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Abstract
Clustering is a challenging problem that is commonly used for many applications. It aims at finding the similarity between data 
points and grouping similar ones into the same cluster. In this paper, we introduce a new clustering algorithm named Nearest 
Point with Indexing Ratio (NPIR). The algorithm tries to solve the clustering problem based on the nearest neighbor search 
technique by finding the nearest neighbors for the points that are already clustered based on the distance between them and 
cluster them accordingly. The algorithm does not consider all the nearest points at once to cluster a single point but iteratively 
considers only one nearest point based on an election operation using a distance vector. NPIR tries to solve some limitations of 
other clustering algorithms. It tries to cluster arbitrary shapes which have non-spherical clusters, clusters with unusual shapes, 
or clusters with different densities. NPIR is evaluated using 20 real and artificial data sets of different levels of complexity 
with different number of clusters and points. Results are compared with those obtained for other well-known and common 
clustering algorithms. The comparative study demonstrates that NPIR outperforms the other algorithms for the majority of the 
data sets in terms of different evaluation measures including Homogeneity Score, Completeness Score, V-measure, Adjusted 
Mutual Information, and Adjusted Rand Index. Furthermore, NPIR is experimented on a real-life application for segmenting 
mall customers for effective decision making. The source code of NPIR is available at http://evo-ml.com/2019/10/28/npir/.

Keywords  Clustering · Data mining · Unsupervised learning · Cluster analysis · Nearest point · Indexing ratio · Nearest 
neighbor search technique · Nearest point with indexing ratio algorithm · NPIR

1  Introduction

Clustering is a technique for data analysis which shows the 
structure of data points and explores useful patterns from 
these points. Clustering is used to group data points so that 
each group contains similar points which are dissimilar to 
others in other groups [1]. Clustering observes the features of 
each point to predict the group in which each point belongs to.

Clustering algorithms have been used in wide range 
of applications, for example, it is used for bioinformatics 
[2], image processing [3–7], pattern recognition [8–10], 

document categorization [11, 12], financial risk analysis 
[13], cancerous data [14, 15], search engines [16], academ-
ics [17], drug activity prediction [18], and much more.

Many algorithms were proposed for clustering in the lit-
erature, but still there is not such an algorithm that can fit for 
all types of data sets. That is, an algorithm might perform 
better than other algorithms for a specific data set but not 
for another one. Algorithms might perform differently for 
different sizes of data sets, different dimensionality, or dif-
ferent densities. In addition, some of the algorithms are more 
simple and easier to understand than others [19].

One of the most popular algorithms for clustering is the 
k-means algorithm which was proposed over 60 years ago, 
and it is still widely used [20]. The k-means algorithm has 
simple implementation and fast execution which makes it 
more popular. However, k-means assumes a known num-
ber of clusters, a spherical distribution of points within the 
cluster, and same clusters size or density [21] which might 
not be true for all types of data sets. k-means also might fall 
in local optima and fixed shaped clustering depending on 
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the initial assignments of the centroids. A popular variation 
of k-means is k-means++ which works similar to k-means 
but chooses the initial assignments of the centroids [22]. 
Other popular clustering algorithms include Balanced Itera-
tive Reducing and Clustering using Hierarchies (BIRCH) 
[23], density-based spatial clustering of applications with 
noise (DBSCAN), hierarchical DBSCAN (HDBSCAN) [24], 
Expectation-Maximization (EM) [1], Minimum Spanning 
Tree (MST) [25, 26], single linkage hierarchical clustering 
(HC-SL) [25, 27, 28], complete linkage hierarchical cluster-
ing (HC-CL) [28, 29], and nature-inspired algorithms such 
as genetic algorithm (GA) [30], Particle Swarm Optimiza-
tion (PSO) [31–33], and static and dynamic clustering based 
multi-verse optimizer (SCMVO and DCMVO) [34].

In this paper, we propose a new clustering algorithm with 
the aim of clustering different types of data sets including 
challenging ones in the literature which have different cluster 
densities, points distribution, and different sizes. We also try 
to overcome the fixed shaped clustering which is an observed 
problem in other clustering algorithms. The new proposed 
algorithm is referred to as Nearest Point with Indexing Ratio 
(NPIR). The algorithm tries to solve the clustering problem 
based on the nearest neighbor search technique by finding 
the nearest neighbors for the points that are already clus-
tered based on the distance between them and cluster them 
accordingly. The algorithm does not consider all the nearest 
points at once to cluster a single point but iteratively consid-
ers only one nearest point based on several operations using 
a distance vector. It also includes settings of two param-
eters which are the Indexing Ratio (IR) and the iterations (i) 
to optimize the generated results more further. In general, 
NPIR differs from other clustering algorithms in that it tries 
to partition data of arbitrary shapes, non-spherical clusters, 
or clusters having different densities.

Twenty data sets are used for experiments which are 
Aggregation, Aniso, Appendicitis, Blobs, Circles, Diag-
nosis II, Flame, Glass, Iris, Iris 2D, Jain, Moons, Mouse, 
Pathbased, Seeds, Smiley, Varied, Vary density, WDBC, 
and Wine. These data sets have different number of points, 
features, and clusters. Some of them are considered chal-
lenging in the literature as they have complex shapes includ-
ing circular patterns and interleaving clusters. Others have 
visual separated parts but are computationally difficult to 
partition. Furthermore, the proposed NPIR gives enhanced 
results compared to the other well-known clustering algo-
rithms. NPIR iteratively considers correcting wrongly clus-
tered points which produces better results and avoids the 
termination of cluster shaping process at an early stage.

The proposed NPIR is evaluated in terms of Homogeneity 
Score, Completeness Score, V-measure, Adjusted Mutual 
Information, and Adjusted Rand Index. Results are com-
pared with k-means++, BIRCH, HDBSCAN, EM, MST, 
HC-SL, HC-CL, GA, PSO, and DCMVO. The experiments 

show that NPIR outperforms the other algorithms in the 
majority of the data sets, and it is promising for many appli-
cations. Mall customer segmentation application is also 
experimented and analyzed.

The remainder of the paper is organized as follows: The 
next section presents the most common algorithms and the 
recent work on clustering. Section 3 describes in details the 
proposed algorithm. Section 4 discusses the experiments and 
results along with sensitivity analysis for the NPIR param-
eters. The last section concludes the work.

2 � Related work

Clustering is a common task in machine learning which 
can be used for finding the characteristics of each group 
of clusters. Numerous previous works discussed clustering 
techniques and applications.

k-means is one of the earliest algorithms that was rec-
ognized in several applications as a useful algorithm for 
clustering. Since then, the importance of the clustering 
techniques and their positive effect on real life applications 
has been recognized. Clustering algorithms can be classi-
fied into partitioning algorithms, hierarchical algorithms, 
and density-based algorithms [1, 35, 36].

Partitioning algorithms are the simplest and the most 
basic algorithms for clustering. Some popular algorithms in 
the partitioning category include k-means [20], k-means++ 
[22], and EM [1]. Algorithms of this category relatively 
require less computational time compared to the other algo-
rithms in other categories. They also consider initial cluster-
ing results with iterative correction of wrongly clustered data 
points. They also have random behavior as they consider 
different clustering results for different executions which 
increases the possibility of finding correct clustering results 
and enhancing the quality of these results. However, they do 
not work well for non-spherical shapes [35] and they usually 
fall in local optima.

Hierarchical algorithms such as BIRCH algorithm [23] 
group data points into a hierarchy of clusters. The strength 
of such algorithms is that they can detect arbitrary and 
non-spherical shapes that cannot be detected by partitional 
algorithms. However, they are unable to correct wrongly 
clustered data points as they cannot undo the clustering of 
the data points [1]. They also consume much time and space 
[36].

Density-based algorithms such as DBSCAN [37] and 
OPTICS [38] can also work well with non-spherical shapes 
but they fail to detect shapes of different densities [35, 36]. 
DBSCAN also requires careful selection of its parameters 
[35]. Thus, HDBSCAN [24] was recently introduced to solve 
the parametric and border points problems by revising the 
DBSCAN and OPTICS algorithms and generating a refined 
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version of the two algorithms considering both density and 
hierarchy clustering.

Variations of the aforementioned algorithms are observed 
in the literature and several recent approaches were proposed. 
The work of [39] considers the MinMax k-means algorithm 
as a weighted variation of the k-means which assigns weights 
to the clusters according to the clusters variance. Site rates 
clustering with an automatic selection of partitioning schemes 
using iterative k-means is presented in [40]. Authors in [41] 
proposed a variant method for finding initial centroids using 
entropy-based farthest neighbor approach. An algorithm that 
works as a mask for the EM algorithm which is suitable for 
large and high dimensional data sets is presented in [42]. Par-
allel implementation for large scale data sets are also exist in 
literature [43–46].

Nature-inspired algorithms are used for clustering such as 
GA [30], PSO [31–33], MVO [47, 48], and GWO [49, 50]. 
Variations of these algorithms can be found in the literature: 
A genetic algorithm-based clustering was proposed by [51] 
for constrained networks. Automatic clustering for finding the 
right number of clusters using genetic algorithm based clus-
tering algorithm can be found in the work of [52]. Traveling 
salesman problem is also considered by [53] by proposing a 
new initial population strategy for the genetic algorithm. Adap-
tive PSO based on clustering (APSO-C) can be found in the 
work of [54]. A combination of fuzzy clustering pre-process-
ing and PSO for clustering can also be found in the work of 
[55]. Authors in [56] proposed a hybrid approach combining 
k-means algorithm with Particle Swarm Optimization for clus-
tering Arabic documents. In addition, authors in [34] proposed 
a clustering algorithm using multi-verse optimizer with two 
modes: static clustering with predefined number of clusters 
(SCMVO) and dynamic clustering with automatic detection 
of the number of clusters (DCMVO).

Under this view, NPIR is introduced and discussed in this 
work. NPIR takes advantage of both partitional and density-
based algorithms to detect data sets of arbitrary and non-
spherical shapes while it also considers iterations to correct 
wrongly clustered data points. It is based on the nearest neigh-
bor search technique and a random and iterative behavior of 

the partitional clustering algorithms to give quality clustering 
results. It does not depend on cluster centers to predict clusters 
as in partitional clustering algorithms but instead considers 
cluster density as in density-based clustering algorithms. How-
ever, it also does not consider a user to define the density as in 
DBSCAN but it rather automatically adjust different densities 
and sizes of clusters. NPIR is discussed in details in the next 
section.

3 � Nearest Point with Indexing Ratio (NPIR)

NPIR is a clustering algorithm which explores the character-
istics of the data points to group similar data points into the 
same clusters and dissimilar data points into different clusters. 
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It is based on the nearest neighbor search technique in finding 
a k-nearest neighbor to a certain point. The algorithm iterates 
to assign data points to the most suitable clusters. It performs 
Election, Selection, and Assignment operations to assign data 
points to appropriate clusters. In this section, we discuss the 
algorithm details, operations, and pseudocode. A simple exam-
ple is also presented to illustrate the algorithm more further. 
Furthermore, the complexity of the algorithm is discussed.

3.1 � Preliminaries

NPIR clustering algorithm is based on the nearest neighbor 
search technique where the k-nearest neighbor of a certain 
point is considered for assignment to the cluster of that point. 
Searching for the k-nearest neighbor is considered as a nearest 
neighbor search (NNS) problem. NNS problem can be defined 
as follows [57]:

Definition 1  Given a set of N points P = {p1, p2 … pN} in 
space, find the k-nearest neighbors set to a certain point pi 
where pi ∈ {p1, p2 … pN}.

NPIR does not only consider a single point as the nearest 
neighbor for a given point but it also considers different k-near-
est neighbors (k-NN) at different iterations of the algorithm. 
Thus, k-NN can be defined as follows [36]:

Definition 2  Given a set of N points P = {p1, p2 … pN} 
in  space ,  the  k-NN(pi) = {nn1, nn2 … nnk} repre-
sents the k-nearest neighbors set of a certain point pi 
where k = |k-NN(pi)| and k < N  , a nearest neighbor 
nnj ∈ {nn1, nn2 … nnk}.

Furthermore, the nearest neighbor is discovered using the 
distance between points. In this study, we use the euclidean 
distance between point pi and nnj which can be defined as 
follows [58, 59]:

where d is the dimension or the number of features.

3.2 � NPIR description and steps

The main idea of NPIR is to find the nearest neighbors for 
the points that are already clustered based on the distance 
between them and cluster them accordingly. In general, 
NPIR names the nearest neighbors for the points that are 
already clustered as Nearest points. Thus, NPIR finds the 

(1)dist(pi, nnj) =

√√√√
d∑

r=1

(pir − nnjr)
2

Nearest point for an already assigned point and then clus-
ters the Nearest point to the same cluster of the assigned 
point under some conditions which are discussed in this 
section.

The algorithm takes as an argument a data set contain-
ing the points that need to be clustered along with three 
parameters that need to be determined before running the 
algorithm, the parameters are:

–	 The number of clusters (k). The value of k can be any 
integer larger than 1.

–	 The indexing ratio (IR). This parameter controls the 
amount of possible reassignment of points. That is, 
higher IR value means that the assigned points have more 
possibility for reassignment. In contrast, lower IR value 
means that the assigned points have less possibility for 
reassignment. The value of IR should be between 0 and 
1.

–	 The number of iterations (i). It determines the number 
of times the algorithm repeats. Therefore, the algorithm 
terminates when the maximum number of iterations i is 
reached. The value of i can be any integer larger than 0.

At a preparatory stage, the algorithm generates the distance 
vector for each point. The distance vector of a point is a 
vector that contains all the other points in the data set sorted 
in ascending order according to the distance between them 
and the corresponding point. In addition, a pointer is defined 
for each distance vector which indicates the current index 
of the vector. At this stage, the current index of the pointer 
for all vectors refers to the first index of the vector. In prac-
tice, K-dimensional tree [60–62] can be used instead of the 
distance vectors for large data sets to calculate the distance 
between each pair of points which is discussed more further 
at the end of this section. However, we use the distance vec-
tor data structure for small data sets and we consider it in 
our discussion for simplicity.

Furthermore, suppose we have 4 points in space with 
defined distances between them as shown in Fig. 1. Each 
point has its own corresponding distance vector and a 
pointer at the first index of the vector. For example, a dis-
tance vector for a given point P1 consists of points P2, P4, 
and P3 which are sorted according to the distance between 
them and P1 with distance values of 3, 6, and 8, respectively. 
In addition, the current index of the distance vector for P1 
is the index of P2 which is defined using the pointer of the 
distance vector of P1. The figure also shows the distance 
vector and its corresponding pointer for points P2, P3, and 
P4. The distance vector and its pointer are used later to select 
the points that are considered for clustering.
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The algorithm starts by randomly assigning an initial 
point for each cluster resulting in k initial points. The initial 
points are used to assign other points to the clusters. The 
algorithm then iterates for a predefined number of itera-
tions according to the i parameter discussed earlier. For each 
iteration in i, inner iterations are also executed to allow for 
assignment for the unassigned points and reassignment for 
the already assigned points. For each inner iteration, one 
point is considered for assignment using the following oper-
ations which are illustrated in an example of 28 points:

–	 Election: It randomly elects one of the points that are 
already assigned to a cluster and names it as ‘Elected’ 
or shortly as ‘E’ which is illustrated in Fig. 2. Upon the 
assignment of the initial points, the election is done for 
one of the initial points. In contrast, the remaining elec-
tions are done for one of the already assigned points. 
The election operation is random and is conducted in 
no predefined order. Furthermore, a point might be 
elected several time while other points are not elected 
at all. The randomness behavior of such operation gives 
advantage of defining different shapes for clustering 
and enhancing the diversity of searching for data points 
in space.

–	 Selection: The point at the pointer of the distance vec-
tor of the Elected is selected and is named ‘Nearest’ or 
shortly as ‘N’ and the pointer is incremented by one for 
possible next selection. Figure 3 illustrates the selection 
process for the Nearest; Fig. 3a illustrates the selection 
of the Nearest and Fig. 3b illustrates incrementing the 
pointer.

