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Abstract
Unlabeled categorical data is common in many applications. Because there is no geometric structure for categorical data, 
how to discover knowledge and patterns from unlabeled categorical data is an important problem. In this paper, a fuzzy rough 
clustering algorithm for categorical data is proposed. The proposed algorithm uses the partition of each attribute to calculate 
the granularity of each attribute and introduces information granularity to measure the significance of each attribute. It is 
different from traditional clustering algorithms for categorical data that the proposed algorithm can transform categorical 
data set into numeric data set and introduces a nonlinear dimension reduction algorithm to decrease the dimensions of data 
set. The proposed algorithm and the comparison algorithms are executed on real data sets. The experimental results show 
that the proposed algorithm outperforms the comparison algorithms on the most data sets and the results prove that the 
proposed algorithm is an effective clustering algorithm for categorical data sets.

Keywords Cluster analysis · Rough set · Categorical data · Granular computing · Dimension reduction

1 Introduction

In information society, unlabeled categorical data is more 
and more common. Many fields have generated a large num-
ber of unlabeled categorical data sets such as social media, 
bioinformatics data, news report and web search engine [7, 
11, 18, 26, 30, 32]. It will produce much overhead if data 
is labeled by experts and it is also impossible to obtain the 
labels of data at any time, therefore how to get knowledge 
and patterns from unlabeled categorical data is an important 
problem [28, 35]. Clustering is an unsupervised learning 
method which can mine knowledge and patterns from unla-
beled data and it has been applied to text emotional analy-
sis, bioinformatics and recommender system [12, 17, 27]. 
Because there is no geometric structure for categorical data, 
it brings a challenge for data partitioning.

k-modes algorithm is an important clustering algorithm 
for categorical data and it uses matching distance to repre-
sent the dissimilarity of two samples and data is partitioned 
into clusters by matching distance [5]. After k-modes is 
proposed, many researchers develop a series of algorithms 
and the algorithms can mainly divided into three categories: 
uncertainty-based clustering algorithm, tree clustering algo-
rithm and subspace clustering algorithm.

Michael proposes a new dissimilarity measure for 
k-modes algorithm [24]; considering that the original match-
ing method may cause the similarity of intra-cluster samples 
to be too low, it utilizes equivalent class of current attribute 
value to determine the dissimilarity; for an attribute, if the 
attribute values of two samples are equal, the dissimilar-
ity is 1 on current attribute, otherwise the dissimilarity is 
computed by the equivalent class on the attributes; the new 
k-modes algorithm converts the dissimilarity degree from 
0-1 match into real value which can keep more dissimilar-
ity information. Chen et al. propose an entropy method to 
determine the best k of clustering algorithm for categori-
cal data [6]; in the paper, an incremental entropy is defined 
which is according to the merge of different clusters and the 
relation between k and the incremental entropy is derived; 
when the function value is reduced severely, the correspond-
ing k value is the final result. Andritsos et al. propose a tree 
clustering algorithm based on entropy called as LIMBO [2]; 
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the algorithm defines a new distance and creates a DCF tree; 
LIMBO scans DCF tree from top to down and divides data 
points into leaf nodes; the data points in the same leaf nodes 
are seen as a cluster; if the information loss of merging two 
similar clusters is less than a threshold, then the two clus-
ters are merged; the merging steps are repeated until the 
number of clusters is k. Guha et al. propose a robust hier-
archical clustering algorithm for categorical data called as 
ROCK [15]; ROCK introduces neighbourhood to measure 
the similarity of the two clusters and defines a link func-
tion which is the intersection’s cardinality of two clusters 
and determines the evaluation criterion function; the similar 
clusters is merged until there is k clusters; because heap is 
used in the clustering process, ROCK has a fast speed. Gao 
et al. propose a rough ensemble subspace-based clustering 
for categorical data [13]; the algorithm employs discern-
ibility matrix to remove redundant attributes and forms a 
series of subspaces; then it uses a metric to rank subspaces 
and remains some subspaces with large metric values; the 
clustering algorithm is executed in the subspaces and the 
final clustering result is the fusion of multiple clustering 
results. Parmar et al. propose a clustering algorithm based 
on Min-Min-Roughness called as MMR [25]; MMR is a 
tree clustering algorithm and uses the models of most sam-
ples as the clustering modes; for each attribute, it computes 
the minimum roughness of each attribute value; then it can 
obtain Min-Min-Roughness of all attributes; the attribute 
corresponding to Min-Min-Roughness is selected as split-
ting attribute of the tree and the cluster in the leaf node can 
be split into two clusters; repeat the steps until the clus-
tering algorithm is terminated. Li et al. propose an incre-
mental entropy-based clustering for categorical data stream 
with concept drift [21]; different from traditional clustering 
algorithms, the incremental entropy-based clustering algo-
rithm can deal with massive data stream and it has a self-
adaption mechanism for concept drift; the algorithm defines 
the entropy distance between a sample and a cluster; if the 
entropy distance between a sample and a cluster is greater 
than a threshold, the sample is seen as a outlier and a new 
cluster is generated; in order to detect concept drift, cluster 
vector is defined; for a time, the cluster vector is made up 
of the number of samples in the clusters; if the similarity of 
the cluster vectors at adjacent time moments is less than a 
threshold, it is said that concept drift has happened.

