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Abstract
In traditional formal concept analysis, the attributes in the formal context are considered fixed. However, in the real world 
data set, attributes always have different levels of granularity, correspondingly, the derived concept lattice may reveal dif-
ferent information and patterns. Therefore, the capability to change the level of granularity of an attribute in formal concept 
analysis to capture relevant patterns in data is a natural requirement. In this paper, a theoretical study has been undertaken in 
multi-scale formal contexts, where attributes with different levels of granularity possess different attribute values. Two types 
of formal concepts, i.e., object-oriented and property-oriented multi-scale concepts, are introduced and studied in detail. The 
collection of object-oriented concept lattices and property-oriented concept lattices can be obtained at different granularity 
levels of attributes. It has been shown that the set of extents in the derived concept lattices increases when we choose to use 
a finer level of granularity. Moreover, a corresponding bidirectional approach to concept construction(i.e., from coarser to 
finer and from finer to coarser, respectively) is exhibited, and some characterization theorems have been obtained.

Keywords Granularity · Formal concept analysis · Object-oriented multi-scale concept · Property-oriented multi-scale 
concept

1 Introduction

Granular computing (GrC for short) has become a fast grow-
ing field of computational intelligence and human-centric 
systems (see e.g., [1, 41, 43, 51]). Its purpose is to seek 
for an approximation scheme which can effectively solve a 
complex problem at a certain level of granulation. Among 
others, formal concept analysis [6] represents one concrete 
model which popularizes GrC. It is a method to derive con-
cept hierarchies from data tables and has proved to be use-
ful in data analysis and knowledge discovery with growing 
popularity across various domains [7, 11, 12, 22, 30, 40].

In the basic setting of formal concept analysis [6], it is 
assumed that the input data is in the form of a table contain-
ing 0s and 1s describing which attributes apply to which 
objects. Such an input data is called a formal context, from 

which one can construct (objects, properties) pairs known 
as the formal concepts. The collection of all formal con-
cepts forms a complete lattice and is useful for capturing 
relevant patterns and structure in the input data. However, in 
the traditional setting of formal concept analysis, the attrib-
utes are considered fixed, or in other words, the attributes 
are always used at a fixed level of granularity. Contrarily, 
for data sets in the real world, it is a common phenomenon 
that attributes are measured at different levels of granular-
ity. For instance, when describing when a car accident hap-
pened, “before noon” and “after noon” are attributes with 
high level of granularity while “early morning”,“late even-
ing” are attributes with low level of granularity. If one uses 
attributes with a higher level of granularity, then the derived 
concept lattice may not contain interesting formal concepts 
because the selected attributes are too coarse. If one uses 
attributes with lower level of granularity, then the derived 
formal concepts may reveal more detailed information of the 
input data because the chosen attributes are relatively fine. 
Therefore, the capability to change the level of granularity 
of an attribute in formal concept analysis to capture relevant 
patterns in the input data has become a necessity.
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Following the idea of granularity of attributes in formal 
concept analysis, Bělohlávek et al. [2] proposed a method to 
control the structure of the derived concepts lattice by speci-
fying granularity levels of attributes. More precisely, if the 
resulting formal concepts are too specific and there is a large 
number of them, the user can choose to use a coarser level 
of granularity. Similarly, if the resulting formal concepts 
are too coarse and there is a small number of them, the user 
can choose to use a finer level of granularity. And thus, the 
proposed method is capable of capturing relevant patterns 
in data. Recent years have witnessed a growing interests 
towards this topic [10, 13–16, 19, 20, 24, 31, 48, 49, 52–54]. 
In [13], a unified model for concept lattice building and rule 
extraction on a fuzzy granularity base for different granu-
lations was introduced. In [14], information granularity in 
formal concept analysis based on concept-base was stud-
ied in detail. In [16], the relationship between multigranu-
lation rough sets and concept lattices via rule acquisition 
was investigated. In [24], multi-level granularity in formal 
concept analysis was studied. In [52], an efficient algorithm 
was designed to increase the granularity levels of attributes 
in formal concept analysis. Similar topics have also been 
investigated in the research filed of data mining and rough 
set theory [9, 17, 18, 25–27, 29, 32–34, 40, 42, 50]. In [3], 
the authors proposed a global AOI (GAOI) method, which 
employs the multiple-level mining technique with multiple 
minimum supports to generate all interesting generalized 
knowledge at one time. The generalization abilities of clas-
sifiers were extensively investigated in [37, 38], where the 
proposed approaches provide some important guidelines as 
to the improvement of generalization aspects of classifiers. 
In [39], the authors further proposed a new DL approach 
to train multi-layer feed-forward neural networks, and the 
proposed approach has many advantages such as quick train-
ing, better generalization, and high understandability, etc. 
In [35], two interesting diversity criteria, i.e., clustering-
based diversity and fuzzy rough set based diversity, were 
proposed for MIAL by utilizing a support vector machine 
(SVM) based MIL classifier. In [32], the concept of multi-
scale information tables was introduced, and then infor-
mation granules at different levels of scales in multi-scale 
information tables were described. To date, different types 
of approaches to optimal scale selection have been presented 
[17, 18, 29, 32–34, 40]. However, it should be noted that 
both rough set theory and formal concept analysis have been 
studied separately regarding the issue of attribute granular-
ity. Since they provide two related methods for data analysis 
and model the notion of concepts from different perspec-
tives, an integrated study of rough set theory and formal 
concept analysis has become a necessity. Such an issue has 
been studied extensively in the context of single-scale formal 
contexts [4, 5, 8, 21, 23, 28, 36, 44–47], on the contrary, an 

integrated study in the context of multi-scale formal contexts 
has not been conducted yet.

