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Abstract
Collaborative filtering (CF) is one of the most widely applied models for recommender systems. Despite its success, CF-
based methods suffer from rating sparsity and cold-start problem, which leads to poor quality of recommendations. Previous 
studies have gave great attention to construct hybrid methods, by incorporating side information and user rating. Variational 
autoencoder (VAE) has been confirmed to be highly effective in CF task, due to its Bayesian nature and non-linearity. How-
ever, rating sparsity remains a great challenge to most VAE models, which leads to poor latent user/item representations. In 
addition, most existing VAE-based methods model either latent user factors or latent item factors, resulting in the incapacity 
to recommend items to a new user or suggest a new item to existing users. To address these problems, we design a novel deep 
hybrid framework for top-k recommendation, neural variational collaborative filtering (NVCF), and propose three NVCF-
based instantiation. In generative process, the side information of user and item is incorporated to alleviate rating sparsity, 
for learning better latent user/item representations. In inference process, a Stochastic Gradient Variational Bayes approach is 
employed to approximate the unmanageable distributions of latent user/item factors. Experiments performed on four public 
datasets have indicated our methods significantly outperform the state-of-the-art hybrid CF models and VAE-based methods.

Keywords Neural collaborative filtering · Variational autoencoder · Top-K recommendation · Side information · Implicit 
feedback

1 Introduction

Recommender systems can help users to discover their 
potentially preferences from varieties of items on the basis 
of their tastes [1]. Collaborative filtering (CF) is one of the 
key techniques to build personalized recommender systems, 
due to its accuracy and scalability [2]. The essence of CF is 
to infer users’ preferences from the behavior data of them-
selves and other users. Most conventional CF methods are 
based upon matrix factorization (MF) [3], which projects 
users and items into a shared latent space and uses a latent 
feature vector to represent either a user or an item [4]. How-
ever, MF-based methods suffer from rating sparsity, so that 
the accuracy of learning latent user/item representations is 
limited. To address rating sparsity, large numbers of works 
incorporate users’ and items’ side information into conven-
tional MF models. For more accurate extraction of latent 
factors from side information, previous studies employ 
latent Dirichlet allocation (LDA) [5, 6], Bayesian personal-
ized ranking [7, 8], denoising autoencoder (DAE) [9] and 
stacked denoising autoencoder (SDAE) [10–13] to model 
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side information of users or items. Nevertheless, these 
methods use inner product to model interactions between 
users and items, which restricts their capability of capturing 
non-linearity [14]. To model non-linear interaction, various 
approaches apply deep neural networks to model these inter-
actions and achieve promising performance, such as neural 
collaborative filtering (NCF) [14], deep matrix factoriza-
tion (DMF) [15], neural factorization machine (NFM) [16], 
DeepFM [17], JRL [18], GCMC [19], DeepCoNN [20], 
ConvNCF [21] and IRGAN [22]. Nonetheless, these deep 
neural networks cannot capture the uncertainty of latent 
user/item representations.

Currently, several works have taken advantage of deep 
generative models to perform CF task, such as variational 
autoencoder (VAE) [23]. VAE is a non-linear probabilistic 
model that has the capability of capturing uncertainty, and 
the non-linearity enable it to explore non-linear probabil-
istic latent-variable models on large-scale recommenda-
tion datasets, such as collaborative variational autoencoder 
(CVAE)  [24], CLVAE  [25], VAECF  [26] and VAE-
HPrior [27]. Despite the effectiveness of these VAE-based 
methods, there are still several drawbacks. CVAE directly 
uses inner product to model interaction, which hinders itself 
to learn non-linear interactions between users and items. 
CLVAE and VAECF only exploit the rating information, 
which leads in poor performance as the sparsity of rating 
matrix is extremely high. VAECF and VAE-HPrior only 
model users’ behaviors to generate prediction, which makes 
them unable to recommend an item to a new user. Besides, 
VAECF selects the same Gaussian prior for all users, result-
ing in poor latent user representations [28].

To solve the problems mentioned above, we devise a deep 
hybrid framework, neural variational collaborative filter-
ing (NVCF), and propose three NVCF-based instantiations 
with side information for top-k recommendation. Different 
from the user/item generative processes in most existing 
VAE-based methods, we model the generative process of 
both users and items through a unified neural variational 
model with parallel structure, which can effectively learn 
non-linear latent representations of users and items for CF. 
The side information of users and items is incorporated into 
their latent factors through a deep neural network for neural 
CF task, which means NVCF can mitigate rating sparsity 
and model better latent representations of users and items. 
The parameters of prior neural network are learned from 
data, leading to the fact that it is able to embed users’ better 
preferences and items’ features into latent factors of users 
and items, respectively. For inferring the posterior of latent 
factors of users and items, we derived a Stochastic Gradient 
Variational Bayes (SGVB) algorithm to infer these posteri-
ors, which makes the parameters of our model can be effec-
tively learned by back-propagation. The rest of this paper 
is organized as follows: In Sect. 2, an overview of related 

works on CF models is provided. In Sect. 3, our models are 
presented, and the parameters learning process is discussed. 
The Sect. 4 presents experimental results and discussions, 
followed by conclusions and future work in Sect. 5.

