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Abstract
Dynamic resource allocation and auto scalability are important aspects in mobile cloud computing environment. Predict-
ing the cloud workload is a crucial task for dynamic resource allocation and auto scaling. Accuracy of workload prediction 
algorithm has significant impact on cloud quality of service and total cost of provided service. Since, existing prediction 
algorithms have competition for better accuracy and faster run time, in this paper we proposed a hybrid prediction algorithm 
to address both of these concerns. First we apply three level wavelet transform to decompose the workload time series into 
different resolution of time–frequency scales. An approximate and three details components. Second, we use support vector 
regression (SVR) for prediction of approximate and two low frequency detail components. The SVR parameters are tuned 
by a novel chaotic particle swarm optimization algorithm. Since the last detail component of time series has high frequency 
and is more likely to noise, we used generalized autoregressive conditional heteroskedasticity (GARCH) model to predict it. 
Finally, an ensemble method is applied to recompose these predicted samples from four multi scale predictions to achieve 
workload prediction for the next time step. The proposed method named wavelet decomposed 3 PSO optimized SVR plus 
GARCH (W3PSG). We evaluate the proposed W3PSG method with three different real cloud workload traces. Based on the 
results, the proposed method has relatively better prediction accuracy in comparison with competitive methods. According to 
mean absolute percentage error metric, in best case W3PSG method achieves 29.93%, 29.91%, and 24.53% of improvement 
in accuracy over three rival methods: GARCH, artificial neural network, and SVR respectively.

Keywords Workload prediction · Cloud computing · Multi-scale wavelet decomposition

1 Introduction

Improvements in smart mobile devices technology, cause to 
new kind of applications such as mobile augmented reality 
(MAR), voice recognition, object recognition and natural 
language processing (NLP) has emerged among mobile 
users; these applications require powerful computational 
resources. Mobile devices are developing constantly to 
meet the applications requirements, but they yet have some 
limitations in regards with their processing speed, memory, 
bandwidth and battery life time. It should be noted that these 
shortcomings are mostly because of mobile devices weight 

and size constraints [1]. On the other hand, users of mobile 
smart devices desire to use these applications on their lap-
tops, smart phones, and wearable computers while moving 
in any place at any time [2]. Due to resource constraints 
in mobile devices, mobile users may face to some issues 
regarding low power batteries or computational power limi-
tations. To solve these problems, MCC is presented [3].

MCC provisions cloud resources for use of mobile 
devices. So, these devices can overcome their weaknesses 
in bandwidth, security, low process power and energy. In 
this computing model, complex processes and computation 
expensive tasks of mobile applications are sent to cloud 
datacenters to provide resources like storage, memory, com-
puting power and energy for them [4]. Mobile devices can 
connect to clouds through standard communication channels 
such as 3G and 4G mobile networks or WIFI access points 
and use the cloud services in a pay-as-use manner.

One of the most important features of MCC is its elastic-
ity and scalability which are results of dynamic resource 
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allocation according to users’ requirements. Dynamic 
resource allocation needs control and intelligent manage-
ment of cloud resources because the number of requests 
varies at any moment. A lot of reports indicate that in a day, 
most of the machines in cloud are not being fully loaded and 
work under load [5]. In practice, it is observed that physi-
cal systems consume about 60% of full load energy when 
they are at idle mode [6, 7]. It should be noted that energy 
saving results in huge reduction of financial expenses. For 
instance, 3% reduction in annual energy consumption of 
Google clouds causes cost saving more than a million dol-
lars [8]. In addition, turning the resources on and off con-
sumes a relatively large amount of energy too [9]. Because 
during shutting down process of a system, its memory con-
tents should be stored in a permanent storage such as storage 
area network (SAN) and after turning the system back on, 
that memory contents should be restored and loaded to the 
memory. Hence, dynamic resource allocation in accordance 
with user requirements is very beneficial since it allocates 
resources in a way that reduces number of idle machines and 
so results in costs reduction.

In general, resource allocation can be done in three 
ways: static, reactive and proactive. In static method, fixed 
resources are provisioned to users, regardless of any changes 
in workload. The problem is that in the static mode, some-
times there is over-provisioning or under-provisioning which 
results in waste of resources and increases in total cost of 
cloud management. If there is under-provisioning, some 
of the requests cannot be responded and will be dropped 
and it results in extra costs because of SLA violations. 
If resources are over-provisioned, some of the physical 
machines will remain idle and cause extra costs because 
of their intrinsic cooling and energy consuming [10] and 
if under-provisioned, some potential users may be missed. 
The other approach is using feedback in reactive mode. In 
this method, whenever the system encounters load increase, 
amount of allocated resources to system will increase and 
if load decreases extra resources will be released. However, 
given that resource allocation takes up 1–5 min [11], this 
method always gets behind the rush of requests. So, it is 
great that it is possible to predict number of future requests 
so the resources can be allocated accordingly in advance. 
This can be possible using the last approach which is pro-
active workload predicting. In this method, if workload 
is predicted, service provider resources will be increased 
accordingly in time, so users can receive service with low 
delay. If workload reduction is predicted, extra resources 
can be released so other applications can use them. In some 
cases, a combination of both reactive and proactive methods 
is used so resources are provisioned to users in the best pos-
sible way [12].