Thus, the main objective of the present paper is to under-
take a theoretical study in the context of multi-scale formal 
contexts, where attributes with different level of granular-
ity possess different attribute values. The rest of the paper 
proceeds as follows: in order to make the paper as self-con-
tained as possible, we recapitulate in Sect. 2 the definition 
of formal context, concepts, and the existing approach to 
granularity of attributes. In Sect. 3, we consider object-
oriented concept lattices in multi-scale formal contexts and 
investigate the relationship between the structure of concept 
lattices derived at different granularity levels. In Sect. 4, we 
consider property-oriented concept lattices in multi-scale 
formal contexts and exhibit a corresponding bidirectional 
approach to concept construction(i.e., from coarser to finer 
and from finer to coarser, respectively). And in Sect. 5, we 
complete this paper with some concluding remarks.

2  Preliminaries

2.1  Context and concept

The basic notions of formal concept analysis are those of a 
formal context and a formal concept.

Definition 2.1 [6] A formal context K = (G,M, I) consists 
of two sets G and M and a relation I between G and M. The 
elements of G are called objects and the elements of M are 
called attributes of the context. In order to express that an 
object g is in a relation I with an attribute m, we write gIm 
or (g,m) ∈ I and read it as “the object g has the attribute m”.

Since in a formal context K = (G,M, I) , an object has 
an attribute or not, that is, the relation between objects and 
attributes is binary, and so we also call the formal context 
K = (G,M, I) a one-valued context.

Definition 2.2 [6] For a set A ⊆ G of objects we define

(the set of attributes common to the objects in A). Corre-
spondingly, for a set B of attributes we define

(the set of objects which have all attributes in B).

Definition 2.3 [6] A formal concept of the context (G, M, I) 
is a pair (A, B) with A ⊆ G,B ⊆ M,A↑ = B,B↓ = A. We call 
A the extent and B the intent of the concept (A, B).

(1)A↑ = {m ∈ M ∣ gIm for all g ∈ A}

(2)B↓ = {g ∈ G ∣ gIm for allm ∈ B}
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2.2  Granularity of attributes in formal concept 
analysis

As we have seen in Sect. 2.2, in traditional formal concept 
analysis, the attributes in the formal context are considered 
fixed. However, for data sets in the real world, attributes 
always have different levels of granularity, we call such types 
of formal contexts multi-scale formal contexts in the follow-
ing discussion.

To facilitate our discussion, some fundamental notions 
such as granularity tree and cut in [2] are recalled as follows.

Definition 2.4 [2] Let K = (G,M, I) be a formal context. A 
granularity tree Ty for attribute y is a rooted tree with the 
following properties:

∙ each node of the tree is labeled by a unique attribute 
name; the root is labeled by y;

∙ to each label z of a node, a set {z}↓ ⊆ G is associated; 
elements in {z}↓ are the objects to which attribute z applies;

∙ if the nodes labeled by z1,… , zn are the successors of 
the node labeled by z, then {{z1}↓,… , {zn}

↓} is a partition 
of {z}↓.

In what follows, we use z↓ instead of {z}↓ for simplicity.

Definition 2.5 [2] A cut in a granularity tree for y is a set C 
of nodes of the granularity tree for y such that for each leaf 
node u, there exists exactly one node v on the path from the 
root y to u such that the label of v belongs to C.

The refinement relation induces a partial order on the set 
of all cuts of a given granularity tree by putting for two cuts 
C1 = {y1,… , yr} and C2 = {z1,… , zs} , C1 ≤ C2 if and only if 
C
↓

1
= {y

↓

1
,… , y↓

r
} is a subpartition of C↓

2
= {z

↓

1
,… , z↓

s
}.

Let (G, M, I) be an input data table. Suppose that for each 
attribute m ∈ M we have a granularity tree Tm and for each 
m ∈ M , Cm be a cut in Tm , the collection of all cuts induces 
a data table (G,MC, IC) such that

MC =
⋃

m∈M Cm

and we put for each z ∈ MC

(g,m) ∈ IC if and only if g ∈ m↓.

Each collection C of cuts represents a particular selection of 
granularity levels of attributes. Given two granularity levels, 
represented by C1 and C2 , We use C1 ≤ C2 to mean that for 
each m ∈ M , C1m ≤ C2m . In other words, C1 is a refinement 
of C2.