–	 Assignment: To assign the Nearest to the cluster of the 
Elected, a check must be made in order to decide if the 
Nearest should be assigned to the same cluster as the 
Elected. The following are possible conditions for the 
Nearest:

•	 Case 1: The Nearest is not yet assigned to a clus-
ter. In this case, the Nearest is directly assigned to 
the cluster of the Elected and the Elected is marked 
as the ‘Assigner’ or shortly as ‘A’ for the Nearest. 
Therefore, the Assigner is the point that has been 
Elected and has successfully assigned the point to its 
cluster (see Fig. 4a). In addition, the Nearest is added 
as a descendant to the Assigner. A tree data structure 
with hash table is used for marking preceding parent 
and descendants.

•	 Case 2: The Nearest is already assigned to the same 
cluster of the Elected. Therefore, no reassignment 
is made (see Fig. 4b). As a complementary step, 
the Elected might become the new Assigner for 
the Nearest if it is closer to the Nearest than its old 
Assigner.

•	 Case 3: The Nearest is already assigned to a different 
cluster than the Elected. In this case, the algorithm 
checks if the Nearest should move from its cluster to 
the cluster of the Elected by measuring the distance 
between the Nearest and its Assigner, and the dis-
tance between the Nearest and the Elected. Then it 
compares the two calculated distances. The follow-
ing apply:

•	 Case 3a: If the distance between the Nearest and 
the Assigner (d1) is less than or equal to the dis-
tance between the Nearest and the Elected (d2), 
then the Nearest does not move to the cluster of 
the Elected (see Fig. 4c).

•	 Case 3b: If the distance between the Nearest and 
the Assigner (d1) is greater than the distance 
between the Nearest and the Elected (d2), the 
Nearest moves to the cluster of the Elected (see 
Fig. 4d) and the Elected is marked as the Assigner 
for the Nearest. This can avoid the termination of 
cluster shaping process at early stage. It is highly 
probable that the points on the boundaries will be 
finally reassigned according to the corresponding 
elected point. Unlike partitional clustering algo-
rithms like k-means which usually fall in local 
optima and get stuck into fixed shapes of clusters, 
NPIR explores more shapes by reassigning points 
over the course of iterations and can handle arbi-
trary shaped clusters.

The inner iterations terminate when all points are 
assigned and TotalIndex value is reached. The TotalIndex 
value is calculated using the following formula:

where IR is the indexing ratio, and n is the number of points. 
TotalIndex value represents the amount of possible reas-
signment of points. n2 represents the size of all the distance 
vectors since n points have n number of elements in the 
distance vector. Therefore, TotalIndex represents the total 
indices reached for all the points which is the amount of pos-
sible reassignment of points since IR value falls between 0 
and 1. This allows for more possible reassignment of points 
depending on the IR value even after all points are already 
assigned.

Furthermore, when the inner iterations terminate, point-
ers are reset and points to the first element of the distance 
vector for all the points which allows for more possible reas-
signment of points for the next iteration in i.

NPIR is described by the pseudocode given in Algo-
rithm 1. As shown from the pseudo code, The algorithms 

(2)TotalIndex = Round(IR ∗ n2)
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Fig. 4   Assignment operation. 
a Case1: Unassigned Nearest 
is assigned to the cluster of the 
Elected; b Case2: No assign-
ment for the Nearest if it is 
assigned to the same cluster 
of the Elected; c Case 3a: No 
assignment for the Nearest if it 
is assigned to a different cluster 
than the Elected and d1 <= 
d2; d Case 3b: Reassignment 
of the Nearest to the cluster of 
the Elected if it is assigned to a 
different cluster than the Elected 
and d1 > d2
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accepts 3 parameters; k, IR, and i along with the set of points 
that are considered for clustering. The preparatory steps are 
performed in lines 2–4 which creates the distance vector 
and calculates the TotalIndex value. The algorithm starts in 
line 5 upon selecting the initial points. i iterations are per-
formed in lines 6–22 where it terminates when the value of 
i is reached. For each iteration in i, inner iterations are per-
formed to assign points to clusters which are performed in 
lines 7–20 where it terminates when all points are clustered 
and TotalIndex value is reached. For each inner iteration, the 
election, selection, and assignment operations are performed 
in lines 8, 9–11, and 12–19, respectively. Case 1, 2, and 3 
of the assignment operation are shown in the if statement in 
line 12. Each iteration in i terminates by resetting the pointer 
for all the distance vectors as shown in line 21. the algorithm 
then returns the predicted assignment for each point. 

The following notes are applied in the algorithm:

–	 Distance vectors construction can be replaced by 
K-dimensional tree data structure [60, 61] for faster 
execution. K-dimensional tree is a binary search tree 
used with nearest neighbor search tasks to organize 
data points into K-dimensional space with the aim of 
finding a nearest point to some other point in the fast-
est possible way. It can be used in NPIR for large data 
sets to fasten the process of constructing the nearest 
neighbors of every data point in space. Thus, we can 
construct the K-dimensional tree at the preparatory 
stage and use it in later stages for finding the Nearest 
of an Elected in the Selection operation. The complex-

10 
itera�ons

(a)

10 
itera�ons

(b)

Fig. 7   Detecting arbitrary shaped clusters using NPIR vs. k-means
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ity analysis for both data structures is further explained 
in Sect. 3.4.

–	 When an assigned point is selected as the Nearest from 
an Elected point and is reassigned to the cluster of the 
Elected, all the descendants of the Nearest point are 
also reassigned to the cluster of the Elected. Descend-
ants are the points that have the Nearest or any other 
descendant of the Nearest as their Assigner.

–	 If the IR value is zero which results in zero value of 
TotalIndex, then the inner iteration terminates just upon 
assignment of all points. That is, the algorithm executes 
in its simplest form where an iteration terminates once 
all points are assigned. Also, if the IR value is 1 which 
is the maximum value for the IR, then all the points 
are marked as Nearest by every other point marked as 
Elected. In other words, the pointer for all the points 
reach the last index for the distance vector for each 
iteration in i. This adds unnecessary complexity hav-
ing more elections of points with more selections of 
far points with no reassignments, which is not recom-
mended.

–	 Upon moving the Nearest to the cluster of the Elected 
and if the cluster of the Nearest contains the Nearest 
and its descendants only, then a new random point is 
selected to be clustered to the cluster of the Nearest 
so that the cluster is not left empty and the k value 
is preserved. The random point is selected from the 
pool of points that are not yet assigned. However, if 
all the points are already assigned, then the random 
point is selected from the pool of points that are already 
assigned and is assigned to the cluster of the Nearest 
along with its descendants.

–	 An Elected point might be elected more than once 
allowing for the selection of a different Nearest by the 
Elected which makes the detection of dense clusters 
more possible and more reassignments are also pos-
sible.

–	 If case 3 is applicable for the Nearest but the Nearest 
does not have an Assigner which is the case if it was 
selected as an initial point, then the decision is made for 
case 3b and the Nearest is reassigned to the cluster of the 
Elected to allow for less identification of null Assigners 
and less dependency on the randomness selection of the 
initial points which can avoid fixed shaped clustering at 
early iterations.

3.3 � A simple example

To illustrate the algorithm more further, a simple exam-
ple of nine points is discussed in this section as shown 
in Figs. 5 and 6. For simplicity, the example considers a 
value of 1 for the parameter i which means that only one 
iteration is performed.

The algorithm at the preparatory stage calculates the 
distance between each two points which generates nine 
vectors where each vector is related to a single point as 
shown in Fig. 5. For example, point 2, 3, 4, 8, 9, 6, 5, and 
7 are sorted according to their distance with point 1 in the 
first vector having point 2 as the Nearest and point 7 as the 
farthest. Then initial points are randomly set for each clus-
ter as shown in Fig. 6a and the pointers are already reset to 
the first element of the vectors. The remaining operations 
are then performed for each sub figure in Fig. 6 as follows:

–	 Figure 6b illustrates the first election of random point 
from the set of assigned points which is point 4. 
According to the distance vector of point 4, the Nearest 
is selected which is point 3. As a result, the assignment 
operation is performed and point 3 is clustered to the 
same cluster of point 4 according to case 1 discussed in 
the algorithm. Point 4 becomes the Assigner for point 
3 and point 3 becomes a descendant of point 4 accord-
ingly. In addition, the pointer of the distance vector for 
point 4 is incremented by 1 to allow for possible next 
election for point 4 and selection for the next Nearest 
which is point 1 in later iterations.

–	 Figures 6c, d illustrate the next elections, selections, 
and assignments where point 5 and point 1 are clus-
tered to the cluster of point 6 and point 4 respectively 
according to case 1 discussed in the algorithm. It is 
noted in Fig. 6d that the randomness of the election 
operation in which point 4 is selected again makes pos-
sible different clustering alternatives and defines differ-
ent shapes for clustering.

–	 Figure 6e illustrates the next election of random point 
from the set of assigned points which is point 2. Accord-
ing to the distance vector of point 2, the nearest point 
is selected which is point 1. As a result, the assignment 
operation is performed and point 1 is reassigned to the 
cluster of point 2 according to case 3b discussed in the 
algorithm because the distance d1 between the Assigner 
(point 4) and the Nearest (point 1) is greater than the 
distance d2 between the Elected (point 2) and the Nearest 
(point 1). In this case, point 2 becomes the new Assigner 
for point 1. In addition, the pointer of the distance vector 
for point 2 is incremented by 1 to allow for possible next 
election for point 2 and selection for the next Nearest 
which is point 3 in later iterations.

–	 Figure 6f illustrates the next election of random point 
from the set of assigned points which is point 6. Accord-
ing to the distance vector of point 6, the nearest point is 
selected which is point 7 and the pointer of the distance 
vector for point 6 is incremented by 1. As a result, the 
assignment operation is performed and Point 7 is clus-
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tered to the same cluster of point 6 according to case 1 
discussed in the algorithm.

–	 Figure 6g illustrates the next election of random point 
from the set of assigned points which is point 4. Accord-
ing to the distance vector of point 4, the nearest point is 
selected which is point 2 and the pointer of the distance 
vector for point 4 is incremented by 1. As a result, the 
assignment operation is performed and point 2 is reas-
signed to the same cluster of point 4 according to case 
3b discussed in the algorithm because the Nearest does 
not have an Assigner so the decision is made for case 3b 
and the Nearest is reassigned to the cluster of the Elected 
along with its descendants which is point 1 (point 2 is the 
Assigner to point 1). In this case, point 4 becomes the 
new Assigner for point 2. Furthermore, a random point 
is selected from the pool of the unassigned points which 
is point 9 and is assigned to the empty cluster which pre-
serves the k value of the clustering. This shows how the 
algorithm can avoid the termination of cluster shaping 
process at early stage and can detect arbitrary shapes.

–	 Figure 6h illustrates the next election of random point 
from the set of assigned points which is point 2. Accord-
ing to the distance vector of point 2, the nearest point is 
selected which is point 3 and the pointer of the distance 
vector for point 2 is incremented by 1. As a result, the 
assignment operation is performed and no assignment is 
made for point 3 because it is assigned to the same cluster 
of point 2 according to case 2 discussed in the algorithm. 
Furthermore, point 2 become the new Assigner for point 

3 because it is closer to point 3 than point 4 which is the 
old Assigner.

–	 Figure 6i illustrates the next election, selection, and 
assignment where point 8 is clustered to the cluster of 
point 9 according to case 1 discussed in the algorithm. 
At this stage all points are successfully assigned.

–	 Figure 6j illustrates a continued step if the value of the 
TotalIndex is not reached. In this case, the next election 
of random point from the set of assigned points is per-

Table 1   Data sets properties 
which show the name, number 
of clusters, number of points, 
number of features, IR value, i 
value, and data set type

ID Data set k #Points #Features IR i Type

1 Aggregation 7 788 2 0.05 50 Artificial
2 Aniso 3 1500 2 0.15 100 Artificial
3 Appendicitis 2 106 7 0.15 100 Real
4 Blobs 3 1500 2 0.2 5 Artificial
5 Circles 2 1500 2 0.05 30 Artificial
6 Diagnosis II 2 120 6 0.2 30 Real
7 Flame 2 240 2 0.2 100 Artificial
8 Glass 6 214 9 0.05 30 Real
9 Iris 3 150 4 0.1 30 Real
10 Iris 2D 3 150 2 0.1 50 Real
11 Jain 2 373 2 0.2 50 Artificial
12 Moons 2 1500 2 0.15 100 Artificial
13 Mouse 3 490 2 0.1 50 Artificial
14 Pathbased 3 300 2 0.1 100 Artificial
15 Seeds 3 210 7 0.05 100 Real
16 Smiley 4 500 2 0.1 50 Artificial
17 Varied 3 1500 2 0.1 100 Artificial
18 Vary density 3 150 2 0.15 50 Artificial
19 WDBC 2 569 30 0.1 50 Real
20 Wine 3 178 13 0.15 50 Real

(a) (b)

Fig. 8   IR effect on the election of 5 points for IR values of 0.2 and 
0.4. The red line shows the index reached for each distance vector. a 
IR = 0.2 and TotalIndex = 5; b IR = 0.4 and TotalIndex = 10



686	 International Journal of Machine Learning and Cybernetics (2020) 11:675–714

1 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9   Sensitivity analysis for IR and i parameters for each data set for the average results using the aggregation formula
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(o) (p)

Fig. 9   (continued)



688	 International Journal of Machine Learning and Cybernetics (2020) 11:675–714

1 3

formed which is point 4. According to the distance vector 
of point 4, the nearest point is selected which is point 
8 and the pointer of the distance vector for point 4 is 
incremented by 1. As a result, the assignment operation 
is performed and no reassignment is made for point 8 

because the distance d1 between the Assigner (point 9) 
and the Nearest (point 8) is less than the distance d2 
between the Elected (point 4) and the Nearest (point 8) 
according to case 3a discussed in the algorithm. In this 
case, point 9 remains as an Assigner for point 8.

–	 The algorithm then continues and reassignments are done 
until the TotalIndex value is reached.

As observed from the simple example, NPIR can detect 
data sets of arbitrary shapes having different cluster densi-
ties, points distribution, and different sizes. Unlike the other 
partitional clustering algorithms such as k-means which get 
stuck into fixed spherical shaped clusters, NPIR explores 
more shapes over the course of iterations. It is highly prob-
able that the points on the boundaries will be finally reas-
signed according to the corresponding elected point which 
can be found in case 3b.

Figure 7 illustrates how different clustering results are 
achieved using NPIR compared to k-means for arbitrary 
shaped clusters after a course of iterations. It is observed 
from the figure that k-means trapped in fixed shaped clusters 

(q) (r)

(s) (t)

Fig. 9   (continued)

Table 2   Parameters setting

Algorithm Parameter Value

k-means++ Iterations 100
BIRCH Iterations 100
EM Iterations 100
DCMVO Iterations 150

#Search agents 50
GA Crossover probability 0.8

Mutation probability 0.001
#Generations 50
#Chromosomes 20

PSO #Generations 50
#Chromosomes 20
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after few iterations and is unable to detect arbitrary shapes 
because it is a centroid-based clustering algorithm where 
the red points indicates the centroids of the clusters. Some 
green and yellow points that are adjacent to the centroids 
were selected by k-means although they belong to differ-
ent clusters. In each iteration, the assignments of the cen-
troids will be slightly changed resulting in fixed shaping 
of the clusters around the centroids that were selected. In 
contrast, NPIR can detect arbitrary shapes by avoiding the 
termination of the cluster shaping process at early stages and 
exploring more shapes over the course of iterations due to 
the reassignment behavior of the points at the boundaries. 
Some green points of the clusters achieved in early iterations 
are more adjacent to some other yellow points in different 
clusters which can be reassigned in later iterations to the 
cluster of the yellow points through the reassignments of 
points. This results in exploring more shapes over the course 
of iterations and finding arbitrary shaped clusters. Section 4 
gives more examples of arbitrary shapes detection by NPIR.

