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Abstract
Probabilistic rough set model and graded rough set model are used to measure relative quantitative information and

absolute quantitative information between equivalence classes and basic concepts, respectively. Since fuzzy concepts are

more common in real life than classical concepts, how to use relative and absolute quantitative information to determine

fuzzy concepts is a extremely important research topic. In this study, we propose a double-quantitative decision theory

rough fuzzy set frame based on the fusion of decision theory rough set and graded rough set, and the framework mainly

studies the fuzzy concepts in multigranulation approximation spaces. Three pairs of double-quantitative multigranulation

decision theory rough fuzzy set models are established. Some basic characteristics of these models are discussed. The

decision rules including relative and absolute quantitative information are studied. The intrinsic relationship between the

double-quantitative decision theory rough fuzzy set and the multigranulation rough set is analyzed. Finally, an illustrative

case of medical diagnosis is conducted to explain and evaluate the dual quantitative decision theory approach.

Keywords Double-quantification � Decision-theoretic rough set � Fuzzy set � Multigranulation rough set

1 Introduction

Rough set theory was proposed by Pawlak [1, 2] in 1982. It

is an extension of classical set theory and can be considered

as a mathematical and soft computing tool for dealing with

inaccuracies, ambiguities and uncertainties in data analysis.

In recent decades, it has attracted the attention of many

researchers around the world [3–7] and has been applied to

many fields, such as, machine learning, artificial intelli-

gence, pattern recognition and decision making [8–11].

After decades of development and improvement, rough sets

have produced many important fields, including attribute

reduction [12], generalization of rough sets [13], mathe-

matical structure [14] and uncertainty measurement of

rough sets [7, 15–19]. Given there are no fault tolerance

mechanisms between equivalence classes and basic con-

cept set, several proposals of generalized quantitative

rough set models are developed to resolve this limitation by

using a graded set inclusion. The probabilistic rough set

(PRS) introduces the probability uncertainty measure into

rough set [20–22]. The probabilistic rough set extends the

classical Pawlak rough set model. The major change is the

consideration regarding the probability of an element being

in a set to determine inclusion in approximation regions.

Two probabilistic thresholds are used to determine the

division between the boundary-positive region and

boundary-negative region. Over the last two decades,

probabilistic rough set theories, such as, 0.5-probabilistic

rough set [22], decision-theoretic rough set [23], rough

membership function [24], parameterized rough set [25],

Bayesian rough set [26], game-theoretic rough set [27] and

naive Bayesian rough set [26, 28] have been proposed to

solve probabilistic decision-making problems by allowing
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a certain acceptable level of error. The graded rough set

(GRS) model primarily consider the absolute quantitative

information regarding the basic concepts and knowledge

granules and is a generalization of the Pawlak rough set

model.

DTRS and GRS as two useful expanded rough set

models, they can reflect relative and absolute quantitative

information about the degree of overlapping between

equivalence classes and a basic set, respectively. The rel-

ative and absolute quantitative information are two dis-

tinctive objective sides that describe approximate space,

and each has its own virtues and application environments,

so none can be neglected. In recent decades, a lot of

research interests are attracted by the double-quantitative

fusion of relative quantitative information and absolute

quantitative information [29–32].

The method of granular computing (GrC) was proposed

by Zadeh [33], which is based on a single granulation

structure and is another powerful tool in artificial intelli-

gence and data processing. Since we can catch an element

from different aspects [34] or different levels [35, 36], and

we always meet different useful information sources for the

same element, so we need to give an overall consideration

for these information sources. Thus, the theory of granular

computing should be generalized to suit multiple infor-

mation sources. In order to meet actual needs, Qian et al.

[37] first proposed multigranulation rough sets (MGRS). It

has a more widely application scope, for example, decision

making, feature selection, and so on [38–44]. Since for

different requirements, a concept can be described by dif-

ferent multiple binary relations, many extensions of

MGRSs have been proposed. For example, Qian et al. [45]

discussed multigranulation decision-theoretic rough sets.

The topological structures of multigranulation rough sets

were discussed by She et al. [46]. Wu extended classical

MGRS to a novel version based on a fuzzy binary rela-

tion [47]. Furthermore, multigranulation rough sets based

on fuzzy binary relations [48] and multigranulation fuzzy

rough sets based on classical tolerant relations [49] were

defined. Liu et al. [50, 51] proposed fuzzy covering

multigranulation rough sets. Liang et al. [52] proposed an

efficient algorithm for feature selection in large-scale and

multiple granulation data sets. These studies provide an

abundant theoretical basis for studying the approach of

double-quantitative decision-theoretic in multigranulation

approximate space.

Decision making is an important issue in our daily life.

However, the objects of many decision-making problems,

such as measuring student achievement in comprehensive

testing or the credit evaluation of a credit card applicant,

could have more than two states in practice. Moreover, the

states of the decision object are not necessarily disjoint and

opposite each other. For a given student or credit card

applicant, the evaluation results may not be described by

two completely opposite states with Yes or No. That would

be the case if a student is either a good student or a bad

student, or if a credit card applicant is either a good credit

risk or a bad credit risk. As a matter of fact, the evaluation

results could be a semantic state with preferences, such as

excellent or good or medium, high or medium or low and

large or medium or small. This means that the evaluation

results of a student or a credit card applicant could be

excellent or good or medium. Obviously, these decision

states are not completely opposite and disjoint, but they are

fuzzy descriptions of the state of the object in the universe.

So, for these decision-making problems, the states of the

object approximated on the universe are a fuzzy set instead

of a crisp set.

In the viewpoint of information quantification, the

DTRS and GRS can respectively reflect relative and

absolute quantitative information about the degree of

overlap between equivalence classes and concept set. The

relative and absolute quantitative information are two

distinctive objective sides that describe approximate space,

and each has its own virtues and application environments.

Here, we illustrate a examples to highlight the significance

of combining the relative quantification and absolute

quantification in fuzzy approximation space, and the

necessity of these two types of quantitative model is

exhibited. Suppose a company is ready to purchase a large

quantity of products in the near future. x1 and x2 are the

suppliers of this product(i.e. the universe U ¼ fx1; x2g),
and the price difference between them is tiny. Therefore,

the chief executive officer is preparing to check the credit

ratings of the two companies over a period of 20 years to

determine who will win the bid. The set of states is given

by X ¼ feA; eB; eCg, where eA ¼ Excellentð0:7\eA� 1Þ,
eB ¼ Goodð0:5� eB� 0:7Þ and eC ¼ Mediumð0� eC\0:5Þ
are three fuzzy sets on universe U. We use the same

symbol to denote a fuzzy set and the corresponding state.

In real life, we only pay attention to whether the credit

rating is up to the standard(=0.5). The survey results show

that company x1 has not reached the credit rating stan-

dardð\0:5Þ for 8 years in 20 years. company x2 has failed

to meet the credit rating criteriað\0:5Þ for 5 years in 20

years. It is clearly that the number of years x1 has not

reached the standard is greater than x2ð8[ 5Þ. But we still
believe that x1 is a better candidate due to rate of com-

pliance is 48%[ 37:5%, As this example suggests, the

higher priority should be the relative quantitative infor-

mation not the absolute quantitative information.

Based on these considerations, in this paper we focus on

the rough approximation of a fuzzy concept on proba-

bilistic approximation space. The motivation of this

investigation is to develop a new double-quantitative
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multigranulation rough fuzzy decision approach by com-

bining the graded rough set and decision-theoretic rough

set based on fuzzy concept in multigranulation frame.

There are three pairs of double-quantitative multigranula-

tion decision-theoretic rough fuzzy set models be estab-

lished which consist of two optimistic double-quantitative

multigranulation decision-theoretic rough sets, two pes-

simistic double-quantitative multigranulation decision-

theoretic rough sets and two mean double-quantitative

multigranulation decision-theoretic rough sets.

The rest of this paper is structured as follows. Section 2

provides relevant basic concepts of rough set theory, fuzzy

set, graded rough set, multigranulation rough set and

decision-theoretic rough set. In Sect. 3, we establish sev-

eral novel double-quantitative multigranulation decision-

theoretic rough set models, the properties of these models

are addressed and the decision rules are investigated. In

Sect. 4, studies the relationships among three pairs of the

proposed models. An illustrated case is conducted to

evaluate the proposed double-quantitative multigranulation

decision-theoretic approach and some decision rules are

exhibited in Sect. 5. Finally, Sect. 6 gets the conclusions.

2 Preliminaries

In this section, we review some basic concepts such as

rough set theory, fuzzy set, graded rough set, multigranu-

lation rough set and decision-theoretic rough set.

2.1 Pawlak’s rough set

In the Pawlak’s rough set theory [1], an information system

is a quadruple IS ¼ ðU;AT ;V; f Þ, where U is a nonempty

finite set of objects, AT is a nonempty, and finite set of

attributes, V ¼
S

a2AT Va, where Va is called the domain of

the attribute a i.e. V is the union of attribute domains, and

f : U � AT ! V is an information function such that

f ðx; aÞ 2 Va for each a 2 AT and x 2 U.

For 8B � AT , there is an associated indiscernibility

relation or equivalence relation RB:

RB ¼ fðx; yÞ 2 U � Ujf ðx; aÞ ¼ f ðy; aÞ; 8a 2 Bg

Obviously, RB determines a partition of

U,i.e.U=RB ¼ f½x�Bjx 2 Ug, where ½x�B ¼ fy 2 Ujðx; yÞ 2
RBg is the equivalence class determined by x 2 U with

respect to equivalence relation RB.

In particular, a decision system (DS) is a quadruple

DS ¼ ðU;AT [ DT ;V; f Þ, where AT is the condition attri-

bute set, DT is the decision attribute set, and AT \ DT ¼ /.