2  Related work

In recent years, the deep learning methods have attained tre-
mendous achievements in various fields [29, 30]. Due to the 
abilities of neural networks to discover non-linear and sub-
tle relationships in user-item feedbacks, many works utilize 
neural networks to address the task of CF. To incorporate 
item content information into latent item factors, collabora-
tive deep learning (CDL) [10] integrates SDAE into proba-
bilistic matrix factorization (PMF), which can balance the 
influences of user ratings and side information. Collabora-
tive deep ranking (CDR) [11] utilizes pair-wise framework 
with implicit feedback, which leverages deep feature repre-
sentation of item content into Bayesian pair-wise ranking. 
Deep collaborative filtering Framework [12] utilizes deep 
feature learning to aid collaborative recommendation, which 
embeds the content information of items and users while 
CDL and CDR only consider the effects of item features. 
Recently, the additional stacked denoising autoencoder 
(aSDAE) [13] was presented to incorporate side information 
into MF, which jointly performs deep latent user/item factors 
learning from side information, and CF task from the user 
rating. GCMC [19] considers the recommendation problem 
as a link prediction task with graph CNNs, which can easily 
integrate user/item side information (such as social networks 
and item relationships) into the recommendation model.

Since the above methods apply inner product to model 
the user/item interactions, they are not able to capture the 
complex structure of the interaction data between users 
and items. NCF framework [14] was proposed to make 
use of both linearity of MF and non-linearity of MLP 
to capture linear and non-linear relationship between 
users and items. NFM [16] employs Bi-Interaction layer 
to incorporate both user rating and item content infor-
mation. Based on factorization machines, DeepFM [17] 
seamlessly integrates factorization machine and MLP, and 
it can model the high-order feature interactions via deep 
neural network and low-order interactions via factoriza-
tion machine. For joint representations of user and item, 
JRL [18] places a MLP above the element-wise prod-
uct of user embedding and item embedding, where user 
and item side information is adopted to learn the cor-
responding user and item representations based on deep 
representation learning architectures. DeepCoNN [20] 
adopts two parallel CNNs to model user behaviors and 
item properties from review texts, which alleviates data 
sparsity and enhances the interpretability by exploiting 
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rich semantic representations of reviews with CNNs. Con-
vNCF [21] utilizes outer product instead of dot product to 
model user/item interaction patterns, and applies CNNs 
over the result of outer product to capture the high-order 
correlations among embeddings dimensions. IRGAN [22] 
is the first model which takes advantage of generative 
adversarial networks for item recommendation. Due to the 
power of capturing uncertainty and non-linearity of deep 
generative model [23], several works utilize deep genera-
tive model to address the task of CF. Such as, CVAE [24] 
applies VAE to incorporate item content information into 
MF. CLVAE [25] encompasses VAE through augment-
ing structures to model the auxiliary information and to 
model the implicit user feedbacks. VAECF [26] directly 
utilizes VAE for CF task, and VAE-HPrior [27] incor-
porates user-dependent priors in the latent VAE space to 
encode users’ preferences as functions of item reviews. 
Unlike previous VAE-based recommendation methods, 
this paper constructs the generative processes of users 
and items through a unified neural variational framework, 
which enables our model to capture both linear and non-
linear latent representations of users and items.

3  Neural variational collaborative filtering 
with side information

In this section, we present the neural variational collabo-
rative filtering framework (NVCF), as shown in Fig. 1. 
NVCF contains two main components: the feature extrac-
tion module and the NVCF module. In feature extraction 
process, the NVCF learns and extracts user/item features 
through a unified deep generative framework with parallel 
structure. Then, the latent user/item vectors are fed into 
NVCF module to learn the user-item relations, and finally 
generate the rating prediction (Table 1).

3.1  Notations

Given M users and N items, the latent factors of user 
and item are denoted by U = {ui|i = 1,… ,M} ∈ ℝ

K×M 
and V = {vj|j = 1,… ,N} ∈ ℝ

K×N  respectively, where 
K denotes the dimensions of latent factors. For implicit 
feedback, the user rating matrix is denoted by R ∈ ℝ

M×N , 
where Rij = 1 indicates that the i-th user has interacted 
with the j-th item, otherwise Rij = 0 . The user’s and item’s 
side information is denoted by two “bag-of-items” vectors 
over users and items, X = {Xi|i = 1,… ,M} ∈ ℝ

P×M and 
Y = {Yj|j = 1,… ,N} ∈ ℝ

Q×N respectively, where P and Q 
are the dimensions of user side information and item side 
information respectively. Here, we call X and Y latent pro-
file representation and latent content representation, respec-
tively. Given R, X and Y, the problem is to infer latent factors 
ui and vj , and then to predict the missing ratings R̂.