3.4 � Complexity analysis

As mentioned earlier, two data structures can be used for the 
construction of the distances between data points and search-
ing for the nearest neighbors. In this section, we discuss time 

and space complexity of using vectors and the K-dimen-
sional tree [60, 61] as two data structures for implementing 
the algorithm:

Vectors: The time complexity of the algorithm using the 
distance vectors can be analyzed as follows:

–	 NPIP algorithm starts with the preparatory stage which 
creates the distance vectors by calculating the distance 
between each point with all the other points taking into 
consideration the points’ dimensionality. This takes 
O(n2d ) where n is the number of points and d is the 
number of dimensions. Sorting the distance vector takes 
O(nlogn).

–	 The selection of the initial points takes O(k) where k is 
the number of clusters.

–	 The Election operation takes O(in
2

r
 ) where n is the num-

ber of points to assign, i is the number of iterations, r is 
the inverted number of IR parameter. Since IR is recom-
mended to have small values which should not go beyond 
the value of 0.2 which is discussed in Sect. 4.3, the Elec-
tion operation can be considered of time O(in

2

5
).

–	 The Selection operation of pointing to the Nearest point 
takes O(1) since the distance vector of the Elected is 
already sorted.

Table 3   Performance comparison of the average values of Homogeneity score for different algorithms in the form of avg(rank) which indicates 
the average, ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Homogeneity Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.88 (6) 0.9 (4) 0.95 (1) 0.87 (7) 0.93 (3) 0.72 (10) 0.8 (9) 0.95 (1) 0.86 (8) 0.89 (5) 0.36 (11)
Aniso 0.89 (2) 0.61 (7) 0.31 (9) 0.95 (1) 0.66 (3) N/A (11)a 0 (10) 0.43 (8) 0.64 (6) 0.66 (3) 0.66 (3)
Appendicitis 0.17 (3) 0.02 (6) 0 (8) 0 (8) 0.02 (6) N/A (11)a 0 (8) 0.05 (5) 0.08 (4) 0.22 (2) 0.25 (1)
Blobs 1 (1) 0.99 (8) 1 (1) 0.95 (10) 1 (1) 1 (1) 1 (1) 1 (1) 0.98 (9) 0.94 (11) 1 (1)
Circles 0.51 (3) 0.02 (5) N/A (11)a 0.09 (4) 0.02 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 0.63 (4) 0.24 (8) 0.4 (5) 1 (1) 0.14 (11) 1 (1) 1 (1) 0.4 (5) 0.17 (9) 0.15 (10) 0.4 (5)
Flame 0.6 (1) 0.41 (5) 0.21 (7) 0.09 (8) 0.4 (6) N/A (11)a 0.01 (10) 0.06 (9) 0.45 (2) 0.44 (3) 0.44 (3)
Glass 0.28 (6) 0.35 (1) 0.34 (2) 0.3 (3) 0.26 (7) N/A (11)a 0.04 (10) 0.3 (3) 0.25 (8) 0.29 (5) 0.16 (9)
Iris 0.72 (5) 0.74 (3) 0.63 (8) 0.77 (1) 0.73 (4) 0.58 (10) 0.59 (9) 0.7 (7) 0.72 (5) 0.76 (2) 0.43 (11)
Iris2D 0.79 (7) 0.79 (7) 0.84 (3) 0.87 (1) 0.74 (9) 0.58 (10) 0.58 (10) 0.87 (1) 0.83 (6) 0.84 (3) 0.84 (3)
Jain 0.57 (3) 0.39 (4) 0.23 (8) 0.67 (1) 0.21 (9) N/A (11)a 0.18 (10) 0.66 (2) 0.36 (7) 0.37 (5) 0.37 (5)
Moons 0.82 (3) 0.2 (10) 0.22 (6) 0.27(4) 0.05 (11) 1 (1) 1 (1) 0.26 (5) 0.21 (9) 0.22 (6) 0.22 (6)
Mouse 0.78 (1) N/A (8)a N/A (8)a 0.44 (5) N/A (8)a N/A (8)a 0.01 (7) 0.47 (4) 0.68 (3) 0.7 (2) 0.39 (6)
Pathbased 0.48 (5) 0.51 (2) 0.38 (8) 0.71 (1) 0.49 (4) N/A (11)a 0.01 (10) 0.38 (8) 0.47 (6) 0.51 (2) 0.4 (7)
seeds 0.6 (6) 0.69 (1) 0.6 (6) 0.47 (9) 0.54 (8) N/A (11)a 0.04 (10) 0.61 (5) 0.65 (3) 0.69 (1) 0.65 (3)
Smiley 0.68 (3) 0.33 (7) 0.4 (4) 1 (1) 0.36 (5) 0.27 (10) 1 (1) 0.3 (9) 0.33 (7) 0.35 (6) 0.21 (11)
Varied 0.89 (3) 0.8 (6) 0.64 (8) 0.92 (2) 0.93 (1) N/A (11)a 0 (10) 0.52 (9) 0.79 (7) 0.83 (4) 0.83 (4)
VaryDensity 0.99 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.01 (6) 0.58 (5) 0.74 (4) 0.86 (2) 0.86 (2)
WDBC 0.18 (2) 0 (8) 0 (8) 0.03 (4) 0 (8) N/A (11)a 0.01 (7) 0.1 (3) 0.02 (5) 0.02 (5) 0.47 (1)
Wine 0.39 (7) 0.42 (4) 0.42 (4) 0.4 (6) 0.33 (8) N/A (11)a 0.04 (10) 0.44 (1) 0.43 (2) 0.43 (2) 0.13 (9)
Rank 65 107 118 78 116 158 131 97 115 84 99
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–	 The Assignment operation is of constant time and can be 
considered as O(1).

In total, The overall complexity of the algorithm using 
distance vectors is O(n2d+nlogn+k+ in2

5
 ) which equals 

O(n2d+ in2

5
 ). The best case complexity of the NPIP algo-

rithm is O(n2d+n ) when i equals 1 and there are no reassign-
ments to be considered. For all cases, the separation between 
the complexity of the iterative behavior of NPIR algorithm 
which is O(in

2

5
 ) and the complexity of the data sets dimen-

sionality and the number of points which is O(n2d ) can cause 
a recognizable drop in the running time of the NPIR algo-
rithm compared to other clustering algorithms where these 
values interchangeably effect the algorithm complexity.

On the other hand, the space complexity of the algorithm 
using distance vectors is O(n2 ) for storing n distance vectors 
of size n and storing parents-descendents points in a tree of 
size n.

K-dimensional tree: The time complexity of the algorithm 
using K-dimensional tree can be analyzed as follows:

–	 NPIR algorithm starts with the preparatory stage which 
creates the K-dimensional tree for all data points. This 
takes O(dnlogn) where n is the number of points and d is 
the dimension of the tree [60].

–	 The selection of the initial points takes O(k) where k is 
the number of clusters.

–	 The Election operation takes O(in
2

r
 ) where n is the num-

ber of points to assign, i is the number of iterations, r is 
the inverted number of IR parameter. Since IR is recom-
mended to have small values which should not go beyond 
the value of 0.2 which is discussed in Sect. 4.3, the Elec-
tion operation can be considered of time O(in

2

5
).

–	 The Selection operation of searching for the Nearest point 
takes O(ilogn) in the average case and O(in1−1∕d ) in the 
worst case [60] which cannot be larger than O(in) where 
n is the number of points, d is the dimension of the tree, 
and i is the number of iterations.

–	 The Assignment operation is of constant time and can be 
considered as O(1).

In total, the overall complexity of the algorithm 
using K-dimensional tree in the average case is 
O(dnlogn+k+ in2

5
+ilogn ) which equals O(dnlogn+ in2

5
 ). 

The best case complexity of the NPIR algorithm is 
O(dnlogn+k+n ) which equals O(dnlogn) when i equals 1 
and there are no reassignments to be considered. For all 
cases, the separation between the complexity of the itera-
tive behavior of NPIR algorithm which is O(in

2

5
 ) and the 

complexity of the data sets dimensionality and the number 

Table 4   Performance comparison of the average values of Completeness Score for different algorithms in the form of avg(rank) which indicates 
the average, ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Completeness Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.95 (3) 0.81 (9) 0.86 (6) 0.94 (5) 0.86 (6) 1 (1) 0.98 (2) 0.86 (6) 0.78 (11) 0.81 (9) 0.95 (3)
Aniso 0.9 (1) 0.62 (6) 0.41 (8) 0.37 (9) 0.67 (2) N/A (11)a 0.13 (10) 0.46 (7) 0.66 (3) 0.66 (3) 0.66 (3)
Appendicitis 0.23 (3) 0.22 (4) 1 (1) 1 (1) 0.22 (4) N/A (11)a 0.04 (10) 0.05 (9) 0.08 (8) 0.19 (7) 0.22 (4)
Blobs 1 (1) 0.99 (8) 1 (1) 0.29 (11) 1 (1) 1 (1) 1 (1) 1 (1) 0.99 (8) 0.97 (10) 1 (1)
Circles 0.54 (3) 0.15 (4) N/A (11)a 0.15 (4) 0.15 (4) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 0.68 (3) 0.27 (8) 0.49 (4) 0.31 (7) 0.16 (11) 1 (1) 1 (1) 0.49 (4) 0.18 (9) 0.17 (10) 0.49 (4)
Flame 0.6 (1) 0.39 (5) 0.2 (7) 0.08 (10) 0.38 (6) N/A (11)a 0.18 (8) 0.1 (9) 0.43 (2) 0.42 (3) 0.42 (3)
Glass 0.43 (5) 0.39 (6) 0.55 (1) 0.23 (9) 0.35 (7) N/A (11)a 0.35 (7) 0.52 (3) 0.5 (4) 0.55 (1) 0.22 (10)
Iris 0.85 (3) 0.76 (7) 0.79 (4) 0.39 (11) 0.78 (5) 1 (1) 0.92 (2) 0.75 (8) 0.75 (8) 0.77 (6) 0.7 (10)
Iris2D 0.86 (4) 0.81 (9) 0.84 (7) 0.57 (11) 0.78 (10) 1 (1) 0.95 (2) 0.87 (3) 0.84 (7) 0.85 (5) 0.85 (5)
Jain 0.55 (2) 0.32 (4) 0.21 (8) 0.16 (10) 0.19 (9) N/A (11)a 0.4 (3) 0.74 (1) 0.3 (5) 0.3 (5) 0.3 (5)
Moons 0.83 (3) 0.25 (6) 0.26 (4) 0.2 (10) 0.17 (11) 1 (1) 1 (1) 0.26 (4) 0.22 (7) 0.22 (7) 0.22 (7)
Mouse 0.73 (1) N/A (8)a N/A (8)a 0.42 (5) N/A (8)a N/A (8)a 0.09 (7) 0.41 (6) 0.51 (4) 0.53 (3) 0.65 (2)
Pathbased 0.58 (2) 0.58 (2) 0.44 (9) 0.5 (7) 0.58 (2) N/A (11)a 0.17 (10) 0.45 (8) 0.52 (6) 0.58 (2) 0.63 (1)
seeds 0.64 (5) 0.69 (2) 0.62 (6) 0.29 (9) 0.56 (8) N/A (11)a 0.23 (10) 0.62 (6) 0.66 (3) 0.7 (1) 0.66 (3)
Smiley 0.49 (4) 0.18 (10) 0.22 (6) 1 (1) 0.21 (7) 1 (1) 1 (1) 0.17 (11) 0.19 (9) 0.2 (8) 0.23 (5)
Varied 0.89 (2) 0.81 (5) 0.68 (7) 0.3 (9) 0.93 (1) N/A (11)a 0.14 (10) 0.64 (8) 0.8 (6) 0.83 (3) 0.83 (3)
VaryDensity 0.99 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.19 (6) 0.84 (4) 0.79 (5) 0.86 (2) 0.86 (2)
WDBC 0.25 (4) 0.12 (9) 0.13 (7) 0.02 (10) 0.13 (7) N/A (11)a 0.15 (6) 0.28 (2) 0.27 (3) 0.17 (5) 0.48 (1)
Wine 0.42 (4) 0.43 (2) 0.42 (4) 0.37 (8) 0.4 (7) N/A (11)a 0.24 (9) 0.45 (1) 0.43 (2) 0.42 (4) 0.24 (9)
Rank 51 119 112 146 116 122 98 107 115 97 79



691International Journal of Machine Learning and Cybernetics (2020) 11:675–714	

1 3

of points which is O(dnlogn) can cause a recognizable drop 
in the running time of the NPIR algorithm.

On the other hand, the space complexity of the algorithm 
is O(n) for storing the data points in the K-dimensional tree 
and the parents-descendants tree.

Looking into the time complexity for both data structures, 
distance vectors can be used for small data sets where time 
and space complexity is not an issue. For large data sets, we 
recommend using the K-dimensional tree for faster execution 
and less consuming of space.

4 � Experiments and results

This section presents the experiments that are conducted to 
investigate the efficiency of the proposed NPIR clustering algo-
rithm. NPIR is evaluated based on well-known challenging 
data sets, which are widely used for the performance tests of 
clustering algorithms. Furthermore, the performance of NPIR 
is compared to other well-known clustering algorithms which 
are k-means++ [22], BIRCH [23], HDBSCAN [24], EM [1], 
MST [25, 26], HC-SL [25, 27, 28], HC-CL [28, 29], GA [30], 
PSO [31–33], and DCMVO [34]. In addition, NPIR is evaluated 
using different measures which are Homogeneity Score (HS), 

Completeness Score (CS), Vmeasure (VM), Adjusted Mutual 
Information (AMI), and Adjusted Rand Index (ARI) [63, 64].

We used python 3.7 to implement NPIR and Scikit 
learn python library [65] to evaluate the algorithm using 
the evaluation measures. We also used scikit Learn1, 
Python Package Index (PyPI)2, Yarpiz packages3, and 
MATLAB4 for the other algorithms in comparison. All 
experiments were conducted on a personal computer with 
Intel core i7-5500U CPU @ 2.40 GHz/8 GB RAM.

This section presents the evaluation measures and the 
data sets used in the experiments. Sensitivity analysis of 
the algorithm parameters and a quantitative and qualitative 
analysis of the results are also discussed. Computation time 
of the algorithm is also provided. In addition, mall customer 
segmentation case study is discussed and analyzed.