Given an equivalence relation R on the universe U, and

for any X � U, the lower approximation and upper

approximation of X are defined by

RðXÞ ¼ fx 2 Uj½x�R \ X 6¼ ;g ¼ [f½x�Rj½x�R \ X 6¼ ;g;

RðXÞ ¼ fx 2 Uj½x�R � Xg ¼ [f½x�Rj½x�R � Xg:

2.2 Fuzzy set

Zadeh [53] introduced the fuzzy set in which a fuzzy

subset eX of U is defined as a function assigning is defined

as a function assigning to each element x of U. The value

eXðxÞ 2 ½0; 1� and eXðxÞ is referred to as the membership

degree of x to the fuzzy set eX . Let FðUÞ denotes all fuzzy
subsets of U. For any fuzzy concept fX1 ;fX2 2 FðUÞ, we
say that fX1 is contained in fX2 , denoted by fX1 � fX2 , if

fX1ðxÞ�fX2ðxÞ for all x 2 U, we say thatfX1 ¼ fX2 if and

only if fX1 � fX2 andfX1 � fX2 , given that fX1 ;fX2 2 FðUÞ
and 8x 2 U. The basic computing rules of fuzzy set are

described as follows.

ðfX1 [ fX2ÞðxÞ ¼ maxffX1ðxÞ;fX2ðxÞg ¼ fX1ðxÞ _ fX2ðxÞ
ðfX1 \ fX2ÞðxÞ ¼ minffX1ðxÞ;fX2ðxÞg ¼ fX1ðxÞ ^ fX2ðxÞ

fX1

cðxÞ ¼ 1� fX1ðxÞ

Here ‘‘_’’ and ‘‘^ ’’are the maximum operation and min-

imum operation, respectively. The fX1

c
is the complemen-

tary set of fX1 . And, Sarkar [54] proposed a rough-fuzzy

membership function for any two fuzzy sets( fX1 and fX2 )

of the universe of discourse as: l
eX1

¼
eX1[eX2

�

�

�

�

eX2

�

�

�

�

; x 2 U. Here

fX1

�

�

�

�

�

� ¼
P

fX1ðxÞ; x 2 U.

2.3 Graded rough set

Yao and Lin [55] explored the relationships between rough

set theory and modal logics and proposed the GRS model

based on graded modal logics. Suppose k 2 N is a non-

negative integer, the lower and upper approximations are

defined by following

AkX ¼fx 2 Uj j½x�A \ Xj[ kg
¼ [ f½x�Aj j½x�A \ Xj[ kg

AkX ¼fx 2 Uj j½x�Aj � j½x�A \ Xj � kg
¼ [ f½x�Aj j½x�Aj � j½x�A \ Xj � kg

These two approximations are called grade k lower and

upper approximations of X with respect to A. If

AkX ¼ AkX, then X is called a definable set by grade k ;

otherwise, X is called a rough set by grade k. It must be
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pointed out that the lower approximation included in the

upper approximation does not hold usually. So, the

boundary region could be defined as union of lower and

upper boundary regions. Accordingly, we can get the fol-

lowing regions.

poskðXÞ ¼AkX \ AkX;

negkðXÞ ¼ðAkX [ AkXÞc;
UbnkðXÞ ¼AkX � AkX;

LbnkðXÞ ¼AkX � AkX;

bnkðXÞ ¼UbnkðXÞ [ LbnkðXÞ:

Moreover, if the set X is generalized to a fuzzy set

eX 2 FðUÞ, the GRS model will be generalized to graded

rough fuzzy set (GRFS) model. The following definition

can be got.

AkðeXÞ ¼ x 2 Uj
X

y2½x�A

eXðyÞ[ k

8

<

:

9

=

;

AkðeXÞ ¼ x 2 Uj
X

y2½x�A

ð1� eXðyÞÞ� k

8

<

:

9

=

;

2.4 Multigranulation rough set

The multigranulation rough set(MGRS) is different from

Pawlak rough set. The former is constructed on the basis of

a family of indiscernibility relations instead of single

indiscernibility relation. Let I be an information system in

which A1;A2; . . .;Am � AT , for any X 2 U, the optimistic

multigranulation lower and upper approximations are

denoted by:

X

m

i¼1

Ai

O

ðXÞ ¼fx 2 Uj½x�A1
� X

_ ½x�A2
� X _ � � � _ ½x�Am

� Xg;

X

m

i¼1

Ai

O

ðXÞ ¼	
X

m

i¼1

Ai

O

ð	XÞ
 !

:

Where the ½x�Ai
means the equivalence class of x in terms of

attributes set Ai and 	X is the complement of X. Obvi-

ously, we have the optimistic multigranulation upper

approximation
Pm

i¼1 Ai

OðXÞ ¼ fx 2 Uj½x�A1
\ X 6¼ £^

½x�A2
\ X 6¼ £ ^ � � � ^ ½x�Am

\ X 6¼ £g.
On the other strategy, the definition of pessimistic

multigranulation lower and upper approximations can be

given as follows:

X

m

i¼1

Ai

P

ðXÞ ¼fx 2 Uj½x�A1
� X

^ ½x�A2
� X ^ � � � ^ ½x�Am

� Xg;
X

m

i¼1

Ai

P

ðXÞ ¼	
X

m

i¼1

Ai

P

ð	XÞ
 !

:

Analogously, the pessimistic multigranulation upper

approximation can be described as
Pm

i¼1 Ai

P
ðXÞ ¼ fx 2 U

j½x�A1
\ X 6¼ £ _ ½x�A2

\ X 6¼ £ _ � � � _ ½x�Am
\ X 6¼ £g.

2.5 Decision-theoretic rough set

Pawlak and Skowron [24] redefined the two approxima-

tions by using a rough membership function and the rough

membership function lA is defined by:

lAðxÞ ¼ PðXj½x�AÞ ¼
½x�A \ X
�

�

�

�

½x�A
�

�

�

�

Bayesian decision procedure mainly deals with making

decisions have minimum risk or cost under probabilistic

uncertainty. In the Bayesian decision procedure, a finite set

of states can be written as X ¼ fx1;x2; :::;xsg, and a finite
set of r possible actions can be denoted by

A ¼ fa1; a2; :::; arg. Let PðxjjxÞ be the conditional proba-

bility of an object x being in state xj given that the object is

described by x. Let kðaijxjÞ denote the loss or the cost for

taking action ai when the state is xj . The expected loss

function associated with taking action ai is given by

RðaijxÞ ¼
X

s

j¼1

kðaijxjÞPðxjjxÞ

With respect to the membership of an object in X , we have

a set of two states and a set of three actions for each state.

The set of states is given by X ¼ fX;XCg indicating that an
element is in X and not in X, respectively. The set of

actions with respect to a state is given by A ¼ faP; aB; aNg,
where P, B and N represent the three actions in deciding

x 2 posðXÞ; x 2 bnðXÞ, and x 2 negðXÞ, respectively. The
loss function regarding the risk or the cost of actions in

different states is given in the following:

kPP; kBP and kNP denote the losses incurred for taking

actions aP; aB and aN , respectively, when an object belongs

to X . And kPN ; kBN and kNN denote the losses incurred for

taking the same actions when the object does not belong to

X . The expected loss Rðaij½x�AÞ associated with taking the

individual actions can be expressed as [56].
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RðaPj½x�AÞ ¼kPPPðXj½x�AÞ þ kPNPðXCj½x�AÞ;
RðaN j½x�AÞ ¼kNPPðXj½x�AÞ þ kNNPðXCj½x�AÞ;
RðaBj½x�AÞ ¼kBPPðXj½x�AÞ þ kBNPðXCj½x�AÞ:

When kPP � kNP\kBP and kBN � kNN\kPN , the Bayesian

decision procedure leads to the following minimum-risk

decision rules:

(P) If PðXj½x�AÞ
 c and PðXj½x�AÞ
 a, decide pos(X);

(N) If PðXj½x�AÞ� b and PðXj½x�AÞ� c, decideneg(X);
(B) If b�PðXj½x�AÞ� a, decide bn(X).

Where the parameters a, b and c are defined as:

a ¼ kPN � kBN
ðkPN � kBNÞ þ ðkBP � kPPÞ

b ¼ kBN � kNN
ðkBN � kNNÞ þ ðkNP � kBPÞ

c ¼ kPN � kNN
ðkPN � kNNÞ þ ðkNP � kPPÞ

If a loss function further satisfies the condition that

ðkPN � kBNÞðkNP � kBPÞ
 ðkBN � kNNÞðkBP � kPPÞ, then

we can get a
 c
 b. Moreover, we can get that a[ c[ b
if a[ b, thus, the DTRS has the decision rules:

(P) If PðXj½x�AÞ
 a, decide pos(X);

(N) If PðXj½x�AÞ� b, decide neg(X);

(B) If b\PðXj½x�AÞ\a, decide bn(X).

Using these decision rules, we get the probabilistic

approximations, namely, the lower and upper approxima-

tions of DTRS model as follows:

Aða;bÞðXÞ ¼fx 2 UjPðXj½x�AÞ[ bg
Aða;bÞðXÞ ¼fx 2 UjPðXj½x�AÞ
 ag

If Aða;bÞðXÞ ¼ Aða;bÞðXÞ, then X is a definable set, otherwise

X is a rough set. Here, posða;bÞðXÞ ¼ Aða;bÞðXÞ,
negða;bÞðXÞ ¼ ðAða;bÞðXÞÞc, bnða;bÞðXÞ ¼ Aða;bÞðXÞ � Aða;bÞ
ðXÞ are the positive region, negative region and boundary

region, respectively.

