposed. Herein, according to the algorithms listed in 

Fig. 2   The development 
roadmap of the decomposition 
algorithms based on CC method
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Fig. 1, we survey the LSEO algorithms based on the above 
four categories.

1.	 Firstly, on self-adapting control parameters, DE with 
landscape modality detection and a diversity archive 
(LMDEa) was proposed by Takahama and Sakai [26]. 
LMDEa can self-adapt the control parameters dynami-
cally by modality detection and shows competitive result 
for the large-scale optimization problems. In order to 
enhance a more well-balanced exploration and exploita-
tion ability, Kushida et al. [27] proposed an LMDEa var-
iant which introduced an idea based on ranking, called 
LMRDEa. In LMRDEa, we can control the parameters 
as well as mutation strategy by detecting the landscape 
modality.

2.	 Secondly, on designing new operators, Cheng and Jin 
proposed a competitive swarm optimizer (CSO) [28] and 
a social learning PSO (SLPSO) [29] for large-scale opti-
mization by designing new operators. In CSO, a pair-
wise competition mechanism is introduced to increase 
the population diversity and address premature conver-
gence. In SLPSO, a social learning mechanism is intro-
duced and each particle learns from any better particles 
instead of personal best and global best in the whole 
swarm. In addition, SLPSO also adopts a dimension-
dependent parameter control method to ease the burden 
of parameter settings. Yang et al. [30] proposed a mul-
tiple parents guided DE (MPGDE) algorithm for large-
scale optimization problems without using the decom-
position approach.

3.	 Thirdly, on embedding local search strategy, the local 
search strategy is introduced to improve the perfor-
mance of the EC algorithms. Zhao et al. [31] proposed 
a dynamic multi-swarm PSO with local search (DMS-L-
PSO). Not only do the particles exchange information by 
regrouping subswarms frequently to avoid trapping into 
the local optimal, but also the Quasi-Newton method is 
adopted to speed up the convergence in DMS-L-PSO. 
Similarly, Molina and Herrera [32] proposed an iterative 
hybridization of DE algorithm with local search to solve 
large-scale optimization problems, called IHDELS.

4.	 Fourthly, on introducing structured population and 
migration strategy, many researchers adopt multi-
population strategies which can achieve parallelization 
and distribution to deal with large-scale optimization 
problems and some appropriate population migration 
strategies are introduced to further improve the algo-
rithms. Ge et al. [33] proposed a distributed DE based 
on adaptive mergence and split (DDE-AMS) for large-
scale optimization problems. DDE-AMS designs a novel 
mergence and split operators to make full use of popu-
lation resource which can improve the performance of 
large-scale optimization problems. Weber et al. [34] pro-

posed a shuffle or update parallel DE (SOUPDE) which 
characterized by multi-population to avoid premature 
convergence. SOUPDE adopts a shuffling operation by 
randomly rearranging the individuals over the subpopu-
lations and updating the parameters of the subpopula-
tions. Similarly, Wang et al. [35] proposed a parallel DE 
variant for solving large-scale optimization problems, 
which called GOjDE. Moreover, Liang and Suganthan 
[36] proposed a dynamic multi-swarm PSO (DMS-
PSO), which enhanced the diversity of population by 
constantly changing the neighborhood structure.

Overall, the above LSEO algorithms have their own advan-
tages and disadvantages. It is no doubt that no algorithm can 
perform best on every kind of problems because of the “no free 
lunch” theorem [37]. In order to further understand the perfor-
mance of different algorithms for different kinds of large-scale 
optimization problems, we choose seven representative LSEO 
algorithms (i.e., DECC-G, MLCC, DECC-DG, CCPSO2, 
CSO, SLPSO, and DMS-L-PSO) for comparison on some 
large-scale optimization functions, including CEC2010 test 
suits [38] and CEC2013 test suits [39]. Among the seven algo-
rithms, there are four decomposition algorithms based on CC 
framework, including random grouping strategy (DECC-G, 
MLCC, and CCPSO2) and grouping strategy based on vari-
able relationship (DECC-DG), and three non-decomposition 
algorithms which all the variables are considered as a whole. 
Among three non-decomposition algorithms, two algorithms 
adopt new operators (CSO and SLPSO), while the other adopts 
the operator of standard PSO (DMS-L-PSO). However, DMS-
L-PSO adopts multi-population strategy and introduces local 
search strategy. We try to investigate and find out whether 
these seven algorithms have any preferences and difficulties 
on some kinds of test functions. Therefore, in this paper, we 
first list the experimental results of each algorithm on test 
suits through experiments. Then we analyze and investigate 
the performance of seven algorithms on different kinds of the 
problems based on experimental results. Finally, the conclu-
sion and the discussion are presented.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the seven LSEO algorithms which are 
used to compare in this paper. Sections 3 and 4 present the 
experimental results of the seven algorithms on CEC2010 test 
suits and CEC2013 test suits respectively. The future research 
directions of LSEO algorithms are discussed in Sect. 5. In the 
end, Sect. 6 summarizes and concludes this paper.

2 � Preliminaries

In this section, we are going to briefly introduce the 
LSEO algorithms which are used for comparison. Due to 
the simplicity and efficiency of DE and PSO, the LSEO 
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algorithms we use for comparison are all variants of DE 
and PSO. Therefore, we first present the standard DE and 
PSO algorithms, and then briefly review the seven LSEO 
algorithms for experimental comparative study.

2.1 � DE

DE was first proposed by Storn and Price [4] as a popula-
tion-based algorithm to search for the potential solutions. 
In initialization, NP individuals in a population P = {xi, 
i = 1, 2, …, NP} are randomly generated within a search 
space, where i is the individual index. Each individual 
i refer as xi = {xi1, xi2, …, xiD}, where D is the problem 
dimension.

After initializing the population, the evolutionary process 
is carried out. Generally speaking, there are three operators 
during the evolutionary process, namely mutation, crossover, 
and selection. In mutation operator, each individual i create 
a mutation vector vi = {vi1, vi2, …, viD}. So far, many muta-
tion strategies have been proposed in the literature. Among 
them, two widely used mutation strategies in DE are listed 
as follows:
DE/rand/1:

DE/best/1:

where parameter r1, r2, and r3 are distinct integer and also 
different from the index i which are randomly selected 
within [1, NP]; xbest is the global best individual found so far 
and parameter F is the amplification factor which controls 
the differential information between two random individuals.

After mutation, DE performs the crossover operation, 
which create a trial vector ui = {ui1, ui2, …, uiD} for each 
individual from vector xi and vi. Crossover operation can be 
formulated as:

where rand(0, 1) is a uniform value within [0, 1]; j denotes 
the dimension; CR is the crossover rate and jrand is an integer 
randomly selected from [1, D] which is used to make sure 
that at least one dimension of the ui is different form xi.