Table 5   Performance comparison of the average values of Vmeasure for different algorithms in the form of avg(rank) which indicates the aver-
age, ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Vmeasure

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.91 (1) 0.85 (7) 0.9 (3) 0.9 (3) 0.89 (5) 0.84 (9) 0.88 (6) 0.91 (1) 0.81 (9) 0.85 (7) 0.52 (11)
Aniso 0.89 (1) 0.62 (6) 0.35 (9) 0.54 (7) 0.67 (2) N/A (11)a 0 (10) 0.45 (8) 0.65 (11) 0.66 (3) 0.66 (3)
Appendicitis 0.19 (3) 0.05 (5) 0 (9) 0 (9) 0.05 (5) N/A (11)a 0.01 (8) 0.05 (5) 0.08 (11) 0.2 (2) 0.23 (1)
Blobs 1 (1) 0.99 (8) 1 (1) 0.44 (11) 1 (1) 1 (1) 1 (1) 1 (1) 0.98 (1) 0.96 (10) 1 (1)
Circles 0.52 (3) 0.04 (5) N/A (11)a 0.11 (4) 0.04 (5) 1 (1) 1 (1) 0 (7) 0 (1) 0 (7) 0 (7)
Diagnosis II 0.65 (3) 0.25 (8) 0.44 (5) 0.48 (4) 0.15 (11) 1 (1) 1 (1) 0.44 (5) 0.17 (1) 0.16 (10) 0.44 (5)
Flame 0.6 (1) 0.4 (5) 0.21 (7) 0.08 (8) 0.39 (6) N/A (11)a 0.02 (10) 0.07 (9) 0.44 (11) 0.43 (3) 0.43 (3)
Glass 0.34 (5) 0.36 (4) 0.42 (1) 0.26 (8) 0.3 (7) N/A (11)a 0.07 (10) 0.38 (2) 0.33 (11) 0.38 (2) 0.18 (9)
Iris 0.77 (1) 0.75 (3) 0.7 (9) 0.51 (11) 0.75 (3) 0.73 (5) 0.72 (7) 0.72 (7) 0.73 (5) 0.77 (1) 0.54 (10)
Iris2D 0.82 (6) 0.8 (7) 0.84 (2) 0.69 (11) 0.76 (8) 0.73 (9) 0.72 (10) 0.87 (1) 0.83 (9) 0.84 (2) 0.84 (2)
Jain 0.55 (2) 0.35 (3) 0.22 (9) 0.26 (7) 0.2 (10) N/A (11)a 0.25 (8) 0.7 (1) 0.32 (11) 0.33 (4) 0.33 (4)
Moons 0.82 (3) 0.22 (7) 0.24 (5) 0.23 (6) 0.07 (11) 1 (1) 1 (1) 0.26 (4) 0.21 (1) 0.22 (7) 0.22 (7)
Mouse 0.75 (1) N/A (8)a N/A (8)a 0.43 (6) N/A (8)a N/A (8)a 0.01 (7) 0.44 (5) 0.58 (8) 0.61 (2) 0.49 (4)
Pathbased 0.52 (5) 0.55 (2) 0.41 (8) 0.59 (1) 0.53 (4) N/A (11)a 0.01 (10) 0.41 (8) 0.49 (11) 0.54 (3) 0.49 (6)
seeds 0.62 (5) 0.69 (1) 0.61 (7) 0.36 (9) 0.55 (8) N/A (11)a 0.07 (10) 0.62 (5) 0.65 (11) 0.69 (1) 0.66 (3)
Smiley 0.56 (3) 0.23 (9) 0.29 (5) 1 (1) 0.27 (6) 0.42 (4) 1 (1) 0.21 (11) 0.24 (4) 0.25 (7) 0.22 (10)
Varied 0.89 (2) 0.8 (5) 0.66 (7) 0.45 (9) 0.93 (1) N/A (11)a 0.01 (10) 0.57 (8) 0.79 (11) 0.83 (3) 0.83 (3)
VaryDensity 0.99 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.03 (6) 0.69 (5) 0.76 (7) 0.86 (2) 0.86 (2)
WDBC 0.18 (2) 0.01 (7) 0.01 (7) 0.02 (6) 0.01 (7) N/A (11)a 0.01 (7) 0.14 (3) 0.04 (11) 0.04 (4) 0.47 (1)
Wine 0.4 (6) 0.43 (2) 0.42 (5) 0.38 (7) 0.36 (8) N/A (11)a 0.06 (10) 0.44 (1) 0.43 (11) 0.43 (2) 0.17 (9)
Rank 49 107 120 128 115 145 124 96 113 80 92

1  https​://sciki​t-learn​.org/stabl​e/modul​es/clust​ering​.html.
2  https​://pypi.org/.
3  http://yarpi​z.com/64/ypml1​01-evolu​tiona​ry-clust​ering​.
4  https​://www.mathw​orks.com/produ​cts/matla​b.html.

https://scikit-learn.org/stable/modules/clustering.html
https://pypi.org/
http://yarpiz.com/64/ypml101-evolutionary-clustering
https://www.mathworks.com/products/matlab.html
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4.1 � Evaluation measures

The evaluation of a clustering algorithm is not simply speci-
fied by the correctness of the predicted clusters against the 
true classes. Other considerations should be taken into 
account such as the separateness and cohesion of the clus-
ters or the similarity between the data points in the same 
predicted cluster and the dissimilarity between data points 
in different clusters. With this regards, several measures can 
be considered for the evaluation as follows:

Given a set S of N points, C a true partitioning assignment 
of S, K a predicted partitioning assignment of S.

–	 Homogeneity Score: For all clusters, it measures if all 
data points of a specific cluster are in the same class [63].

	   Given H (C) which is the classes entropy [63]: 

where nc is the number of data points of class c.
	   Furthermore, given the assignments of the clusters K, 

H (C|K) is the classes conditional entropy [63]: 

(3)H(C) = −

|C|∑

c=1

nc

N
⋅ log

(nc
N

)

 where nkc is the number of data points from class c 
assigned to cluster k and nk is the number of data points 
of cluster k.

	   The Homogeneity Score is then given by [63]: 

–	 Completeness Score: For all classes, it measures if all 
data points of a specific class are clustered in the same 
cluster [63]

	   Given H (K) which is the clusters entropy [63]: 

 Furthermore, given the data points of the classes C, H 
(K|C) is the clusters conditional entropy [63]: 

(4)H(C|K) = −

|K|∑

k=1

|C|∑

c=1

nkc

N
⋅ log

(
nkc

nk

)

(5)HS = 1 −
H(C|K)
H(C)

.

(6)H(K) = −

|K|∑

k=1

nk

N
⋅ log

(nk
N

)
.

(7)H(K|C) = −

|C|∑

c=1

|K|∑

k=1

nkc

N
⋅ log

(
nkc

nc

)
.

Table 6   Performance comparison of the average values of AMI for different algorithms in the form of avg(rank) which indicates the average, 
ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Adjusted Mutual Information

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.87 (1) 0.81 (6) 0.85 (5) 0.86 (2) 0.86 (2) 0.72 (10) 0.8 (8) 0.86 (2) 0.77 (9) 0.81 (6) 0.36 (11)
Aniso 0.89 (1) 0.61 (6) 0.31 (9) 0.37 (8) 0.66 (2) N/A (11)a 0 (10) 0.43 (7) 0.64 (5) 0.66 (2) 0.66 (2)
Appendicitis 0.16 (3) 0.01 (6) 0 (8) 0 (8) 0.01 (6) N/A (11)a −0.01(10) 0.04 (5) 0.06 (4) 0.18 (2) 0.21 (1)
Blobs 1 (1) 0.99 (8) 1 (1) 0.28 (11) 1 (1) 1 (1) 1 (1) 1 (1) 0.98 (9) 0.94 (10) 1 (1)
Circles 0.51 (3) 0.02 (5) N/A (11)a 0.09 (4) 0.02 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 0.63 (3) 0.23 (8) 0.39 (4) 0.3 (7) 0.13 (11) 1 (1) 1 (1) 0.39 (4) 0.16 (9) 0.15 (10) 0.39 (4)
Flame 0.59 (1) 0.38 (5) 0.2 (7) 0.07 (8) 0.38 (5) N/A (11)a 0.01 (10) 0.06 (9) 0.43 (2) 0.41 (3) 0.41 (3)
Glass 0.26 (5) 0.32 (1) 0.32 (1) 0.19 (8) 0.23 (6) N/A (11)a 0.02 (10) 0.27 (3) 0.23 (6) 0.27 (3) 0.14 (9)
Iris 0.72 (4) 0.74 (2) 0.63 (7) 0.37 (11) 0.73 (3) 0.58 (8) 0.58 (8) 0.7 (6) 0.72 (4) 0.76 (1) 0.43 (10)
Iris2D 0.79 (6) 0.79 (6) 0.83 (4) 0.56 (11) 0.74 (8) 0.58 (9) 0.58 (9) 0.87 (1) 0.83 (4) 0.84 (2) 0.84 (2)
Jain 0.54 (2) 0.32 (3) 0.21 (7) 0.16 (10) 0.19 (8) N/A (11)a 0.18 (9) 0.66 (1) 0.3 (4) 0.3 (4) 0.3 (4)
Moons 0.82 (3) 0.2 (9) 0.22 (5) 0.2 (9) 0.05 (11) 1 (1) 1 (1) 0.26 (4) 0.21 (8) 0.22 (5) 0.22 (5)
Mouse 0.73 (1) N/A (8)a N/A (8)a 0.41 (4) N/A (8)a N/A (8)a 0 (7) 0.41 (4) 0.51 (3) 0.53 (2) 0.39 (6)
Pathbased 0.48 (4) 0.51 (1) 0.37 (9) 0.5 (3) 0.48 (4) N/A (11)a 0 (10) 0.38 (8) 0.47 (6) 0.51 (1) 0.4 (7)
seeds 0.59 (6) 0.68 (2) 0.59 (6) 0.27 (9) 0.54 (8) N/A (11)a 0.03 (10) 0.6 (5) 0.64 (4) 0.69 (1) 0.65 (3)
Smiley 0.47 (3) 0.18 (9) 0.22 (5) 1 (1) 0.2 (7) 0.27 (4) 1 (1) 0.16 (11) 0.18 (9) 0.19 (8) 0.21 (6)
Varied 0.89 (2) 0.8 (5) 0.64 (7) 0.29 (9) 0.93 (1) N/A (11)a 0 (10) 0.52 (8) 0.79 (6) 0.83 (3) 0.83 (3)
VaryDensity 0.99 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0 (6) 0.57 (5) 0.74 (4) 0.85 (2) 0.85 (2)
WDBC 0.17 (2) 0 (7) 0 (7) 0.02 (4) 0 (7) N/A (11)a 0 (7) 0.1 (3) 0.02 (4) 0.02 (4) 0.47 (1)
Wine 0.38 (6) 0.41 (4) 0.41 (4) 0.35 (7) 0.32 (8) N/A (11)a 0.02 (10) 0.43 (1) 0.42 (2) 0.42 (2) 0.13 (9)
Rank 52 104 118 134 110 149 129 94 107 76 87



693International Journal of Machine Learning and Cybernetics (2020) 11:675–714	

1 3

 The Completeness Score is then given by [63]: 

–	 V-measure: V-measure measures the agreement between 
the true partitioning assignments and the predicted par-
titioning assignments. V-measure is a harmonic mean 
between homogeneity and completeness as defined by 
Rosenberg and Hirschberg [63]: 

–	 Adjusted Rand Index (ARI): ARI considers pair count-
ing to measure the similarity between two assignments 
[64] which is the true and the predicted assignments. The 
Rand index is calculated using the following formula [66, 
67]: 

(8)CS = 1 −
H(K|C)
H(K)

.

(9)VM = 2 ⋅
HS ⋅ CS

HS + CS
.

(10)RI =
a + b�
N

2
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∑
k,c

�
nkc
2

�

�
N

2

�

 Where a is the number of pairs of points that are at the 
same class of C and at the same cluster of K, b is the 
number of pairs of points that are in different class in C 
and in different cluster in K, and 

(
N

2

)
 is the total number 

of pairs in S.
	   Furthermore, E[RI], max[RI] are the expected RI and 

maximum RI which are given by [67]: 

 Correction by chance is achieved for the rand index and 
is called the Adjusted Rand Index which is given by [67]: 
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(13)ARI =
RI − E[RI]
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.

Table 7   Performance comparison of the average values of ARI Score for different algorithms in the form of avg(rank) which indicates the aver-
age, ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Adjusted Rand Index

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.86 (1) 0.73 (7) 0.78 (6) 0.85 (2) 0.8 (3) 0.73 (7) 0.8 (3) 0.79 (5) 0.68 (10) 0.72 (9) 0.36 (11)
Aniso 0.87 (1) 0.59 (6) 0.18 (9) 0.3 (8) 0.66 (2) N/A (11)a 0 (10) 0.36 (7) 0.63 (5) 0.66 (2) 0.66 (2)
Appendicitis 0.31 (2) 0.04 (5) 0 (7) 0 (7) 0.04 (5) N/A (11)a −0.01(9) −0.09(10) 0.05 (4) 0.3 (3) 0.38 (1)
Blobs 1 (1) 0.98 (9) 1 (1) 0.12 (11) 1 (1) 1 (1) 1 (1) 1 (1) 0.99 (8) 0.93 (10) 1 (1)
Circles 0.52 (3) 0 (5) N/A (11)a 0.02 (4) 0 (5) 1 (1) 1 (1) 0 (5) 0 (5) 0 (5) 0 (5)
Diagnosis II 0.63 (3) 0.22 (8) 0.41 (4) 0.23 (7) 0.14 (10) 1 (1) 1 (1) 0.41 (4) 0.15 (9) 0.11 (11) 0.41 (4)
Flame 0.59 (1) 0.44 (5) 0.2 (7) −0.03(9) 0.39 (6) N/A (11)a 0.01 (8) −0.04(10) 0.48 (2) 0.46 (3) 0.46 (3)
Glass 0.21 (4) 0.2 (6) 0.25 (1) 0.07 (9) 0.18 (7) N/A (11)a 0.01 (10) 0.23 (3) 0.21 (4) 0.24 (2) 0.12 (8)
Iris 0.7 (3) 0.72 (2) 0.57 (7) 0.31 (11) 0.66 (5) 0.57 (7) 0.56 (9) 0.64 (6) 0.69 (4) 0.75 (1) 0.47 (10)
Iris2D 0.78 (6) 0.77 (7) 0.85 (2) 0.64 (9) 0.67 (8) 0.57 (10) 0.57 (10) 0.89 (1) 0.83 (5) 0.85 (2) 0.85 (2)
Jain 0.48 (2) 0.3 (3) 0.02 (9) 0.04 (8) −0.01(10) N/A (11)a 0.26 (4) 0.78 (1) 0.24 (7) 0.26 (4) 0.26 (4)
Moons 0.82 (3) 0.19 (9) 0.21 (8) 0.14 (10) 0.01 (11) 1 (1) 1 (1) 0.33 (4) 0.28 (7) 0.29 (5) 0.29 (5)
Mouse 0.72 (1) N/A (8)a N/A (8)a 0.24 (5) N/A (8)a N/A (8)a −0.01(7) 0.24 (5) 0.43 (3) 0.46 (2) 0.39 (4)
Pathbased 0.44 (4) 0.46 (2) 0.33 (9) 0.56 (1) 0.44 (4) N/A (11)a 0 (10) 0.35 (8) 0.42 (6) 0.46 (2) 0.4 (7)
seeds 0.58 (5) 0.7 (2) 0.57 (6) 0.13 (9) 0.53 (8) N/A (11)a 0 (10) 0.55 (7) 0.66 (3) 0.71 (1) 0.63 (4)
Smiley 0.34 (3) 0.03 (7) 0.04 (6) 1 (1) 0.02 (11) 0.29 (4) 1 (1) 0.03 (7) 0.03 (7) 0.03 (7) 0.05 (5)
Varied 0.91 (2) 0.81 (5) 0.61 (7) 0.2 (9) 0.96 (1) N/A (11)a 0 (10) 0.51 (8) 0.8 (6) 0.85 (3) 0.85 (3)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0 (6) 0.51 (5) 0.71 (4) 0.87 (2) 0.87 (2)
WDBC 0.2 (2) 0 (6) 0 (6) −0.01(10) 0 (6) N/A (11)a 0 (6) 0.1 (3) 0.02 (4) 0.02 (4) 0.6 (1)
Wine 0.35 (6) 0.36 (5) 0.37 (2) 0.28 (7) 0.27 (8) N/A (11)a 0.01 (10) 0.37 (2) 0.37 (2) 0.38 (1) 0.17 (9)
Rank 48 109 121 137 118 146 117 100 103 78 82
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–	 Adjusted Mutual Information (AMI): AMI considers 
Shannon information theory to measures the similarity 
between two partitioning assignments [64] which is the 
true and the predicted assignments. The Mutual index is 
calculated using the following formula [64]: 

 Furthermore, E[MI] is the expected MI which is given 
by [64, 68]: 

 Given H (C) and H (K) as the entropy of the partitioning 
assignment from formulas 3 and 6, correction by chance 
is achieved for the mutual information and is called the 
Adjusted Mutual Information which is given by [64]: 
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(16)AMI =
MI − E[MI]

max(H(K),H(C)) − E[MI]
.

4.2 � Data sets

Twenty data sets are selected with different number of fea-
tures, points, and clusters which reflects different levels of 
complexity. These data sets are gathered from scikit learn5, 
UCI machine learning repository6 [69], School of Comput-
ing at University of Eastern Finland7, ELKI8, KEEL9, and 
Naftali Harris Blog10.

Table 1 shows the name and type of these data sets along 
with the number of clusters (k), features, and points. The 
values of IR and i parameters that are used in the experi-
ments are also observed for each data set. Moreover, a brief 
description of these data sets are listed below:

–	 �ggregation�: A two-dimensional data set consists of 
seven clusters of different shapes and sizes having some 
connections between some of them.