Sun et al. [57] introduced the PRS model and its

extensions. Let U be a non-empty finite universe and A be

an equivalence relation of U and P be the probabilistic

measure. For any eX 2 FðUÞ, PðeX j½x�AÞ is called the con-

ditional probability of fuzzy event eXgiven the description

½x�A. ThePðeX j½x�AÞ is defined as follows:

PðeX j½x�AÞ ¼
P

y2½x�A
eXðyÞ

½x�A
�

�

�

�

The PðeX j½x�AÞ can also be explained as the probability that

a randomly selected object x 2 U belongs to the fuzzy

concept eX given the description ½x�A. Based on the above

conditional probability of fuzzy event eX , the upper and

lower approximations of fuzzy set eX with respect to a and

b are defined as follows:

Aða;bÞðeXÞ ¼fx 2 UjPðeX j½x�AÞ[ bg
Aða;bÞðeXÞ ¼fx 2 UjPðeX j½x�AÞ
 ag

3 Double-quantitative multigranulation
decision-theoretic rough fuzzy set model

DTRS model based on Bayesian decision principle was

initially proposed by Yao [56], which implies the relative

quantitative information. The decision-theoretic approxi-

mations are made with 0� b\a� 1. The parameters a and

b were obtained from the losses of the Bayesian decision

procedure, which are related to the relative quantitative

information. The GRS is related to the absolute quantita-

tive information. Therefore, the combination of DTR and

GRS will further contribute to the relative and absolute

quantification of the approximate space, so as to have

relative and absolute fault tolerance. We know that there is

a solid necessity to approximate a fuzzy concept in prob-

abilistic approximation space or to discuss the theory of

probabilistic rough set in a fuzzy environment for man-

agement decision-making in practice. Therefore, this paper

attempts to establish double-quantitative multigranulation

decision-theoretic rough fuzzy set(DqMDTRFS) model by

using the idea of multigranulation in fuzzy space.

3.1 Decision-theoretic rough fuzzy set of Type-1
optimistic double-quantitative
multigranulation (Type-1 O-DqMDTRFS)

Based on previous introduction, we will combine the

DTRS and GRS models in a multigranulation framework to

define an optimistic double-quantitative multigranulation

decision theory rough fuzzy set model. The model that we

discuss is a fuzzy concept that comprehensively describes

relative and absolute quantitative information.

Definition 3.1 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the first type

of optimistic double-quantitative multigranulation deci-

sion-theoretic rough fuzzy set are recorded as

ðIOÞ
Pm

i¼1 Ai
O

k
ðeXÞ and ðIOÞ

Pm
i¼1 Ai

O

ða;bÞðeXÞ, respectively.

They are defined as follows:
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ðIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ ¼ x 2 Uj
X

y2½x�A1

ð1� eXðyÞÞ� k

8

<

:

_
X

y2½x�A2

ð1� eXðyÞÞ� k

_ � � � _
X

y2½x�Am

ð1� eXðyÞÞ� k

9

=

;

ðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞ ¼fx 2 UjPðXj½x�A1

Þ[ b

^ PðXj½x�A2
Þ[ b

^ � � � ^ PðXj½x�Am
Þ[ bg

Based on this pair of approximation operators, the

positive region, negative region, upper boundary region

and lower boundary can be achieved as follows:

ðIOÞPosðeXÞ ¼ðIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ \ ðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

ðIOÞNegðeXÞ ¼ððIOÞð
X

m

i¼1

Ai

O

k

ðeXÞ [ ðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞÞc

ðIOÞUbnðeXÞ ¼ðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � ðIOÞ

X

m

i¼1

Ai

O

k

ðeXÞ

ðIOÞLbnðeXÞ ¼ðIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ � ðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

ðIOÞBnðeXÞ ¼ðIOÞUbnðeXÞ [ ðIOÞLbnðeXÞ

¼ðIOÞ
X

m

i¼1

Ai

O

k

ðeXÞMðIOÞ
X

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

Here the ‘‘M’’ is the symmetric difference of the upper and

lower approximation sets.

Based on Definition 3.1, we can obtain some proposi-

tions of Type-1 O-DqMDTRFS, which are represented as

follows:

Proposition 3.1 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ � Aik
ðeXÞ;

2. ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � Aiða;bÞðeXÞ;

3. ðIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ ¼ [
m

i¼1
Aik

ðeXÞ;

4. ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ ¼ \

m

i¼1
Aiða;bÞðeXÞ;

5. ðIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ � ðIOÞ
P

m

i¼1

Ai

O

k

ðeY Þ, when

eX � eY 2 FðUÞ;

6. ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � ðIOÞ

P

m

i¼1

Ai

ða;
bÞOðeY Þ, when

eX � eY 2 FðUÞ;

7. ðIOÞ
P

m

i¼1

Ai

O

k1

ðeXÞ � ðIOÞ
P

m

i¼1

Ai

O

k2

ðeXÞ,

when k1 � k2 2 N;

8. ðIOÞ
P

m

i¼1

Ai

O

ða;b1Þ
ðeXÞ � ðIOÞ

P

m

i¼1

Ai

O

ða;b2Þ
ðeXÞ, when

b1 � b2 2 ½0; 1�;

9. ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeX [ eY Þ � ðIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

[ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;

10. ðIOÞ
P

m

i¼1

Ai

O

k

ðeX [ eY Þ � ðIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ[

ðIOÞ
P

m

i¼1

Ai

O

k

ðeY Þ, 8eX ; eY 2 FðUÞ;

11. ðIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeX \ eY Þ � ðIOÞ

P

m

i¼1

Ai
O
ða;bÞðeXÞ \ ðIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;

12. ðIOÞ
P

m

i¼1

Ai

O

k

ðeX \ eY Þ � ðIOÞ
P

m

i¼1

Ai
O
k ðeXÞ \ ðIOÞ

P

m

i¼1

Ai

O

k

ðeY Þ, 8eX ; eY 2 FðUÞ.

Proof It can be easily verified by the Definition 3.1 and

fuzzy set theory. h

The Type-1 O-DqMDTRFS is a generalization of opti-

mistic multigranulation rough set model. According to

Definition 3.1, we can get that

1. If eX is a crisp set of the universe, then

ðIOÞ
Pm

i¼1 Ai
O

k
ðeXÞ ¼

Pm
i¼1 Ai

OðXÞ if and only if k ¼ 0;

2. If eX is a crisp set of the universe, then

ðIOÞ
Pm

i¼1 Ai

O

ða;bÞðeXÞ ¼
Pm

i¼1 Ai

OðXÞ if and only if

b ¼ 0.
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Based on the descriptions of the regions and Proposi-

tion 3.1, the decision rules of Type-1 O-DqMDTRFS can

be obtained as follows:

(ðIOÞP) If 9Ai such that
P

y2½x�Ai
ð1� eXðyÞÞ� k and

PðeX j½x�Aj
Þ[ b for any Aj, decide ðIOÞPosðeXÞ.

(ðIOÞN) If
P

y2½x�Ai
ð1� eXðyÞÞ[ k for any Ai and 9Aj

such that PðeX j½x�Aj
Þ� b, decide ðIOÞNegðeXÞ.

(ðIOÞUB) If
P

y2½x�Ai
ð1� eXðyÞÞ[ k for any Ai and

PðeX j½x�Aj
Þ[ b for any Aj, decide ðIOÞUbnðeXÞ.

(ðIOÞLB) If 9Ai such that
P

y2½x�Ai
ð1� eXðyÞÞ� k and 9Aj

such that PðeX j½x�Aj
Þ� b, decide ðIOÞLbnðeXÞ.

With these rules, one can make decisions based on the

following positive, upper boundary, lower boundary and

negative rules. For Type-1 O-DqMDTRFS model, we have

the following decisions:

Desð½x�AÞ ! DesðIOÞPðeXÞ; for x 2 ðIOÞPosðeXÞ
Desð½x�AÞ ! DesðIOÞNðeXÞ; for x 2 ðIOÞNegðeXÞ
Desð½x�AÞ ! DesðIOÞUbðeXÞ; for x 2 ðIOÞUbnðeXÞ
Desð½x�AÞ ! DesðIOÞLbðeXÞ; for x 2 ðIOÞLbnðeXÞ

Corresponding to the first kind of optimistic double-quan-

titative multigranulation decision-theoretic rough fuzzy set

model, we can define the anther model by following way.

3.2 Decision-theoretic rough fuzzy set of Type-2
optimistic double-quantitative
multigranulation(Type-2 O-DqMDTRFS)

Based on the Type-1 O-DqMDTRFS model, we can

achieve the following definition for second type of double-

quantitative optimistic multigranulation decision-theoretic

rough fuzzy set.

Definition 3.2 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the second

type of optimistic double-quantitative multigranulation

decision-theoretic rough fuzzy set are respectively recor-

ded as ðIIOÞ
Pm

i¼1 Ai
O

ða;bÞ
ðeXÞ and ðIIOÞ

Pm
i¼1 Ai

O

k ðeXÞ. They
are defined as follows:

ðIIOÞ
X

m

i¼1

Ai

O

ða;bÞ

ðeXÞ ¼fx 2 UjPðXj½x�A1
Þ
 a

_ PðXj½x�A2
Þ
 a

_ � � � _ PðXj½x�Am
Þ
 ag

ðIIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ ¼ x 2 Uj
X

y2½x�A1

eXðyÞ[ k

8

<

:

^
X

y2½x�A2

eXðyÞ[ k

^ � � � ^
X

y2½x�Am

eXðyÞ[ k

9

=

;

For the same reason, according to the definitions of

lower and upper approximations, we can define the positive

region, negative region, upper boundary region and lower

boundary by following way:

Table 1 Initial medical data
U a1 a2 a3 ed U a1 a2 a3 ed U a1 a2 a3 ed

x1 0 0 0 0.1 x13 0 0 1 0 x25 0 2 0 0.5

x2 1 1 1 0.4 x14 2 1 2 0.8 x26 2 2 2 1

x3 0 2 1 0.6 x15 0 1 2 0.3 x27 1 1 0 0.2

x4 2 1 2 0.8 x16 1 1 0 0.5 x28 2 0 1 0.4

x5 1 0 1 0.3 x17 0 2 1 0.5 x29 2 1 2 0.5

x6 2 2 2 1 x18 2 1 2 0.8 x30 0 0 2 0

x7 0 0 0 0.1 x19 0 0 0 0 x31 1 2 1 0.7

x8 1 2 1 0.7 x20 1 2 2 0.8 x32 0 1 0 0.1

x9 2 2 2 0.9 x21 2 0 1 0.8 x33 2 1 1 0.7

x10 1 1 1 0.5 x22 0 0 0 0 x34 1 1 1 0.6

x11 1 2 1 1 x23 2 1 0 0.6 x35 0 0 0 0.1

x12 2 0 0 0.5 x24 1 2 2 0.7 x36 2 0 1 0.5
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ðIIOÞPosðeXÞ ¼ðIIOÞ
X

m

i¼1

Ai

O

ða;bÞ

ðeXÞ

\ ðIIOÞ
X

m

i¼1

Ai

O

k

ðeXÞÞ

ðIIOÞNegðeXÞ ¼ ðIIOÞ
X

m

i¼1

Ai

O

ða;bÞ

ðeXÞ [ ðIIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ

0

@

1

A

c

ðIIOÞUbnðeXÞ ¼ðIIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ

� ðIIOÞ
X

m

i¼1

Ai

O

ða;bÞ

ðeXÞ

ðIIOÞLbnðeXÞ ¼ðIIOÞ
X

m

i¼1

Ai

O

ða;bÞ

ðeXÞ

� ðIIOÞ
X

m

i¼1

Ai

O

k

ðeXÞ

Analogously, we can achieve the following propositions

for Type-2 O-DqMDTRFS.

Proposition 3.2 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � Aiða;bÞðeXÞ;

2. ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ � AikðeXÞ;

3. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ ¼ [

m

i¼1
Aiða;bÞðeXÞ;

4. ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ ¼ \
m

i¼1
AikðeXÞ;

5. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � ðIIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeY Þ, when

eX � eY 2 FðUÞ;

6. ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ � ðIIOÞ
P

m

i¼1

Ai

O

kÞ
ðeY Þ, when

eX � eY 2 FðUÞ;

7. ðIIOÞ
P

m

i¼1

Ai

O

k1

ðeXÞ � ðIIOÞ
P

m

i¼1

Ai

O

k2

ðeXÞ,

when k1 � k2 2 N;

8. ðIIOÞ
P

m

i¼1

Ai

O

ða1;bÞ
ðeXÞ � ðIIOÞ

P

m

i¼1

Ai

O

ða2;bÞ
ðeXÞ, when

a1 � a2 2 ½0; 1�;

9. ðIIOÞ
P

m

i¼1

Ai

O

k

ðeX [ eY Þ � ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ [ ðIIOÞ

P

m

i¼1

Ai

O

k

ðeY Þ, 8eX ; eY 2 FðUÞ;

10. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeX [ eY Þ � ðIIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

[ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;

11. ðIIOÞ
P

m

i¼1

Ai

O

k

ðeX \ eY Þ � ðIIOÞ

P

m

i¼1

Ai

O

k

ðeXÞ \ ðIIOÞ
P

m

i¼1

Ai

O

k

ðeY Þ, 8eX ; eY 2 FðUÞ;

12. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeX\ eY Þ � ðIIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ

\ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ.

Proof It can be easily verified by the definition. h

The Type-2 O-DqMDTRFS is also a generalization of

optimistic multigranulation rough set model. According to

the Definition 3.2, we can get that

1. If eX is a crisp set of the universe, then

ðIIOÞ
Pm

i¼1 Ai
O

ða;bÞ
ðeXÞ ¼

Pm
i¼1 Ai

OðXÞ if and only if

a ¼ 1;

2. If eX is a crisp set of the universe, then

ðIIOÞ
Pm

i¼1 Ai

O

k ðeXÞ ¼
Pm

i¼1 Ai

O
ðXÞ if and only if k ¼ 0.

Based on the previous discussions, we can obtain the

decision rules for Type-2 O-DqMDTRFS, and the decision

rules of Type-2 O-DqMDTRFS are listed as follows:

(ðIIOÞP) If 9Ai such that PðXj½x�Ai
Þ
 a and

P

y2½x�Aj
eXðyÞ[ k for any Aj, decide ðIIOÞPosðeXÞ.

(ðIIOÞN) If PðXj½x�Ai
Þ\a for any Ai and 9Aj such that

P

y2½x�Aj
eXðyÞ� k , decide ðIIOÞNegðeXÞ.

(ðIIOÞUB) If PðXj½x�Ai
Þ\a for any Ai and

P

y2½x�Aj
eXðyÞ[ k for any Aj, decide ðIIOÞUbnðeXÞ.

(ðIIOÞLB) If 9Ai such that PðXj½x�Ai
Þ
 a and 9Aj such

that
P

y2½x�Aj
eXðyÞ� k, decide ðIIOÞLbnðeXÞ.

With these decision rules, one can make decisions based on

the following positive, upper boundary, lower boundary
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and negative rules. For Type-2 O-DqMDTRFS model, we

have the following decisions:

Desð½x�AÞ ! DesðIIOÞPðeXÞ; for x 2 ðIIOÞPosðeXÞ
Desð½x�AÞ ! DesðIIOÞNðeXÞ; for x 2 ðIIOÞNegðeXÞ
Desð½x�AÞ ! DesðIIOÞUbðeXÞ; for x 2 ðIIOÞUbnðeXÞ
Desð½x�AÞ ! DesðIIOÞLbðeXÞ; for x 2 ðIIOÞLbnðeXÞ

3.3 Decision-theoretic rough fuzzy set of Type-1
pessimistic double-quantitative
multigranulation (Type-1 P-DqMDTRFS)

Similar to the double-quantitative optimistic multigranu-

lation decision-theoretic rough fuzzy set, we will establish

pessimistic double-quantitative multigranulation decision-

theoretic rough set fuzzy models and discuss the decision

rules of these models.

Definition 3.3 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the first kind

of optimistic double-quantitative multigranulation deci-

sion-theoretic rough fuzzy set are respectively recorded as

ðIPÞ
Pm

i¼1 Ai
P

k
ðeXÞ and ðIPÞ

Pm
i¼1 Ai

P

ða;bÞðeXÞ. They are defined
as follows:

ðIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ ¼ x 2 Uj
X

y2½x�A1

ð1� eXðyÞÞ� k

8

<

:

^
X

y2½x�A2

ð1� eXðyÞÞ� k

^ � � � ^
X

y2½x�Am

ð1� eXðyÞÞ� k

9

=

;

ðIPÞ
X

m

i¼1

Ai

P

ða;bÞ
ðeXÞ ¼ fx 2 UjPðXj½x�A1

Þ[ b

_ PðXj½x�A2
Þ[ b

_ � � � _ PðXj½x�Am
Þ[ bg

Identically, the positive region, negative region, upper

boundary region and lower boundary can be achieved as

follows:
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P
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According to Definition 3.3 and the description of these

rough regions, we can achieve some propositions of Type-1

P-DqMDTRFS.

Proposition 3.3 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � Aik
ðeXÞ;

2. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � Aiða;bÞðeXÞ;

3. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ ¼ \
m

i¼1
Aik

ðeXÞ;

4. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ ¼ [

m

i¼1
Aiða;bÞðeXÞ;

5. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � ðIPÞ
P

m

i¼1

Ai

P

k

ðeY Þ, when

eX � eY 2 FðUÞ;

6. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, when

eX � eY 2 FðUÞ;

7. ðIPÞ
P

m

i¼1

Ai

P

k1

ðeXÞ � ðIPÞ
P

m

i¼1

Ai

P

k2

ðeXÞ,

when k1 � k2 2 N;

8. ðIPÞ
P

m

i¼1

Ai

P

ða;b1Þ
ðeXÞ � ðIPÞ

P

m

i¼1

Ai

P

ða;b2Þ
ðeXÞ, when

b1 � b2 2 ½0; 1�;

9. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeX [ eY Þ ¼ ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ [ ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;
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10. ðIPÞ
P

m

i¼1

Ai

P

k

ðeX [ eY Þ � ðIPÞ

P

m

i¼1

Ai

P

k

ðeXÞ [ ðIPÞ
P

m

i¼1

Ai

P

k

ðeY Þ, 8eX ; eY 2 FðUÞ;

11. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeX \ eY Þ � ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ \ ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;

12. ðIPÞ
P

m

i¼1

Ai

P

k

ðeX \ eY Þ ¼ ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ \ ðIPÞ
P

m

i¼1

Ai

P

k

ðeY Þ, 8eX ; eY 2 FðUÞ.

Proof These propositions can be proved directly based on

Definition 3.3. h

The Type-1 P-DqMDTRFS is a generalization of pes-

simistic multigranulation rough set model. According to

Definition 3.3, we can get that

1. If eX is a crisp set of the universe, then

ðIPÞ
Pm

i¼1 Ai
P

k
ðeXÞ ¼

Pm
i¼1 Ai

PðXÞ if and only if k ¼ 0;

2. If eX is a crisp set of the universe, then

ðIPÞ
Pm

i¼1 Ai

P

ða;bÞðeXÞ ¼
Pm

i¼1 Ai

PðXÞ if and only if

b ¼ 0.

Based on the representation of rough regions and Propo-

sition 3.3, we can achieve the decision rules of Type-1

P-DqMDTRFS as follows:

(ðIPÞP) If
P

y2½x�Ai
ð1� eXðyÞÞ� k for any Ai and 9Aj such

that PðeX j½x�Aj
Þ[ b , decide ðIPÞPosðeXÞ.

(ðIPÞN) If 9Ai such that
P

y2½x�Ai
ð1� eXðyÞÞ[ k and

PðeX j½x�Aj
Þ� b for any Aj, decide ðIPÞNegðeXÞ.

(ðIPÞUB) If 9Ai such that
P

y2½x�Ai
ð1� eXðyÞÞ[ k and

9Aj such that PðeX j½x�Aj
Þ[ b, decide ðIPÞUbnðeXÞ.