Example 2.1 Table 1 depicts a multi-scale formal context, 
where the attribute G has two levels of granularity, {G} and 
{IG, dG} are all cuts in the granularity tree TG . Note that 
{G, dG} is not a cut of the granularity tree TG , since there 
are two nodes on the path from the root G to dG, similar 
conclusion also holds for {G, IG}.

The following theorem states that if we refine our attributes, 
then each formal concept in the concept lattice corresponding 
to the coarser attributes can be split into a partition of concepts 
in the concept lattice of the finer attributes.

Theorem 2.1 [2] If C1 ≤ C2 , then for each formal concept 
< A,B >∈ �(G,MC2

, IC2
) there exist unique formal concepts 

< Ak,Bk >∈ �(G,MC1
, IC1

), k ∈ K  such that 
⋃

k∈K Ak = A . 
Moreover, the Aks are mutually disjoint.

3  Multi‑scale concept analysis using 
modal‑style operators

Modal-style operators provide useful tools for data analysis. 
Different operators lead to different styles of rules summa-
rizing the knowledge embedded in a formal context. Object-
oriented and property-oriented formal concept analysis are 
two representative data analysis models. Although they have 
been investigated extensively in the literature, both studies are 
restricted to single-scale formal contexts [4, 5, 8, 21, 23, 28, 
45–47]. In this section, we focus on rough set approximations 
in multi-scale formal concept analysis. Precisely, by using 
rough set approximations, object-oriented multi-scale concept 
analysis is presented, and the relationship between concept 
lattices derived at different granularity levels is investigated.

Let (G, M, I) be a formal context, we define a pair of dual 
approximation operators, ⋄,□ ∶ 2G → 2M ∶

Table 1  Multi-scale formal 
contexts describing objects 
a,… , g and their attributes L 
(large), R (red), G (green), IG 
(light green), dG (dark green)

L R G L R IG dG

a × × a × ×

b × × b × ×

c × × c × ×

d × d ×

e × e ×

f × × f × ×

g × g ×
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They are related by Xc□c = X⋄ and Xc⋄c = X□ , where c 
denotes the complement of a set. According to (3) and (4), 
an object having a property in X□ is necessarily in X, and an 
object having a property in X⋄ is only possibly in X. Thus, 
the operators □ and ⋄ are also referred to as the necessity 
and the possibility operators [45, 46].

Conversely, we define a pair of dual approximation 
operators, □, ⋄ ∶ 2M → 2G ∶

Proposition 3.1 [45, 46] Let K = (G,M, I) be a formal con-
text and X ⊆ G,Y ⊆ M , then

 (i) for each m ∈ M , m↓ is an extent of some object-ori-
ented concept,

 (ii) if there exists Y ⊆ M such that X = ∪y∈Yy
↓ , then X ∈

EXT(�(G,M, I)),
 (iii) for any X ∈EXT(�(G,M, I)) , there exists Y ⊆ M such 

that X = ∪m∈Ym
↓,

 (iv) X ⊆ X□⋄,Y ⊆ Y⋄□.

The object-oriented concept lattice was introduced by 
Yao [45]. A pair (X, Y), X ⊆ G,Y ⊆ M , is called an object-
oriented formal concept if X = Y⋄ and Y = X□. If an object 
has a property in Y then the object belongs to X. Further-
more, only objects in X have properties in Y . The set of 
objects X is called the extension of the concept (X, Y), 
and the set of the properties Y is called the intension. The 
family of all object-oriented concepts forms a lattice with 
meet ∧ and join ∨ defined by:

Suppose that (G, M, I) is an input data table. For each 
attribute m ∈ M , we have a granularity tree Tm and for each 
m ∈ M , Cm be a cut in Tm , the collection of all cuts induces 
a data table (G,MC, Ic) such that

(3)
X□ = {m ∈ M ∣ ∀g ∈ G(gIm ⇒ g ∈ X)}

= {m ∈ M ∣ Im ⊆ X},

(4)
X⋄ = {m ∈ M ∣ ∃g ∈ G(gIm ∧ g ∈ X)}

= {m ∈ M ∣ Im ∩ X ≠ �}.

(5)
Y□ = {g ∈ U ∣ ∀m ∈ M(gIm ⇒ m ∈ Y)}

= {g ∈ G ∣ gI ⊆ Y},

(6)
Y⋄ = {g ∈ U ∣ ∃m ∈ M(gIm ∧ m ∈ Y)}

= {g ∈ G ∣ gI ∩ Y ≠ �}.

(X1, Y1) ∧ (X2, Y2) = ((Y1 ∩ Y2)
⋄, Y1 ∩ Y2)

= ((X1 ∩ X2)
□⋄, Y1 ∩ Y2),

(X1, Y1) ∨ (X2, Y2) = (X1 ∪ X2, (X1 ∪ X2)
□)

= (X1 ∪ X2, (Y1 ∪ Y2)
⋄□).

MC =
⋃

m∈M Cm

and we put for each y ∈ MC

(g, y) ∈ IC if and only if g ∈ y↓.