Finally, selection operation is performed. DE choose the 
better individual into the next generation by comparing the 
fitness of xi and ui. For minimization problems, the selection 
operation can be formulated as:

(1)vi = xr1 + F ⋅ (xr2 − xr3)

(2)vi = xbest + F ⋅ (xr2 − xr3)

(3)uij =

{
vij, if rand(0,1) ≤ CR or j = jrand
xij, otherwise

where f() is the fitness function of the problems.

2.2 � PSO

PSO was introduced by Kennedy and Eberhart [10, 11] in 
1995, which used a swarm of particles to simulate the swarm 
intelligence behaviors of birds flocking to find the optimal 
solution. In PSO, each particle i has three vectors, position 
vector xi = {xi1, xi2, …, xiD}, velocity vector vi = {vi1, vi2, 
…, viD} and personal historical best position vector pbesti = 
{pi1, pi2, …, piD}, where D is the dimensions of the problem. 
In the initialization, the position and velocity of each particle 
are randomly set within the corresponding ranges. The per-
sonal historical best position vector pi is set to xi. The best 
particle’s position vector of the whole swarm by calculating 
the fitness values of all the particles is denoted as the global 
best position vector gbest = {gi1, gi2, …, giD}.

During the evolutionary process, the velocity and the 
position of the particle i on dimension j are updated as 
follows:

where ω is the inertia weight [40], c1 and c2 are the accel-
eration coefficients [11], and rand1 and rand2 are the two 
uniformly distributed random numbers which are generated 
within [0, 1] independently for the dimension j; pbestij is the 
jth dimension of the best position found by particle i so far. 
The gbestj is the jth dimension of the best position found by 
all particles so far.

Generally, PSO algorithms are divided into two version, 
global-version PSO (GPSO) and local-version PSO (LPSO) 
[11]. They use global best particle gbest to guide all parti-
cles to update their velocity and position in GPSO while 
use local best particle lbest in LPSO. Therefore, in LPSO, 
neighborhood is constructed with a small group of particles 
and lbest is the best position found by all particles in the 
neighborhood so far.

2.3 � DECC‑G

The DECC-G algorithm was introduced by Yang et al. 
[20]. which is one of the earliest algorithms to apply DE 
with CC method. This algorithm attempts to decompose 
a large-scale optimization problem into several subprob-
lems which are much smaller than the whole problem 
by random grouping. In other words, an n-dimensional 

(4)xi =

{
ui, if f (ui) ≤ f (xi)

xi, otherwise

(5)
vij = � ⋅ vij + c1 ⋅ rand1j ⋅ (pbestij − xij) + c2 ⋅ rand2j ⋅ (gbestj − xij),

(6)xij = xij + vij
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problem vector is decomposed into m (m ≪ n) s-dimen-
sional subcomponents, and random grouping means that 
each variable has an equal chance to be assigned to any of 
the subcomponents. After that, we use a variant of DE, the 
Self-adaptive Neighborhood Search DE (SANSDE) [41] to 
optimize all the subcomponents independently. Obviously, 
it is much more efficient and effective to optimize sub-
components than to optimize an entire large-scale prob-
lem. When all the subcomponents are optimized, they are 
combined again to construct the solution vector. It should 
be noted that in DECC-G, the grouping structure will be 
changed dynamically, that is, the random grouping opera-
tion should be carried out before each generation starts. 
The motivation behind this is to increase the chance of 
optimizing interacting variables together.

Furthermore, an adaptive weighting strategy has been 
proposed in DECC-G. Some interdependent subcompo-
nents can coadaptation by adaptive weighting strategy. A 
weight is applied to each of the subcomponents after the 
evolution process in each generation and all the weights 
will construct a weight vector. Then, the weight vector will 
be evolved with standard DE algorithm.

2.4 � MLCC

In order to overcome the shortcomings of DECC-G, Yang 
et al. [22] proposed a new framework called multilevel 
cooperative coevolution (MLCC) for large-scale optimi-
zation problems. In DECC-G, one of major disadvantages 
is that it has a parameter which is difficult to determine, 
called the group size and this parameter has a great impact 
on the performance of different types of problems. The 
small group size is good for separable problems while 
large group size is proper for nonseparable problems. So, 
MLCC was proposed to improve DECC-G from the per-
spective of framework by assigning a set of group sizes.

In MLCC, several problem decomposers with different 
group sizes are designed to construct a decomposer pool. 
Each decomposer in the pool represents different interac-
tion levels between variables. At the beginning of each 
generation, MLCC need to select a problem decomposer 
from the decomposer pool based on their probability. And 
then, similar to DECC-G, random grouping strategy with 
the selected decomposer and evolving each subcompo-
nent with SANSDE will be carried out. At the end of each 
generation, the performance growth rate of the selected 
decomposer will be calculated and updated. Note that, 
each decomposer in the pool will record the performance 
growth rate. If the performance growth rate is high, the 
probability of this decomposer being selected is high; on 
the contrary, if the performance growth rate is low, this 
decomposer has less chance to be selected. With such 

strategy, MLCC is able to self-adapt to select decomposer 
with proper group size according to the problem features 
and the evolution state. The details of the MLCC frame-
work can be referred to [22].

2.5 � DECC‑DG

In order to further explore the interaction between the 
decision variables, Omidvar et al. [24] proposed an auto-
matic decomposition strategy called differential grouping. 
Similarly, this decomposition strategy is also applied in 
CC method and combined with DE algorithm, which is 
called DECC-DG. Unlike DECC-G and MLCC which use 
random grouping without the prior knowledge of the prob-
lems, DECC-DG decompose the large-scale optimization 
problems by differential grouping which can detect the 
interaction between decision variables, so that the inter-
acting variables are assigned to the same subcomponents 
and the interdependence between subcomponents is kept 
to a minimum.

Differential grouping is an effective way to identify 
interaction between two decision variables and group the 
interacting variables together. We can judge whether the 
two decision variables xi and xj are interaction by the fol-
lowing formula:

where a, b1, and b2 are three arbitrary values; b1 is not equal 
to b2 and δ ≠ 0; f() is the fitness function of the problems. If 
(7) is satisfied, xi and xj can be considered to be interaction, 
and these two decision variables can be grouped in the same 
subcomponent. In other words, if xi and xj are interacting 
variables, the value of function is change by add a perturba-
tion to xi for different values of xj.

In fact, DECC-DG is similar to some DECC algorithm 
variants, except that before the evolutionary process starts, 
the differential grouping strategy is carried out to decom-
pose large-scale problems into several subcomponents. 
Later, each subcomponents will be optimized with SAN-
SDE algorithm.