3.2  Feature extraction

As mentioned in  [26], most MF-based methods assume 
that the prior distributions of user and item latent factors 
are standard Gaussian distributions, and predict rating only 
through user-item feedback. Some MF methods incorporate 
either user’s or item’s side information into rating prediction 

Fig. 1  NVCF framework
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Table 1  Symbols and notations

Symbols Description

R(Rij) Rating latent factors
U(ui) User latent factors
V(vj) Item latent factors
X(Xi) Latent profile factors
Y(Yj) Latent content factors
K The dimension of latent space
P The dimension of user side information
Q The dimension of item side information
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via linear regression, which leads to the limited accuracy 
of inferring latent relations between users and items. To 
achieve further improvement on prediction performance, our 
model incorporates both user’s and item’s side information 
into feature learning, which can make positive contributions 
to the inferring process of latent user/item factors.

3.2.1  Generative model

To learn robust features of user and item, a unified neu-
ral variational framework is built with a parallel structure. 
In this paper, the generative process is similar to the deep 
latent Gaussian model [31]. For each user ui , the generative 
model starts by sampling a K-dimensional latent representa-
tion zui from a standard Gaussian prior, i.e. zui ∼ N(0, �K) . 
The sample variable Xi is generated from its latent variable 
zui through a MLP (decoder) with the generative parameter 
� , i.e. Xi ∼ p�(Xi|zui) . The p�(X|zu) can be generated from a 
multivariate Bernoulli distribution (binary) or Gaussian dis-
tribution (real-value). The generative process of user profile 
is defined as follows:

(1) For each layer l ∈ [1, L] of the generative network,

a) For each column n of weight matrix Wd
l
 , draw 

b) Draw bias vector 

c) For each row i of hd
l
 , draw 

(2) For each Xi,

a) If Xi is binary, draw 

b) If Xi is real-value, draw 

where �w , �s and �X are hyperparameters, hd
l
 represents hid-

den layers of decoder. Similar to SDAE, �s is taken to infin-
ity for computational efficiency.

The latent representation zui can be drawn by a Gauss-
ian prior distribution with zero mean and identity matrix: 
zui ∼ N(0, �K) . The user’s latent representation ui consists of 
latent user offset and latent user profile vector:

Wd
l,n

∼ N(0, �−1
w
�K)

bd
l
∼ N(0, �−1

w
�K)

hd
l,i
∼ N(�(hd

l−1,i
Wd

l
+ bd

l
), �−1

s
�K)

Xi ∼ B(�(hd
l
Wd

l
+ bd

l+1
))

Xi ∼ N(hd
l
Wd

l
+ bd

l+1
, �−1

X
�K)

(1)ui = �i + zui

The generative process of item content is similar to that of 
user profile, and the item latent representation vj is composed 
of latent item offset and latent item content vector: 
vj = �j + zvj.

3.2.2  Inference model

The inference model is also a MLP network (encoder) cor-
responding to the one in the generative model. For user, 
the inference process is to approximate the intractable pos-
terior distribution p�(zui |Xi) which is determined by the 
generative network. Using the Stochastic Gradient Vari-
ational Bayes (SGVB) estimator, the posterior of latent 
user profile variable zu can be approximated by a tractable 
variational distribution q�(zui |Xi).

where �� ∈ ℝ
K and �2

�
∈ ℝ

K are the mean and covariance 
of the approximate posterior respectively, which are outputs 
of the inference model (i.e. non-linear functions of Xi and 
the variational parameter �).

Similar to [23, 26], the inference process of zu is defined 
as follows:

(1) For each layer l of the inference model,

(a) For each column n of weight matrix We
l
 , draw 

(b) Draw bias vector 

(c) For each row i of he
l
 , draw 

(2) For each user ui,

(a) Draw latent mean vector 

(b) Draw latent covariance vector 

(c) Draw latent content vector 

As explained in [26], the evidence lower bound (ELBO) for 
Xi can be estimated by using SGVB estimator:

(2)q�(zu|Xi) = N(��(Xi), diag(�
2
�
(Xi)))

We
l,n

∼ N(0, �−1
w
�K)

be
l
∼ N(0, �−1

w
�K)

he
l,i
∼ N(�(he

l−1,i
We

l
+ be

l
), �−1

s
�K)

�i ∼ N(he
l
We

�
+ be

�
, �−1

s
�K)

log �2
i
∼ N(he

l
We

�
+ be

�
, �−1

s
�K)

zui ∼ N(�i, diag(�
2
i
))
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where �� denotes the Kullback-Leibler divergence, 
� ∈ [0, 1] is a parameter to control the regularization 
strength for addressing the posterior collapse problem [32], 
�i,l ∼ N(0, �) , and ⊙ represents the element-wise product.

The inference process of item content is similar to user 
profile inference process, and the ELBO for item network 
can be derived similarly:

3.3  Side information embedded NVCF

Inspired by NCF, we propose three NVCF-based models to 
improve prediction performance, which are generalized MF 
model with side information (sGMF), MLP with side infor-
mation (sMLP) and the fusion of sGMF and sMLP. The CF 
module of sGMF utilizes a computational method similar 
to the inner product of MF, which applies a linear kernel 
to model the latent feature interactions. The CF process of 
sMLP concatenates the user and item latent vectors, and then 
utilizes non-linear kernel to learn the interaction between 
user and item latent features by a MLP network. The CF part 
of the fused method combines sGMF and sMLP under the 
NVCF framework, where sGMF and sMLP share the same 
embedding layer, and the outputs of their interaction func-
tions are combined. All three models integrate side informa-
tion to improve prediction performance.