We use �o(G,MC, Ic) , EXT(�o(G,MC, Ic)) to denote 
the collection of object-oriented concepts induced from 
(G,MC, Ic) and the collection of extents in �o(X, YC, Ic) , 
respectively.

The following theorem establishes the close relationship 
between object-oriented concepts produced at different lev-
els of granularity.

Theorem 3.1 [54] If C1 ≤ C2 , then EXT(�o
(G,M

C
2

, I
C
2

)) ⊂

EXT(�
o
(G,M

C
1

, I
C
1

)).

To facilitate our discussion, we will use the follow-
ing notations. Let (G,MC1

, IC1
) and (G,MC2

, IC2
) be 

two formal contexts satisfying C1 ≤ C2 . For y ∈ MC1
 , 

we denote by FC2
(y) the father node of y in MC2

 , in 
other words, y is the refining attribute of FC2

(y) . For 
Y ⊆ MC1

,FC2
(Y) = {FC2

(y) ∣ y ∈ Y} . Similarly, for m ∈ MC2
 , 

we denote by SC1
(m) the set of son nodes (or successors) 

of m in MC1
 . For M ⊆ MC2

 , SC1
(M) = {SC1

(m) ∣ m ∈ M} . 
According to the definition of granularity tree and cut, we 
conclude that the FC2

(y) is a singleton while SC1
(m) is not 

necessarily a singleton.
The following proposition provides the changing law of 

rough approximation when the level of granularity becomes 
coarser.

Proposition 3.2 If C1 ≤ C2 , then for any X ⊆ G, S(X
□

C
2
) ⊆

X
□

C
1
,F(X

⋄
C
1
) ⊆ X

⋄
C
2
.

Proof Choose arbitrarily y1 ∈ S(X□C2 ), then there exists 
y2 ∈ X

□C2 such that y1 is the refining attribute of y2 . Accord-
ing to the definition of □C2

, y2 ∈ X
□C2 means that Iy2 ⊆ X , 

which, together with Iy1 ⊆ Iy2 implies that Iy1 ⊆ X , and 
therefore, y1 ∈ X

□C1 .

Similarly, we choose arbitrarily y2 ∈ F(X⋄C1 ), then there 
exists y1 ∈ X

⋄C1 such that y2 is the father node of y1 . We 
have from y1 ∈ X

⋄C1 and the definition of ⋄C1
 that there exists 

x ∈ X such that xIC1
y1 , which means that xIC2

y2 , and hence 
y2 ∈ X

⋄C2 , as desired.
Under the preliminary condition C1 ≤ C2 , it is important 

to note that for each Y ∈ INT(�o(G,MC2
, IC2

)) , by replacing 
each attribute y in Y with SC1

(y) , the obtained set Y ′ is not 
necessarily contained in INT(�o(G,MC1

, IC1
)) . Please see the 

following example.   ◻

Example 3.1  We observe  f rom Table   2  that 
({a, b, c, d, e}, {L,R,G}) is an object-oriented concept 
derived from the formal context in the left side. By replacing 
G with IG and dG, we obtain {L,R, IG, dG} , which, however, 
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is not an intent of any concept derived from the right side 
of Table 2.

The following theorem provides an approach to construct-
ing (�o(G,MC2

, IC2
)) from (�o(G,MC1

, IC1
)).

Theorem 3.2 If C1 ≤ C2 , then �o(G,M
C
2

, I
C
2

) = {(U,V) ∣ ∃

(X, Y) ∈ �
o(G,M

C
1

, I
C
1

),U =
⋃

{Z⋄
C
1 ∣ Z = {y ∈ Y ∣ S

C
1

(F
C
2

(y)) ⊆ Y}},V = F
C
2

(Y) ⧵ {F
C
2

(y) ∣ ∃y
�

∈ S
C
1

(F
C
2

(y)),

y
�⋄

C
1 ⊈ X}}.

Proof For the convenience of proof, we denote H = {(U,V) ∣

∃(X, Y) ∈ �
o(G,M

C
1

, I
C
1

),U =
⋃

{Z⋄
C
1 ∣ Z = {y ∈ Y ∣ S

C
1

(F
C
2

(y)) ⊆ Y}},V = F
C
2

(Y) ⧵ {F
C
2

(y) ∣ ∃y
�

∈ S
C
1

(F
C
2

(y)),

y
�⋄

C
1 ⊈ X}}.

I t  suf f ices  to  prove  �
o(G,MC2

, IC2
) ⊆ H  and 

H ⊆ �
o(G,MC2

, IC2
).

Take arbitrarily (U,V) ∈ H, we will show (U,V) ∈ �
o

(G,M
C
2

, I
C
2

) below. Indeed, we have from U =
⋃

{Z⋄
C
1 ∣ Z =

{y ∈ Y ∣ S
C
1

(F
C
2

(y)) ⊆ Y}} that U = ({F
C
2

(y) ∣ S
C
1

(F
C
2

(y))

⊆ Y})
⋄
C
2
. Moreover, according to the definition, V can also 

be equivalently written as V = {FC2
(y) ∣ SC1

(FC2
(y)) ⊆ Y}, 

and therefore, U = V
⋄C2 . Similarly, we can show that 

V = U
□C2 . Hence, (U,V) ∈ �

o(G,MC2
, IC2

).