In mobile cloud environments number of requests may 
change dramatically since the mobile users’ requests are 

composed of small tasks which may consume little time to be 
processed. The users are always moving and involved in their 
real life and may enter or exit mobile cloud environment at any 
time or place. Aggregation of past request as cloud workload 
in a specific time duration forms a time series and is used 
for predicting future values. Such a workload time series is 
very complex with high frequency of variation and volatility 
nature which makes its prediction a hard task. On the other 
hand, higher accuracy of workload prediction results to bet-
ter resource allocation and better resource allocation improves 
QoS and reduces SLA violations caused by dropped requests 
and also decreases energy consumption. Hence workload 
prediction is an important task in MCC. Statistic approaches 
like autoregressive moving average (ARMA), GARCH, and 
artificial intelligence (AI) ones like ANN and SVR which 
are presented in previous works did not provide an accept-
able accuracy for cloud workload prediction, an even more 
accurate algorithm in this subject is required. In this paper we 
proposed W3PSG algorithm for cloud workload prediction in 
MCC environments. The novelties of the proposed algorithm 
are as follows:

• Since the cloud workload is very complex with high fre-
quency of variation and volatility nature, we used wave-
let transform to decompose the time series into different 
time–frequency sub scales. Each sub scale has homogenous 
characteristic and less complex nature, so can be predicted 
more accurately.

• We propose a hybrid ensembles of SVR/GARCH predictor 
in each subscale and train it for prediction reconstructed 
components of workload in that subscale.in addition we 
propose CPSO algorithm to adjust SVR parameters and 
increase its prediction accuracy. Also, GARCH predictor 
is suggested for predicting high frequency and high volatile 
sub scales of the time series.

• The proposed W3PSG algorithm is used to predict three 
real cloud workload traces as baseline benchmarks. The 
results indicate that the proposed prediction algorithm out-
performs rival algorithms especially in prediction accuracy.

Rest of the paper is organized as follows: In Sect. 2, 
related work presented. In Sect. 3, the architecture, problem 
formulation and theory of the proposed W3PSG algorithm 
is explained. In Sect. 4, simulation results and discussion are 
provided. Finally in Sect. 5 conclusion and suggested future 
works are explained.

2  Related work

Resource allocation in MCC environments attracted a lot of 
researches in recent years. It is known that there are so many 
factors that determine a resource allocation algorithm as a 
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good one, like cloud provider’s financial costs and users’ 
QoS. For instance, authors in [13] have proposed a novel 
hybrid resource allocation algorithm in MCC environments 
for reducing offload time. They have benefitted two meta-
heuristic algorithms for load balancing and both2 mobile 
users waiting time and servers’ response time are reduces. 
In Ref. [14] authors provide an optimized resource alloca-
tion which only considers energy efficiency in MCC. The 
authors have developed a priority-based algorithm accord-
ing to users’ channel gain and energy consumption. All the 
above mentioned works do not follow the proactive resource 
allocation scheme, which we used in the proposed algorithm. 
In Ref. [15], an adaptive approach is proposed. The authors 
propose a resource allocation algorithm using learning 
automata technique and the results show that it outperforms 
other algorithms in term of QoS. Learning Automata is a 
lazy learning approach and its adaptive learning rate is too 
slow in order to pursue cloud workload variations. Hence it 
become inefficient in cloud workload prediction.

Recently, there has been a lot of valuable works done in 
the field of time series prediction. A classic and most famous 
models for predicting time series is ARMA. This model usu-
ally includes two sections named; autoregressive (AR) and 
moving average (MA). ARMA models time series as a static 
stochastic process. So, it has a good accuracy in station-
ary and less complex time series with linear dependency 
between samples [16]. Authors in [17] propose a runtime 
QoS prediction algorithm for cloud workload, which uses 
modified versions of ARMA. Simulation results confirm that 
using long history of QoS data in ARMA models can reduce 
prediction error. In Ref. [18] similar work presented and real 
traces are used for the simulation.

GARCH is used for time series prediction in recent works 
[19]. GARCH is similar to ARMA model with a difference 
that in GARCH model, variance of predicted term is not 
constant but is a function of values and variances of previ-
ous prediction error terms. This model acts precisely upon 
data with variable conditional variance and highly volatile 
nature. This model also acts very well in predicting noisy 
parts of time series. In [20], authors have proposed a novel 
hybrid approach which is a combination of adaptive neuro-
fuzzy inference system (ANFIS) and GARCH to predict the 
network packet flow traffics. In this paper we extend this idea 
and use GARCH for predicting high frequency components 
of cloud workload time series.

Previous works mentioned that the main problem of 
time series prediction as high degree of nonlinearity which 
cannot be modeled by stochastic approaches. Hence sug-
gested to use machine learning approaches instead. One 
of the main stream line machine learning methods that 
has attracted a lot of attentions for predicting time series 
is Neural Network (NN) [21, 22]. Actually, NN’s ability 
to models very complex nonlinear relationships between 

inputs and output has made it a proper choice for pre-
diction applications. NN consists of several layers: input 
layer, hidden layer, and output layer and there are several 
neurons in each layer. Number of neurons and hidden lay-
ers are structural features of a NN and can be determined 
based on the type of problem [23]. NN have so many 
parameters that should be adjusted. Hence the computa-
tional cost for training them is high. In Ref. [24] authors 
use NN coupled with singular spectrum analysis in order 
to predict rainfall-runoff modeling. In Ref. [25] authors 
propose an enhanced extreme learning machine (ELM) 
neural network model for river flow forecasting.