(3)

L(𝜃,𝜙;Xi) =�q𝜙(zu�Xi)
[log p(ui�zu) + log p𝜃(Xi�zu)]

− 𝛽 ⋅ ��(q𝜙(zu�Xi)‖p(zu))

≃ log p(ui�zui,l) +
1

L

L�

l=1

log p𝜃(Xi�zui,l)

− 𝛽 ⋅ ��(q𝜙(zu�Xi)‖p(zu))

��(q𝜙(zu�Xi)‖p(zu)) =
1

2

M�

i=1

(𝜇2
i
+ 𝜎2

i
− log 𝜎2

i
− 1)

zui,l = 𝜇i + 𝜎i ⊙ 𝜀i,l

(4)

L(𝜃,𝜙;Yj) =�q𝜙(zv�Yj)[log p(vj�zv) + log p𝜃(Yj�zv)]

− 𝛽 ⋅ ��(q𝜙(zv�Yj)‖p(zv))

≃ log p(vj�zvj,l) +
1

L

L�

l=1

log p𝜃(Yj�zvj,l)

− 𝛽 ⋅ ��(q𝜙(zv�Yj)‖p(zv))

��(q𝜙(zv�Yj)‖p(zv)) =
1

2

N�

j=1

(𝜇2
j
+ 𝜎2

j
− log 𝜎2

j
− 1)

zvj,l = 𝜇j + 𝜎j ⊙ 𝜀j,l

3.3.1  sGMF

sGMF utilizes the extracted user and item features to cal-
culate the element-wise product of the user and item latent 
vectors, and outputs the calculated vectors to a fully con-
nected neural layer. The element-wise products of the user 
and item latent vectors in the first neural CF layer are defined 
in Eq. 5. Then, sGMF projects the vectors to the output layer, 
as shown in Eq. 6.

where aout denotes the activation function, ℏ denotes edge 
weights of the output layer, and R̂ij denotes the predicted 
rating. sGMF is intuitively equivalent to MF, as aout is an 
identity function and ℏ is a uniform vector of 1.

Under the framework of NVCF, aout can be a non-linear 
activation function and ℏ can be learned from training data, 
so sGMF has more powerful learning capability than MF. 
Dissimilar to the original GMF only relying on implicit 
feedback, sGMF incorporates both user and item side infor-
mation into latent user/item representations learning, and 
employs VAE to extract user’s and item’s latent vectors, 
which can lead to better performance.

3.3.2  sMLP

sMLP uses the same way with sGMF to extract user and item 
features from auxiliary information. However, sMLP takes 
a different learning strategy in the NVCF module. Instead 
of treating user and item latent vectors by MF, sMLP con-
catenates learned latent user vector ui and latent item vector 
vj , then adopts a MLP network in NVCF module to learn 
high-level user-item relations. The CF process of sMLP can 
be defined as follows:

where WG , bG , and aG denote the weights, bias vector, and 
activation function for the G-th layer, respectively; the [⋅] 
denotes the concatenating operation.

Different from the original MLP in [14] that depends 
only on implicit feedback, sMLP learn user-item relations 
through the combination of VAE and MLP neural network, 

(5)𝛹1(ui, vj) =ui ⊙ vj

(6)R̂ij = aout(�
⊤𝛹 (ui, vj)) =aout(�

⊤(ui ⊙ vj))

(7)

Z1 = 𝛹1(ui, vj) =

[
ui
vj

]
,

𝛹2(Z1) = a2(W
⊤
2
Z1 + b2),

⋯⋯

𝛹G(ZG−1) = aG(W
⊤
G
ZG−1 + bG)

R̂ij = 𝜎(�⊤𝛹G(ZG−1))
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where VAE is employed to extract user and item features 
from auxiliary information, and MLP is used to perform CF 
task. Thus, sMLP is able to learn the vital relations between 
users and items.

3.3.3  Fusion of sGMF and sMLP

Similar to NeuMF [14], the model for combining sGMF with 
a single layer sMLP can be formulated as follows.

However, sharing the embedding of sGMF and sMLP might 
limit the performance of the fused model [14]. For those 
datasets where the optimal embedding size of the two mod-
els varies a lot, this solution may fail to obtain the optimal 
ensemble. In order to provide more flexibility to the fused 
model, we allow sGMF and sMLP to learn separate embed-
dings, and combine the two models by concatenating their 
last hidden layer. Figure 2 illustrates our proposed method, 
and the formulation is given as follows.

where usG
i
, vsG

j
 and usM

i
, vsM

j
 represent user/item embeddings 

for sGMF and sMLP.
As discussed in [14], ReLU is adopted as the activation 

function of sMLP layers. This fusion model combines the 
linearity of MF and non-linearity of MLP for modelling user 
and item latent structures with side information, so we call it 
side information embedded neural variational MF (sNVMF).