2.6 � CCPSO2

The CCPSO2 algorithm was proposed on the basis of 
CCPSO algorithm by Li and Yao [19]. CCPSO algorithm 
is similar to DECC-G algorithm which incorporate random 
grouping strategy and adaptive weighting strategy. The 
only difference is in the selection of evolutionary algo-
rithm. CCPSO uses standard PSO algorithm while DECC-
G uses SANSDE algorithm. In order to further improve 

(7)
Δ�,xi

f (x)|xi=a,xj=b1 ≠ Δ�,xi
f (x)|xi=a,xj=b2 ,

Δ�,xi
f (x) = f (… , xi + �,…) − f (… , xi,…)
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the performance and reliability of CCPSO, CCPSO2 was 
proposed which adopted several new strategy.

In CCPSO2, Li and Yao improve the standard PSO 
algorithm by introducing Gaussian and Cauchy distribu-
tions, and remove the adaptive weighing strategy which 
is adopted in CCPSO. Moreover, an lbest ring topology 
structure is adopted in CCPSO2 to increase the diversity 
of the population and avoid convergence prematurely. For 
the novel PSO model, the velocity vector does not need to 
be used, but instead, it generate the new particle positions 
by using Gaussian and Cauchy distributions which can 
sampling around the personal best and the neighborhood 
best. Each particle position xi is updated by:

where C(1) and N(0, 1) is the number that is generated based 
on Cauchy distribution and Gaussian distribution, and their 
standard deviation are both set | yij − yij

’ |; j denotes the dimen-
sion; rand is a random number generated uniformly from [0, 
1]; p is a specified probability; pbestij denotes the jth dimen-
sion of the personal best of the ith particle; lbestij denotes 
the jth dimension of the local neighborhood best of the ith 
particle. The local neighborhood best is chosen among three 
particles (the current ith particle and its immediate left and 
right neighbors) based on ring topology structure.

Besides, similar to MLCC, a different group size in a 
set can be randomly chosen at each generation instead of 
using a fixed group size in CCPSO2. However, CCPSO2 
uses a simpler approach. If the global best fitness value 
does not improve after a generation, a new group size from 
the set is randomly chosen again, otherwise, the group size 
remains unchanged.

2.7 � CSO

In order to achieve a good balance between exploration 
and exploitation and address premature convergence, 
Cheng and Jin [28] proposed a novel competitive swarm 
optimizer (CSO) based on PSO for large-scale optimiza-
tion. In consideration of the fact that most PSO variant 
update particles based on the global best position gbest 
and the personal best position pbest which lead to conver-
gence prematurely, the update of particles in CSO is driven 
by a pairwise competition mechanism between two parti-
cles instead of using gbest and pbest. This mechanism can 
address premature convergence and maintain the diversity 
of the population because each particle has a chance to 
learn from any particles.

In CSO, all the particles are randomly allocated in pairs 
in each generation. Assume that the swarm size is m which 

(8)xij =

{
yij + C(1)|pbestij − lbestij|, if rand ≤ p

y
�

ij
+ N(0, 1)|pbestij − lbestij|, otherwise

is an even number, so there are m/2 pairs of particles. In 
each pairs, a pairwise competition is carried out between 
two particles. The winner (the particle which has better 
fitness value) goes to the next generation directly while 
the loser (the particle which has worse fitness value) will 
update its velocity and position by learning from the win-
ner as follows:

where r1, r2, and r3 are three random numbers generated uni-
formly from [0, 1]; xwj, xlj and vwj, vlj denote the jth dimen-
sion of the position and velocity of the winner and loser 
respectively; x̄j denotes the mean position value of the jth 
dimension of all particles in current swarm; � is a parameter 
that controls the influence of x̄j .Therefore, only half of the 
particles position in swarm are updated in each generation 
in CSO which can save some fitness evolution.

2.8 � SLPSO

Cheng and Jin [29] proposed a another new PSO variant 
called Social Learning PSO (SLPSO), where neither the per-
sonal best position pbest nor global best position gbest will 
be used to update the particle position like CSO. In SLPSO, 
each particle learns from any better particles in the current 
swarm instead of learning from historical best particle posi-
tion. The social learning mechanism make the particles learn 
from each other dynamically and interactively which can 
maintain the diversity of the swarm and avoid premature 
convergence.

At the beginning of each generation, sort all the parti-
cles in the swarm according to their fitness value. Then, 
each particle, except for the best one, will learn from the 
particles that better than itself. Note that, if the number of 
the better particles is more than one, select one of them ran-
domly. Assume that the current updated particle is i, and 
the selected particle for learning is k. The learning process 
is shown as follows:

where j is the dimension of the vector; r1, r2, and r3 are three 
random numbers generated uniformly from [0, 1]; xij, xkj and 
vij, vkj denote the jth dimension of the position vector and 
velocity vector of particle i and k respectively; x̄j denotes the 
mean position value of the jth dimension of all particles in 

(9)vlj = r1vlj + r2(xwj − xlj) + �r3(xj − xlj)

(10)xlj = xlj + vlj

(11)vij = r1vij + r2(xkj − xij) + �r3(xj − xij)

(12)xij =

{
xij + vij, if pi(t) ≤ Pi

xij, otherwise
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current swarm; ε is a parameter that controls the influence of 
x̄j. In (12), Pi is called the learning probability which control 
whether the particles are updated or not. Each particle have 
their own learning probability. Generally speaking, the bet-
ter the fitness value of a particle is, the lower the learning 
probability will be. pi(t) is a randomly generated number 
from [0, 1].

In addition, SLPSO adopts a dimension-dependent param-
eter control method in order to ease the burden of parameter 
settings.

2.9 � DMS‑L‑PSO

DMS-L-PSO is a dynamic multi-swarm particle swarm opti-
mizer with local search which is proposed by Zhao et al. [31]. 
In order to increase the diversity of population, the population 
is divide into small sized swarms and each subswarm evolved 
independently in DMS-L-PSO. In addition, every R (called 
regrouping period) generation, the population is regrouped 
randomly which can dynamically change the subswarms 
structure and exchange the information among the particles 
to enhance the diverstiy. At the same time, a new PSO variant 
is introduced in DMS-L-PSO. In the new PSO variant, when 
updating the positions of the particles, half of the dimension 
are the same as its personal best position pbest and the other 
half of the dimensions are updated as follows:

where ω is the inertia weight fixed to be 0.729; c1 and c2 
is the accelerate coefficient fixed to be 1.49445; r1 and r2 
are two random value from [0, 1]; lbest is the best particle 
position in the current subswarm; xij and vij represent the jth 
dimension of position vector and velocity vector of particle 
i respectively.

In order to speed up the convergence of the population 
and give a better search in the better local areas, local search 
is introduced in DMS-L-PSO. Every L (called local search 
period) generation, the personal best position pbest of five par-
ticles will be randomly chosen to do the local search by Quasi-
Newton method. Then, the pbest which is nearest (according 
to Euclidean distance) to the refined solution will be replaced 
with the refined solutions if the refined solution is better.