Another popular machine learning approach for pre-
diction is SVR. The idea of SVR is based on calculating 
a linear regression function in a multi-dimensional feature 
space resulted by nonlinear mapping of input vector to fea-
ture space. SVR has less parameters in comparison to NN. 
Also, with regards to nonlinear mapping and operational 
risk function that is defined for it, if the parameters are set 
properly, SVR has more accuracy than NN. We have sug-
gested a new meta-heuristic optimization method for tuning 
its parameters to improve its performance. In Ref. [26], a 
novel hybrid algorithm based on genetic algorithm is pre-
sented to improve load predicting using SVR method. The 
simulation results reveal that the proposed method excels 
ARIMA in prediction accuracy. A short-term workload 
prediction using SVR is proposed in [27]. In this paper the 
authors have tried to benefit memetic algorithm and PSO to 
improve SVR. In Ref. [28] authors use firefly algorithm to 
tune SVR parameters to predict evaporation in northern Iran.

In recent years, hybrid prediction algorithms have 
attracted much attention. Time series which are challenging 
problems are usually very complex, highly none linear and 
volatile. Hence, a single method could not perform well. 
Unlike the previous mentioned works, we addressed a hybrid 
prediction algorithm for the case of cloud workload predic-
tion. We used wavelet transform to decompose workload 
time series and then each sub-scale component can be pre-
dicted regarding its characteristics. With a close examina-
tion of cloud workload time series characteristics, we have 
suggested using GARCH model for the noisy sub-scale and 
SVR for the rest of sub scales. The details of the proposed 
prediction algorithm is provided in Sect. 3.

3  The proposed method

In this section we present the proposed method. First the 
MCC architecture is presented. Second, we explain the 
dynamic resource allocation mechanism in this environment. 
Finally, we describe the proposed workload prediction algo-
rithms and explain related sub modules.



3288 International Journal of Machine Learning and Cybernetics (2019) 10:3285–3300

1 3

3.1  MCC architecture

Generally, MCC means executing computing parts of 
resource-hungry applications (for example “Google trans-
lation”) of smart mobile devices on powerful servers as 
depicted in Fig. 1. In Fig. 1 a mobile device acts as a thin 
client and connects to servers of datacenters via 3G, Wi-Fi 
or cloudlets. As presented in Fig. 1, cloudlet is a rack of 
computers which is located near mobile devices (for exam-
ple in base station) and receives users’ requests, processes 
them or sends them to a remote cloud [29]. In comparison 
to public clouds, cloudlets have limited CPU and memory 
resources but provides less expensive services. Users in 
public places can send their requests to clouds (huge data-
centers) via cloudlets. This method helps mobile devices to 
overcome their bandwidth limitation and its resulting delay. 
In this paper we used such architecture, because it is a popu-
lar architecture in recent years.

3.2  Dynamic resource allocation in MCC

In Fig. 2 dynamic resource allocation for MCC environ-
ment is presented. In this architecture, mobile users send 
their requests to the remote cloud through internet or via 
cloudlets and the cloud provider provisions resources VM 
(virtual machines) based on users’ requests. There is a con-
tract between each user and cloud provider called Service 
Level Agreement (SLA) that determines user’s maximum 
acceptable waiting time to receive a service from cloud. For 
each service which response time exceeds SLA, the cloud 
provider will drop the request and pay penalty to user. In this 
regard, the main problem of cloud provider is that when a 
request arrives, a VM should be provisioned immediately 
for service in order to reduce the user service time. Unfor-
tunately starting a virtual machine typically takes 1–5 min 
which is beyond the user’s acceptable service time. The solu-
tion is to predict number of future requests in advance and 
provide the VM, so the VMs become ready when the new 
requests arrive. As it is illustrated in Fig. 2, the monitoring 

unit always saves the number of requests in any time to 
produce request time series. Monitoring unit sends current 
number of requests to the resource controller. Request time 
series is fed into the predicting unit so it can forecast future 
number of requests. The proposed prediction method which 
is described in Sect. 3.3 is used in this module. The output of 
the predicting unit is sent to the resource controller module.

The main task of resource controller is deciding whether 
to add or remove VM resources to the cloud resource pool 
based on its input information which is current number 
of tasks, predicted number of requests and current state 
of resources in the cloud resource pool. After predicting 
the number of upcoming requests, the amount of needed 
resources should be adopted by the Resource controller, 
so cloud resource pool is increased or decreased by ∆CPU 
and ∆Memory according to VM resources in a way that it 
matches with the upcoming requests requirements. It is task 
of the resource allocator unit. By using this provisioning 
mechanism, SLA can be guaranteed and the cloud provider 
can always be ready to receive upcoming requests.

3.3  Proposed workload prediction algorithms

In MCC environments, user requests are submitted by very 
diverse mobile applications, hence the multiplexed request 
time series in cloud is always nonlinear, highly variable and 
very stochastic. Predicting such a stochastic time series is a 
tricky issue because of its high frequency components. As a 
solution, we proposed three prediction algorithms which are 
gradually improved one after the other and finally reached to 
the proposed W3PSG algorithm. First of all; workload time 
series is decomposed to different time–frequency scales, 
using wavelet transform and then properly predicted using 
combinations of SVR and GARCH algorithms in an ensem-
ble manner. The main difference between three proposed 
algorithms is in selecting which one of SVR or GARCH 
algorithms is selected to predict each scale of time–fre-
quency transformed time series. Since GARCH algorithm 
have more stochastic nature; it better estimate time series 

Fig. 1  Architecture of MCC
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with high degree of Volatility. Hence it should be used for 
higher frequency of time series components which is related 
to details in wavelet transform. On the other hand SVR is 
suitable to predict time series with high degree of nonlin-
earity, so we used it to predict lower frequency components 
of time series which is related to the approximate in wave-
let transformation. To verify the proposed hypothesis we 
develop three version of the prediction algorithm which are 
described in more details as follows”.