Conversely, choose arbitrarily (U,V) ∈ �
o(G,MC2

, IC2
), we 

 then have from Theorem 3.1 that (U,U
□C1 ) ∈ �

o(G,MC1
, IC1

).  
Define X = U, Y = SC1

(V) ∪ {y ∈ MC1
∣ y⋄C1 ⊆ U}. A trivial  

proof shows that U =
⋃

{Z⋄
C
1 ∣ Z = {y ∈ Y ∣ S

C
1

(F
C
2

(y))

⊆ Y}} and V = F
C
2

(Y) ⧵ {F
C
2

(y) ∣ ∃y
�

∈ S
C
1

(F
C
2

(y)), y
�⋄

C
1

⊈ X}, and hence, (U,V) ∈ H , as desired.   ◻

Remark In most cases, EXT(�o(G,MC2
, IC2

)) is just a proper 
subset of EXT(�o(G,MC1

, IC1
)). Please refer to the following 

example.

Observe from Table 3 that the collection of extents of 
object-oriented concepts of the left table from Table 1 is 
contained in that of object-oriented concepts of the right 

table from Table 1. However, the converse conclusion is 
not true. For example, {c, e, f , g} is an extent of an object-
oriented concept from the right side of Table 1, but is not 
an extent of any object-oriented concept from the left side 
of Table 1.

It is important to note that in some particular cases of 
C1 ≤ C2 , EXT(�(G,MC1

, IC1
)) = EXT(� (G,MC2

, IC2
)) , as 

shown in Tables 4 and 5.
For more general cases, one can obtain the following 

characterization theorem. We denote by M0

C2

 the collection 
of attributes in MC2

 whose refinement set of attributes in MC1
 

remains unchanged. We use M1

C2

 to denote the collection of 
attributes in MC2

 whose refinement set of attributes in MC1
 

has been changed. For instance, in Table  4, 
M0

C2

= {L,R,H},M1

C2

= {G}.

Theorem 3.3 [54] If C1 ≤ C2 , then EXT(�o
(G,M

C
1

, I
C
1

)) =

EXT(�
o
(G,M

C
2

, I
C
2

)) if and only if M0

C2

≠ ∅ and for each 
y ∈ M1

C2

 and ,  there exists  Z ⊆ MC2
 such that 

y
↓

i
= ∪z∈Zz

↓(i = 1,… , p), where {y1,… , yp} is the refinement 
set of y in MC1

.

Table 2  Multi-scale formal 
contexts describing objects 
a,… , g and their attributes L 
(large), R (red), H (high),G 
(green), IG (light green), dG 
(dark green), vH (very high), 
mH (moderately high)

L R G H L R IG dG vH mH

a × × a × ×

b × × b × ×

c × × c × ×

d × × × d × × ×

e × × × e × × ×

f × f ×

g × g ×

Table 3  Left: object-oriented concepts of the left table from Table 1. 
Right: object-oriented concepts of the right table from Table 1

Extent Intent Extent Intent

1 {a, b, c, d, e, f , g} {L,R,G} {a, b, c, d, e, f , g} {L,R, IG, dG}

2 {a, b, c, d, e} {G} {a, b, c, d, e} {IG, dG}

3 {a, b, c, f } {L} {a, b, c, f } {L}

4 {f , g} {R} {f , g} {R}

5 {a, b, c, d, e, f } {L,G} {a, b, c, d, e, f } {L, IG, dG}

6 {a, b, c, f , g} {L,R} {a, b, c, f , g} {L,R}

7 {a, b, d} {IG}

8 {c, e} {dG}

9 {a, b, c, d, f } {L, IG}

10 {a, b, c, e, f } {L, dG}

11 {a, b, d, f , g} {R, IG}

12 {c, e, f , g} {R, dG}



3268 International Journal of Machine Learning and Cybernetics (2019) 10:3263–3271

1 3

4  Property‑oriented multi‑scale concept 
analysis

The property-oriented concept lattice was introduced by 
Düntsch and Gediga [4]. A pair (X, Y),X ⊆ G,Y ⊆ M, is 
called a property-oriented formal concept if X = Y□ and 
Y = X⋄ . If a property is possessed by an object in X then the 
property must be in Y. Furthermore, only properties Y are 
possessed by objects in X.

The family of all property-oriented formal concepts forms 
a lattice with meet ∧ and join ∨ defined by:

In this section, we consider property-oriented concepts 
in a multi-scale formal context. Suppose that (G, M, I) is 
an input data table. For each attribute m ∈ M , we have a 
granularity tree Tm and for each m ∈ M , Cm be a cut in Tm , 
the collection of all cuts induces a data table (G,MC, Ic) such 
that (Table 6)

MC =
⋃

m∈M Cm

and we put for each y ∈ MC

(x, y) ∈ IC if and only if x ∈ y↓.