Besides, when 90% of maximum fitness evaluations have 
been used, all the particles in subswarms are reconstituted into 
one population. Then, the global PSO algorithm is adopted to 
continue optimizing the population until the fitness evaluations 
is exhausted.

(13)
vij = � ⋅ vij + c1 ⋅ r1 ⋅ (pbestij − xij) + c2 ⋅ r2 ⋅ (lbestij − xij)

(14)xij = xij + vij

3 � Comparison studies on CEC2010

In this section, the comparisons experiments of the seven 
LSEO algorithms which mentioned in Sect. 1 on CEC2010 
test suits are carried out. The CEC2010 test suits contain 
20 test functions. These functions can be classified into the 
following five groups.

1.	 Separable functions (f1 − f3).
2.	 Single-group m-nonseparable functions (f4 − f8).
3.	 (n/2 m) group m-nonseparable functions (f9 − f13).
4.	 (n/m) group m-nonseparable functions (f14 − f18).
5.	 Nonseparable functions (f19 − f20).

where n represents the dimension of the problem and m 
represents the number of variables in each nonseparable sub-
component. The specific form and characteristics of these 
functions can be referred to [38].

To make a fair comparison, in our experiments, the 
dimensions of the problem n are set as 1000 and the maxi-
mum number of function evaluations (MaxFEs) is set as 3e6 
for all 7 LSEO algorithms. For the parameter setting of all 
the algorithms, parameters are set according to their original 
papers. In addition, to make the results more convincing, all 
the algorithms need to run 25 times independently for sta-
tistics and calculate the mean results and standard deviation.

The experimental results of 7 LSEO algorithms on 
CEC2010 test suites are shown in Table 1. For clarity, the 
best results for each function are highlighted in boldface. 
In addition, we count the number of functions that perform 
the best for each algorithm and show them on the last line 
of the results. From this statistical data, it can be seen that 
among the 20 test functions, CSO has the best performance 
on seven functions, DECC-DG and SLPSO both have the 
best performance on five functions, while other algorithms 
have poor performance. MLCC, DECC-G, CCPSO2 and 
DMS-L-PSO have the best performance on only 2, 1, 0 and 
0 functions respectively. However, as can be seen from the 
specific experimental results in Table 1:

For the first group of three separable functions (f1 − f3), 
MLCC performs better than other algorithms except f3, espe-
cially on f1. MLCC can converge to the optimal value on 
f1. This may benefit from the multi-level grouping strategy 
in MLCC algorithm and this strategy has great advantages 
in resolving the separable functions, but on the more com-
plex separable function f3, CSO performs better than other 
algorithms.

For the second group of 15 partially-separable functions 
(f4 − f18), DECC-DG, CSO and SLPSO perform better than 
other algorithms. On the partially-separable functions with 
fewer groups (f4 − f13), the performance of CSO and SLPSO 
are better than that of DECC-DG except f7 and f12 (unimodal 
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Table 1   Experimental results of 7 LSEO algorithms on cec2010 test suits

Fun DECC-G MLCC DECC-DG CCPSO2
Mean ± std Mean ± std Mean ± std Mean ± std

f1 1.36E−14 ± 2.22E−15 0 ± 0 1.61E+01 ± 1.89E+01 1.64E+00 ± 2.28E+00
f2 4.88E+01 ± 1.31E+01 3.18E−01 ± 5.43E−01 4.47E+03 ± 2.09E+02 7.49E+00 ± 1.74E+00
f3 1.71E+00 ± 3.33E−01 8.17E−02 ± 3.11E−01 1.67E+01 ± 3.44E−01 8.89E−03 ± 2.10E−03
f4 1.25E+13 ± 2.85E+12 1.54E+13 ± 6.57E+12 3.82E + 12 ± 6.75E + 11 1.55E + 12 ± 7.41E + 11
f5 2.60E + 08 ± 8.16E + 07 3.13E + 08 ± 1.09E + 08 1.54E + 08 ± 1.90E + 07 4.53E + 08 ± 1.18E + 08
f6 4.76E + 06 ± 6.97E + 05 1.61E + 07 ± 4.61E + 06 1.64E + 01 ± 1.92E−01 1.92E + 07 ± 1.07E + 06
f7 8.39E + 06 ± 7.56E + 06 1.81E + 06 ± 2.85E + 06 5.81E + 03 ± 2.66E + 03 1.70E + 08 ± 3.23E + 08
f8 4.72E + 07 ± 3.08E + 07 3.76E + 07 ± 3.27E + 07 3.94E + 07 ± 2.98E + 07 3.31E + 07 ± 2.97E + 07
f9 2.54E + 08 ± 1.01E + 07 1.19E + 08 ± 1.44E + 07 5.95E + 07 ± 9.21E + 06 1.14E + 08 ± 3.60E + 07
f10 9.22E + 03 ± 4.37E + 02 2.98E + 03 ± 3.70E + 02 4.55E + 03 ± 1.21E + 02 5.71E + 03 ± 1.03E + 03
f11 2.52E + 01 ± 1.18E + 00 1.96E + 02 ± 3.30E + 00 1.13E + 01 ± 5.09E−01 1.98E + 02 ± 2.74E−01
f12 3.91E + 04 ± 5.81E + 03 3.60E + 04 ± 6.49E + 03 2.53E + 03 ± 3.14E + 02 2.78E + 04 ± 7.58E + 03
f13 3.13E + 03 ± 1.15E + 03 2.37E + 03 ± 1.64E + 03 4.86E + 03 ± 2.73E + 03 1.28E + 03 ± 1.82E + 02
f14 5.77E + 08 ± 2.18E + 07 3.24E + 08 ± 1.97E + 07 3.40E + 08 ± 1.85E + 07 3.22E + 08 ± 1.46E + 08
f15 9.79E + 03 ± 2.74E + 03 7.17E + 03 ± 1.14E + 03 5.84E + 03 ± 6.02E + 01 1.02E + 04 ± 8.90E + 02
f16 8.50E + 01 ± 1.18E + 01 3.81E + 02 ± 4.93E + 01 7.23E−13 ± 5.50E−14 3.97E + 02 ± 4.60E−01
f17 1.63E + 05 ± 9.60E + 03 1.56E + 05 ± 1.03E + 04 4.18E + 04 ± 1.14E + 03 1.41E + 05 ± 5.81E + 04
f18 9.00E + 03 ± 1.09E + 03 6.83E + 03 ± 5.99E + 03 1.51E + 10 ± 1.86E + 09 2.87E + 03 ± 3.73E + 02
f19 7.33E + 05 ± 4.61E + 04 1.31E + 06 ± 1.05E + 05 1.71E + 06 ± 1.04E + 05 1.41E + 06 ± 8.90E + 04
f20 3.47E + 03 ± 2.48E + 02 2.03E + 03 ± 1.88E + 02 6.17E + 10 ± 6.59E + 09 1.97E + 03 ± 2.40E + 02
The number of 