As illustrated in Fig. 3 after three level wave let decom-
position of input cloud workload time series; the trans-
formed wavelet time series for each time–frequency scale 
are reconstructed to have the same number of samples and 
equal length to the original workload time series. The results 
are three different details components named as D1(k), 
D2(k) and D3(k) respectively. Where k is the kth sample 
of time series and D1(k) has the highest frequency com-
ponent among details and also an approximate component 

named as A3(k) which has low frequency components. The 
details of wavelet transform and reconstruction is provided 
in Sect. 3.4.

For prediction in first algorithm; we used SVR for all the 
wavelet components as depicted in Fig. 3. The details of 
SVR algorithm is provided in Sect. 3.5. In order to improve 
the performance of the SVR model for each component we 
used chaotic PSO algorithm to find SVR parameters which 
is described in details in Sect. 3.5.1. Chaotic number gen-
erator is used instead of typical random number generation 
for better and faster convergence of PSO algorithm. Finally, 
after prediction of each sub-scale, their results are added 
together in order to obtain future value of workload time 
series. Since in this algorithm four sub-scales used PSO 
optimized SVR (PSVR) for prediction, we have named it 
wavelet 4 PSVR (W4PS). Each of the sub scale time series 
has its specific statistics and signal characteristics, so each 
of them is trained via a separate PSVR.

Fig. 2  Dynamic resource allocation in MCC

Fig. 3  Block diagram of W4PS
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In the next step of improving the algorithm we decide to 
use GARCH method for three detail sub scales and a PSVR 
for approximate sub scale as depicted in Fig. 4. The idea 
behind this improvement is the ability of GARCH method 
to model and predict time series with high frequency, noisy 
and high volatility nature which is the same specification 
as details sub scales. Hence we have named this algorithm 
wavelet one stage PSVR plus 3 stage GARCH (WPS3G).
This algorithm enables us to benefit from both methods 
advantages simultaneously. So, WPS3G outperforms W4PS 
method since it has benefited GARCH method superior-
ity for predicting noisy parts of the signal. This feature of 
WPS3G method causes model accuracy to improve but 
increases execution time of algorithm.

The main problem of WPS3G method is its high compu-
tational cost which is related to GARCH algorithm. To solve 
this problem we proposed the third algorithm as depicted in 
Fig. 5, which is named wavelet 3 stage PSVR plus a GARCH 
(W3PSG). Like the previous algorithm, it is a combination 
of PSVR and GARCH, however, in this method, only the 
sub-scale with highest frequency and noisy nature (D1) is 
predicted by GARCH method and the rest of the sub-scales 
(D2, D3 and A3) are predicted by PSVR method which has 
a better trade of accuracy and computation cost. In addition 
to computation cost reduction, this method has higher total 
prediction accuracy as shown in simulation results which is 
described in more details in Sect. 4.

3.4  Multi scale decomposition using wavelet 
transform

Cloud workload time series usually have much noise and 
fluctuations due to many factors. Wavelet transform is a 
multi-resolution time–frequency analysis that decomposes 
input workload time-series to several sub-scales based 
on mother wavelet type. Preprocessing input time series 
in this way causes reduction of disordered and irregular 

characteristics of input time series; this results to simplifi-
cation of modeling each sub-scales [30]. Nowadays, it can be 
applied to a lot of applications such as compression, regen-
eration, simplification and noise reduction [31, 32]. Wavelet 
transform has the ability of decomposition of time series to a 
few sub-scales with different frequency bandwidth just like 
a filter bank in signal processing. Wavelet transform can 
decompose an input signal to an approximation time series 
(overall shape of the signal) and a few high frequency time 
series (noise and details of the signal).

In this paper, we have used wavelet transform for increas-
ing accuracy of workload prediction in MCC. Since work-
load in MCC environments is very noisy and the cloud 
workload time series is stochastic with high frequency 
components, wavelet transform is used to divide the input 
time series to several time–frequency sub scales. Each of 
those sub-scales is modeled using one of the prediction 
algorithms. Similar to Fourier transform, continues wavelet 
transform of a function is defined as aggregation of multiply-
ing the function with the scaled wavelet function which is 
shifted over a time interval. Therefore, wavelet coefficients, 
C, can be written as in Eq. (1). Multiplication of each of 
these coefficients by its related scaled and shifted wavelet, 
determines its portion in construction of the main signal.

It should be noted that a wavelet with large scale prop-
erty incorporates in low frequencies and small scale ones 
incorporates in high frequencies. Any function that is used 
as a wavelet has a zero mean and its energy value equals 
one. In addition, to make sure that the wavelet-based trans-
formed signal has the capability to be reconstructed in the 

(1)

C(scale, position) = ∫
+∞

−∞

f (t)�(scale, position)dt
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+∞

−∞

f (t)
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a
�

�
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a

�
dt
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time domain, the selected wavelet should meet the admission 
condition formulated as in Eq. (2).

Since the signal that we are mostly interested in analyzing 
them are usually discrete, wavelet transform discretization is 
inevitable. For simplifying working with wavelet transform, 
its discretization should be done in binary. Thus, scale and 
shift are integer exponents of two. Hence Eq. (3) can be 
obtained by substituting a = 2j and b = ka in Eq. (1).