(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, (X1 ∩ X2)
⋄)

= (X1 ∩ X2, (Y1 ∩ Y2)
□⋄),

(X1, Y1) ∨ (X2, Y2) = ((Y1 ∪ Y2)
□, Y1 ∪ Y2)

= ((X1 ∪ X2)
⋄□,Y1 ∪ Y2).

We use �p(G,MC, Ic) and EXT(�p(X, YC, Ic)) to denote 
the collection of property-oriented concepts induced from 
(G,MC, Ic) and the collection of extents in �p(X, YC, Ic) , 
respectively. Moreover, to underline the formal context 
where the necessity and possibility operators are conducted, 
we sometimes use □C, ⋄C instead.

The following theorem establishes the close relationship 
between property-oriented concepts produced at different 
levels of granularity.

Theorem  4.1 If C1 ≤ C2 , then EXT(�p
(G,M

C
2

, I
C
2

)) ⊆

EXT(�
p
(G,M

C
1

, I
C
1

)).

Proof Take arbitrarily X ∈ EXT(�p(G,MC2
, IC2

)) , i.e., there 
exists Y ⊆ MC2

 such that (X, Y) ∈ �
p(G,MC2

, IC2
) . Take 

Y
�

= X
⋄C1 , then it can be checked that Y �

⊆ SC1
(Y) . Indeed, 

for any z ∈ Y
� , we have from Y �

= X
⋄C1 that there exists 

x ∈ X such that xIC1
z . Since z is a refinement attribute of 

an attribute(say as y) in C2 , we obtain xIC2
y , which together 

with X⋄C2 = Y  implies y ∈ Y  , as desired. We will then be 
able to prove (X, Y �

) ∈ �
p(G,MC1

, IC1
)) , which is equivalent 

Table 4  Multi-scale formal 
contexts describing objects 
a,… , g and their attributes L 
(large), R (red), H (high),G 
(green), IG (light green), dG 
(dark green)

L R G H L R IG dG H

a × × a × ×

b × × b × ×

c × × c × ×

d × × d × ×

e × × e × ×

f × f ×

g × g ×

Table 5  Left: object-oriented concepts of the left table from Table 4. 
Right: object-oriented concepts of the right table from Table 4

Extent Intent Extent Intent

1 {a, b, c, d, e, f , g}{L,R,G,H} {a, b, c, d, e, f , g}{L,R, IG, dG,H}

2 {a, b, c, d, e} {L,R,G} {a, b, c, d, e} {L,R, IG, dG}

3 {a, b, c} {L} {a, b, c} {L, IG}

4 {d, e} {R} {d, e} {R, dG}

5 {d, e, f , g} {R,H} {d, e, f , g} {R, dG,H}

6 {f , g} {H} {f , g} {H}

7 {a, b, c, f , g} {L,H} {a, b, c, f , g} {L, IG,H}

Table 6  Left: property-oriented concepts of the left table from 
Table  1. Right: property-oriented concepts of the right table from 
Table 1

Extent Intent Extent Intent

1 {a, b, c, d, e, f , g} {L,R,G} {a, b, c, d, e, f , g} {L,R, IG, dG}

2 {a, b, c, d, e} {L,G} {a, b, c, d, e} {L, IG, dG}

3 {g} {R} {g} {R}

4 {f } {L,R} {f } {L,R}

5 {d, e} {G} {d, e} {IG, dG}

6 {d, e, g} {R,G} {d, e, g} {R, IG, dG}

7 {a, b, d} {L, IG}

8 {c, e} {L, dG}

9 {d, g} {R, IG}

10 {e, g} {R, dG}

11 {a, b, d, f , g} {L,R, IG}

12 {c, e, f , g} {L,R, dG}
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to show that Y
�□C1 = X. Take arbitrarily x ∈ Y

�□C1 , to prove 
x ∈ X , it is equivalent to show that x ∈ Y

□C2 owing to the 
fact Y□C2 = X , that is, for any y ∈ MC2

 satisfying xIC2
y, we 

have y ∈ Y . Indeed, xIC2
y means that there exists yi ∈ SC1

(y) 
such that xIC1

yi , which together with x ∈ Y
�□C1 implies that 

yi ∈ Y
�

. Since Y �

= X
⋄C1 , there exists x�

∈ X such that x′

IC1
yi , 

and thus, x′

IC2
y , then by applying X⋄C2 = Y  , we can obtain 

y ∈ Y . That is, we have proved Y
′□C1 ⊆ X.   ◻

The converse inclusion, i.e., X ⊆ Y
′□C1 , follows immedi-

ately from Y �

= X
⋄C1 and X ⊆ X

⋄C1
□C1 .

Theorem 4.1 yields the following corollary.

Corollary 4.1 If C1 ≤ C2 , then (X, Y) ∈ �
p(G,MC2

, IC2
) 

implies that (X,X⋄C1 ) ∈ �
p(G,MC1

, IC1
).