(8)R̂ij = 𝜎

(
g⊤a(ui ⊙ vj) +W

[
ui
vj

]
+ b

))

(9)

𝛹 sGMF = usG
i

⊙ vsG
j

[
ui
vj

]

𝛹 sMLP = aG

(
W⊤

G

(
aG−1

(
⋯ a2(W

⊤
2

[
usM
i

vsM
j

]
+ b2)⋯

))
+ bG

)

R̂ij = 𝜎

(
h⊤

[
𝛹 sGMF

𝛹 sMLP

])

3.4  Optimization

Generally, the loss function consists of the reconstruction 
error in feature extraction and the prediction error. The 
reconstruction error lies on loss functions of VAEs for 
user and item feature extraction, which are equivalent to 
their ELBOs, respectively. For convenience, the ELBOs 
of user and item prior networks are denoted by Lu and Lv , 
respectively.

In prediction process, NVCF outputs the predicted rat-
ing R̂ij for each user-item pair (ui, vj) . Due to the nature 
of implicit feedback, user-item ratings can be regarded as 
labels with binary value, i.e., if a user is relevant to an item, 
the implicit feedback is 1, otherwise it is 0. Therefore, the 
predicted R̂ij can be regarded as the possibility that a user 
relevant to an item, which means the output R̂ij has to be con-
strained in the range of [0, 1] by using a sigmoid activation 
function. Similar to [14], the loss function can be defined 
as follows.

where T  denotes the set of observed instances and T− 
denotes a set of negative instances, which can be sampled 
from unobserved user-item interactions.

To minimize the objective function for NVCF, the optimi-
zation can be done by performing stochastic gradient descent 
(SGD), which is the same as the binary cross-entropy loss. 
By employing a probabilistic treatment for NVCF, the rec-
ommendation with implicit feedback can be regarded as a 
binary classification problem. Thus, the general loss func-
tion for training NVCF is defined as,

where �u and �v denote the hyperparameters of the loss 
function.

(10)Ls = −
∑

(i,j)∈T∪T−

Rij log R̂ij + (1 − Rij) log(1 − R̂ij)

(11)L = Ls + �u ⋅ Lu + �v ⋅ Lv

Fig. 2  Side Information embed-
ded neural variational MF 
(sNVMF) Model
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3.5  Prediction

After model training and parameters learning, we can predict 
the probability that user will rate an item for a user-item pair 
( ui, vi ). Given a trained model, for a user-item pair ( ui, vi ) 
without any observed relation, the predicted rating can be 
written as follow:

where hsGMF and hsMLP denote the h vector of the pretrained 
sGMF and sMLP models, respectively; � is a hyper-param-
eter determining the tradeoff between the two pretrained 
models.

3.6  Computational complexity

The computa t ional  complexi ty  of  NVCF is 
max(OVAEu

, OVAEv
) + ONCF . The first term max(⋅) is the com-

putational complexity of the VAE part (feature extraction), 
OVAEu

= O(MP2 + LH2) and OVAEv
= O(NQ2 + LH2) , where 

M and N are the number of users and items respectively; P 
and Q are the dimensions of user and item side information, 
respectively; L is the number of layers of MLP networks in 
VAE; H is the average hidden layer size. Since M, N, P and 
Q are all linear and L,H ≪ min(P,Q) , the complexity of 
feature extraction has a squared term. The second term is the 
computational complexity of NCF. As we know, the com-
plexity of NCF is linear to the size of matrix and the layers 
of neural network, i.e. O(NCF) = O(MN +MNG) , where G 
is the layers of neural network. Because G ≪ min(M,N) , the 
complexity of NCF has a squared term. Thus, the computa-
tional complexity of NVCF is of a squared term.

4  Experiments and results

4.1  Experimental settings

4.1.1  Datasets

In this section, four public datasets from GroupLens, 
Yelp and Epinions are collected to evaluate our model, 
which are MovieLens-100K (ML100K), MovieLens-1M 

(12)R̂ij = 𝜎

(
�⊤

[
𝛹 sGMF

𝛹 sMLP

])
, � ←

[
𝛼hsGMF

(1 − 𝛼)hsMLP

]

(ML1M), Yelp Challenge Dataset (Yelp) and Extended 
Epinions dataset (EPext). Table 2 summarizes the charac-
teristics of four datasets.

The ML100K and ML1M have been widely utilized to 
evaluate CF-based recommendation algorithms. The for-
mer one contains 943 users and 1682 movies with 100,000 
ratings, while the latter one includes 6040 users and 3706 
movies with 1,000,209 ratings. Each rating value is on a 
scale of 1–5, and each user has rated at least 20 movies. 
These two datasets are explicit feedback data, while our 
goal is to investigate the performance of learning from 
the implicit feedback. Therefore, these two datasets are 
transformed into implicit data, where each entry is marked 
as 1 if the corresponding rating is no less than 4, other-
wise marked as 0. For side information, user demograph-
ics including age, occupation and gender are regarded as 
collaborative information, and movie descriptions (genres) 
are taken as auxiliary item information.

The Yelp contains customer reviews of local businesses. 
Each review is associated with a rating ranging from 1 to 
5, and the user-item matrix is binarized using value 3 as 
a threshold. The reviews are filtered out, whose text is 
not written in English and businesses other than restau-
rants. To reduce sparsity, users with less than 5 reviews 
and businesses that have been rated by less than 30 users 
are deleted. Moreover, we merge the repetitive ratings at 
different time-stamps to the earliest one, so as to study 
the performance of recommending new items to a user. 
The final dataset obtains 25,815 users, 25,677 items, and 
730,791 ratings.