Although discretized version of wavelet transform can be 
calculated by computer systems, but it is not really a discrete 
transform. Actually, the discretized version of wavelet trans-
form is several wavelets which are taken as samples of a con-
tinuous wavelet transform. So, the information hidden in it 
is in vain and causes extra computational load. In order to 
decrease the computational load, we have used the discrete 
wavelet transform (DWT) as sub-band coding. Principles 
of DWT refer to a method called sub-band coding which is 
implemented using digital filters. In discrete mode, filters with 
different cutoff frequencies are used for analyzing signals in 
different scales. Different frequencies of signals are analyzed 
when they pass through high-pass and low-pass filters. In dis-
crete mode, signal resolution is controlled by filter functions 
and their scale is changed via down sampling and up sampling 
procedure. DWT processing begins with passing the signal 
through a low-pass digital filter. Filter output equals convo-
lution of input and filter impulse response. As the result, all 
frequency components which are bigger than half of the big-
gest existing frequency in the signal will be omitted. Since the 
biggest existing frequency in the signal equals π/2 rad, half of 
the components can be omitted. So, if the samples are omitted 

(2)0 < ∫
∞

0

|𝛹 (f )|2

f
df < ∞

(3)
C(j, k) =

∑

n∈Z

f (n)�j,k(n)

�j,k(t) = 2−
j

2�
(
2−jt − k

)

every other sample, signal length will be half without losing 
any information. Same procedure can be done using a high-
pass digital filter.

Preforming this method, time resolution is halved and in 
return, frequency resolution will be doubled. This procedure 
can be applied again on the low-passed version of the signal 
and in every iteration, with halving time resolution of the pre-
vious signal, frequency resolution will be doubled. This idea is 
known as filter bank which is used for calculating DWT. It can 
be seen that output coefficients of the low-pass filter follow ini-
tial formation of the signal, so they are called Approximations. 
Also, output coefficients of the high-pass filter contain high 
frequency details of the signal so they are called Details. With 
the increase of number of transform iterations, the amount of 
details decreases. DWT using filter bank is shown in Fig. 6. 
In the left side of the figure, wavelet transform is presented 
and  H0 and  H1 are low-pass and high-pass filters respectively. 
Downward arrows indicate down-sampling. In the right side 
of the figure, reverse wavelet transform is shown in which an 
up-sample occurs at first and then low-pass and high-pass fil-
ters are applied.

In this paper, we have used three level filter banks in order 
to decompose the input time series to four sub-scales each 
with the same number of samples as the original input time 
series. We examine different levels of wavelet transform and 
3 level achieves the best performance. Approximation part of 
the input time series (low frequency) is indicated as a3 which 
length is 1

8
 of the main signal because it was down-sampled 

three times. Details part of the signal (high frequency) are 
shown using d1, d2 and d3 which length are 1

2
 , 1
4
 and 1

8
 of the 

input time series respectively. Since the sub-scale components 
obtained via filter bank method do not have equal lengths, an 
up-sampling procedure followed by a filter should be applied 
on them as illustrated in the right side of the Fig. 6, so all of 
sub-scale components became the same length as the original 
time series. By combining A3 (approximation) and D1, D2 
and D3 (details), the input time series P can be rebuilt accord-
ing to Eq. (4).

(4)P = A3 + D3 + D2 + D1

Fig. 6  Wavelet transform and reverse wavelet transform
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For better clarification, Worldcup98 [33] time series 
which is used as baseline cloud workload is decomposed 
using wavelet transform (db4 wavelet) and then recon-
structed by the Eq. (4). The result shown in Fig. 7 indicated 
that D1 and A3 represent high frequency and low frequency 
variation of the workload respectively.

3.5  Support vector regression (SVR)

SVR is an extension of binary classification of support vec-
tor machines (SVM) with a difference that outputs can take 
infinite values. SVR can be used in function estimation, 
curve fitting and time series prediction. In the following we 
used the notations in Table 1.

In SVR inputs xi ∈ Rm and outputs ti ∈ R are both con-
tinuous variables. It is assumed that the SVR should be esti-
mated in a way that ti ≃ yi and yi can have a linear model as 
yi = wTxi + b or any other nonlinear models. If assume a 
nonlinear model, a nonlinear mapping can transfer the input 
space to a linear space with more dimensions. The less the 
w norm is, the simpler model results and if it’s become zero, 
y turn to a constant value. Estimation error of the model is 
acceptable if its value remains under ε. If our model meets 
this condition and all estimations are included in the above 
range, our model is acceptable. If the difference of any 
data with its estimation is more than ε, a penalty � will be 

considered for it. This penalty is called loss function L� as 
in Eq. (5).

To construct the SVR model we consider two objectives as 
formulated in Eq. (6): first empirical risk which is the average 

(5)L� =

{
0 ||ti − yi

|| ≤ �
||ti − yi

|| − � otherwise

Fig. 7  Decomposition of Worldcup98 signal using wavelet transform

Table 1  Notations for SVR parameters

Symbol Description

ti The input vector
Yi The prediction values
N The total number of data set
w Weight coefficients of the SVR function
b Constant coefficient of the SVR function
ε The value of epsilon in the insensitive loss function
σ The value of sigma in the Gaussian kernel
C The trade-off between the empirical risk and the model 

flatness
�+
i
�−
i

The distance from actual values to the corresponding 
boundary values of ε-tube

wT The optimal weight vector of the regression hyperplane
K(xi, xj) The kernel function
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of penalty functions should be minimized. Second, the w norm 
should be minimized in order to simplify the model.

where model conditions can be written as (7). �−
i
 and �+

i
 are 

violation costs.

Then with applying Karush–Kuhn–Tucker (KKT) con-
ditions on Eq. (6) and performing quadratic function in the 
conjugate minimization problem, Eq. (6) can be solved and 
substituted with Eq. (8).