(ðIPÞLB) If 9Ai such that
P

y2½x�Ai
ð1� eXðyÞÞ� k and

PðeX j½x�Aj
Þ� b for any Aj, decide ðIPÞLbnðeXÞ.

Similarly, for Type-1 P-DqMDTRFS model, we have the

following decisions:

Desð½x�AÞ ! DesðIPÞPðeXÞ; for x 2 ðIPÞPosðeXÞ
Desð½x�AÞ ! DesðIPÞNðeXÞ; for x 2 ðIPÞNegðeXÞ
Desð½x�AÞ ! DesðIPÞUbðeXÞ; for x 2 ðIPÞUbnðeXÞ
Desð½x�AÞ ! DesðIPÞLbðeXÞ; for x 2 ðIPÞLbnðeXÞ

3.4 Decision-theoretic rough fuzzy set of Type-2
pessimistic double-quantitative
multigranulation(Type-2 P-DqMDTRFS)

Similar to the Type-1 P-DqMDTRFS, we can establish the

second type of pessimistic double-quantitative decision-

theoretic rough fuzzy set model. It can be denoted by

following way.

Definition 3.4 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the first kind

of optimistic double-quantitative multigranulation deci-

sion-theoretic rough fuzzy set are respectively recorded as

ðIIPÞ
Pm

i¼1 Ai
P

ða;bÞ
ðeXÞ and ðIIPÞ

Pm
i¼1 Ai

P

k ðeXÞ. They are

defined as follows:

ðIIPÞ
X

m

i¼1

Ai

P

ða;bÞ

ðeXÞ ¼fx 2 UjPðeX j½x�A1
Þ
 a

^ PðeX j½x�A2
Þ
 a

^ � � � ^ PðeX j½x�Am
Þ
 ag

ðIIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ ¼ x 2 Uj
X

y2½x�A1

eXðyÞ[ k

8

<

:

_
X

y2½x�A2

eXðyÞ[ k

_ � � � _
X

y2½x�Am

eXðyÞ[ k

9

=

;

Analogously, the positive region, negative region, upper

boundary region and lower boundary of Type-2 P-

DqMDTRFS can be obtained as follows:

ðIIPÞPosðeXÞ ¼ðIIPÞ
X

m

i¼1

Ai

P

ða;bÞ

ðeXÞ \ ðIIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ

ðIIPÞNegðeXÞ ¼ ðIIPÞ
X

m

i¼1

Ai

P

ða;bÞ

ðeXÞ [ ðIIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ

0

@

1

A

c

ðIIPÞUbnðeXÞ ¼ðIIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ � ðIIPÞ
X

m

i¼1

Ai

P

ða;bÞ

ðeXÞ

ðIIPÞLbnðeXÞ ¼ðIIPÞ
X

m

i¼1

Ai

P

ða;bÞ

ðeXÞ � ðIIPÞ
X

m

i¼1

Ai

P

k

ðeXÞ

From the definition of Type-2 P-DqMDTRFS, we can get

the following propositions.
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Proposition 3.4 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � Aiða;bÞðeXÞ;

2. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � AikðeXÞ;

3. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ ¼ [

m

i¼1
Aiða;bÞðeXÞ;

4. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ ¼ \
m

i¼1
AikðeXÞ;

5. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, when eX � eY

2 FðUÞ;

6. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � ðIIPÞ
P

m

i¼1

Ai

P

k

ðeY Þ, when

eX � eY 2 FðUÞ;

7. ðIIPÞ
P

m

i¼1

Ai

P

k1

ðeXÞ � ðIIPÞ
P

m

i¼1

Ai

P

k2

ðeXÞ,

when k1 � k2 2 N;

8. ðIIPÞ
P

m

i¼1

Ai

P

ða1;bÞ
ðeXÞ � ðIIPÞ

P

m

i¼1

Ai

P

ða2;bÞ
ðeXÞ, when

a1 � a2 2 ½0; 1�;

9. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeX [ eY Þ ¼ ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ [ ðIIPÞ

P

m

i¼1

Ai

P

k

ðeY Þ, 8eX ; eY 2 FðUÞ;

10. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeX [ eY Þ � ðIIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ[

ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ;

11. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeX \ eY Þ � ðIIPÞ
P

m

i¼1

Ai
P
k ðeXÞ \ ðIIPÞ

P

m

i¼1

Ai

kPðeY Þ, 8eX ; eY 2 FðUÞ;

12.
ðIIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeX \ eY Þ ¼ ðIIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ\

ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeY Þ, 8eX ; eY 2 FðUÞ.

Proof These propositions can be proved directly based on

the Definition 3.4. h

The Type-2 P-DqMDTRFS is also a generalization of

pessimistic multigranulation rough set model. According to

Definition 3.4, we can get that

1. If eX is a crisp set of the universe, then

ðIIPÞ
Pm

i¼1 Ai
P

ða;bÞ
ðeXÞ ¼

Pm
i¼1 Ai

PðXÞ if and only if

a ¼ 1;

2. If eX is a crisp set of the universe, then

ðIIPÞ
Pm

i¼1 Ai

P

k ðeXÞ ¼
Pm

i¼1 Ai

PðXÞ if and only if k ¼ 0.

Based on the description of rough regions and Proposi-

tion 3.4, the decision rules of the Type-2 P-DqMDTRFS

can be achieved as follows:

(ðIIPÞP) If PðeX j½x�Ai
Þ
 a for any Ai and 9Aj such that

P

y2½x�Aj
eXðyÞ[ k , decide ðIIPÞPosðeXÞ.

(ðIIPÞN) If 9Ai such that PðeX j½x�Ai
Þ\a and

P

y2½x�Aj
eXðyÞ� k for any Aj, decide ðIIPÞNegðeXÞ.

(ðIIPÞUB) If 9Ai such that PðeX j½x�Ai
Þ\a and 9Aj such

that
P

y2½x�Aj
eXðyÞ[ k for any Aj, decide ðIIPÞUbnðeXÞ.

(ðIIPÞLB) If PðeX j½x�Ai
Þ
 a for any Ai and 9Aj such that

P

y2½x�Aj
eXðyÞ� k, decide ðIIPÞLbnðeXÞ.

For Type-2 P-DqMDTRFS model, we have also the fol-

lowing decisions:

Desð½x�AÞ ! DesðIIPÞPðeXÞ; for x 2 ðIIPÞPosðeXÞ
Desð½x�AÞ ! DesðIIPÞNðeXÞ; for x 2 ðIIPÞNegðeXÞ
Desð½x�AÞ ! DesðIIPÞUbðeXÞ; for x 2 ðIIPÞUbnðeXÞ
Desð½x�AÞ ! DesðIIPÞLbðeXÞ; for x 2 ðIIPÞLbnðeXÞ

3.5 Decision-theoretic rough fuzzy set of Type-1
mean double-quantitative
multigranulation(Type-1 M-DqMDTRFS)

We will establish two kinds of mean double-quantitative

multigranulation decision theory rough fuzzy set models

through the mean.
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Definition 3.5 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the first kind

of optimistic double-quantitative multigranulation deci-

sion-theoretic rough fuzzy set are respectively recorded as

ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ and ðIMÞ

Pm
i¼1 Ai

M

ða;bÞðeXÞ. They are

defined as follows:

ðIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ ¼ x 2 Uj 1
m

X

y2½x�A1

ð1� eXðyÞÞ

0

@

8

<

:

þ
X

y2½x�A2

ð1� eXðyÞÞ

þ � � � þ
X

y2½x�Am

ð1� eXðyÞÞ

1

A� k

9

=

;

ðIMÞ
X

m

i¼1

Ai

M

ða;bÞ
ðeXÞ ¼ x 2 Uj 1

m
PðeX j½x�A1

Þ
�

�

:

þ PðeX j½x�A2
Þ

þ � � � þ PðeX j½x�Am
Þ
�

[ b

�

Based on this pair of lower and upper approximation

operators, the positive region, negative region, upper

boundary region and lower boundary can be also obtained

by following way.

ðIMÞPosðeXÞ ¼ðIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ \
X

m

i¼1

Ai

M

ða;bÞ
ðeXÞ

ðIMÞNegðeXÞ ¼ ðIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ [ ðIMÞ
X

m

i¼1

Ai

M

ða;bÞ
ðeXÞ

0

@

1

A

c

ðIMÞUbnðeXÞ ¼ðIMÞ
X

m

i¼1

Ai

M

ða;bÞ
ðeXÞ � ðIMÞ

X

m

i¼1

Ai

M

k

ðeXÞ

ðIMÞLbnðeXÞ ¼ðIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ � ðIMÞ
X

m

i¼1

Ai

M

ða;bÞ
ðeXÞ

According to Definition 3.5, we know that there is a dif-

ference between this model and classical multigranulation

rough set model. Both the lower and upper approximations

depend on a parameter that be induced by an average value

of multi granular structures. Some essential mathematical

properties of this model may be changed. Thus, we conduct

an investigation on Type-1 M-DqMDTRFS and the fol-

lowing propositions are obtained.

Proposition 3.5 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � ðIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ

2. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIMÞ

P

m

i¼1

Ai

M

ða;bÞ
ðeXÞ � ðIOÞ

P

m

i¼1

Ai

ða;

bÞOðeXÞ

3. ðIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIMÞ
P

m

i¼1

Ai

M

k

ðeY Þ, when

eX � eY 2 FðUÞ;

4. ðIMÞ
P

m

i¼1

Ai

M

ða;bÞ
ðeXÞ � ðIMÞ

P

m

i¼1

Ai ða; bÞMðeY Þ, when

eX � eY 2 FðUÞ;

5. ðIMÞ
P

m

i¼1

Ai

M

k1

ðeXÞ � ðIMÞ
P

m

i¼1

Ai

M

k2

ðeXÞ, whenk1 � k2 2 N;

6. ðIMÞ
P

m

i¼1

Ai

M

ða;b1Þ
ðeXÞ � ðIMÞ

P

m

i¼1

Ai

M

ða;b2Þ
ðeXÞ, when

b1 � b2 2 ½0; 1�.