The EPext contains ratings on articles/reviews users 
on products on Epinions.com. This dataset is extremely 
sparse (its density is about 0.015%), and it includes over 
13,000,000 ratings on a 5-star scale of 120,492 users on 
755,760 items (articles/reviews). The corresponding rating 
is also assigned to a value of 1 as implicit feedback. The 
EPext also contains 717,667 trust relations and 123,705 
distrust statements, which can be considered as user side 
information. For item side information, each article/review 
have a topic(subject) associated with it, which can be 
regarded as auxiliary information.

Table 2  Statistics of 
MovieLens, Yelp and Extended 
Epinions datasets

Dataset Users Items Ratings Sparsity (%) User features Item features

ML100K 943 1682 100,000 93.70 Demographics Genres
ML1M 6040 3706 1,000,209 95.53 Demographics Genres
Yelp 25,815 25,677 730,791 99.89 Social relations Categories
EPext 120,492 755,760 13,668,319 99.98 Trust/distrust Topics
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4.1.2  Baselines and evaluation metrics

To evaluate the proposed NVCF framework and its three 
instantiations, six representative CF models are selected 
as baselines.

BPR [7] optimizes the MF model with a pairwise rank-
ing loss, to learn from implicit feedback. It is a highly 
competitive baseline for item recommendation.

mDCF [12] employs SDAE to extract features from 
user and item auxiliary information and uses MF to deter-
mine user-item latent relations.

NeuMF  [14] is a model proposed within the NCF 
framework, which combines hidden layer of GMF and 
MLP to learn the user-item interaction function.

NFM [16] generalizes factorization machine for CF, 
and combines the factorization machine and neural net-
work to incorporate both feedback and content.

CVAE [24] is a Bayesian generative model that jointly 
models CTR and deep generative model to bridge auxil-
iary information together with deep architecture.

VAECF [26] is a state-of-the-art method that directly 
apply VAE to CF to for implicit feedback.

To evaluate the performance of our models, two com-
mon evaluation metrics for top-k recommendation are 
adopted: Hit Radio (HR) [14] and Normalized Discounted 
Cumulative Gain NDCG [33]. HR@k is a recall-based 
metric, measuring whether the testing item is in the top-k 
position. NDCG@k assigns the higher scores to the items 
within the top-k positions of the ranking list.

4.1.3  Parameter settings

For training set, four negative instances are sampled for each 
positive instance. The model parameters are randomly ini-
tialized by using a Gaussian distribution with mean of 0 
and standard deviation of 0.01. Similar to [34], a mini-batch 
Adam method is employed to optimize model, and the learn-
ing rate and the batch size are set to 0.001 and 128 respec-
tively. In the feature extraction step, K is set to 128. The two 
generative networks both are two latent layers with ReLU 
activation, and the two prior networks are one latent layer. 
The last layer of generative network is sigmoid activation, 
and the parameter � is set to be 0.2 to achieve the best perfor-
mance of VAE, according to [26]. In NVCF step, � is set to 
0.5, allowing sGMF and sMLP to initialize sNVMF equally, 
and the dimension of latent vectors is defined as the number 
of neurons in the last NVCF layer. Specifically, the layer 
number of sMLP are set to 4 for the best performance [14].

4.2  Experimental results

4.2.1  Overall performance

In our experiments, each dataset is split into two parts: 
training datasets and testing datasets. For the training set, 
experiments are carried out with a setting of 80% random 
sample of each rating, and the rest (20%) are used for testing. 
Tables 2 and 3 list the top-k recommendation results of all 
methods on four datasets, in term of HR@5/NDCG@5 and 
HR@10/NDCG@10, respectively.

From Tables  3 and  4, we can find that most neural 
network-based methods (NeuMF, NFM, VAECF, sGMP, 
sMLP and sNVMF) outperform linear baselines, which 

Table 3  Performance 
comparison between all 
methods on HR@5 and 
NDCG@5

Dataset Metrics BPR mDCF NeuMF NFM CVAE VAECF sGMF sMLP sNVMF

ML100K HR@5 0.4789 0.4801 0.4944 0.5053 0.4720 0.5039 0.5082 0.5045 0.5138
IMP 9.38% 9.10% 5.95% 3.66% 10.97% 3.95% 3.07% 3.83% –
NDCG@5 0.3185 0.3238 0.3356 0.3392 0.3181 0.3407 0.3489 0.3388 0.3524
IMP 10.64% 8.83% 5.01% 3.89% 10.78% 3.43% 1.00% 4.01% –

ML1M HR@5 0.5305 0.5319 0.5489 0.5624 0.5390 0.5646 0.5709 0.5627 0.5736
IMP 8.12% 7.84% 4.50% 1.99% 6.42% 1.59% 0.47% 1.94% –
NDCG@5 0.3642 0.3688 0.3866 0.3887 0.3764 0.3924 0.4003 0.3905 0.4031
IMP 10.68% 9.30% 4.27% 3.70% 7.09% 2.73% 0.70% 3.23% –