In Eq. (8) we have used radial basis function (RBF) Kernel 
to map input data into a higher dimensional space which is 
shown in Eq. (9). RBF kernel is selected for its better accu-
racy due to flexible hyper plane decision boundary and fewer 
dimension space in compare to linear, polynomial kernels.

The problem can be considered as a neural network as 
shown in Fig. 8. In Fig. 8, workload prediction by SVR is 
illustrated.

(6)
Min

�
Remp =

1

N

N�

i=1

L�
�
ti, yi

�
�

Min ‖w‖ → Min
1

2
wTw

(7)

−� − �−
i
≤ ||ti − yi

|| ≤ � + �+
i

�−
i
≥ 0

�+
i
≥ 0

(8)y =
∑

i

(
�+

i
− �−

i

)
k
(
xi, xj

)
+ b

(9)k
(
xi, xj

)
= exp

(
−

1

2�2

‖‖‖xi − xj
‖‖‖
2
)

SVR algorithm has three parameters (c, ε and σ). There 
isn’t a closed form method to adjust these parameters and 
their desirable values could be obtained by searching or 
Meta heuristic optimization methods. Proper adjustment of 
these parameters has a direct effect on accuracy of SVR. 
These three parameters have features. Where C is called 
adjustment parameter and establishes a balance between 
minimizing error and minimizing complexity of the model. 
If we consider high value for C, the goal will only be mini-
mizing empirical risk (cost function) and it will result to 
a complex model. Other parameter called ε and is defined 
in order to decrease noise and stabilize predictions [34]. It 
determines insensitive area of operational risk and also spec-
ifies the number of vectors used in the regression [35, 36]. 
A high value of ε causes the number of support vectors to 
be decreased and the regression function gets more flat and 
became simpler. The last parameter σ is RBF kernel param-
eter which is specifies the kernel structure. Hence three 
parameters of SVR model should be set with high accuracy. 
In order to adjust these three parameters, we have used PSO 
algorithm as described in the following section.

3.5.1  Chaotic particle swarm optimization algorithm

We select PSO algorithm to optimize SVR parameters due 
to its fast convergence and simple computation. We modified 
the baseline PSO algorithm to use chaotic random genera-
tor and named it CPSO. Usually simple random function 
generator is used in optimization algorithms for generating 
their first population, crossover and mutation procedures. In 
this paper, chaotic recursive function is used for generating 
random numbers due to its ability to help faster convergence 
of algorithm. Diversity and proper distribution as well as 
its simplicity have made chaotic sequence a proper choice 
for us to use it as a random function generator [37]. There 

Fig. 8  SVR model for cloud workload load prediction
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are many chaotic sequence generators in the literatures. We 
achieves better results in our experiments by using the one 
which is in Eq. (10).

where x(0) is the initial value of the sequence (or its seed) and 
its value has effects on the sequence behavior; a little varia-
tion in its value changes the sequence behavior completely. µ 
is another parameter called Bifurcation that determines type 
of the sequence. For example, if µ is in range [2.8, 4] inter-
val, the sequence will behave chaotically. We have chosen 4 
for its value via trial and error. Optimization of SVR model 
parameters is done in offline learning procedure, and unlike 
neural network learning, SVR does not need to be learned 
online. In Fig. 9, flowchart of the proposed CPSO algorithm 
is illustrated. In the first step, optimization algorithm param-
eters are initialized. Particle range, particle velocity range, 
population and number of iterations are set to [0, 1], [− 0.1, 
0.1], 10 and 100 respectively as defined in [38, 39]. Then 
the first population is generated using a chaotic sequence. 
In each iteration, the search space gets explored in order to 
converge to the optimal solution.

We consider mean absolute percentage error (MAPE) as 
cost function and search space of C, ε and σ parameters to 
[0, 1000], [0, 1] and [0, 20] respectively [38].

4  Simulation results and discussion

In this section we introduce three real cloud workload traces 
which are used as baseline benchmark in the previous works 
[38, 40]. In order to compare our proposed algorithm with 
rival works in workload prediction which are based on ANN 
[21, 22], SVR [35–38] and GARCH [19, 41] standard met-
rics which are used to evaluate accuracy is explained. Also 
computational cost of each algorithm is reported for better 
comparison of results. It should be noted that the simulation 
is done on an Intel dual core T3400 with 2 GB memory.

4.1  Real cloud workload traces for benchmark

Cloud workload contains a lot of fluctuations. As described 
in [41], cloud workload is almost 20 times noisier than grid 
computing workload. So we like the other works [38, 40] 
consider three real cloud workload traces as baseline bench-
marks which are as follows.

Worldcup98 [33]: This workload trace is related to web-
site of world cup 1998. The load represents a set of users’ 
requests logged into the website in every half an hour. Its 
variations and volatilities are dependent on many factors 
such as day time, week day and the time of the year that 

(10)
x(i+1) = �x(i)

(
1 − x(i)

)

x(i) ∈ (0, 1), i = 0, 1, 2,…

the games are held. The period of its fluctuations is 1 day. 
The workload is recorded since 30 April to 26 July 1998 
and contains 1,352,804,107 requests.

CPU and memory usage traces in Google cluster [40]: 
This workload is related to the amount of used CPU and 
memory in the Google cluster. This workload is sampled 
every 5 min. The whole sampling time is 6 h and 15 min 
and it contains 75 samples. Due to security reasons these 
two workloads are normalized via an unknown linear map-
ping [40]. This workload contains 9218 jobs and 176,580 
tasks.