Proof

1. On the one hand, for any x 2 ðIPÞ
Pm

i¼1 Ai
P

k
ðeXÞ, we

know that for all Ai have
P

y2½x�Ai
ð1� eXðyÞÞ� k where

i ¼ 1; 2; :::;m. So, we obtain that
Pm

i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

�m � k. That means

1
m

Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

� k, that is

x 2 ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ, i.e.

ðIPÞ
Pm

i¼1 Ai
P

k
ðeXÞ � ðIMÞ

Pm
i¼1 Ai

M

k
ðeXÞ. On the other

hand, for any x 2 ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ, we can get that

1
m

Pm
i¼1 ð

P

y2½x�Ai
ð1� eXðyÞÞÞ� k, It indicates that there

is at least one Ai that makes
P

y2½x�Ai
ð1� eXðyÞÞ� k

true, that is x 2 ðIOÞ
Pm

i¼1 Ai
O

k
ðeXÞ, i.e.

ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ � ðIOÞ

Pm
i¼1 Ai

O

k
ðeXÞ So, we can

achieve that ðIPÞ
Pm

i¼1 Ai
P

k
ðeXÞ � ðIMÞ

Pm
i¼1 Ai

M

k
ðeXÞ �

ðIOÞ
Pm

i¼1 Ai
O

k
ðeXÞ.

2. It’s similar to the process of (1).

3. For any x 2 ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ, we have

1
m

Pm
i¼1 ð

P

y2½x�Ai
ð1� eXðyÞÞÞ� k, when eX � eY 2

FðUÞ, we have
P

y2½x�Ai
eXðyÞ�

P

y2½x�Ai
eY ðyÞ. So, we

can obtain that 1
m

Pm
i¼1 ð

P

y2½x�Ai
ð1� eY ðyÞÞÞ� 1

m
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Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

� k. That means

x 2 ðIMÞ
Pm

i¼1 Ai
M

k
ðeY Þ, i.e. ðIMÞ

Pm
i¼1 Ai

M

k
ðeXÞ �

ðIMÞ
Pm

i¼1 Ai
M

k
ðeY Þ, when eX � eY 2 FðUÞ.

4. It’s similar to the process of (3).

5. For any x 2 ðIMÞ
Pm

i¼1 Ai
M

k1
ðeXÞ, we have 1

m

Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

� k1 � k2. That means

x 2 ðIMÞ
Pm

i¼1 Ai
M

k2
ðeXÞ, i.e.

ðIMÞ
Pm

i¼1 Ai
M

k1
ðeXÞ � ðIMÞ

Pm
i¼1 Ai

M

k2
ðeXÞ,

whenk1 � k2 2 N.

6. For any x 2 ðIMÞ
Pm

i¼1 Ai

M

ða;b2ÞðeXÞ, we have

1
m

Pm
i¼1 ðPðeX j½x�Ai

ÞÞ[ b2 [ b1. So, we can achieve

that x 2 ðIMÞ
Pm

i¼1 Ai

M

ða;b1ÞðeXÞ, i.e.

ðIMÞ
Xm

i¼1
Ai

M

ða;b1Þ
ðeXÞ � ðIMÞ

Xm

i¼1
Ai

M

ða;b2Þ
ðeXÞ;

when b1 � b2 2 ½0; 1�.
Thus, the proof is accomplished. h

The Type-1 M-DqMDTRFS is a generalization of pes-

simistic multigranulation rough set model. According to

Definition 3.5, we can get that

1. If eX is a crisp set of the universe, then

ðIMÞ
Pm

i¼1 Ai
M

k
ðeXÞ ¼

Pm
i¼1 Ai

PðXÞ if and only if k ¼ 0;

2. If eX is a crisp set of the universe, then

ðIMÞ
Pm

i¼1 Ai

M

ða;bÞðeXÞ ¼
Pm

i¼1 Ai

P
ðXÞ if and only if

b ¼ 0.

Similar to the previous double-quantitative multigranula-

tion decision-theoretic rough fuzzy set, we can obtain the

decision rules of Type-1 M-DqMDTRFS as follows:

(ðIMÞP) If 1
m

P

m

i¼1

P

y2½x�Ai

ð1� eXðyÞÞ

0

@

1

A� k and

1
m

P

m

i¼1

ðPðeX j½x�Ai
ÞÞ[ b , decide ðIMÞPosðeXÞ.

(ðIMÞN) If 1
m

P

m

i¼1

P

y2½x�Ai

ð1� eXðyÞÞ

0

@

1

A[ k and

1
m

P

m

i¼1

ðPðeX j½x�Ai
ÞÞ� b, decide ðIMÞNegðeXÞ.

(ðIMÞUB) If 1
m

P

m

i¼1

P

y2½x�Ai

ð1� eXðyÞÞ

0

@

1

A[ k and

1
m

P

m

i¼1

ðPðeX j½x�Ai
ÞÞ[ b, decide ðIMÞUbnðeXÞ.

(ðIMÞLB) If 1
m

P

m

i¼1

P

y2½x�Ai

ð1� eXðyÞÞ

0

@

1

A� k and

1
m

P

m

i¼1

ðPðeX j½x�Ai
ÞÞ� b, decide ðIMÞLbnðeXÞ.

With these decision rules, for Type-1 M-DqMDTRFS

model, we have the following decisions:

Desð½x�AÞ ! DesðIMÞPðeXÞ; for x 2 ðIMÞPosðeXÞ
Desð½x�AÞ ! DesðIMÞNðeXÞ; for x 2 ðIMÞNegðeXÞ
Desð½x�AÞ ! DesðIMÞUbðeXÞ; for x 2 ðIMÞUbnðeXÞ
Desð½x�AÞ ! DesðIMÞLbðeXÞ; for x 2 ðIMÞLbnðeXÞ

3.6 Decision-theoretic rough fuzzy set of Type-2
mean double-quantitative
multigranulation(Type-2 M-DqMDTRFS)

Based on the previous discussion, we can achieve the fol-

lowing propositions for second type of double-quantitative

mean multigranulation decision-theoretic rough fuzzy set.

Definition 3.6 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b� a 2 ½0; 1�, and k 2 N.

Then, the lower and upper approximations of the first kind

of optimistic double-quantitative multigranulation deci-

sion-theoretic rough fuzzy set are respectively recorded as

ðIIMÞ
Pm

i¼1 Ai
M

ða;bÞ
ðeXÞ and ðIIMÞ

Pm
i¼1 Ai

M

k ðeXÞ. They are

defined as follows:

ðIIMÞ
X

m

i¼1

Ai

M

ða;bÞ

ðeXÞ ¼ x 2 Uj 1
m

PðeX j½x�A1
Þ

�

�

þ PðeX j½x�A2
Þ þ � � � þ PðeX j½x�Am

Þ
�


 agðIIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ

¼ x 2 Uj 1
m

X

y2½x�A1

eXðyÞ

0

@

8

<

:

þ
X

y2½x�A2

eXðyÞþ � � � þ
X

y2½x�Am

eXðyÞ

1

A[ k

9

=

;

Uniformly, we can characterize the rough regions by

following way.
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ðIIMÞPosðeXÞ ¼ðIIMÞ
X

m

i¼1

Ai

M

ða;bÞ

ðeXÞ \ ðIIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ

ðIIMÞNegðeXÞ ¼ ðIIMÞ
X

m

i¼1

Ai

M

ða;bÞ

ðeXÞ [ ðIIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ

0

@

1

A

c

ðIIMÞUbnðeXÞ ¼ðIIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ � ðIIMÞ
X

m

i¼1

Ai

M

ða;bÞ

ðeXÞ

ðIIMÞLbnðeXÞ ¼ðIIMÞ
X

m

i¼1

Ai

M

ða;bÞ

ðeXÞ � ðIIMÞ
X

m

i¼1

Ai

M

k

ðeXÞ:

And, we can also achieve the propositions of Type-2

M-DqMDTRFS and they are represented as follows.

Proposition 3.6 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ;b� a 2 ½0; 1�, and k 2 N.

Then, the following properties hold.

1. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIIMÞ

P

m

i¼1

Ai

M

ða;bÞ
ðeXÞ � ðIIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ;

2. ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � ðIIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ;

3. ðIIMÞ
P

m

i¼1

Ai

M

ða;bÞ
ðeXÞ � ðIIMÞ

P

m

i¼1

Ai

M

ða;bÞ
ðeY Þ, when

eX � eY 2 FðUÞ;

4. ðIIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIIMÞ
P

m

i¼1

Ai

M

k

ðeY Þ, when

eX � eY 2 FðUÞ;

5. ðIIMÞ
P

m

i¼1

Ai

M

k1

ðeXÞ � ðIIMÞ
P

m

i¼1

Ai

M

k2

ðeXÞ, whenk1 � k2 2 N;

6. ðIIMÞ
P

m

i¼1

Ai

M

ða1;bÞ
ðeXÞ � ðIIMÞ

P

m

i¼1

Ai ða2; bÞMðeXÞ, when

a1 � a2 2 ½0; 1�;

Proof It is similar to the proof of Proposition 3.5. h

According to Definition 3.6, we can get that

1. If eX is a crisp set of the universe, then

ðIIMÞ
Pm

i¼1 Ai
M

ða;bÞ
ðeXÞ ¼

Pm
i¼1 Ai

PðXÞ if and only if

a ¼ 1;

2. If eX is a crisp set of the universe, then

ðIIMÞ
Pm

i¼1 Ai

M

k ðeXÞ ¼
Pm

i¼1 Ai

PðXÞ if and only if k ¼ 0.