Table 8   Performance comparison of the average values of grand average score for different algorithms in the form of avg(rank) which indicates 
the average, ranking, and standard deviation of 30 independent runs, respectively

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Grand Average Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.9 (1) 0.82 (7) 0.868 (4) 0.884 (2) 0.868 (4) 0.8 (9) 0.85 (6) 0.87 (3) 0.779 (10) 0.816 (8) 0.511 (11)
Aniso 0.89 (1) 0.61 (6) 0.312 (9) 0.506 (7) 0.664 (2) N/A (11)a 0.03 (10) 0.43 (8) 0.646 (5) 0.661 (3) 0.66 (4)
Appendicitis 0.21 (3) 0.07 (6) 0.2 (4) 0.2 (4) 0.07 (6) N/A (11)a 0.01 (10) 0.02 (9) 0.07 (6) 0.22 (2) 0.26 (1)
Blobs 1 (1) 0.988 (8) 1 (1) 0.416 (11) 1 (1) 1 (1) 1 (1) 1 (1) 0.985 (9) 0.949 (10) 1 (1)
Circles 0.52 (3) 0.046 (5) N/A (11)a 0.092 (4) 0.046 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 0.65 (3) 0.242 (8) 0.426 (6) 0.464 (4) 0.144 (11) 1 (1) 1 (1) 0.43 (5) 0.167 (9) 0.151 (10) 0.426 (7)
Flame 0.6 (1) 0.404 (5) 0.204 (7) 0.058 (8) 0.388 (6) N/A (11)a 0.05 (9) 0.05 (9) 0.447 (2) 0.432 (3) 0.432(3)
Glass 0.3 (6) 0.324 (4) 0.376 (1) 0.21 (8) 0.264 (7) N/A (11)a 0.1 (10) 0.34 (3) 0.304 (5) 0.345 (2) 0.163 (9)
Iris 0.75 (2) 0.742 (3) 0.664 (9) 0.47 (11) 0.73 (4) 0.69 (7) 0.67 (8) 0.7 (6) 0.723 (5) 0.761 (1) 0.511 (10)
Iris2D 0.81 (6) 0.792 (7) 0.84 (4) 0.666 (11) 0.738 (8) 0.69 (9) 0.68 (10) 0.87 (1) 0.83 (5) 0.846 (2) 0.844 (3)
Jain 0.54 (2) 0.336 (3) 0.178 (9) 0.258 (7) 0.156 (10) N/A (11)a 0.25 (8) 0.71 (1) 0.302 (6) 0.312 (4) 0.312 (4)
Moons 0.82 (3) 0.212 (9) 0.23 (7) 0.208 (10) 0.07 (11) 1 (1) 1 (1) 0.27 (4) 0.228 (8) 0.234 (5) 0.234 (5)
Mouse 0.74 (1) N/A (8)a N/A (8)a 0.388 (6) N/A (8)a N/A (8)a 0.02 (7) 0.39 (5) 0.544 (3) 0.565 (2) 0.462 (4)
Pathbased 0.5 (5) 0.522 (2) 0.386 (9) 0.572 (1) 0.504 (4) N/A (11)a 0.04 (10) 0.39 (8) 0.474 (6) 0.52 (3) 0.464 (7)
seeds 0.61 (5) 0.69 (2) 0.598 (7) 0.304 (9) 0.544 (8) N/A (11)a 0.07 (10) 0.6 (6) 0.651 (4) 0.698 (1) 0.653 (3)
Smiley 0.51 (3) 0.19 (9) 0.234 (5) 1 (1) 0.212 (6) 0.45 (4) 1 (1) 0.17 (11) 0.192 (8) 0.202 (7) 0.184 (10)
Varied 0.89 (2) 0.804 (5) 0.646 (7) 0.432 (9) 0.936 (1) N/A (11)a 0.03 (10) 0.55 (8) 0.792 (6) 0.834 (3) 0.834 (3)
VaryDensity 0.99 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.05 (6) 0.64 (5) 0.748 (4) 0.86 (2) 0.86 (2)
WDBC 0.2 (2) 0.026 (9) 0.028 (7) 0.016 (10) 0.028 (7) N/A (11)a 0.03 (6) 0.14 (3) 0.076 (4) 0.054 (5) 0.497 (1)
Wine 0.39 (6) 0.41 (4) 0.408 (5) 0.356 (7) 0.336 (8) N/A (11)a 0.07 (10) 0.43 (1) 0.415 (3) 0.417 (2) 0.168 (9)
Rank 51 113 122 130 116 147 125 103 112 80 95

5  http://sciki​t-learn​.org/stabl​e/datas​ets/index​.html.
6  https​://archi​ve.ics.uci.edu/ml/.
7  http://cs.uef.fi/sipu/datas​ets/.
8  https​://elki-proje​ct.githu​b.io/datas​ets/.
9  https​://sci2s​.ugr.es/keel/datas​ets.php.
10  https​://www.nafta​lihar​ris.com/blog/visua​lizin​g-K-means​-clust​
ering​/.

http://scikit-learn.org/stable/datasets/index.html
https://archive.ics.uci.edu/ml/
http://cs.uef.fi/sipu/datasets/
https://elki-project.github.io/datasets/
https://sci2s.ugr.es/keel/datasets.php
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/
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–	 �niso�: A two-dimensional data set consists of 3 uncon-
nected isotropic Gaussian blobs with similar densities. 
They interleave at some points in the X and Y axis.

–	 �ppendicitis� : Represents the medical status of 106 
patients for having appendicitis based on 7 measures.

–	 �lobs�: A two-dimensional data set consists of 3 uncon-
nected isotropic Gaussian blobs with similar densities 
forming spherical shapes. It is usually used to show and 
prove clustering as the cluster centers and standard devia-
tion is easily controlled. That is, a clustering algorithm 
should at least satisfy predicting such data set.

–	 �ircles�: A two-dimensional data set consists of 2 clus-
ters of different sizes forming 2 circles that are not con-
nected to each other. One circle is surrounded with the 
other one. The two circles need to be visualized with a 
spherical boundary for binary clustering.

–	 �iagnosisII�:  Represents the medical status of 120 
patients for having a nephritis of renal pelvis origin based 
on 6 symptoms.

–	 �lame�: A two-dimensional data set consists of two con-
nected clusters forming the shape of a flower.

–	 �lass�: Represents the types of glass for 214 items based 
on their chemical elements.

–	 �ris�: It consists of 4 characteristics of 150 iris plants to 
detect the type of each iris plant. The characteristics are 
the petal length, the petal width, the sepal length, and the 
sepal width in centimeters.

–	 �ris2D�: A modification of the previous data set found in 
Weka tool [70] considering only two characteristics of 
the iris plants which are the petal length and width.

–	 �ain�: A two-dimensional data set consists of two half 
circles of different densities that are not connected with 
each other but interleave in the x and y axis for some 
points.

–	 �oons�: A two-dimensional data set consists of 2 inter-
leaving half circles with similar densities. The two half 
circles need to be visualized with a spherical boundary 
for binary clustering. They are not connected to each 
other but they interleave at some points in the X and Y 
axis.

–	 �ouse�: A two-dimensional data set consists of three 
connected clusters of different sizes that form the ears 
and face of Mickey Mouse which is a popular cartoon 
character.

–	 �athbased�: A two-dimensional data set consists of 3 
unconnected clusters forming 2 spherical shape and an 

Table 9   Performance comparison of the best values of Homogeneity Score for different algorithms in the form of best(rank) which indicates the 
best and ranking of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Homogeneity Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.98 (2) 0.93 (5) 0.95 (3) 0.87 (8) 1 (1) 0.72 (10) 0.8 (9) 0.95 (3) 0.92 (7) 0.93 (5) 0.36 (11)
Aniso 1 (1) 0.68 (5) 0.31 (9) 0.95 (2) 0.77 (4) N/A (11)a 0 (10) 0.43 (8) 0.92 (3) 0.67 (6) 0.66 (7)
Appendicitis 0.36 (1) 0.03 (6) 0 (8) 0 (8) 0.03 (6) N/A (11)a 0 (8) 0.05 (5) 0.28 (3) 0.29 (2) 0.25 (4)
Blobs 1 (1) 1 (1) 1 (1) 0.95 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0.02 (5) N/A (11)a 0.09 (4) 0.02 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 1 (1) 0.49 (7) 0.4 (9) 1 (1) 0.49 (7) 1 (1) 1 (1) 0.4 (9) 1 (1) 1 (1) 0.4 (9)
Flame 0.97 (1) 0.49 (3) 0.21 (7) 0.09 (8) 0.44 (4) N/A (11)a 0.01 (10) 0.06 (9) 0.51 (2) 0.44 (4) 0.44 (4)
Glass 0.41 (1) 0.39 (2) 0.34 (3) 0.3 (7) 0.31 (6) N/A (11)a 0.04 (10) 0.3 (7) 0.32 (5) 0.34 (3) 0.18 (9)
Iris 0.87 (1) 0.78 (4) 0.63 (8) 0.77 (5) 0.74 (6) 0.58 (10) 0.59 (9) 0.7 (7) 0.8 (2) 0.79 (3) 0.45 (11)
Iris2D 0.9 (1) 0.84 (7) 0.84 (7) 0.87 (3) 0.74 (9) 0.58 (10) 0.58 (10) 0.87 (3) 0.9 (1) 0.86 (5) 0.86 (5)
Jain 1 (1) 0.42 (5) 0.23 (8) 0.67 (2) 0.21 (9) N/A (11)a 0.18 (10) 0.66 (3) 0.43 (4) 0.37 (6) 0.37 (6)
Moons 1 (1) 0.22 (7) 0.22 (7) 0.27 (4) 0.05 (11) 1 (1) 1 (1) 0.26 (6) 0.27 (4) 0.22 (7) 0.22 (7)
Mouse 0.97 (1) N/A (8)a N/A (8)a 0.44 (5) N/A (8)a N/A (8)a 0.01 (7) 0.47 (4) 0.77 (2) 0.75 (3) 0.4 (6)
Pathbased 0.74 (1) 0.52 (3) 0.38 (8) 0.71 (2) 0.49 (6) N/A (11)a 0.01 (10) 0.38 (8) 0.52 (3) 0.51 (5) 0.4 (7)
seeds 0.7 (4) 0.73 (1) 0.6 (7) 0.47 (9) 0.56 (8) N/A (11)a 0.04 (10) 0.61 (6) 0.72 (2) 0.72 (2) 0.69 (5)
Smiley 1 (1) 0.35 (8) 0.4 (4) 1 (1) 0.37 (5) 0.27 (10) 1 (1) 0.3 (9) 0.37 (5) 0.36 (7) 0.21 (11)
Varied 0.94 (1) 0.8 (7) 0.64 (8) 0.92 (3) 0.93 (2) N/A (11)a 0 (10) 0.52 (9) 0.83 (4) 0.83 (4) 0.83 (4)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.01 (6) 0.58 (5) 0.88 (2) 0.86 (3) 0.86 (3)
WDBC 0.68 (1) 0 (8) 0 (8) 0.03 (6) 0 (8) N/A (11)a 0.01 (7) 0.1 (4) 0.15 (3) 0.05 (5) 0.47 (2)
Wine 0.43 (4) 0.43 (4) 0.42 (6) 0.4 (8) 0.42 (6) N/A (11)a 0.04 (10) 0.44 (1) 0.44 (1) 0.44 (1) 0.13 (9)
Rank 23 99 131 96 113 158 131 113 61 79 119
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uncompleted circle. The two spherical shapes interleave 
with the uncompleted circles in the X and Y axis.

–	 �eeds�: Represents 3 different varieties of wheat for 210 
elements based on the geometric parameters of wheat 
kernels.

–	 �miley��: A two-dimensional data set which forms an 
outline of the face having circular boundary, two eyes, 
and a mouth. The face boundary interleaves in the X and 
Y axis with the eyes and mouth.

–	 �aried�: A two-dimensional data set consists of 3 iso-
tropic Gaussian blobs connected with each other. The 
blobs are of different densities having spherical shapes.

–	 �aryDensity�: A two-dimensional data set consists of 3 
gaussian blobs with variable densities.

–	 �DBC�: Presents a cell nuclei digitized image character-
istics of 569 breast mass. Binary clustering is performed 
to detect if the breast mass is malignant or benign.

–	 �ine�: Represents 13 constituents quantities for each 
instance to detect one of the three types of wine.

4.3 � Sensitivity analysis

As stated earlier, the algorithm has two parameters; IR and 
i. The IR controls the amount of possible reassignment of 
points and i determines the number of times the algorithm 
repeats. The IR values of 0, 0.01, 0.05, 0.1, 0.15 and 0.2 
and the i values of 1, 5, 10, 30, 50, and 100 are used for the 
experiments. The best IR and i values for the average results 
are selected for each data set as observed from Table 1.

The effect of the IR parameter can be observed from 
Fig. 8. The figure shows two values of IR which are 0.2 and 
0.4 for a data set of 5 points. When IR value equals 0.2, the 
TotalIndex value is 5 according to Eq. (2). This is observed 
from Fig. 8a which shows that 5 different considerations 
of assignments and reassignments are taken place having 5 
different election, selection, and assignment operations for 
each iteration in i. The red line in the figure shows possible 
index reached for each distance vector of each point. For 
example, point 3 and 5 have been elected 2 times having the 
Nearest as point 5, 1, 3, and 4, respectively. Point 1 has been 
elected only once, point 2 and 4 have never been elected. In 

Table 10   Performance comparison of the best values of Completeness Score for different algorithms in the form of best(rank) which indicates 
the best and ranking of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Completeness Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.98 (3) 0.84 (10) 0.86 (7) 0.94 (6) 1 (1) 1 (1) 0.98 (3) 0.86 (7) 0.84 (10) 0.86 (7) 0.96 (5)
Aniso 1 (1) 0.68 (4) 0.41 (8) 0.37 (9) 0.77(3) N/A (11)a 0.13 (10) 0.46 (7) 0.92 (2) 0.67 (5) 0.66 (6)
Appendicitis 0.39 (3) 0.29 (4) 1 (1) 1 (1) 0.29(4) N/A (11)a 0.04 (10) 0.05 (9) 0.25 (7) 0.29 (4) 0.22 (8)
Blobs 1 (1) 1 (1) 1 (1) 0.29 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0.15 (4) N/A (11)a 0.15 (4) 0.15(4) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 1 (1) 0.49 (6) 0.49 (6) 0.31 (11) 0.49(6) 1 (1) 1 (1) 0.49 (6) 1 (1) 1 (1) 0.49 (6)
Flame 0.96 (1) 0.46 (3) 0.2 (7) 0.08 (10) 0.41(6) N/A (11)a 0.18 (8) 0.1 (9) 0.48 (2) 0.42 (4) 0.42 (4)
Glass 0.61 (1) 0.47 (6) 0.55 (4) 0.23 (9) 0.45(7) N/A (11)a 0.35 (8) 0.52 (5) 0.59 (3) 0.6 (2) 0.22 (10)
Iris 0.95 (2) 0.79 (6) 0.79 (6) 0.39 (11) 0.78(8) 1 (1) 0.92 (3) 0.75 (9) 0.81 (4) 0.8 (5) 0.73 (10)
Iris2D 0.92 (3) 0.84 (8) 0.84 (8) 0.57 (11) 0.78(10) 1 (1) 0.95 (2) 0.87 (5) 0.9 (4) 0.86 (6) 0.86 (6)
Jain 1 (1) 0.35 (4) 0.21 (8) 0.16 (10) 0.19(9) N/A (11)a 0.4 (3) 0.74 (2) 0.35 (4) 0.3 (6) 0.3 (6)
Moons 1 (1) 0.26 (5) 0.26 (5) 0.2 (10) 0.18(11) 1 (1) 1 (1) 0.26 (5) 0.27 (4) 0.22 (8) 0.22 (8)
Mouse 0.98 (1) N/A (8)a N/A (8)a 0.42 (5) N/A (8)a N/A (8)a 0.09 (7) 0.41 (6) 0.59 (3) 0.56 (4) 0.67 (2)
Pathbased 0.76 (1) 0.59 (3) 0.44 (9) 0.5 (7) 0.58 (5) N/A (11)a 0.17 (10) 0.45 (8) 0.59 (3) 0.58 (5) 0.63 (2)
seeds 0.76 (1) 0.73 (2) 0.62 (6) 0.29 (9) 0.57 (8) N/A (11)a 0.23 (10) 0.62 (6) 0.73 (2) 0.72 (4) 0.69 (5)
Smiley 1 (1) 0.2 (10) 0.22 (6) 1 (1) 0.21 (7) 1 (1) 1 (1) 0.17 (11) 0.21 (7) 0.21 (7) 0.23 (5)
Varied 0.94 (1) 0.81 (6) 0.68 (7) 0.3 (9) 0.93 (2) N/A (11)a 0.14 (10) 0.64 (8) 0.84 (3) 0.84 (3) 0.83 (5)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.19 (6) 0.84 (5) 0.89 (2) 0.86 (3) 0.86 (3)
WDBC 0.7 (2) 0.13 (7) 0.13 (7) 0.02 (10) 0.13 (7) N/A (11)a 0.15 (6) 0.28 (4) 1 (1) 0.24 (5) 0.48 (3)
Wine 0.56 (1) 0.45 (3) 0.42 (7) 0.37 (8) 0.49 (2) N/A (11)a 0.24 (9) 0.45 (3) 0.45 (3) 0.43 (6) 0.24 (9)
Rank 27 104 122 151 114 122 101 120 70 87 102
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contrast, when the IR value equals 0.4, the TotalIndex value 
is 10 according to Eq. (2). This is observed from Fig. 8b 
which shows that when IR value becomes larger, more pos-
sible reassignments of points are considered by comparing 
Fig. 8a with b.