best result
1 2 5 0

Fun CSO SLPSO DMS-L-PSO
Mean ± Std Mean ± Std Mean ± Std

f1 4.50E−12 ± 5.94E−13 8.73E−18 ± 3.30E−18 4.88E + 09 ± 1.34E + 08
f2 7.42E + 03 ± 2.86E + 02 1.93E + 03 ± 1.12E + 02 6.17E + 03 ± 1.87E + 02
f3 2.60E−09 ± 2.62E−10 1.88E + 00 ± 3.30E−01 1.74E + 01 ± 5.26E−02
f4 7.25E + 11 ± 1.23E + 11 2.99E + 11 ± 7.16E + 10 3.90E + 13 ± 4.40E + 12
f5 1.15E + 07 ± 1.62E + 06 3.17E + 07 ± 6.21E + 06 1.04E + 08 ± 7.83E + 06
f6 8.21E−07 ± 2.68E−08 2.08E + 01 ± 2.63E + 00 1.66E + 06 ± 1.46E + 05
f7 2.01E + 04 ± 3.86E + 03 6.49E + 04 ± 5.60E + 04 2.42E + 10 ± 1.63E + 09
f8 3.87E + 07 ± 6.81E + 04 7.81E + 06 ± 1.56E + 06 1.43E + 08 ± 3.42E + 07
f9 7.03E + 07 ± 5.73E + 06 3.30E + 07 ± 4.46E + 06 5.79E + 09 ± 2.02E + 08
f10 9.60E + 03 ± 7.67E + 01 2.56E + 03 ± 2.17E + 02 5.88E + 03 ± 2.48E + 02
f11 4.02E−08 ± 5.12E−09 2.32E + 01 ± 2.10E + 00 1.82E + 02 ± 1.38E + 00
f12 4.37E + 05 ± 6.22E + 04 1.75E + 04 ± 9.07E + 03 2.84E + 06 ± 1.10E + 05
f13 6.29E + 02 ± 2.32E + 02 9.59E + 02 ± 3.74E + 02 9.68E + 07 ± 2.62E + 07
f14 2.49E + 08 ± 1.53E + 07 8.41E + 07 ± 6.31E + 06 5.02E + 09 ± 3.43E + 08
f15 1.01E + 04 ± 5.23E + 01 1.12E + 04 ± 8.65E + 01 6.21E + 03 ± 2.76E + 02
f16 5.89E−08 ± 5.61E−09 2.51E + 01 ± 1.16E + 01 3.39E + 02 ± 9.52E−01
f17 2.20E + 06 ± 1.55E + 05 9.00E + 04 ± 1.58E + 04 2.67E + 06 ± 1.54E + 05
f18 1.73E + 03 ± 5.22E + 02 2.77E + 03 ± 8.33E + 02 2.82E + 09 ± 5.30E + 08
f19 1.01E + 07 ± 5.64E + 05 5.10E + 06 ± 7.05E + 05 1.63E + 07 ± 6.70E + 05
f20 1.05E + 03 ± 1.49E + 02 1.85E + 03 ± 2.59E + 02 4.10E + 09 ± 7.56E + 08
The number of best result 7 5 0
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function). This may be because DECC-DG consumes a lot 
of unnecessary function evaluations (FEs) for differential 
grouping in solving simple partially-separable functions, 
resulting in less FEs for evolution. While on the partially-
separable functions with more groups (f14 − f18), such as f15, 
f16, f17, DECC-DG performs better than other algorithms 
thanks to the differential grouping strategy. In this kind of 
partially-separable functions which is more difficult to solve, 
appropriate grouping strategy like differential grouping can 
get better performance.

For the third group of two nonseparable functions 
(f19 − f20), DECC-G performs the best on f19 (unimodal 
function) while CSO performs the best on f20 (multimodal 
function). DECC-DG performs poorly on nonseparable 
functions.

In addition, we rank the seven algorithms on each func-
tion according to their experimental results, as shown in 
Table 2. From the ranking results, SLPSO performs the best 
among the seven algorithms and CSO is ranked the second. 
For the decomposition algorithms based on CC framework, 
DECC-DG performs the best. DMS-L-PSO is ranked the 
last and this may be caused by the evolution operator of this 
algorithm which is the same as the standard PSO.

In order to further study the evolutionary process of 
different algorithms on CEC2010 test suits, we select six 
representative functions f1, f4, f8, f11, f16 and f20 and draw 

the convergence curves of the seven algorithms on these six 
functions, as shown in Fig. 3.

From Fig. 3a, we can see that only MLCC and SLPSO 
have a fast convergence speed and converge to better solu-
tions. However, SLPSO will stagnate at the later stage of 
evolution and only MLCC can converge to the optimal value 
on f1. On partially-separable functions f4 and f8, as shown in 
Fig. 3b, c, SLPSO is better than other algorithms in terms of 
convergence speed and final results. On partially-separable 
function f11, as shown in Fig. 3d, only CSO can converge 
continuously and rapidly, while other algorithms fall into 
local optimal prematurely. Besides, on partially-separable 
function f16, only CSO and DECC-DG can converge to bet-
ter solutions quickly and the final result of DECC-DG is 
better than that of CSO. Finally, from Fig. 3f, we can see 
the convergence curves of seven algorithms on nonsepara-
ble function f20. Except DECC-DG and DMS-L-PSO, other 
algorithms have the similar performance. They can find 
the better solutions and have faster convergence speed than 
DECC-DG and DMS-L-PSO.

To sum up, the performance of CSO and SLPSO are 
better than other decomposition algorithms based on CC 
framework (DECC-G, MLCC, DECC-DG, and CCPSO2). 
The evolution operators of these two algorithms are differ-
ent from that of the standard PSO. The evolution operator 
of CSO is based on competitive relationship, while SLPSO 

Table 2   Ranking results of 7 
LSEO algorithms on cec2010 
test suits

Fun DECC-G MLCC DECC-DG CCPSO2 CSO SLPSO DMS-L-PSO
Rank Rank Rank Rank Rank Rank Rank

f1 3 1 6 5 4 2 7
f2 3 1 5 2 7 4 6
f3 4 3 6 2 1 5 7
f4 5 6 4 3 2 1 7
f5 5 6 4 7 1 2 3
f6 5 6 2 7 1 3 4
f7 5 4 1 6 2 3 7
f8 6 3 5 2 4 1 7
f9 6 5 2 4 3 1 7
f10 6 2 3 4 7 1 5
f11 4 6 2 7 1 3 5
f12 5 4 1 3 6 2 7
f13 5 4 6 3 1 2 7
f14 6 4 5 3 2 1 7
f15 4 3 1 6 5 7 2
f16 4 6 1 7 2 3 5
f17 5 4 1 3 6 2 7
f18 5 4 7 3 1 2 6
f19 1 2 4 3 6 5 7
f20 5 4 7 3 1 2 6
Ave. rank 4.6 3.9 3.65 4.15 3.15 2.6 5.95
Final rank 6 4 3 5 2 1 7
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is based on social learning. Therefore, the good evolution 
operator will greatly improve the performance of LSEO 
algorithms. The poor performance of DMS-L-PSO may be 
because it still adopts the evolution operator of the stand-
ard PSO. For the decomposition algorithms based on CC 
framework, DECC-DG has the best overall performance, 
especially in solving partially-separable functions. However, 
DECC-DG performs worse on separable and nonseparable 
functions than MLCC and CCPSO2 which are based on 
random grouping strategy, which may be caused by exces-
sive consumption of FEs by differential grouping strategy. 
Moreover, MLCC performs better than other algorithms in 
solving simple separable functions.