Theorem  4.1 provides us with an approach to con-
st r uc t ing  �

p(G,MC1
, IC1

) ,  EXT(�p(X, YC1
, IC1

)) and 
INT(�p(X, YC1

, IC1
)) from the counterparts derived from 

(G,MC2
, IC2

) . Concretely, if X is an extent in (G,MC2
, IC2

) , 
then it is also an extent in (G,MC1

, IC1
); if Y is an intent 

in (G,MC2
, IC2

) , then Y□C2
⋄C1 an intent in (G,MC1

, IC1
); if 

(X, Y) is a property-oriented concept in (G,MC2
, IC2

) , then 
(X, Y□C2

⋄C1 ) is a property-oriented concept in (G,MC1
, IC1

).

The following theorem can be treated as the converse 
direction of Theorem 4.1, that is, it provides an approach to 
constructing �p(G,MC2

, IC2
) from �p(G,MC1

, IC1
).

Theorem 4.2 Let (G,MC1
, IC1

) and (G,MC2
, IC2

) be two for-
mal contexts satisfying C1 ≤ C2 , then

To prove Theorem 4.2, we need the following lemma.

Lemma 4.1 Let (G,MC1
, IC1

) and (G,MC2
, IC2

) be two 

formal contexts with C1 ≤ C2 and X ⊆ G, then we have 
(
⋃

SC1
(X⋄C2 ))□C1 = X

⋄C2
□C2 .

Proof I t  suff ices to show that for any x ∈ G, 
x ∈ (

⋃
SC1

(X⋄C2 ))□C1 if and only if x ∈ X
⋄C2

□C2 .

“⇒ ” Choose arbitrarily x ∈ (
⋃

SC1
X
⋄C2 )□C1 and m ∈ MC2

 
satisfying xIC2

m . We have from xIC2
m that there exists 

y ∈ SC1
(m) such that xIC1

y holds, which, together with 
x ∈ (

⋃
SC1

(X⋄C2 ))□C1 , jointly implies y ∈
⋃

SC1
(X⋄C2 ), and 

�
p(G,MC2

, IC2
) =

⎧
⎪⎨⎪⎩

��
y∈Y

SC1
(FC2

(y))

�□C1

, Z) ∣ ∃(X, Y)

∈ �
p(G,MC1

, IC1
), Z =

�
FC2

(y) ∣ y ∈ Y
��

.

therefore, there exists m�

∈ X
⋄C2 such that y ∈ SC1

(m
�

). Since 
FC2

(y) is a singleton, we have m = m
� and m ∈ X

⋄C2 . The 
above proof shows that for any m ∈ MC2

 satisfying xIC2
m , we 

have m ∈ X
⋄C2 , then according to (5), we obtain x ∈ X

⋄C2
□C2.

“⇐ ” Choose arbitrarily x ∈ X
⋄C2

□C2 and y ∈ MC1
 sat-

isfying xIC1
y . We have from xIC1

y that xIC2
FC2

(y) , which, 
together with x ∈ X

⋄C2
□C2 , implies that FC2

(y) ∈ X
⋄C2 , and 

hence, there exists x�

∈ X such that x�

IC2
FC2

(y), which in turn 
shows that FC2

(y) ∈ X
⋄C2 , and therefore, y ∈

⋃
SC1

(X⋄C2 ). 
The above proof shows that for any y ∈ MC1

 satisfying xIC1
y , 

we have y ∈
⋃

SC1
(X⋄C2 ). And hence, x ∈ (

⋃
SC1

X
⋄C2 )□C1 .  

 ◻

Now, we are ready to give the proof of Theorem 4.2.

Proof The detailed proof consists of two parts, i.e.,
(i) {(

⋃
y∈Y SC

1

(F
C
2

(y)))□C
1
, Z) ∣ ∃(X, Y) ∈ �

p(G,M
C
1

, I
C
1

),

Z = {F
C
2

(y) ∣ y ∈ Y}} ⊆ �
p(G,M

C
2

, I
C
2

),

and
(ii) �p(G,M

C
2

, I
C
2

) ⊆ {(
⋃

y∈Y SC
1

(F
C
2

(y)))□C
1
, Z) ∣ ∃(X,

Y) ∈ �
p(G,M

C
1

, I
C
1

), Z = {F
C
2

(y) ∣ y ∈ Y}}.