Since IR parameter is considered after all points are 
clustered, it allows for more possible selection of different 
elected points and more possible reassignment of points 
which might correct wrong clustered points. This does not 
effect the right assignments of points as per case 3 in the 
Assignment operation discussed previously.

On the other hand, the effect of the i parameter results 
into iterative resetting of the pointers of all the distance vec-
tors. This is also useful by allowing for corrections of wrong 
clustered points when the same point has been elected many 
times beyond what is required for a specific iteration in i. 
That is, when the pointers of all distance vectors are reset 
then more possible selections of different elected points are 
considered and reassignments of points are done to correct 
wrong clustered points. This also does not effect the right 
assignments of points as per case 3 in the assignment opera-
tion discussed previously.

IR and i parameters also help in avoiding the termi-
nation of cluster shaping process at early stage through 

the iterations while exploring different shapes of clusters 
because more possible selection of different elected points 
and more possible reassignment of points are considered. 
Thus, exploration of different clusters can be achieved 
which can help in detecting arbitrary shaped clusters. 
However, we don’t recommend large value of IR and i 
which is beyond what is required because it may result in 
unnecessary complexity having more elections of points 
with more selections of far points with no reassignments. 
IR values beyond 0.2 and i values beyond 100 is not rec-
ommended for NPIR.

Since the algorithm is evaluated using multiple meas-
ures which are: HS, CS, VM, AMI, and ARI, then the deci-
sion of selecting the best values of IR and i is considered a 
multi-objective problem which are solved using aggregat-
ing, population-based non Pareto and Pareto-based tech-
niques [71]. We use the conventional weighted aggregation 
formula as the Evaluation (E) for the purpose of analyzing 
the sensitivity of the IR and i values which is the most 
common approach for coping with multi-objective prob-
lems [72]. The weighted aggregation works by summing 
up all the objective measures to a weighted combination 
according to the following formula [72]:

Table 11   Performance comparison of the best values of Vmeasure for different algorithms in the form of best(rank) which indicates the best and 
ranking of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Vmeasure

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.98 (2) 0.88 (7) 0.9 (4) 0.9 (4) 1 (1) 0.84 (10) 0.88 (7) 0.91 (3) 0.87 (9) 0.89 (6) 0.52 (11)
Aniso 1 (1) 0.68 (4) 0.35 (9) 0.54 (7) 0.77 (3) N/A (11)a 0 (10) 0.45 (8) 0.92 (2) 0.67 (5) 0.66 (6)
Appendicitis 0.37 (1) 0.06 (5) 0 (9) 0 (9) 0.06 (5) N/A (11)a 0.01 (8) 0.05 (7) 0.26 (3) 0.29 (2) 0.23 (4)
Blobs 1 (1) 1 (1) 1 (1) 0.44 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0.04 (5) N/A (11)a 0.11 (4) 0.04 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 1 (1) 0.49 (6) 0.44 (9) 0.48 (8) 0.49 (6) 1 (1) 1 (1) 0.44 (9) 1 (1) 1 (1) 0.44 (9)
Flame 0.96 (1) 0.47 (3) 0.21 (7) 0.08 (8) 0.42 (6) N/A (11)a 0.02 (10) 0.07 (9) 0.5 (2) 0.43 (4) 0.43 (4)
Glass 0.45 (1) 0.43 (2) 0.42 (4) 0.26 (8) 0.36 (7) N/A (11)a 0.07 (10) 0.38 (6) 0.4 (5) 0.43 (2) 0.19 (9)
Iris 0.87 (1) 0.79 (4) 0.7 (9) 0.51 (11) 0.76 (5) 0.73 (6) 0.72 (7) 0.72 (7) 0.8 (2) 0.8 (2) 0.56 (10)
Iris2D 0.9 (1) 0.84 (6) 0.84 (6) 0.69 (11) 0.76 (8) 0.73 (9) 0.72 (10) 0.87 (3) 0.9 (1) 0.86 (4) 0.86 (4)
Jain 1 (1) 0.38 (4) 0.22 (9) 0.26 (7) 0.2 (10) N/A (11)a 0.25 (8) 0.7 (2) 0.39 (3) 0.33 (5) 0.33 (5)
Moons 1 (1) 0.24 (6) 0.24 (6) 0.23 (8) 0.07 (11) 1 (1) 1 (1) 0.26 (5) 0.27 (4) 0.22 (9) 0.22 (9)
Mouse 0.98 (1) N/A (8)a N/A (8)a 0.43 (6) N/A (8)a N/A (8)a 0.01 (7) 0.44 (5) 0.67 (2) 0.64 (3) 0.5 (4)
Pathbased 0.75 (1) 0.55 (3) 0.41 (8) 0.59 (2) 0.53 (6) N/A (11)a 0.01 (10) 0.41 (8) 0.55 (3) 0.54 (5) 0.49 (7)
seeds 0.7 (4) 0.73 (1) 0.61 (7) 0.36 (9) 0.56 (8) N/A (11)a 0.07 (10) 0.62 (6) 0.72 (2) 0.72 (2) 0.69 (5)
Smiley 1 (1) 0.25 (9) 0.29 (5) 1 (1) 0.27 (6) 0.42 (4) 1 (1) 0.21 (11) 0.27 (6) 0.27 (6) 0.22 (10)
Varied 0.94 (1) 0.8 (6) 0.66 (7) 0.45 (9) 0.93 (2) N/A (11)a 0.01 (10) 0.57 (8) 0.84 (3) 0.83 (4) 0.83 (4)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0.03 (6) 0.69 (5) 0.88 (2) 0.86 (3) 0.86 (3)
WDBC 0.69 (1) 0.01 (7) 0.01 (7) 0.02 (6) 0.01 (7) N/A (11)a 0.01 (7) 0.14 (4) 0.2 (3) 0.09 (5) 0.47 (2)
Wine 0.46 (1) 0.43 (5) 0.42 (7) 0.38 (8) 0.45 (2) N/A (11)a 0.06 (10) 0.44 (3) 0.44 (3) 0.43 (5) 0.17 (9)
Rank 23 94 133 136 112 147 125 114 61 76 114
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where m is the number of objective measures and wi is a non 
negative weight for each objective measure. The sum of 1 for 
the weights ( 

∑m

i=1
wi = 1 ) should be considered.

For simplicity and for the purpose of the sensitivity 
analysis we are conducting, the Evaluation of each com-
bination of IR and i can be obtained by considering an 
equal weight for each measure. This forms the average 
values of the objective measures as shown by the follow-
ing formula [73]:

The sensitivity analysis for each data set for the average 
results using the average formula are observed in Fig. 9. It 
is observed from the sensitivity graphs that NPIR performs 
differently for different values of IR and i for the majority 
of the data sets. In contrast, it performs approximately 
equal for all values of i for the Aggregation and Blobs 
data sets. Circles, Glass, and Iris data sets need middle 

(17)E =

m∑

i=1

wifi(x)

(18)E =

m∑

i=1

1

m
fi(x).

values of IR and i to give good results while larger values 
of IR and i are needed for the Flame data set. However, 
some data sets perform better for large values of IR such 
as Diagnosis II and Jain or large values of i such as Aniso, 
Appendicitis, Moons, Pathbased, and Varied. Finally, 
WDBC, Appendicitis, Flame, and Jain data set has a rec-
ognizable enhanced results for specific values of IR and i.

4.4 � Results and discussion

To evaluate the proposed algorithm, the experiments are 
conducted on each data set for 30 independent runs. The best 
and average results are listed against the other well-known 
clustering algorithm which are k-means++, BIRCH, HDB-
SCAN, EM, MST, HC-SL, HC-CL, GA, PSO, and DCMVO 
using the evaluation measures listed earlier. For NPIR, the 
IR values of 0, 0.01, 0.05, 0.1, 0.15 and 0.2 and the i values 
of 1, 5, 10, 30, 50, and 100 are experimented as discussed 
in Sect. 4.3 and the best values among these are selected.

For the other clustering algorithms, the value of 100 
is considered as the maximum number of iterations for 
k-means++, BIRCH, and EM which is the largest iteration 
value selected for NPIR. A value of 150 for the iterations 
and the value of 50 for the search agents are considered for 

Table 12   Performance comparison of the best values of AMI for different algorithms in the form of best(rank) which indicates the best and rank-
ing of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Adjusted Mutual Information

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.98 (2) 0.84 (7) 0.85 (5) 0.86 (3) 1 (1) 0.72 (10) 0.8 (9) 0.86 (3) 0.83 (8) 0.85 (5) 0.36 (11)
Aniso 1 (1) 0.68 (4) 0.31 (9) 0.37 (8) 0.77 (3) N/A (11)a 0 (10) 0.43 (7) 0.92 (2) 0.67 (5) 0.66 (6)
Appendicitis 0.35 (1) 0.02 (6) 0 (8) 0 (8) 0.02 (6) N/A (11)a −0.01(10) 0.04 (5) 0.24 (3) 0.28 (2) 0.21 (4)
Blobs 1 (1) 1 (1) 1 (1) 0.28 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0.02 (5) N/A (11)a 0.09 (4) 0.02 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 1 (1) 0.48 (6) 0.39 (8) 0.3 (11) 0.48 (6) 1 (1) 1 (1) 0.39 (8) 1 (1) 1 (1) 0.39 (8)
Flame 0.96 (1) 0.46 (3) 0.2 (7) 0.07 (8) 0.41 (4) N/A (11)a 0.01 (10) 0.06 (9) 0.48 (2) 0.41 (4) 0.41 (4)
Glass 0.39 (1) 0.36 (2) 0.32 (3) 0.19 (8) 0.28 (6) N/A (11)a 0.02 (10) 0.27 (7) 0.3 (5) 0.32 (3) 0.16 (9)
Iris 0.87 (1) 0.78 (4) 0.63 (7) 0.37 (11) 0.74 (5) 0.58 (8) 0.58 (8) 0.7 (6) 0.8 (2) 0.79 (3) 0.44 (10)
Iris2D 0.9 (1) 0.83 (6) 0.83 (6) 0.56 (11) 0.74 (8) 0.58 (9) 0.58 (9) 0.87 (3) 0.9 (1) 0.86 (4) 0.86 (4)
Jain 1 (1) 0.35 (3) 0.21 (7) 0.16 (10) 0.19 (8) N/A (11)a 0.18 (9) 0.66 (2) 0.35 (3) 0.3 (5) 0.3 (5)
Moons 1 (1) 0.22 (6) 0.22 (6) 0.2 (10) 0.05 (11) 1 (1) 1 (1) 0.26 (5) 0.27 (4) 0.22 (6) 0.22 (6)
Mouse 0.97 (1) N/A (8)a N/A (8)a 0.41 (4) N/A (8)a N/A (8)a 0 (7) 0.41 (4) 0.59 (2) 0.56 (3) 0.4 (6)
Pathbased 0.74 (1) 0.51 (2) 0.37 (9) 0.5 (5) 0.48 (6) N/A (11)a 0 (10) 0.38 (8) 0.51 (2) 0.51 (2) 0.4 (7)
seeds 0.7 (4) 0.73 (1) 0.59 (7) 0.27 (9) 0.55 (8) N/A (11)a 0.03 (10) 0.6 (6) 0.72 (2) 0.71 (3) 0.68 (5)
Smiley 1 (1) 0.19 (10) 0.22 (5) 1 (1) 0.21 (6) 0.27 (4) 1 (1) 0.16 (11) 0.21 (6) 0.2 (9) 0.21 (6)
Varied 0.94 (1) 0.8 (6) 0.64 (7) 0.29(9) 0.93 (2) N/A (11)a 0 (10) 0.52 (8) 0.83 (3) 0.83 (3) 0.83 (3)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0 (6) 0.57 (5) 0.88 (2) 0.85 (3) 0.85 (3)
WDBC 0.68 (1) 0 (7) 0 (7) 0.02 (6) 0 (7) N/A (11)a 0 (7) 0.1 (4) 0.15 (3) 0.05 (5) 0.47 (2)
Wine 0.43 (1) 0.42 (5) 0.41 (6) 0.35 (8) 0.41 (6) N/A (11)a 0.02 (10) 0.43 (1) 0.43 (1) 0.43 (1) 0.13 (9)
Rank 23 94 128 144 108 149 130 109 59 74 107
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DCMVO as per the original paper presenting the algorithm 
[34]. Furthermore, the crossover probability of 0.8 and a 
mutation probability of 0.001 are considered for GA. In 
addition, 50 generations having 20 chromosomes for each 
generation are considered for GA and PSO. The values 
selected for the parameters of GA and PSO can be found 
extensively in the literature for data sets of similar sizes to 
get satisfactory results [74–78]. Table 2 summarizes the 
choice of parameters for these algorithms.

The analysis of the results are studied from two aspects: 
qualitative and quantitative analysis.

4.4.1 � Quantitative analysis

This section discuss the performance of NPIR against other 
clustering algorithms which are k-means++, BIRCH, HDB-
SCAN, EM, MST, HC-SL, HC-CL, GA, PSO, and DCMVO. 
Tables 3, 4, 5, 6 and 7 show the performance of the average 
results of NPIR against these algorithms for each data set in 
terms of HS, CS, VM, AMI, and ARI, respectively. Grand 
average results which is calculated according to Eq. (18) are 
also presented by Table 8. In addition, the performance of 
the best results of NPIR against the other algorithms are pre-
sented by Tables 9, 10, 11, 12 and 13 and the average of best 

results are presented by Table 14. The average results are 
shown in the form of avg(rank) which indicates the average 
and the ranking for each value of the table of 30 independ-
ent runs, respectively. In contrast, the best results are shown 
in the form of best(rank) which indicates the best and the 
ranking for each value of the table of 30 independent runs, 
respectively. For each algorithm, a total ranking is calculated 
as a sum for all the ranks and is observed at the last row of 
each table for each evaluation measure. The lowest ranking 
is considered for better algorithms while the higher ranking 
indicates bad clustering for the data sets selected. The per-
formance evaluation of these tables are discussed in more 
details as follows:

In general, the average results for each evaluation meas-
ure show that NPIR outperforms the other algorithms for 
the majority of the data sets. In addition, NPIR has the 
minimum value for the total ranking which indicates that 
NPIR is better than the other algorithms for the selected 
data sets and its ranking is satisfying for the majority of 
the data sets.