4 � Comparison Studies on CEC2013

To further compare the ability of seven algorithms to solve 
the large-scale optimization problems, we adopted another 
large-scale benchmark function suites—CEC2013 test suites 
to test the performance of the algorithms. The CEC2013 
test suites are more complex and more difficult to solve than 
CEC2010, so they can better reflect the performance of the 
algorithms to solve the large-scale optimization problems. 

The CEC2013 test suits contain 15 test functions. These test 
functions can be classified into the following four groups.

1.	 Separable functions (f1 − f3).
2.	 Partially-separable functions (f4 − f11).
3.	 Overlapping functions (f12 − f14).
4.	 Nonseparable functions (f15).

The specific form and characteristics of these functions 
can be referred to [38].

Similar to the experiments on CEC2010 test suits, in this 
experiments, the dimensions of the problem n are also set as 
1000 (Note: the dimensions of f13 and f14 are set as 905) and 
the maximum number of function evaluations (MaxFEs) is 
also set as 3e6 for all 7 LSEO algorithms.

The experimental results of seven LSEO algorithms on 
CEC2013 test suites are shown in Table 3. For clarity, the 
best results for each function are highlighted in boldface. 
Similarly, we count the number of functions that perform 
the best for each algorithm and show them on the last line 
of the results. From this statistical data, it can be seen that 
SLPSO has the best performance on 6 out of 15 test func-
tions, more than other algorithms. While MLCC, CCPSO2, 
CSO, DECC-DG, DMS-L-PSO, and DECC-G have the best 
performance of only 4, 2, 2, 1, 1 and 0 functions respectively. 

(d) (e) (f)

(a) (b) (c)

Fig. 3   Convergence curves of 7 algorithms on 6 representative functions from cec2010
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However, as can be seen from the specific experimental 
results in Table 3:

For the first group of three separable functions (f1 − f3), 
MLCC still shows great advantage and performs better than 
other algorithms.

For the second group of eight partially-separable func-
tions (f4 − f11), CSO and SLPSO perform better than other 
algorithms. SLPSO performs the best on 4 functions (f4, 
f5, f7, f8). Although CSO performs not as well as SLPSO 
on these functions, it is not much different from SLPSO in 
terms of results. CSO performs the best on f9. Similar to the 

experimental results on CEC2010, DECC-DG performs the 
best on the complex partially-separable function f11.

For the third group of three overlapping functions 
(f12 − f14), it is also the case that CSO and SLPSO perform 
better than other algorithms. While the performance of 
DECC-DG and DMS-L-PSO are very poor.

For the last nonseparable function (f15), the decom-
position algorithms based on CC framework (DECC-G, 
MLCC, DECC-DG, and CCPSO2) performs better than 
the non-decomposition algorithms (CSO, SLPSO, and 
DMS-L-PSO).

Table 3   Experimental results of 7 algorithms on cec2013 test suits

Fun DECC-G MLCC DECC-DG CCPSO2
Mean ± std Mean ± std Mean ± std Mean ± std

f1 2.16E−12 ± 1.03E−12 8.10E−26 ± 1.62E−25 1.25E + 03 ± 1.78E + 03 5.26E + 00 ± 1.62E + 00
f2 4.90E + 01 ± 2.25E + 01 8.29E + 00 ± 5.58E + 00 1.28E + 04 ± 4.62E + 02 1.24E + 01 ± 1.00E + 00
f3 2.01E + 01 ± 2.27E−03 2.00E + 01 ± 1.65E−03 2.14E + 01 ± 1.52E−02 2.00E + 01 ± 4.00E−05
f4 1.42E + 11 ± 6.49E + 10 8.76E + 10 ± 2.85E + 10 5.24E + 10 ± 3.36E + 10 1.61E + 10 ± 7.64E + 09
f5 7.53E + 06 ± 1.61E + 06 1.02E + 07 ± 2.09E + 06 5.82E + 06 ± 4.39E + 05 1.70E + 07 ± 5.15E + 06
f6 1.06E + 06 ± 5.82E + 02 1.05E + 06 ± 3.67E + 03 1.06E + 06 ± 9.04E + 02 1.05E + 06 ± 9.50E + 03
f7 3.98E + 08 ± 3.03E + 08 4.30E + 08 ± 2.18E + 08 8.35E + 08 ± 7.66E + 08 1.16E + 08 ± 8.71E + 07
f8 2.94E + 15 ± 1.29E + 15 4.59E + 15 ± 3.71E + 15 4.59E + 15 ± 5.25E + 14 6.20E + 14 ± 5.84E + 14
f9 5.97E + 08 ± 1.21E + 08 8.98E + 08 ± 2.26E + 08 5.00E + 08 ± 2.44E + 07 3.18E + 09 ± 6.06E + 08
f10 9.30E + 07 ± 5.53E + 05 9.22E + 07 ± 3.84E + 05 9.46E + 07 ± 3.47E + 04 9.37E + 07 ± 4.40E + 05
f11 5.90E + 10 ± 4.91E + 10 1.20E + 11 ± 4.46E + 10 2.35E + 10 ± 1.45E + 10 9.30E + 11 ± 8.16E + 09
f12 3.36E + 03 ± 2.69E + 02 2.10E + 03 ± 1.99E + 02 1.63E + 11 ± 1.61E + 10 2.02E + 03 ± 8.87E + 01
f13 4.54E + 09 ± 6.53E + 08 8.19E + 09 ± 3.58E + 09 1.98E + 10 ± 8.21E + 09 2.04E + 09 ± 6.06E + 08
f14 7.53E + 10 ± 3.44E + 10 1.18E + 11 ± 6.86E + 10 1.86E + 10 ± 9.40E + 09 1.42E + 11 ± 9.87E + 10
f15 4.76E + 06 ± 4.16E + 05 6.70E + 06 ± 1.04E + 06 9.51E + 06 ± 9.59E + 05 3.67E + 06 ± 2.54E + 06
The number of 