Similar to the previous double-quantitative multigranula-

tion decision-theoretic rough fuzzy set, we can obtain the

decision rules of Type-2 M-DqMDTRFS as follows:

(ðIIMÞP) If 1
m

P

m

i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

[ k and

1
m

Pm
i¼1 ðPðeX j½x�Ai

ÞÞ
 a , decide ðIIMÞPosðeXÞ.
(ðIIMÞN) If 1

m

Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

� k and

1
m

Pm
i¼1 ðPðeX j½x�Ai

ÞÞ\a, decide ðIIMÞNegðeXÞ.
(ðIIMÞUB) If 1

m

Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

[ k and

1
m

Pm
i¼1 ðPðeX j½x�Ai

ÞÞ\a, decide ðIIMÞUbnðeXÞ.
(ðIIMÞLB) If 1

m

Pm
i¼1

P

y2½x�Ai
ð1� eXðyÞÞ

� �

� k and

1
m

Pm
i¼1 ðPðeX j½x�Ai

ÞÞ
 a, decide ðIIMÞLbnðeXÞ.
Analogously, for Type-2 M-DqMDTRFS model, we have

the following decisions:

Desð½x�AÞ ! DesðIIMÞPðeXÞ; forx 2 ðIIMÞPosðeXÞ
Desð½x�AÞ ! DesðIIMÞNðeXÞ; forx 2 ðIIMÞNegðeXÞ
Desð½x�AÞ ! DesðIIMÞUbðeXÞ; forx 2 ðIIMÞUbnðeXÞ
Desð½x�AÞ ! DesðIIMÞLbðeXÞ; forx 2 ðIIMÞLbnðeXÞ

Table 3 The lower and upper approximations approximations of ed with respect to k ¼ 2; a ¼ 0:6 and b ¼ 0:4

Model Lower approximation Upper approximation

IO U � x1;7;19;22;35 x2;4;6;8;9;10;11;14;18;20;24;26;29;31;33;34

IIO x2;3;4;5;6;8;9;10;11;14;15;17;18;20;21;23;24;26;28;29;31;33;34;36 x2;4;6;8;9;10;11;14;18;26;29;31;33;34

IP x3;4;6;9;14;15;17;18;20;24;26;29;33 U � x1;7;13;19;22;30;32;35

IIP x4;6;8;9;11;14;20;24;26;29;31 U � x1;7;12;13;19;22;25;30;32;35

IM x3;4;6;8;9;11;14;15;17;18;20;23;24;26;29;31;33 x2;3;4;5;6;8;9;10;11;12;14;17;18;20;21;23;24;26;28;29;31;33;34;36

IIM x4;6;8;9;11;14;18;20;24;26;29;31;33 x2;3;4;5;6;8;9;10;11;14;17;18;20;21;23;24;26;28;29;31;33;34;36
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4 Relationships among three pairs
of DqMDTRFS models

Based on previous discussions, we obtain six DqMDTRFS

models in this study. In these models, the conditional

probability value (thresholds a and b) and grade (threshold

k) decide their detailed form of rough set. In this section,

we shall investigate the relationships among the six types

of DqMDTRFS models introduced in Sect. 3.

From the definitions of DqMDTRFS, we can obtain the

following theorem.

Theorem 4.1 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ, and k 2 N, we have that

1. ðIOÞ
P

m

i¼1

Ai

O

k

ðeXcÞ
" #c

¼ ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ;

2. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXcÞ
" #c

¼ ðIIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ.

Proof

1. We know that ðIOÞ
Pm

i¼1 Ai
O

k
ðeXcÞ ¼ fx 2 Uj

P

y2½x�A1
eXðyÞ� k _

P

y2½x�A2
eXðyÞ� -

, then, we can have that ðIOÞ
Pm

i¼1 Ai
O

k
ðeXcÞ

h ic

¼ fx 2

Uj
P

y2½x�A1
eXðyÞ[ k ^

P

y2½x�A2
eXðyÞ[ k^

� � � ^
P

y2½x�Am
eXðyÞ[ kg ¼ ðIIOÞ

Pm
i¼1 Ai

O

k ðeXÞ.
2. It is similar to the proof of (1).

h

Theorem 4.2 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; a� b 2 ½0; 1�, we have that

1. ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ � ðIOÞ

P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ;

2. ðIIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIPÞ

P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ.

Proof By definition, they are easy to prove. h

Combining Proposition 3.5 of (1), Proposition 3.6 of (2)

and Theorem 4.2, we can get that

Theorem 4.3 Let IS ¼ ðU;AT ;V ; f Þ be an information

system, given A1;A2; . . .;Am 2 ATðm� 2jAT jÞ are granular

structures, for any eX 2 FðUÞ; b ¼ a 2 ½0; 1�, and k 2 N,

we have that

1. ðIPÞ
P

m

i¼1

Ai

P

k

ðeXÞ � ðIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIOÞ

P

m

i¼1

Ai

O

k

ðeXÞ � ðIIOÞ
P

m

i¼1

Ai

O

ða;bÞ
ðeXÞ;

2. ðIPÞ
P

m

i¼1

Ai

P

ða;bÞ
ðeXÞ � ðIIPÞ

P

m

i¼1

Ai

P

k

ðeXÞ � ðIIMÞ
P

m

i¼1

Ai

M

k

ðeXÞ � ðIIOÞ
P

m

i¼1

Ai

O

k

ðeXÞ.

Proof These properties are easy to prove. h

5 Case study

Compared with the multigranulation decision-theoretic

rough fuzzy set model, the double-quantitative multigran-

ulation decision-theoretic rough fuzzy set models consider

not only the relative quantitative information but also the

absolute quantitative information between the indiscerni-

bility classes and fuzzy concept set. With the application of

thresholds k, aand b the fault-tolerant ability of model is

improved. In this section, in order to exhibit the decision

approach that combining relative and absolute quantitative

simultaneously, we conduct an medical example.

Let IS ¼ ðU;AT [ edÞ be a fuzzy decision system, where

U ¼ fx1; x2; :::; x36g is composed of 36 patients, and the

condition attributes a1; a2; a3 represent fever, headache,

Table 4 The lower and upper approximations of ed with respect to k ¼ 2; a ¼ 0:5 and b ¼ 0:3

Model Lower approximation Upper approximation

IO U � x1;7;19;22;35 U � x1;5;7;12;13;15;19;22;25;30;32;35

IIO U � x1;7;13;16;19;22;27;30;32;35 x2;4;6;8;9;10;11;14;18;26;29;31;33;34

IP x3;4;6;9;14;15;17;18;20;24;26;29;33 U � x1;7;19;22;30;35

IIP x4;6;8;9;11;14;18;20;24;26;29;31;33 U � x1;7;12;13;19;22;25;30;32;35

IM x3;4;6;8;9;11;14;15;17;18;20;23;24;26;29;31;33 x2;3;4;5;6;8;9;10;11;12;14;15;16;17;18;20;21;23;24;25;26;27;28;29;31;33;34;36

IIM x2;3;4;6;8;9;10;11;14;17;18;20;21;23;24;26;28;29;31;33;34;36 x2;3;4;5;6;8;9;10;11;14;17;18;20;21;23;24;26;28;29;31;33;34;36
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cough, respectively. And, decision attribute ed indicate that

cold and the fuzzy decision attribute is represented as

ed ¼ f0:1; 0:4; 0:6; :::; 0:6; 0:1; 0:5g. The detailed charac-

teristics of the datasets are showed in Table 1.

For simplicity and without loss of generality, suppose

there are three granular structures that A1 ¼ fa1; a2g,
A2 ¼ fa1; a3g, A3 ¼ fa2; a3g, respectively. So, we can

compute the ½x�Ai
,

P

y2½x�Ai
edðyÞ, Pðedj½x�Ai

Þ,
P

y2½x�Ai
ð1� edðyÞÞ with respect to A1;A2 and A3. These

variables to characterize the double-quantitative decision-

theoretic approach, which are listed in Table 2.

In the Bayesian decision procedure, the decision-making

is based on a pair of threshold ða; bÞ. In general, it is

divided into three cases that aþ b[ 1, aþ b ¼ 1and

aþ b\1, respectively. In the calculation process, we can

achieve the results for an arbitrary thresholds pair ða; bÞ.
Then, we will discuss the decision rules based on different

combinations of parameters.

For convenience and without loss of generality, we

choose the grade k ¼ 2 throughout this case study. In the

Bayesian decision procedure, from the losses, one can give

the values ki1; ki2, and i ¼ 1; 2; 3. We make some changes

to the loss function defined in [53], and the parameters can

be calculated as follows.

Case 1 aþ b ¼ 1. Consider the following loss

function:

kPP ¼ 0; kPN ¼ 18,

kBP ¼ 9; kBN ¼ 2,

kNP ¼ 12; kNN ¼ 0.

Then, we can get a ¼ 0:6; b ¼ 0:4 i.e. aþ b ¼ 1. We can

obtain the lower and upper approximations of ed for the

proposed double-quantitative multigranulation decision-

theoretic rough fuzzy set models, respectively. They are

shown in Table 3.

According to Table 3, we can compute the rough

regions of Type-1 O-DqMDTRFS, Type-2 O-DqMDTRFS,

Type-1 P-DqMDTRFS, Type-2 P-DqMDTRFS, Type-1 M-

DqMDTRFS and Type-2 M-DqMDTRFS with respect to

a ¼ 0:6; b ¼ 0:4 and k ¼ 2, respectively. In order to

illustrate the effectiveness of our proposed models, we only

calculate the rough region of Type-1 O-DqMDTRFS as an

illustration. They are listed as follows:

ðIOÞPosðedÞ ¼fx2; x4; x6; x8; x9; x10; x11; x14; x18;
x20; x24; x26; x29; x31; x33; x34g;

ðIOÞNegðedÞ ¼fx1; x7; x19; x22; x35g;
ðIOÞUbnðedÞ ¼£;

ðIOÞLbnðedÞ ¼fx3; x5; x12; x13; x15; x16; x17;
x21; x23; x25; x27; x28; x30; x32; x36g:

For a ¼ 0:6; b ¼ 0:4 and k ¼ 2, these models have their

own quantitative semantics for the relative and absolute

degree quantification. Furthermore, we can obtain the

decision rules in practiced applications by using Type-1

O-DqMDTRFS model as follows:

ððIOÞPÞ The patients x2; x4; x6; x8; x9; x10; x11;

x14; x18; x20; x24; x26; x29; x31; x33 and x34 are suffering

from cold with respect to these diagnostic indexes and

given parameters;

ððIOÞNÞ The patients x1; x7; x19; x22 and x35 are not

suffering from cold regarding current diagnostic

conditions;

ððIOÞBÞ The patients x3; x5; x12; x13; x15; x16; x17; x21;

x23; x25; x27; x28; x30; x32 and x36 can not be diagnosed

with respect to present information. A further diagnosis

is need to them.