Furthermore, NPIR has a recognizable better perfor-
mance compared to most of the other algorithms for Aniso, 
Flame, Jain, Mouse, Smiley, and Vary density data sets due 
to several reasons. Specifically, Vary density data set can be 

Table 13   Performance comparison of the best values of ARI for different algorithms in the form of best(rank) which indicates the best and rank-
ing of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

Adjusted Rand Index

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.99 (2) 0.77 (8) 0.78 (7) 0.85 (3) 1 (1) 0.73 (10) 0.8 (5) 0.79 (6) 0.83 (4) 0.77 (8) 0.36 (11)
Aniso 1 (1) 0.69 (4) 0.18 (9) 0.3 (8) 0.8 (3) N/A (11)a 0 (10) 0.36 (7) 0.95 (2) 0.66 (5) 0.66 (5)
Appendicitis 0.56 (1) 0.06 (5) 0 (7) 0 (7) 0.06 (5) N/A (11)a −0.01(9) −0.09(10) 0.43 (3) 0.47 (2) 0.38 (4)
Blobs 1 (1) 1 (1) 1 (1) 0.12 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0 (5) N/A (11)a 0.02 (4) 0 (5) 1 (1) 1 (1) 0 (5) 0 (5) 0 (5) 0 (5)
Diagnosis II 1 (1) 0.44 (6) 0.41 (8) 0.23 (11) 0.44 (6) 1 (1) 1 (1) 0.41 (8) 1 (1) 1 (1) 0.41 (8)
Flame 0.98 (1) 0.54 (3) 0.2 (7) −0.03(9) 0.45 (6) N/A (11)a 0.01 (8) −0.04(10) 0.55 (2) 0.46 (4) 0.46 (4)
Glass 0.3 (1) 0.26 (3) 0.25 (4) 0.07 (9) 0.23 (6) N/A (11)a 0.01 (10) 0.23 (6) 0.25 (4) 0.28 (2) 0.12 (8)
Iris 0.89 (1) 0.79 (4) 0.57 (7) 0.31 (11) 0.67 (5) 0.57 (7) 0.56 (9) 0.64 (6) 0.82 (2) 0.8 (3) 0.49 (10)
Iris2D 0.92 (1) 0.85 (6) 0.85 (6) 0.64 (9) 0.67 (8) 0.57 (10) 0.57 (10) 0.89 (3) 0.92 (1) 0.89 (3) 0.89 (3)
Jain 1 (1) 0.35 (3) 0.02 (9) 0.04 (8) −0.01(10) N/A (11)a 0.26 (5) 0.78 (2) 0.35 (3) 0.26 (5) 0.26 (5)
Moons 1 (1) 0.21 (8) 0.21 (8) 0.14 (10) 0.01 (11) 1 (1) 1 (1) 0.33 (5) 0.34 (4) 0.29 (6) 0.29 (6)
Mouse 0.99 (1) N/A (8)a N/A (8)a 0.24 (5) N/A (8)a N/A (8)a −0.01(7) 0.24 (5) 0.54 (2) 0.5 (3) 0.41 (4)
Pathbased 0.69 (1) 0.47 (3) 0.33 (9) 0.56 (2) 0.44 (6) N/A (11)a 0 (10) 0.35 (8) 0.46 (4) 0.46 (4) 0.4 (7)
seeds 0.74 (2) 0.75 (1) 0.57 (6) 0.13 (9) 0.54 (8) N/A (11)a 0 (10) 0.55 (7) 0.74 (2) 0.72 (4) 0.68 (5)
Smiley 1 (1) 0.04 (7) 0.04 (7) 1 (1) 0.02 (11) 0.29 (4) 1 (1) 0.03 (9) 0.05 (5) 0.03 (9) 0.05 (5)
Varied 0.96 (1) 0.81 (6) 0.61 (7) 0.2 (9) 0.96 (1) N/A (11)a 0 (10) 0.51 (8) 0.86 (3) 0.85 (4) 0.85 (4)
VaryDensity 1 (1) N/A (7)a N/A (7)a N/A (7)a N/A (7)a N/A (7)a 0 (6) 0.51 (5) 0.9 (2) 0.87 (3) 0.87 (3)
WDBC 0.79 (1) 0 (6) 0 (6) −0.01(10) 0 (6) N/A (11)a 0 (6) 0.1 (4) 0.15 (3) 0.06 (5) 0.6 (2)
Wine 0.46 (1) 0.37 (4) 0.37 (4) 0.28 (8) 0.37 (4) N/A (11)a 0.01 (10) 0.37 (4) 0.4 (2) 0.39 (3) 0.17 (9)
Rank 21 94 134 143 114 149 120 115 53 77 100
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considered hard for density based clustering algorithms such 
as HDBSCAN because its clusters have different densities 
and such algorithms cannot handle such difference. Data sets 
with circular patterns such as circles and smiley cannot be 
handled properly using centoid based algorithms because 
the centroid of a circular shape can be closer to other data 
points rather than the data points of the circular pattern. 
In addition, Moons, Jain, Aniso, and Flame data sets have 
data points which interleave in the X and Y axis and are 

also hard for centroid based algorithms because two data 
points in different classes can have the same distance to a 
specific centroid. In contrast, NPIR performs well for such 
data sets due to the random behavior of the election opera-
tion, the deterministic behavior of the selection operation for 
calculating the similarity of the nearest neighbors, and the 
fixed shapes avoidance over the course of iterations for the 
assignment operation.

Table 14   Performance comparison of the best values of average of bests score for different algorithms in the form of best(rank) which indicates 
the best and ranking of 30 independent runs

a N/A denotes that the value is not reported because it failed to detect more than one cluster

AVG of Bests Score

Data set NPIR k-means++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 0.98 (2) 0.852 (7) 0.868 (5) 0.884 (3) 1 (1) 0.8 (10) 0.85 (8) 0.87 (4) 0.85 (8) 0.86 (6) 0.512 (11)
Aniso 1 (1) 0.682 (4) 0.312 (9) 0.506 (7) 0.776 (3) ∗ N∕A(11) 0.03 (10) 0.43 (8) 0.926 (2) 0.668 (5) 0.66 (6)
Appendicitis 0.41 (1) 0.09 (7) 0.2 (5) 0.2 (5) 0.09 (7) ∗ N∕A(11) 0.01 (10) 0.02 (9) 0.29 (3) 0.32 (2) 0.26 (4)
Blobs 1 (1) 1 (1) 1 (1) 0.416 (11) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Circles 1 (1) 0.046 (5) ∗ N∕A(11) 0.092 (4) 0.046 (5) 1 (1) 1 (1) 0 (7) 0 (7) 0 (7) 0 (7)
Diagnosis II 1 (1) 0.478 (6) 0.426 (10) 0.464 (8) 0.478 (6) 1 (1) 1 (1) 0.43 (9) 1 (1) 1 (1) 0.426 (10)
Flame 0.97 (1) 0.484 (3) 0.204 (7) 0.058 (8) 0.426 (6) ∗ N∕A(11) 0.05 (9) 0.05 (9) 0.504 (2) 0.432 (4) 0.432 (4)
Glass 0.41 (1) 0.382 (3) 0.376 (4) 0.21 (8) 0.326 (7) ∗ N∕A(11) 0.1 (10) 0.34 (6) 0.36 (5) 0.39 (2) 0.168 (9)
Iris 0.87 (1) 0.786 (4) 0.664 (9) 0.47 (11) 0.738 (5) 0.69 (7) 0.67 (8) 0.7 (6) 0.804 (2) 0.796 (3) 0.534 (10)
Iris2D 0.9 (2) 0.84 (6) 0.84 (6) 0.666 (11) 0.738 (8) 0.69 (9) 0.68 (10) 0.87 (3) 0.904 (1) 0.866 (4) 0.866 (4)
Jain 1 (1) 0.37 (4) 0.178 (9) 0.258 (7) 0.156 (10) ∗ N∕A(11) 0.25 (8) 0.71 (2) 0.374 (3) 0.312 (5) 0.312 (5)
Moons 1 (1) 0.23 (8) 0.23 (8) 0.208 (10) 0.072 (11) 1 (1) 1 (1) 0.27 (5) 0.284 (4) 0.234 (6) 0.234 (6)
Mouse 0.98 (1) ∗ N∕A(8) ∗ N∕A(8) 0.388 (6) ∗ N∕A(8) ∗ N∕A(8) 0.02 (7) 0.39 (5) 0.632 (2) 0.602 (3) 0.476 (4)
Pathbased 0.74 (1) 0.528 (3) 0.386 (9) 0.572 (2) 0.504 (6) ∗ N∕A(11) 0.04 (10) 0.39 (8) 0.524 (4) 0.52 (5) 0.464 (7)
seeds 0.71 (4) 0.734 (1) 0.598 (7) 0.304 (9) 0.556 (8) ∗ N∕A(11) 0.07 (10) 0.6 (6) 0.724 (2) 0.718 (3) 0.686 (5)
Smiley 1 (1) 0.206 (9) 0.234 (5) 1 (1) 0.216 (7) 0.45 (4) 1 (1) 0.17 (11) 0.218 (6) 0.21 (8) 0.184 (10)
Varied 0.94 (1) 0.804 (6) 0.646 (7) 0.432 (9) 0.936 (2) ∗ N∕A(11) 0.03 (10) 0.55 (8) 0.84 (3) 0.836 (4) 0.834 (5)
VaryDensity 1 (1) ∗ N∕A(7) ∗ N∕A(7) ∗ N∕A(7) ∗ N∕A(7) ∗ N∕A(7) 0.05 (6) 0.64 (5) 0.886 (2) 0.86 (3) 0.86 (3)
WDBC 0.7 (1) 0.028 (7) 0.028 (7) 0.016 (10) 0.028 (7) ∗ N∕A(11) 0.03 (6) 0.14 (4) 0.2 (3) 0.096 (5) 0.498 (2)
Wine 0.45 (1) 0.42 (6) 0.408 (7) 0.356 (8) 0.428 (4) ∗ N∕A(11) 0.07 (10) 0.43 (3) 0.432 (2) 0.424 (5) 0.168 (9)
Rank 24 99 134 137 115 148 127 116 61 77 113

Table 15   Total rank for each 
algorithm based on the average 
results

Algorithm HS CS VM AMI ARI Grand AVG

NPIR 65 51 49 52 48 51
k-means++ 107 119 107 104 109 113
BIRCH 118 112 120 118 121 122
HDBSCAN 78 146 128 134 137 130
EM 116 116 115 110 118 116
MST 158 122 145 149 146 147
HC-SL 131 98 124 129 117 125
HC-CL 97 107 96 94 100 103
GA 115 115 113 107 103 112
PSO 84 97 80 76 78 80
DCMVO 99 79 92 87 82 95
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In addition, the average results for the evaluation meas-
ures show that PSO has the closest total ranking to NPIR for 
VM, AMI, ARI and the grand average measures. In contrast, 
DCMVO has the closest total ranking to NPIR for CS and 
HDBSCAN has the closest total ranking to NPIR for HS. 
Since VM satisfies both homogeneity and completeness of 
the clusters which reflects both HS and CS, then we cannot 
conclude that HDBSCAN nor DCMVO are competing for 
NPIR since they only satisfy either the homogeneity or the 
completeness of the prediction but not the combination of 
the two which is reflected by VM. On the other hand, MST 
and HC-SL perform very well for some data sets such as 
Blobs, Circles, Diagnosis II, and Moons but fail to detect 
most of the other data sets and has very low ranking com-
pared to the other algorithms. Thus, we can only conclude 
that MST and HC-SL are competing to NPIR for some of the 
data sets and that PSO is competing for NPIR for the average 

results since it has the closest performance results for most 
of the measures for the selected data sets.

We can also observe that the performance of all cluster-
ing algorithms decreases for data sets with higher dimen-
sions such as Appendicitis, Glass, WDBC, and Wine data 
sets. In the case of NPIR, this can be explained due to the 
adoption of euclidean distance for measuring the distances 
between the points. It is well-known that high dimensions 
euclidean distance loses pretty much all meaning [79]. For 
future work, we plan to investigate the efficiency of adop-
tion other distance measures such as Manhattan distance, 
cosine distance, Minkowski distance, and correlation dis-
tance to overcome this limitation.           

On the other hand, the best results for each evalua-
tion measure show that NPIR , MST, and HC-SL outper-
form the other algorithms having the value of 1 for Cir-
cles, Diagnosis II and Moons data sets. However, NPIR 

Table 16   Total rank for each 
algorithm based on the best 
results

Algorithm HS CS VM AMI ARI AVG of bests

NPIR 23 27 23 23 21 24
k-means++ 99 104 94 94 94 99
BIRCH 131 122 133 128 134 134
HDBSCAN 96 151 136 144 143 137
EM 113 114 112 108 114 115
MST 158 122 147 149 149 148
HC-SL 131 101 125 130 120 127
HC-CL 113 120 114 109 115 116
GA 61 70 61 59 53 61
PSO 79 87 76 74 77 77
DCMVO 119 102 114 107 100 113

Fig. 10   Performance compari-
son for the average evaluation 
of grand average score of all the 
measures for different algo-
rithms
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outperforms all other algorithms having the value of 1 
for Aniso, Jain, and Vary density. This indicates correct 
clustering for all the data points for these data sets. In 
addition, NPIR has a recognizable minimum value for the 
total ranking of the best results for all the evaluation meas-
ures which indicates that NPIR is better than the other 
algorithms for the selected data sets and its ranking is very 

promising for other data sets. Furthermore, GA has the 
closest total ranking of the best results for all the measures 
due to its exploratory behavior. In contrast, HDBSCAN, 
BIRCH, and MST have the worst total ranking of the best 
results for these data sets.

A summary of the ranking is displayed by Tables 15 
and 16 which show the total rank of the average and best 

Fig. 11   Performance compari-
son for the best evaluation of 
average of bests score of all the 
measures for different algo-
rithms
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Table 17   Average computation time (seconds)

Data set NPIR kmeans++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 18.055 0.006 0.098 0.045 0.1 0.017 0.125 0.172 0.767 0.461 299.33
Aniso 388.909 0.003 0.063 0.051 0.024 0.026 0.063 0.109 0.779 0.284 257.97
Appendicitis 1.840 0.002 0.004 0.017 0.02 0.004 0.016 0.031 0.288 0.250 16.87
Blobs 49.973 0.003 0.051 0.04 0.006 0.025 0.031 0.016 0.313 0.341 281.57
Circles 49.255 0.002 0.038 0.057 0.01 0.024 0.016 0.016 1.078 0.278 78.75
Diagnosis II 0.943 0.002 0.008 0.006 0.006 0.010 0.000 0.047 0.412 0.185 16.20
Flame 11.970 0.003 0.008 0.014 0.025 0.014 0.016 0.031 0.225 0.188 24.05
Glass 1.125 0.004 0.011 0.013 0.023 0.015 0.240 0.016 0.400 0.234 127.12
Iris 0.900 0.002 0.005 0.005 0.016 0.013 0.007 0.031 0.328 0.219 37.63
Iris2D 1.410 0.003 0.004 0.008 0.005 0.006 0.004 0.031 0.504 0.172 36.28
Jain 15.433 0.002 0.024 0.012 0.015 0.009 0.016 0.031 0.289 0.194 28.14
Moons 534.936 0.002 0.042 0.043 0.008 0.021 1.085 0.031 0.247 0.274 78.77
Mouse 20.372 0.008 0.015 0.01 0.085 0.010 0.000 0.063 0.222 0.219 69.59
Pathbased 15.358 0.004 0.02 0.008 0.01 0.009 0.000 0.047 0.188 0.203 52.87
Seeds 3.517 0.003 0.009 0.009 0.008 0.007 0.016 0.016 0.203 0.188 66.78
Smiley 22.837 0.005 0.056 0.014 0.017 0.010 0.016 0.031 0.250 0.222 191.83
Varied 277.342 0.004 0.073 0.038 0.014 0.024 0.016 0.016 0.296 0.264 168.21
VaryDensity 1.879 0.013 0.005 0.004 0.072 0.009 0.016 0.062 0.203 0.210 34.16
WDBC 23.000 0.006 0.015 0.022 0.011 0.050 0.047 0.094 0.266 0.210 37.97
Wine 2.755 0.004 0.02 0.006 0.022 0.016 0.016 0.078 0.266 0.333 36.45
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results for each algorithm, respectively. As shown from 
the tables, NPIR has the minimum total rank for all the 
evaluation measures compared to the other algorithms for 
both average and best results.