best result
0 4 1 2

Fun CSO SLPSO DMS-L-PSO
Mean ± std Mean ± std Mean ± std

f1 3.67E−12 ± 1.04E−12 1.09E−17 ± 2.50E−18 5.70E + 09 ± 1.44E + 08
f2 7.04E + 03 ± 3.56E + 02 2.13E + 03 ± 1.36E + 02 1.24E + 04 ± 2.69E + 02
f3 2.16E + 01 ± 5.44E−03 2.16E + 01 ± 1.45E−02 2.14E + 01 ± 1.92E−02
f4 1.26E + 10 ± 1.91E + 09 4.35E + 09 ± 9.48E + 08 9.00E + 11 ± 3.78E + 10
f5 8.62E + 05 ± 3.20E + 04 8.41E + 05 ± 1.75E + 05 5.49E + 06 ± 4.19E + 05
f6 1.06E + 06 ± 1.05E + 03 1.06E + 06 ± 1.48E + 03 1.03E + 06 ± 3.99E + 03
f7 7.62E + 06 ± 1.35E + 06 1.63E + 06 ± 7.05E + 05 3.55E + 09 ± 2.61E + 08
f8 3.50E + 14 ± 3.59E + 13 1.03E + 14 ± 3.62E + 13 6.79E + 15 ± 1.38E + 15
f9 3.94E + 07 ± 7.45E + 06 8.25E + 07 ± 2.03E + 07 5.05E + 08 ± 2.66E + 07
f10 9.41E + 07 ± 1.49E + 05 9.25E + 07 ± 1.67E + 06 9.31E + 07 ± 3.11E + 05
f11 3.58E + 11 ± 4.62E + 09 9.33E + 11 ± 1.46E + 10 4.96E + 11 ± 4.01E + 10
f12 1.28E + 03 ± 8.23E + 01 1.78E + 03 ± 1.74E + 02 4.42E + 09 ± 8.34E + 08
f13 8.06E + 08 ± 1.22E + 08 4.65E + 08 ± 2.35E + 08 1.16E + 11 ± 1.05E + 10
f14 5.17E + 09 ± 2.86E + 09 3.28E + 08 ± 5.17E + 08 1.25E + 12 ± 1.59E + 11
f15 1.74E + 07 ± 6.44E + 05 7.87E + 07 ± 6.50E + 06 1.60E + 09 ± 6.18E + 08
The number of best result 2 6 1
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Similarly, according to their experimental results, we 
also give the specific ranking of the seven algorithms on 
each function in Table 4. From Table 4, we can see that 
SLPSO and CSO are still ranked first and second, which 
further illustrates the advantages of these two algorithms. 
For the decomposition algorithms based on CC framework, 
the ranking of MLCC is the best. DECC-DG loses its com-
petitiveness on CEC2013 test suits, which indicates that 
when faces with more complex test functions, good group-
ing strategy does not greatly improve the performance of the 
algorithms. DMS-L-PSO is still ranked the last.

Similar to the experiment on CEC2010 test suits, we also 
select six representative functions f1, f4, f9, f11, f13 and f15 
and draw the convergence curves of the seven algorithms 
on these six functions, as shown in Fig. 4.

On separable function f1, as shown in Fig. 4(a), the con-
vergence curves of the algorithms is similar to that of f1 on 
CEC2010 test suits. MLCC and SLPSO converge faster than 
other algorithms. However, SLPSO will fall into the local 
optimal at the later stage of evolution and MLCC can find 
the better result. On partially-separable functions f4, f9 and 
overlapping function f13, as shown in Fig. 4b, c, e, CSO and 
SLPSO are better than other algorithms in terms of conver-
gence speed and final results. Besides, on partially-separable 
function f11, as shown in Fig. 4d, although DECC-DG can 
find the best solutions and have fastest convergence speed, 
in fact, other algorithms are very similar to its converge 
curve. Similar phenomenon also appears on nonseparable 
function f15, as shown in Fig. 4f. Except DMS-L-PSO, the 
convergence curves of other algorithms are very similar, but 
the final result of CCPSO2 is better than other algorithms.

In conclusion, CEC2013 test functions are more complex 
than CEC2010 test functions, so LSEO algorithms are less 
effective in solving CEC2013 test suits. However, in terms 
of the performance of each algorithm, CSO and SLPSO still 
perform better than other algorithms. While DECC-DG is 
not capable of solving more complicated problems and its 
performance is not as good as that of other decomposition 
algorithms based on CC framework. Moreover, MLCC still 
highlights its advantages on separable functions.

5 � Future directions

At present, with the development of big data, artificial intel-
ligence, and high performance computing, the optimization 
problems we encounter in the real world are becoming more 
and more complex and large-scale. In order to solve the 
large-scale optimization problems, LSEO algorithms have 
attracted more and more researchers’ attention in recent 
decades. Researchers have also proposed many strategies 
and methods to improve the LSEO algorithms. However, 
due to the complexity of large-scale optimization problems, 
LSEO algorithms still face many challenges. Therefore, how 
to improve the performance of LSEO algorithms will con-
tinue to be a hot topic. In this section, we will present some 
future research directions of LSEO algorithms.

1.	 Perfect decomposition of large-scale optimization prob-
lem by CC method. The ultimate goal of the CC method 
should group all variables into optimal or near-optimal 
subcomponents, where the variables in the same sub-

Table 4   Ranking results of 7 
algorithms on cec2013 test suits

Fun DECC-G MLCC DECC-DG CCPSO2 CSO SLPSO DMS-L-PSO
Rank Rank Rank Rank Rank Rank Rank

f1 3 1 6 5 4 2 7
f2 3 1 7 2 5 4 6
f3 3 1 4 1 6 6 4
f4 6 5 4 3 2 1 7
f5 5 6 4 7 2 1 3
f6 4 2 4 2 4 4 1
f7 4 5 6 3 2 1 7
f8 4 5 5 3 2 1 7
f9 5 6 3 7 1 2 4
f10 3 1 7 5 6 2 4
f11 2 3 1 6 4 7 5
f12 5 4 7 3 1 2 6
f13 4 5 6 3 2 1 7
f14 4 5 3 6 2 1 7
f15 2 3 4 1 5 6 7
Ave. rank 3.8 3.53 4.73 3.8 3.2 2.73 5.47
Final rank 4 3 6 4 2 1 7
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component are with linkage while the variants in dif-
ferent subcomponents are without or with weak link-
age. Although there are many decomposition strategies 
at present, such as delta grouping strategy, DG strat-
egy, graph-based DG strategy, and so on, most of the 
decomposition strategies only focus on the construction 
of non-separable subcomponents. That is, only consider 
the related variables that are divided into a group and 
do not consider the construction of separable subcom-
ponents. Therefore, the future decomposition strategies 
based on CC method need to consider the construction 
of both non-separable and separable subcomponents, 
so as to realize the optimal decomposition and improve 
the performance of the LSEO algorithms. Moreover, the 
problem characteristics can be used to help decompose 
the variables perfectly. For example, Zhang et al. [42] 
recently proposed an efficient CC based bare-bones PSO 
(CCBBPSO) with function independent decomposition 
(FID) according to the different independent functional 
characteristics of different variables.