Fig. 9  Flowchart of CPSO optimization algorithm
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4.2  Prediction accuracy metrics

In order to assess prediction accuracy of each algorithm 
we used standard metrics which are used in previous works 
[21, 38]. Each of these metrics somehow indicates differ-
ence between the actual value and the predicted value. In 
all metrics, n, ŷi and yi represent number of predicted sam-
ples, predicted value and actual value of the i’th sample. 
In Table 2, four popular assessment metrics for assessing 
prediction accuracy is depicted.

4.3  Workload prediction results

In this paper, three workloads; CPU, memory and World-
cup98 in conjunction with their corresponding predicted 
values and errors which are obtained via proposed W3PSG 
prediction algorithm are shown in Figs.  10, 11 and 12 
respectively. In these three figures, workloads are shown 
with blue color and their predicted values are presented as 
red dash lines. Section (a), (b), and (c) show predicted values 
and the amount of user requests, predicting error value based 
on MAPE metric, and the error’s histogram graph respec-
tively. 15 first iterations of (a) sections are not predicted 
because of lack of initial training data. As it can be inferred 
from the W3PSG algorithm results (Figs. 10, 11, 12), pre-
dicted values (red dash line) follow load values (blue line) 
properly with little error. So W3PSG method has high accu-
racy and low prediction error. As it can be seen, W3PSG has 
a good performance even in swinging points and has small 
deviation from cloud workload. In all the simulations, a win-
dow with 15 sample length is used for training. This proce-
dure continues with the movement of prediction window.

Prediction accuracy metrics for three workloads are 
shown in Tables 3, 4 and 5 respectively. As it can be inferred 
from the simulation results, hybrid wavelet transform based 
prediction models, W4PS, WPS3G and W3PSG, possess 
higher prediction accuracy in comparison whit other rival 
methods. The W3PSG has the highest prediction accuracy 
considering MAPE metric. W3PSG method has respectively 
14.605%, 5.987% and 16.27% improvement over CPSO 
based SVR model and 24.529%, 15.788% and 55.631% 

improvement over basic SVR model. Best results in each 
table is marked as bold.

In Table 6, standard deviation and mean error of pre-
diction for three workloads are illustrated. Notice to error 
histogram graph, it can be understood that prediction error 
is almost fallow Gaussian distribution. As it can be seen in 
Table 5, W3PSG has a smaller mean and standard deviation 
in comparison with other methods.

4.4  Impact of CPSO algorithm on SVR performance

In this section we compare the effect of optimization 
algorithm on convergence speed and final solution of 
SVR parameters and its impact on prediction accuracy. 
We consider chaotic Genetic algorithm (CGA) and CPSO 
to optimize SVR parameters. Simulation results indicate 
that the CPSO optimization method increases SVR accu-
racy more than CGA method which fails to find best solu-
tion in equal situation. MAPE cost function convergence 
regime of the best member for each workload is shown in 
Fig. 13; Fig. 13a–c show convergence speed of the CPSO 
which reduces SVR prediction error for CPU, memory 
and worldcup98 workloads respectively. By several 
experiments we select 10 population members and 100 
iterations for CPSO algorithm. The final SVR parameters 

Table 2  Prediction accuracy metrics

Criteria Formula

Mean square error (MSE) MSE =
1

n

∑n

i=1

�
ŷi − yi

�2

Root-mean-square error
RMSE =

�
∑n

i=1 (ŷi−yi)
2

n

Mean absolute error MAE =
1

n

∑n

i=1
��ŷi − yi

��
Mean absolute percentage error

MAPE =
1

n

∑n

i=1

�ŷi−yi�
yi
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Fig. 10  a Google CPU workload prediction using W3PSG method, b 
along with prediction error, c error histogram
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using CPSO optimization algorithm are compared by the 
one achieved by CGA in Table 7.

4.5  Determine number of wavelet decomposition 
sub scales

One of the important aspects of the proposed algorithm 
is how to determine the number of sub scales which the 
workload time series should be decomposed to. It deter-
mines the level of workload details that we want to model 
and has direct impact on the accuracy of prediction. As 
described in previous works [12] Daubechies mother 
wavelet (db) is the best selection for fractal time series 
which is the case of cloud workload. Hence we select it 
as the best mother wavelet. The next step is to determine 
the number of wavelet transform sub scales. We conduct 
an experiment and test 1–8 sub scales (db1 to db8 wavelet 
transforms) in W3PSG to predict three baseline work-
loads. The results are shown in Fig. 14. Considering the 
results, db4 has the best performance and less prediction 
error.

(a)

(b) (c)

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

100

Time (minutes)

N
or

m
al

iz
ed

 m
em

or
y 

us
ag

e
Measured
Predicted

100 200 300
-0.6

-0.4

-0.2

0

0.2

0.4

Time (minutes)

M
A

PE

-0.6 -0.4 -0.2 0 0.2
0

5

10

15

20

MAPE

H
ist

og
ra

m

Fig. 11  a Google memory workload prediction using W3PSG 
method, b along with prediction error, c error histogram
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Fig. 12  a Worldcup98 workload prediction using W3PSG method, b 
along with prediction error, c error histogram

Table 3  Comparison of prediction methods tested on CPU workload

MAE MAPE RMSE MSE

GARCH 12.7212 13.1196 14.9385 223.1592
ANN 12.6665 13.1178 15.8685 251.8102
SVR 11.4899 12.1823 13.6275 185.7059
CPSO 10.9517 11.5075 14.5647 212.1297
W4PS 9.0065 9.6846 10.8019 116.6800
WPS3G 9.7181 10.4260 11.7972 139.1736
W3PSG 8.4888 9.1941 10.2086 104.2146