Yelp HR@5 0.1757 0.1820 0.1879 0.1931 0.1818 0.1942 0.1966 0.1928 0.1985
IMP 12.98% 9.07% 5.64% 2.80% 9.19% 2.21% 0.97% 2.96% –
NDCG@5 0.1105 0.1143 0.1186 0.1222 0.1147 0.1228 0.1242 0.1220 0.1253
IMP 13.39% 9.62% 5.65% 2.54% 9.24% 2.04% 0.89% 2.70% –

EPext HR@5 0.6491 0.6598 0.6776 0.6809 0.6596 0.6813 0.6915 0.6806 0.7019
IMP 8.13% 6.38% 3.59% 3.08% 6.41% 3.02% 1.50% 3.13% –
NDCG@5 0.5446 0.5523 0.5679 0.5728 0.5622 0.5721 0.5817 0.5688 0.5898
IMP 8.30% 6.79% 3.86% 2.97% 4.91% 3.09% 1.39% 3.69% –
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demonstrates that deep neural network can help to achieve 
more subtle and better latent user and item representations. 
We also find that although sMLP is a little less robust than 
NFM in terms of HR@5 and NDCG@5 on ML100K, Yelp 
and EPext, it has better performance than other non-NVCF 
models in terms of HR@10 and NDCG@10 on all datasets. 
It is clear that sGMP, sMLP and sNVMF outperform other 
baselines in most cases, and sNVMF achieves the best per-
formance on all datasets with two metrics, which indicates 
the effectiveness of NVCF framework to perform CF task. It 
is also found most VAE-based non-linear models (VAECF, 
sGMP, sMLP and sNVMF) achieve promising performance, 
which means the Bayesian nature and non-linearity of neu-
ral network can facilitate inferring better latent preferences 
of users and items. Among VAE models, our three NVCF-
based methods outperform VAECF and CVAE in terms of 
all metrics on all datasets, which shows the advantages of 
our VAE-boosted NVCF framework.

4.2.2  Performance in cold‑start scenarios

To evaluate our models in different cold-start scenarios, we 
form evaluation sets in different cold ratios. The datasets are 
split into training set (80%), validation set (10%) and test set 
(10%). For 30% cold users, we random choose 30% samples 
in the test sets and give each sample a specific user id only 
for the sample. We evaluate our models in 30% user cold 
(Cold-U) and 30% item cold (Cold-V) scenarios on all data-
sets in term of NDCG@5 and NDCG@10. BPR, NeuMF 
and VAECF only use rating information and are not able to 
manage cold-start scenarios well, so they are not compared 
with our methods under NVCF framework.

Tables 5 and 6 show the performance of our methods and 
other hybrid methods in different cold-start scenarios. Because 
CVAE cannot handle cold user problem, we do not conduct 
experiments in cold user scenario. It is obvious that our meth-
ods significantly outperform other methods in the scenarios of 
both cold items and cold users, and achieve more remarkable 
improvements against other methods than the case of testing 
all users/items. These results indicate that using neural net-
work to model interactions between users and items works bet-
ter than those of simply using inner product, and demonstrate 
our methods have the ability to provide high quality recom-
mendations to cold start scenarios.

4.2.3  Sensitivity Analysis

In this section, we investigate the influence of the dimen-
sion of latent space on four datasets in term of HR@10 and 
NDCG@10, with sampling 80% data for training. Because 
sNVMF has better performance than sGMF and sMLP, we 
focus on the performance of sNVMF for a different dimen-
sion of the latent vector. The dimension of latent space K is 
set to be 8, 16, 32, 64 and 128, respectively. According to 
Fig. 3, it is crystal clear that larger dimension leads to better 
performance, and the optimal K of sNVMF for ML100K, 
ML1M, Yelp and EPext is 128. Thus, we set K = 128 as 
default for all datasets.

5  Conclusion

In this paper, we proposed a new hybrid deep framework, 
NVCF, for top-k recommendation, with three instantiation 
sGMF, sMLP and sNVMF, which incorporates a unified 

Table 4  Performance 
comparison between all 
methods on HR@10 and 
NDCG@10

Dataset Metrics BPR mDCF NeuMF NFM CVAE VAECF sGMF sMLP sNVMF

ML100K HR@10 0.6233 0.6227 0.6416 0.6554 0.6248 0.6542 0.6610 0.6559 0.6816
IMP 9.35% 9.46% 6.23% 4.00% 9.09% 4.19% 3.12% 3.92% –
NDCG@10 0.3502 0.3619 0.3851 0.3990 0.3596 0.4005 0.4093 0.4017 0.4144
IMP 18.33% 14.51% 7.61% 3.86% 15.24% 3.47% 1.25% 3.16% –

ML1M HR@10 0.6819 0.6962 0.7003 0.7095 0.6971 0.7178 0.7239 0.7204 0.7326
IMP 7.44% 5.23% 4.61% 3.26% 5.09% 2.06% 1.20% 1.69% –
NDCG@10 0.4117 0.4206 0.4368 0.4428 0.4234 0.4423 0.4495 0.4449 0.4590
IMP 11.49% 9.13% 5.08% 3.66% 8.41% 3.78% 2.11% 3.17% –