2.	 Light computational burden for decomposition. The 
decomposition strategies based on CC method not only 
need to improve the decomposition accuracy, but also 
should be better to consume as little FEs as possible, so 
that more FEs can be used to the evolutionary process 

and to make the algorithms perform better. For example, 
DECC-DG performs poorly on completely separable 
functions and non-separable functions, which may be 
because it consumes too many FEs when adopting DG 
strategy to group variables. In addition, for non-separa-
ble functions, even if a good decomposition strategy is 
used to group the variables, all variables will eventually 
be divided into one group, which is equivalent to solv-
ing the whole large-scale optimization function without 
achieving the goal of “divide-and-conquer”. Therefore, 
a fast method which has low consumption of FEs is 
needed to determine whether the problem is a com-
pletely separable problem or a non-separable problem. 
For example, some variables can be randomly selected 
to judge whether there is a relationship between them. 
If there is, the problem is judged to be a non-separable 
problem. Other decomposition strategies that can reduce 
FEs consumption need further study.

3.	 Efficient allocation of computational resources to differ-
ent subcomponents. Most optimization problems in the 
real world have the imbalance property. In other words, 
when we decompose a large-scale optimization prob-
lem into several subproblems, the optimization of some 
subproblems have a great impact on the final results of 
the whole optimization problem, while the rest of the 

(a) (b) (c)

(d) (e) (f)

Fig. 4   Convergence curves of 7 algorithms on 6 representative functions from cec2013
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subproblems have insignificant impact on the whole 
optimization problem. According to the imbalance 
of the optimization problem, it is obvious to allocate 
more computational resources to subprobelms which 
contribute more to the whole optimization problem. 
Therefore, considering the imbalance of the optimiza-
tion problems will become another research direction of 
LSEO algorithms. We can introduce weights to different 
subproblems to express their contribution to the whole 
optimization problem. Omidvar et al. [43] proposed a 
contribution-based CC method to allocate the available 
computational resources to the subcomponents based on 
their contributions, called CBCC (CBCC1, CBCC2). 
Later, in order to find a better balance between explora-
tion and exploitation, Omidvar et al. [44] proposed an 
improved CBCC variant called CBCC3. At present, the 
research on the imbalance of optimization problem is 
still in its infancy, which provides us with another way 
to design new LSEO algorithms.

4.	 Multiple populations and distributed algorithm to 
enhance global search ability. Beside the decomposi-
tion method, there is another significant method to deal 
with large-scale optimization problems by consider-
ing all the variables as a whole. However, due to the 
high dimension of large-scale optimization problem, 
the search space of the problem is very large and there 
are many local optimal solutions. Therefore, many dis-
tributed and parallel algorithms have been proposed to 
deal with large-scale optimization problems. Generally 
speaking, LSEO algorithms can realize distribution 
by means of multi-population strategy, which a whole 
population is decomposed into multiple subpopulations, 
and each subpopulation evolves independently. At the 
same time, an appropriate migration strategy should be 
designed to further improve the diversity of the popula-
tion and the performance of the algorithms. Wang et al. 
[45] proposed a variant of distributed PSO algorithm 
which adopted dynamic group learning strategy, called 
DGLDPSO. Wu et al. [46] also proposed a distributed 
DE algorithm which based on multi-population strat-
egy, called MPEDE. MPEDE not only adopts distributed 
strategy, but also integrates multiple mutation strategies 
to improve the performance of the algorithms. Moreo-
ver, some LSEO algorithms use multiple processors to 
achieve parallelization [47, 48]. Each subpopulation 
has a processor for processing, and all subpopulations 
evolve in the processor in parallel, which can reduce 
the running time and accelerate the efficiency of LSEO 
algorithm. In conclusion, we can consider introducing 
distributed and parallel methods to deal with large-scale 
optimization problems in the future.

5.	 Scalability of LSEO algorithms. At present, most of the 
researchers focus on large-scale optimization problems 

with 500 or 1000 dimensions. In the face of more com-
plex problems with larger dimensions (such as 2000, 
3000 or even 5000 dimensions), the performance of 
some LSEO algorithms drop sharply, which indicate that 
the scalability of most algorithms are poor. Therefore, 
scalability is very important for LSEO algorithms, and 
it is also one of the future research directions.

6.	 At last, application of real-world large-scale optimi-
zation problems. In recent years, a number of LSEO 
algorithms with good performance have been proposed. 
However, most of the algorithms are tested by using 
large-scale benchmark function sets. Therefore, an obvi-
ous question was raised that the good performance of 
the algorithm on the benchmark function sets does not 
mean that the algorithm can also perform well in solving 
real-world problems. So, we need to apply LSEO algo-
rithm to real-world problems or design corresponding 
algorithms according to the characteristics of real-world 
problems. Nowadays, there are many complex problems 
such as dynamic optimization problems [49, 50], multi-
modal optimization problems [51–53], and multi/many-
objective optimization problems [54, 55], and also the 
real-world problems such as cloud workflow scheduling 
problems [56–58], and community detection and infer-
ence [59, 60] that have drawn more and more attention 
to the researchers. These problems would be much more 
challenge in their large-scale version. Therefore, the 
LSEO algorithms we design in the future needs to be 
connected with real-world problems.

6 � Conclusion

In this paper, we first introduce the research status of large-
scale optimization problems and list some state-of-the-art 
LSEO algorithms. Then, we select seven representative 
algorithms and make a brief introduction, including the 
decomposition algorithms based on CC framework and 
non-decomposition algorithms which all the variables are 
considered as a whole. In addition, we adopt two commonly 
used large-scale benchmark function sets—CEC2010 test 
suits and CEC2013 test suits to compare the performance 
of these seven LSEO algorithms. Meanwhile, in order to 
further compare these seven LSEO algorithms, their con-
vergence curves on some representative functions are plot-
ted to analyze their characteristics and advantages. From 
the experimental results, SLPSO and CSO perform better 
than other algorithms. While MLCC is suitable for solv-
ing simple separable functions and DECC-DG can find bet-
ter results on some relatively complex partially-separable 
functions. However, when faced with some extremely com-
plex test functions, the performance of DECC-DG is not as 
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good as some decomposition algorithms which based on 
random grouping strategy. Besides, DMS-L-PSO performs 
worse than other comparative algorithms. Moreover, we also 
discuss the future research directions of LSEO algorithms. 
Especially, we think that the function independent decom-
position strategy is worthy studying in CC based LSEO, like 
the CCBBPSO algorithm [42], and the distributed multi-
population is worthy studying in non-CC based LSEO, like 
the DGLDPSO algorithm [45].
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