Table 4  Comparison of prediction methods tested on memory work-
load

MAE MAPE RMSE MSE

GARCH 12.1745 18.0194 13.5363 183.2323
ANN 12.5107 18.3430 15.2029 231.1276
SVR 10.6528 16.1286 12.7763 163.2335
CPSO 10.6210 15.7107 12.1230 146.9666
W4PS 9.2842 14.2913 10.8159 116.9831
WPS3G 9.1963 14.2900 11.3868 129.6589
W3PSG 8.8711 13.5822 10.3413 106.9434
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4.6  Comparison of computation cost of algorithms

To have fair comparison between prediction algorithms, we 
should consider the computational cost of the algorithms. 
CPSO takes about 19/93 s and it is done only once in train-
ing phase (offline). After optimization, optimal parameters 
are used in the SVR model. Hence the prediction algorithms 
are adaptive; exclude the CPSO, remaining parts such as 
ANN, SVR and GARCH have training and prediction com-
putational cost periodically. As it shown in Table 8, the 
algorithms that use SVR model have almost equivalent 
training and prediction time durations. GARCH model uses 
much computing time for training and predicting. Therefore, 
instead of WPS3G algorithm, W3PSG model is proposed 
to reduce computing cost. In addition W3PSG have better 
prediction accuracy.

5  Conclusion

In this paper we propose an accurate workload predic-
tion algorithm for dynamic resource allocation in MCC 
environments. Our proposed W3PSG method, in addi-
tion to gaining the highest accuracy, acts better than its 
rival algorithm, W3PSG, in terms of computation cost. In 

W3PSG wavelet transforms methods (mother wavelet db4) 
are used for decomposing the workload into four high and 
low frequency sub scales. In these methods, each one of 
the sub scales is predicted via a combination of SVR or 
GARCH models. In W3PSG, high frequency sub scales 
(D1) is predicted using GARCH and low frequency sub 
scales (A3) and high frequency sub scales (D2, D3) are 
predicted using a PSVR model in W3PSG. As mentioned 
in simulation results, W3PSG has the highest accuracy 
and also has a lower computational cost in comparison 
with WPS3G model. W3PSG model has 14/605%, 5/987% 
and 16/270% improvement of MAPE metric in comparison 
with W4PS and 24/529%, 15/788% and 55/631% compared 
to the base line SVR model. We also propose a new Meta 
heuristic parameter optimization algorithm for PSO named 
CSPO to adjust C, ε, σ parameters. In CSPO, search opera-
tion is repeated until the optimal values of the SVR model 
parameters are achieved. CSPO method, because of con-
sidering MAPE metric, excels base SVR model in term of 
prediction accuracy for CPU, memory and Worldcup98 
workloads by 11/621%, 10/425% and 47/01% respectively. 
By considering MAPE metric, a general comparison of 
W3PSG method with ANN [21, 22], SVR [35–38] and 
CPSO optimized SVR methods for three cloud workloads, 
Google CPU, Google memory and Worldcup98, in terms 
of accuracy improvement, is given in Table 9.

Since in W3PSG we consider multi scale decomposed 
analysis and train for each sub scale a separate carefully 
tuned prediction model (SVR/GARCH); the final predic-
tion which is ensemble of multi scale prediction has higher 
accuracy. Also, modeling high frequency components of 
the time series which has noisy and volatile nature by 
GARCH improved the prediction accuracy. However this 
method is computationally expensive. Devising CPSO 
to improve the accuracy of SVR by carefully tuning its 
parameters is another pillars of the W3PSG algorithm. For 
the future works we suggest to use other family of standard 
GARCH algorithm such as EGARCH to improve accuracy.

Table 5  Comparison of prediction methods tested on Worldcup-
98workload

MAE MAPE RMSE MSE

GARCH 341.1153 33.9013 413.5801 1.7105e+5
ANN 241.4541 25.2949 287.5850 8.2705e+4
SVR 168.6784 17.0253 204.2466 4.1717e+4
CPSO 87.1048 9.0311 116.9473 1.3677e+4
W4PS 79.4154 7.6850 103.5331 1.0719e+4
WPS3G 82.2152 8.3431 103.4400 1.0700e+4
W3PSG 77.9170 7.5539 101.3441 1.0271e+4

Table 6  Mean error and 
standard deviation

GARCH ANN SVR CPSO W4PS WPS3G W3PSG

Google CPU
 Mean 5.745 5.520 4.2711 4.067 0.975 1.652 0.852
 STD 13.970 15.072 13.1101 14.168 10.898 11.834 10.306

Google memory
 Mean 2.1797 4.1331 0.9577 0.0530 0.310 0.3473 0.0033
 STD 13.534 14.821 12.9069 12.281 10.957 11.530 10.476

Worldcup98
 Mean 27.058 − 13.10 − 14.4865 2.268 − 2.113 − 1.034 − 2.010
 STD 413.858 288.097 204.3069 117.255 103.803 103.727 101.610
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Fig. 13  Cost function of the best member of the CPSO optimization 
algorithm tested on three workloads a Google CPU, b Google mem-
ory, c Worldcup98

Table 7  Final SVR parameters using CPSO and CGA optimization 
algorithms

CPU Memory Worldcup98

CGA 
 Ε 0.08163 0.2872 0.09277
 Σ 0.890 0.9 2
 C 686.9272 461.9568 174.2565

CPSO
 Ε 0.07683 0.2771 0.09472
 Σ 0.8858 11.811 5.448
 C 407.2239 583.0683 560.1422
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