We will firstly show two preliminary results as follows: 
for (X, Y) ∈ �

p(G,MC1
, IC1

), Z = {FC2
(y) ∣ y ∈ Y},

To prove (7), choose arbitrarily y�

∈
⋃

y∈Y SC1
(FC2

(y)) , 
then there exists y ∈ Y  such that y�

∈ SC1
(FC2

(y)) . We 
have from X⋄C1 = Y  and y ∈ Y  that there exists x ∈ X such 
that xIC1

y , and hence xIC2
FC2

(y) and FC2
(y) ∈ X

⋄C2 . Con-
sequently, y ∈

⋃
SC1

(X⋄C2 ). Conversely, choose arbitrar-
ily y ∈

⋃
SC1

(X⋄C2 ), then there exists m ∈ X
⋄C2 such that 

y ∈ SC1
(m). m ∈ X

⋄C2 means that there exists x ∈ X such 
that xIC2

m , which in turn implies that there exists y�

∈ MC1
 

such that xIC1
y
′ . Since X⋄C1 = Y  , we further have y�

∈ Y . 
Then y�

∈ Y  , y ∈ SC1
(m) and y�

∈ SC1
(m) jointly imply 

y ∈
⋃

y∈Y SC1
(FC2

(y)) , as desired.
To prove (8), choose arbitrarily z ∈ Z , according to the 

definition of Z, there exists y ∈ Y  such that z = FC2
(y) . 

Moreover, we have from X⋄C1 = Y  that there exists x ∈ X 
such that xIC1

y , which, together with z = FC2
(y) , implies that 

xIC2
z , and hence, z ∈ X

⋄C2 . The converse direction can be 
shown in a similar manner.

For (i), we need to show that ((
⋃

y∈Y SC
1

(F
C
2

(y)))□C
1
, Z) ∈

�
p
(G,M

C
2

, I
C
2

) , or equivalently, (
⋃

y∈Y SC
1

(F
C
2

(y)))□C
1

⋄
C
2 =

Z, Z
□

C
2 = (

⋃
y∈Y SC

1

(F
C
2

(y)))□C
1
. Indeed, we have from 

Lemma  4.1, (7) and (8) that (
⋃

y∈Y SC
1

(F
C
2

(y)))□C
1

⋄
C
2 =

(7)
⋃
y∈Y

SC1
(FC2

(y)) =
⋃

SC1
(X⋄C2 ).

(8)X
⋄C2 = Z.
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X
⋄
C
2

□
C
2

⋄
C
2
= X

⋄
C
2
= Z, and Z

□
C
2 = X

⋄
C
2

□
C
2 = (

⋃
y∈Y SC

1

(F
C
2

(y)))
□

C
1
.

For (ii), let (X, Z) be arbitrarily chosen in �p(G,MC2
, IC2

), 
i.e., X⋄C2 = Z and Z□C2 = X. We have from Corollary 4.1 
that  (X,X⋄C1 ) ∈ �

p(G,MC1
, IC1

). Def ine W = F(X⋄C1 ), 
then we have that W = X

⋄C2 = Z(an easy proof shows 
that F(X⋄C1 ) = X

⋄C2 , the details are omitted here), 
moreover, we have from Lemma  4.1 and (7) that 

(
⋃

y∈X
⋄C1 SC1

(FC2
(y)))□C1 = (

⋃
SC1

(X⋄C2 ))□C1 = X
⋄C2□C2 = X,

 

as desired.   ◻

5  Concluding remarks

In this paper, we present an integrated study of rough set 
theory and formal concept analysis in multi-scale formal 
contexts. We mainly consider multi-scale formal concept 
analysis by using modal-style operators. The collection of 
object-oriented concept lattices and property-oriented con-
cept lattices can be obtained at different granularity levels 
of attributes. It has been shown that the set of extents in 
the derived concept lattices increases when we choose to 
use a finer level of scale. Moreover, a bidirectional con-
struction approach to concepts (i.e., from coarser to finer 
and from finer to coarser, respectively) is exhibited.

The present study is conducted at a theoretical level. 
The topics for future research include:

1. In case C1 ≤ C2 , how to develop corresponding 
incremental algorithms that enable us to compute 
(�(G,MC2

, IC2
)) from (�(G,MC1

, IC1
)) , or compute 

(�(G,MC1
, IC1

)) from (�(G,MC2
, IC2

)).
2. (2) The present study is confined to Boolean data, how 

to extend the present study to other types of formal con-
texts. For this topic, we will start with a many-valued 
context and use different scaling methods to achieve this 
goal, particularly the one related to that introduced in 
[47].
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Appendix: A detailed nomenclature

K = (G,M, I) : A formal context
↑∶ Intent derivation operator

↓∶ Extent derivation operator
Ty : Granularity tree for attribute y
Cy : A cut in the granularity tree for y
(G,MC, IC) ∶ The data table induced by cuts in the formal 
context (G, M, I)
□ ∶ Necessity operator
⋄ ∶ Sufficiency operator
�
o(G,MC, Ic) : The collection of object-oriented concepts 

induced from (G,MC, Ic)

EXT(�o(X, YC, Ic)) :  The collect ion of  extents  in 
�
o(X, YC, Ic)

�
p(G,MC, Ic) : The collection of property-oriented concepts 

induced from (G,MC, Ic)

EXT(�p(X, YC, Ic)) :  The collect ion of  extents  in 
�
p(X, YC, Ic)

FC2
(y) : The father node of y in MC2

FC2
(Y) = {FC2

(y) ∣ y ∈ Y}

SC1
(m) : The set of son nodes (or successors) of m in MC1

SC1
(M) = {SC1

(m) ∣ m ∈ M}
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