Yelp HR@10 0.2794 0.2907 0.2956 0.3012 0.2899 0.3028 0.3061 0.3033 0.3105
IMP 11.13% 6.81% 5.04% 3.09% 7.11% 2.54% 1.44% 2.37% –
NDCG@10 0.1445 0.1501 0.1536 0.1562 0.1509 0.1570 0.1588 0.1573 0.1612
IMP 11.56% 7.40% 4.95% 3.20% 6.83% 2.68% 1.51% 2.48% –

EPext HR@10 0.8169 0.8292 0.8466 0.8578 0.8280 0.8509 0.8712 0.8526 0.8891
IMP 8.99% 7.37% 5.16% 3.79% 7.52% 4.63% 2.19% 4.42% –
NDCG@10 0.6283 0.6367 0.6545 0.6619 0.6444 0.6587 0.6691 0.6618 0.6859
IMP 9.17% 7.73% 4.80% 3.63% 6.44% 4.13% 2.51% 3.64% –
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deep generative model for hybrid deep collaborative filter-
ing. The NVCF framework models both users’ and items’ 
generative processes, which enables it to generate recom-
mendation under different cold-start scenarios. Our methods 
incorporate users’ and items’ side information through two 
parallel VAE networks, in order to mitigate rating sparsity 
and facilitate modeling user/item features. For inference pur-
pose, we proposed a SGVB approach to approximate posteri-
ors of latent user and item variables. Due to Bayesian nature 
and non-linearity, NVCF can learn better latent user/item 
factors and deal with the cold-start problem via a full Bayes-
ian probabilistic view. Experimental results show that our 

methods achieve the best performance and can effectively 
handles user/item cold-start problem.

In the future, we plan to incorporate more structural aux-
iliary information to further improve the recommendation 
precision, such as employing knowledge graph to integrat-
ing item knowledge graph and social network with user-
item graph, for establishing knowledge-aware connectivi-
ties between user and item. In addition, NVCF framework 
is not limited to textual auxiliary information, and can be 
extended to multimedia auxiliary information, such as vid-
eos and images. Thus, building recommender systems with 
multimedia that contain more abundant visual semantics can 

Table 5  Performance 
comparison between selected 
methods in cold-start on 
NDCG@5

Dataset Scenario mDCF NFM CVAE sGMF sMLP sNVMF

ML100K Cold-U 0.1651 0.1820 – 0.2014 0.1843 0.2148
IMP 30.10% 18.02% – 6.65% 16.55% –
Cold-V 0.1439 0.1778 0.1382 0.1906 0.1797 0.1989
IMP 38.28% 11.91% 43.98% 4.40% 10.73% –

ML1M Cold-U 0.1918 0.2269 – 0.2412 0.2321 0.2534
IMP 32.12% 11.68% – 5.06% 9.18% –
Cold-V 0.1879 0.1951 0.1567 0.2133 0.1995 0.2206
IMP 17.40% 13.07% 40.78% 3.42% 10.58% –

Yelp Cold-U 0.0533 0.0546 – 0.0576 0.0563 0.0590
IMP 10.69% 8.06% – 2.43% 4.80% –
Cold-V 0.0609 0.0642 0.0529 0.0698 0.0642 0.0731
IMP 20.03% 13.86% 38.19% 4.73% 13.86% –

EPext Cold-U 0.2976 0.3393 – 0.3594 0.3431 0.3773
IMP 26.80% 11.20% – 4.98% 9.95% –
Cold-V 0.2571 0.2962 0.2406 0.3185 0.2972 0.3274
IMP 27.33% 10.52% 36.09% 2.81% 10.16% –

Table 6  Performance 
comparison between selected 
methods in cold-start on 
NDCG@10

Dataset Scenario mDCF NFM CVAE sGMF sMLP sNVMF

ML100K Cold-U 0.1828 0.2141 – 0.2362 0.2185 0.2
IMP 38.18% 17.98% – 6.94% 15.61% –
Cold-V 0.1593 0.2086 0.1562 0.2234 0.2127 0.2333
IMP 46.45% 11.84% 49.36% 4.43% 9.69% –

ML1M Cold-U 0.2187 0.2585 – 0.2708 0.2644 0.2881
IMP 31.73% 11.45% – 6.39% 8.96% –
Cold-V 0.2143 0.2219 0.1762 0.2391 0.2268 0.2509
IMP 17.08% 13.07% 42.40% 4.94% 10.63% –

Yelp Cold-U 0.0699 0.0721 – 0.0737 0.0725 0.0760
IMP 8.73% 5.41% – 3.12% 4.83% –
Cold-V 0.0793 0.0827 0.0696 0.0892 0.0833 0
IMP 18.28% 13.42% 34.77% 5.16% 12.61% –

EPext Cold-U 0.3351 0.3748 – 0.4201 0.3991 0.4387
IMP 30.93% 17.03% – 4.42% 9.92% –
Cold-V 0.2946 0.3230 0.2882 0.3523 0.3395 0.3799
IMP 28.96% 17.63% 31.81% 7.84% 11.91% –
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better understand users’ preferences and provide more effi-
cient recommendation.
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