Case 2 aþ b\1. Consider the following loss

function:

kPP ¼ 0; kPN ¼ 19,

kBP ¼ 12; kBN ¼ 3,

kNP ¼ 19; kNN ¼ 0.

Based on the loss function, we can get a ¼ 0:5; b ¼ 0:3,

i.e. aþ b\1. We can obtain the lower and upper

approximations of ed for these constructed double-quanti-

tative multigranulation decision-theoretic rough fuzzy set

models and they are exhibited in Table 4.

Table 4 indicates that the lower and upper approxima-

tions of Type-1 O-DqMDTRFS, Type-2 O-DqMDTRFS,

Type-1 P-DqMDTRFS, Type-2 P-DqMDTRFS, Type-1 M-

DqMDTRFS and Type-2 M-DqMDTRFS with respect to

Table 5 The lower and upper

approximations of ed with

respect to k ¼ 2; a ¼ 0:7 and

b ¼ 0:5

Model Lower approximation Upper approximation

IO U � x1;7;19;22;35 x4;6;8;9;11;14;18;20;24;26;31;33

IIO x3;4;6;8;9;11;14;17;18;20;23;24;26;29;31;33 x2;4;6;8;9;10;11;14;18;26;29;31;33;34

IP x3;4;6;9;14;15;17;18;20;24;26;29;33 U � x1;7;13;16;19;22;27;30;32;35

IIP x6;9;20;24;26 U � x1;7;12;13;19;22;25;30;32;35

IM x3;4;6;8;9;11;14;15;17;18;20;23;24;26;29;31;33 x2;3;4;6;8;9;10;11;14;17;18;20;21;23;24;26;28;29;31;33;34;36

IIM x4;6;9;14;18;20;24;26;29 x2;3;4;5;6;8;9;10;11;14;17;18;20;21;23;24;26;28;29;31;33;34;36
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a ¼ 0:5; b ¼ 0:3 and k ¼ 2, respectively. Based on these

results, we can di-rectly obtain the rough regions by the

definitions. For simplicity and without loss of generality,

we choose the Type-1 P-DqMDTRFS as an example, and

the rough regions are exhibited by following way.

ðIPÞPosðedÞ ¼fx3; x4; x6; x9; x14; x15; x17;
x18; x20; x24; x26; x29; x33g;

ðIPÞNegðedÞ ¼fx1; x7; x19; x22; x30; x35g;
ðIPÞUbnðedÞ ¼fx2; x5; x8; x10; x11; x16; x21;

x23; x27; x28; x31; x34; x36g;
ðIPÞLbnðedÞ ¼£:

For a ¼ 0:5, b ¼ 0:3 and k ¼ 2, these models have their

own quantitative semantics for the relative and absolute

degree quantification. Analogously, the thresholds can be

determined by the real acquirements. Then, the decision

rules can be simply achieved based on these studied deci-

sion mechanisms as follows:

ððIPÞPÞ The patients x3; x4; x6; x9; x14; x15; x17;

x18; x20; x24; x26; x29 and x33 are suffering from cold with

respect to these diagnostic indexes and given parameters;

ððIPÞNÞ The patients x1; x7; x19; x22; x30 and x35 are not

suffering from cold regarding current diagnostic

conditions;

ððIPÞBÞ The patients x2; x5; x8; x10; x11; x16; x21; x23; x27;

x28; x31; x34 and x36 can not be diagnosed with respect to

present information. We need to take a further diagnosis

to make decisions.

Case 3 aþ b[ 1. Consider the following loss

function:

kPP ¼ 0; kPN ¼ 21,

kBP ¼ 7; kBN ¼ 2,

kNP ¼ 9; kNN ¼ 0.

According to the loss function, we can get that

a ¼ 0:7; b ¼ 0:5, i.e. aþ b[ 1. We can obtain the lower

and upper approximations of ed for the designed double-

quantitative multigranulation decision-theoretic rough set

modes and results as shown in Table 5.

According to Table 5, we can compute the rough

regions of Type-1 O-DqMDTRFS, Type-2 O-DqMDTRFS,

Type-1 P-DqMDTRFS, Type-2 P-DqMDTRFS, Type-1 M-

DqMDTRFS and Type-2 M-DqMDTRFS with respect to

a ¼ 0:7; b ¼ 0:5 and k ¼ 2, respectively. Without loss of

generality, we take the Type-1 M-DqMDTRFS as an

example, and the rough regions of this model are exhibited

as follows:

ðIMÞPosðedÞ ¼fx3; x4; x6; x8; x9; x11; x14; x17;
x18; x20; x23; x24; x26; x29; x31; x33g;

ðIMÞNegðedÞ ¼fx1; x5; x7; x12; x13; x16;
x19; x22; x25; x27; x30; x32; x35g;

ðIMÞUbnðedÞ ¼fx2; x10; x21; x28; x34; x36g;
ðIMÞLbnðedÞ ¼fx15g:

For a ¼ 0:7, b ¼ 0:5 and k ¼ 2, these rough regions have

their own quantitative semantics for the relative and

absolute degree quantification. Based on these results, we

can get that the rough regions are varied with the changes

of thresholds. Furthermore, we can get the decision rules

by using Type-1 M-DqMDTRFS model as follows:

ððIMÞPÞ The patients x3; x4; x6; x8; x9; x11; x14;x17; x18; x20;
x23; x24; x26; x29; x31 and x33 are suffering from cold with

respect to these diagnostic indexes and given parameters;

ððIMÞNÞ The patients x1; x5; x7; x12; x13; x16; x19; x22;

x25; x27; x30; x32 and x35 are not suffering from cold with

respect to current diagnostic conditions;

ððIMÞBÞ The patients x2; x10; x15; x21; x28; x34 and x36 can

not be diagnosed with respect to present information. A

further diagnosis is need to them.

With regard to one information system, the rough

regions and decision rules rely on the parameters to solve

different issues. According to these case studies, we can

obtain that the rough regions and decision rules are varied

with respect to different thresholds. For the same patient,

the decision rule depends on the models and thresholds. For

the thresholds are a ¼ 0:6, b ¼ 0:4 and k ¼ 2, the decision

rule indicate that the patientsx2,x4,x6,x8,x9,x10,x11,x14,x18,

x20,x24, x26,x29,x31,x33 and x34 are suffering from cold. The

patient x2 is diagnosed with a cold in the model of Type-1

O-DqMDTRFS, but the patient not be treated as sick in

original Table 1. We analyzed the symptoms of x2, the

possibility of misdiagnosis is present in initial medicinal

data. For the thresholds are a ¼ 0:5, b ¼ 0:3 and k ¼ 2, we

can achieve that x3; x4; x6; x9; x14; x15; x17; x18; x20;

x24; x26; x29 and x33 are diagnosed with a cold in the model

of Type-1 P-DqMDTRFS, we can get that the patient x15 is

diseased but can not be diagnosed with respect to present

information in Type-1 P-DqMDTRFS. Combining the

symptoms of x15 that shown in the Table 1, we can think

that x15 is not likely to catch a cold. For the thresholds are

a ¼ 0:7, b ¼ 0:5 and k ¼ 2, the results show that the

patients x3; x4; x6;

x8; x9; x11; x14; x17; x18; x20; x23; x24; x26; x29; x31 and x33 are

suffering from cold in Type-1 M-DqMDTRFS. These

diagnostic results are consistent with previous diagnostic

results in Type-1 O-DqMDTRFS. The sets of health human

are different in these models, but the people
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x1; x7; x19; x22; x35are health that are diagnosed by model

Type-1 O-DqMDTRFS, Type-1 P-DqMDTRFS, Type-1

M-DqMDTRFS. The symptoms of them indicate that they

are certainly healthy. Utilizing these models, we can per-

form some preliminary diagnostic analysis for patients. The

diagnostic results for different models and thresholds are

not completely consistent. Thus, we should choose an

appropriate model and thresholds based on practical

requirements in applications.

6 Conclusions

In this paper, in order to study double-quantification

decision-theoretic approach which fuses the relative and

absolute quantitative information in fuzzy approximate

space, we introduce the idea of double-quantification

decision-theoretic into the framework of multigranulation.

This paper mainly investigates double-quantification,

namely the relative and absolute information by combining

DTRFS and GRFS models together with a fuzzy concept.

By recombining the DTRFS and GRFS models, three pairs

of DqMDTRFS models are established. We not only

research the basic properties of three pairs of models, but

also derive the decision rules of each model based on

Bayesian decision-making methods, analyse the relation-

ship between each model and multigranulation rough sets,

and discuss the relationships among three pairs of

DqMDTRFS models. At the same time, a case of a

patient’s cold, prove the feasibility of the proposed model

and method. Using these models, we can make some pre-

liminary diagnostic analysis of patients. The diagnostic

results of different models and thresholds are not com-

pletely consistent. Therefore, we should choose the

appropriate model and threshold according to the actual

needs of the application. The proposed decision theory

rough fuzzy set model opens up a way for decision making

research of probabilistic rough sets in fuzzy environment.
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