In addition, a radar chart for the average and best results 
for the grand average and the average of bests scores are 
displayed by Figs. 10 and 11, respectively. The two fig-
ures summarize the clustering performance of all the algo-
rithms for each data set. Looking into the grand average 
results in Fig. 10, we can observe that NPIR has a better 
performance for the majority of the data sets having the 
radar lines of the other algorithms surrounded by the NPIR 
radar line for most parts of the radar. On the other hand, 
NPIR has a better performance for almost all the data sets 
for the average of bests results in Fig. 11 having the radar 
line of all the algorithms surrounded by the NPIR radar. 
In case of MST and HC-SL, only some data sets as dis-
cussed earlier have the same value as NPIR and thus have 
identical radar lines for these data sets. It is also observed 
that the radar line for NPIR is almost hitting the edges for 
most parts of the chart which indicates that the algorithm 
is generating the maximum value of 1 in the best results 
for many data sets resulting in correct clustering for all 
the data points.

Tables 17 and 18 show the average and best CPU time 
spent by NPIR compared to other algorithms. As per results, 
NPIR computation time is acceptable and fast enough to 
handle similar data sets. Compared to the other algorithms, 

NPIR is faster than DCMVO for most of the data sets but 
tend to be slower than the other algorithms. The main reason 
is due to the time taken for constructing the distance vectors 
at the preparatory stage and the frequent elections of points. 
However, NPIR is able to handle similar data sets in reason-
able time having high quality results for the majority of the 
data sets as discussed earlier. It is also possible to use Graph-
ics Processing Unit (GPU) to decrease the processing time.

4.4.2 � Qualitative analysis

In this section, a two-dimensional plotting for the best 
results of selected data sets from the aforementioned ones 
is presented. Each predicted cluster is colored differently 
than the other predicted clusters. The selected data sets are 
challenging for researchers as they are of non-spherical 
shapes, contain clusters of different densities and sizes, 
and the data points of different clusters interleave in the X 
or Y axis. Figures 12, 13, 14, 15, 16, 17 and 18 show the 
visualization of clustering quality results for the best run 
for each of the selected data sets.

Aggregation data set has 7 clusters of different size 
having some connection between them. The challenges of 
this data set include the varying sizes of clusters and the 
connection between clusters. Figure 12 shows that some 
algorithms predict some of the clusters but fail to predict 
all the clusters correctly. However, NPIR almost assigns 
the data instances to the correct clusters. In addition, EM 

Table 18   Best computation time (seconds)

Data set NPIR kmeans++ BIRCH HDBSCAN EM MST HC-SL HC-CL GA PSO DCMVO

Aggregation 15.000 0.004 0.038 0.022 0.000 0.011 0.125 0.172 0.767 0.461 287.79
Aniso 299.287 0.002 0.044 0.031 0.014 0.020 0.063 0.109 0.779 0.284 168.37
Appendicitis 1.522 0.001 0.002 0.002 0.002 0.004 0.016 0.031 0.288 0.250 13.95
Blobs 47.270 0.002 0.031 0.032 0.000 0.020 0.031 0.016 0.313 0.341 170.48
Circles 44.487 0.001 0.033 0.040 0.000 0.020 0.016 0.016 1.078 0.278 76.49
Diagnosis II 0.750 0.000 0.000 0.000 0.000 0.004 0.000 0.047 0.412 0.185 14.06
Flame 9.248 0.000 0.000 0.000 0.004 0.007 0.016 0.031 0.225 0.188 20.43
Glass 0.954 0.000 0.000 0.000 0.009 0.006 0.240 0.016 0.400 0.234 108.13
Iris 0.728 0.001 0.003 0.003 0.006 0.007 0.007 0.031 0.328 0.219 33.40
Iris2D 1.088 0.000 0.003 0.003 0.00 0.004 0.004 0.031 0.504 0.172 33.31
Jain 12.614 0.001 0.017 00.00 0.011 0.006 0.016 0.031 0.289 0.194 25.67
Moons 342.906 0.001 0.028 0.031 0.005 0.020 1.085 0.031 0.247 0.274 76.96
Mouse 14.852 0.000 0.011 0.008 0.066 0.008 0.000 0.063 0.222 0.219 64.28
Pathbased 10.864 0.002 0.014 0.007 0.006 0.006 0.000 0.047 0.188 0.203 49.08
Seeds 2.876 0.001 00.00 0.006 0.006 0.006 0.016 0.016 0.203 0.188 40.14
Smiley 19.202 0.002 0.036 0.01 0.000 0.008 0.016 0.031 0.250 0.222 111.41
Varied 188.273 0.002 0.055 0.033 0.000 0.021 0.016 0.016 0.296 0.264 157.21
VaryDensity 1.578 0.01 0.003 0.003 0.058 0.004 0.016 0.062 0.203 0.210 31.71
WDBC 17.047 0.000 0.012 0.018 0.005 0.037 0.047 0.094 0.266 0.210 35.17
Wine 2.236 0.000 0.011 0.004 0.012 0.006 0.016 0.078 0.266 0.333 33.57
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has similar performance to NPIR while DCMVO has the 
worst visual performance.

Circles data set has 2 clusters of different sizes form-
ing 2 circles that are not connected to each other. This data 
set is challenging having circular clusters. In addition, one 
circle is contained within the other one which is considered 
very hard to predict for the clustering algorithms specially 

the centriod-based algorithms because both circles have the 
same centriod but are different in size. Figure 13 shows that 
NPIR, MST, and HC-SL assign the data instances to the cor-
rect clusters while all the other algorithms fail to recognize 
the target clusters. This data set shows how other algorithms 
have very poor performance and that NPIR has a recogniz-
able performance over most of the other algorithms.

(a) (b) (c)

(d)

(g) (h) (i)

(j) (k) (l)

(e) (f)

Fig. 12   Aggregation data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g 
MST; h HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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Jain data set has 2 clusters of different densities that are 
not connected with each other but interleave in the X and 
Y axis for some points which makes it challenging for the 
clustering algorithm. Figure 14 shows that NPIR assigns the 
data instances to the correct clusters while all the others fail 
to recognize the target clusters for the points that interleave 
in the X and Y axis. This data set also shows how other 

algorithms have very poor performance and that NPIR has 
a recognizable performance over all the other algorithms.

Moons data set has 2 clusters of similar densities that 
are not connected with each other but interleave in the X 
and Y axis for some points which makes it challenging for 
the clustering algorithm. Figure 15 shows that NPIR, MST, 
and HC-SL assign the data instances to the correct clusters 

(a) (b) (c)

(d)

(g) (h) (i)

(j) (k) (l)

(e) (f)

Fig. 13   Circles data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g MST; h 
HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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while all the others fail to recognize the target clusters for 
the points that interleave in the X and Y axis. This data set 
also shows how other algorithms have very poor perfor-
mance and that NPIR has a recognizable performance over 
most of the other algorithms.

Smiley data set has 4 clusters that are not connected form-
ing a shape of a face having clusters for the face boundary, 

the eyes, and the mouth. This data set is considered challeng-
ing as the face boundary interleaves in the X and Y axis with 
the eyes and mouth. In addition, the centroid of the circular 
face boundary is closer to the data points of the other clus-
ters which forms the eyes and mouth rather than the data 
points of the circular face pattern. Figure 16 shows that all 
the algorithms except NPIR, HDBSCAN, and HC-SL fail to 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 14   Jain data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g MST; h 
HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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predict the face boundary. BIRCH, EM, and PSO have pre-
dicted the correct clusters for the eyes and mouth but not the 
face boundary. However, NPIR and HDBSCAN have pre-
dicted the face boundary, the eyes, and the mouth correctly.

Varied data set has 3 clusters with different densities that 
are connected with each other. The challenges of this data 
set include having different clusters densities and having 
connected clusters. This data set is also considered hard for 
density-based clustering algorithms such as HDBSCAN 
because the clusters have different densities and such algo-
rithm cannot handle such differences having very bad results 
as observed. Figure 17 shows that most algorithms fail to 
predict the correct clusters. However, NPIR almost predicts 

the correct clusters for the data points. In addition, EM has 
the closest performance to NPIR for this data set compared 
to the other algorithms. The other algorithms fail to distin-
guish data points at the connections between clusters result-
ing in bad clustering.

Vary Density data set has 3 clusters with different den-
sities and sizes that are connected with each other. The 
challenges of this data set include having different clusters 
densities and sizes and having connected clusters. This 
data set is also considered hard for density-based cluster-
ing algorithms such as HDBSCAN because the clusters 
have different densities and such algorithm cannot han-
dle such differences having very bad results as observed. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 15   Moons data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g MST; h 
HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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Figure 18 shows that all algorithms fail to predict the cor-
rect clusters. However, NPIR predicts the correct clusters 
for the data points. In addition, PSO, GA, and DCMVO 
have the closest performance to NPIR for this data set 
compared to the other algorithms but still they do not pre-
dict data points at the connections between clusters. The 
other algorithms clustered all points at one cluster result-
ing in bad clustering.

As a conclusion to the qualitative analysis of the best 
results, NPIR has successfully predicted the clusters for 
almost all the data sets. It outperforms the other algorithms 
in the selected data sets and is promising for any other data 
sets. This can be used as an indication of the behavior of 

the algorithm as it predicts non-spherical shapes, shapes 
with clusters of different densities and sizes, and shapes 
where data points of different clusters interleave in the X 
or Y axis.

4.5 � Mall customer segmentation case study

Customer behavior and purchasing data for large stores 
like malls can be used for gaining future insights about the 
behavior of these customers. Customer data such as age, 
gender, annual income, and spending score can be obtained 
using membership cards.

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

(j) (k) (l)

Fig. 16   Smiley data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g MST; h 
HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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The goal of this case study is to segment customers 
according to their annual income and purchasing behavior. 
Strategic plans can be built according to those customers 
who can be easily converge to spending more on purchased 
items.

We use mall customer segmentation data set from kag-
gle11 repository which has 100 instances and 5 features. We 
segment customers according to two features which are the 
annual income and the spending score to get insights about 

different type of customers. The distribution of the annual 
income and the spending score can be found in Figs. 19 and 
20. We can observe from the two figures that normal distri-
bution is present for these two features. This means that the 
mall customers have different values for their annual income 
and that most of them have an income that falls under the 
range of $50 and $80. Moreover, the spending behavior of 
the customers is almost normally distributed and most of the 
customers fall under the range of 40–60 score. 

We apply NPIR on the mall customer data set with the 
values of 5, 0.1, and 100 for k, IR, and i. k is determined 
using the silhouette coefficient measure [80] which is a 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (l)(k)

Fig. 17   Varied data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g MST; h 
HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)

11  https​://www.kaggl​e.com/.

https://www.kaggle.com/
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common approach to select the right number of clusters 
before performing the clustering task [81]. The IR and i val-
ues are selected as they are the dominant parameters selected 
in the experiments discussed previously.

The results of the segmentation for the mall custom-
ers using NPIR is shown in Table 19 and Fig. 21. It is 
observed from the figure and the table that most of the cus-
tomers are concentrated in the middle of the figure which 
means that those customers have intermediate annual 
income and they normally spend their money purchasing 
items in the mall. We refer to these customers as standard 
customers. Customers with low income are referred to as 

sensible or careless customers according to their spending 
behavior as those who have low spending are sensible, 
while those who have high rate of spending are considered 
careless as they have low income. In contrast, custom-
ers with high income are referred to as careful or target 
customers according to their spending behavior as those 
who have low spending are considered careful custom-
ers because they are thrifty customers in spending their 
high income in the mall while those who have high rate 
of spending are considered the target customers that is 
the main goal of the study. Those target customers can be 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 18   Vary Density data set displayed in two-dimensional space for a True labels; b NPIR; c k-means++; d BIRCH; e HDBSCAN; f EM; g 
MST; h HC-SL; i HC-CL; j GA; k PSO; l DCMVO with a different color for each cluster (color figure online)
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driven to higher spending rate through strategic planning 
of the mall owners.

We further analyzed the distribution of each segment of 
customers in Figs. 22 and 23. Figure 22 shows the box plot 
for the annual income of customers while Fig. 23 shows the 
box plot for the spending score of customers. Interquartile 
range, high values, low values are presented as the box, the 
upper whiskers. and the lower whiskers, respectively [82, 
83]. It is observed from the figures that target customers 
have the highest income and spending while the sensible 

customers have the lowest income and spending. Standard 
customers have intermediate income and spending. In addi-
tion, careless customers have low income but high spending 
while careful customers have high income with low spend-
ing. It is also observed that target customers and careful 
customers with high income have some outliers with a very 
high income which is larger than $120,000. In addition, the 
values of spending and income for standard customers are 
close to the mean values with compact box which indicates 
stability in this cluster of customers. 

5 � Conclusion and future work

This paper proposes a new clustering algorithm named Near-
est Point with Indexing Ratio (NPIR). NPIR tries to over-
come the limitations of some clustering algorithms by avoid-
ing the fixed shaped clustering and identifying arbitrary 
shapes and non-spherical distribution of points. The main 
idea of the proposed algorithm is to find the nearest point 
for an already assigned point using the distance between 
these points and then cluster the nearest point to the same 
cluster of the assigned point. It is based on the nearest neigh-
bor search technique and a random and iterative behavior of 
three operations which are election, selection, and assign-
ment in the aim of generating quality clustering results.

Based on the conducted experiments, the following con-
cluding remarks can be noted:

–	 NPIR outperforms most of the algorithm which are 
k-means++, BIRCH, HDBSCAN, EM, GA, MST, 
HC-SL, HC-CL, PSO, and DCMVO in terms of Homo-
geneity Score, Completeness Score, V-measure, Adjusted 

Fig. 19   Distribution of annual income

Fig. 20   Distribution of spending score

Table 19   Segmentation of customers

Cluster No. #Instances Label Color

0 23 Sensible Blue
1 79 Standard Magenta
2 39 Target Cyan
3 38 Careful Red
4 21 Careless Green

Fig. 21   Visualization of clusters
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Rand Index, and Adjusted Mutual Information for 20 
selected data sets.

–	 NPIR tries to solve the limitations of other algorithms for 
data sets of arbitrary shapes, non-spherical distribution 
of points, and different clusters sizes or densities.

–	 NPIR tries to avoid the termination of cluster shaping 
process at an early stage by integrating a flexible mech-
anism of moving any point away from its cluster and 
assigning it to another cluster which can correct wrong 
assignments of points and wrong selections of the initial 
points.

–	 PSO, MST, and HC-SL clustering algorithms are com-
peting algorithms for NPIR.

–	 NPIR can be applied on real-life applications such as 
customer segmentation.

Much work can be done in the future to optimize the cur-
rent implementation of the algorithm and to validate its effi-
ciency for different applications which can be summarizes 
as follows:

–	 The algorithm can be evaluated on other real-life appli-
cations including bioinformatics, medical images, face 
recognition, image segmentations, geographic informa-
tion systems, and much more.

–	 The algorithm can be evaluated on large scale data sets 
using the K-dimensional tree data structure.

–	 The implementation of the algorithm can be enhanced to 
dynamically detect the correct number of clusters (k).

–	 Optimization algorithms can be applied on NPIR to pre-
dict the best values of IR, i, and initial points.

–	 Fuzziness can be added to the algorithm to support over-
lapping clustering.

–	 The application of hierarchy clustering in NPIR can be 
investigated for a possibility to obtain better clustering 
quality.

–	 Investigations on the efficiency of adopting other distance 
measures other than euclidean distance can be performed 
to overcome the limitation of clustering low-dimensional 
data sets.
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