The above works have promoted the development of the 
clustering for categorical data; however, for the most algo-
rithms, how to measure the dissimilarity in categorical data 
set and generate compact clusters is still a problem. In this 
paper, a new fuzzy rough clustering algorithm (FRC) for 
categorical data is proposed. FRC introduces rough set to 
compute the information granularity of each attribute and 
the weights of attributes are determined by the informa-
tion granularity. In addition, we define a significance of an 

attribute for a sample and categorical data set can be trans-
formed into a numeric data set. Different from the existing 
distance for categorical data, the new distance is a weighting 
distance and the attribute with a good discriminative ability 
will be given a large weight. Therefore FRC can obtain a 
clustering result with minimum intra-cluster distance and 
maximum inter-cluster distance. The contributions of the 
paper are as follows:

• We propose a fuzzy rough clustering algorithm for cat-
egorical data set; FRC can obtain a clustering result with 
minimum intra-cluster distance and maximum inter-clus-
ter distance.

• We define a significance measure of an attribute for a 
sample; categorical data set can be transformed into a 
numeric data set by the significance measure and we 
introduce a nonlinear dimension reduction algorithm to 
decrease the dimensions of data set.

• In FRC algorithm, we employs weighted distance to 
calculate the dissimilarity. For categorical data set, the 
weight of each attribute is determined by information 
granularity. After categorical data set is transformed 
into numeric data set, the new weight of each attribute is 
determined by standard deviation.

The rest of the paper is structured as follows: Sect. 2 reviews 
the concepts of rough set and the basic principles of k-modes 
algorithm; the detail theories and steps of FRC algorithm are 
explained in Sect. 3; FRC and the comparison algorithms are 
executed on the real data sets and the experimental results 
are discussed in Sect. 4; finally, Sect. 5 concludes the paper 
and gives some research directions in the future.

2  Preliminaries

In this section, we will give brief introductions about rough 
set and k-modes algorithm.

2.1  Rough set

Rough set is an effective method for data analysis. It can deal 
with categorical data without any prior knowledge. Since 
rough set was proposed, it has been applied to association 
rule extraction, attribute reduction, data classification and 
clustering analysis [8–10, 14, 19, 23, 29, 31, 33]. Rough 
set assumes that the objects with the same attribute values 
should be divided into the same class. The following back-
ground knowledge can be seen from the references [1, 20, 
36, 37].

An information system can be described as a quadru-
ples < U,A, f ,V > where U =

{
x1, x2, x3,… , xn

}
 is an uni-

verse, A =
{
a1, a2, a3,… , am

}
 is an attribute set, V is a set 
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of attribute values, f is an information function which con-
structs the mapping between attributes and attribute values 
and f ∶ U × A → V which means f (x, a) ∈ V  if ∀x ∈ U and 
∀a ∈ A . Let B ⊆ A and B ≠ ∅ , the indiscernibility relation 
of the objects on B is defined as

If (x, y) ∈ IND(B) , it means the attribute values of x and y are 
the same on the attribute set B. For ∀x ∈ U , the equivalence 
class of x on B is defined as

It can obtain a partition of the universe according to IND(B) 
which is denoted as U/B; If U∕B =

{
X1,X2,… ,Xl

}
 , it is 

known that 
⋃l

i=1
Xi = U and Xi ∩ Xj = ∅ for ∀Xi,Xj ⊆ U 

and i ≠ j.
For an information system < U,A,V , f > , B ⊆ A , B ≠ ∅ 

and RB is the equivalence relation. For ∀X ⊆ U , the lower 
approximation set RBX and the upper approximation set RBX 
is defined as

The universe is divided into three parts by rough set. 
POSR(X) = RBX is called as the positive region of X on B; 
NEGR(X) = U − RBX is the negative region of X on B and 
BNR(X) = RBX − RBX is the boundary region of X on B. It 
is known that the boundary region represents the uncertainty 
of the set. A large boundary region means a large uncer-
tainty. If BNR(X) = ∅ , it is said that X is crisp; otherwise, X 
is rough. For a partition, U∕B =

{
X1,X2,… ,Xl

}
 ; in order to 

measure the uncertainty, the information granularity of the 
knowledge is defined as

I t  i s  obv ious  t ha t  1

|U|2 ≤ GKB(U) ≤
1

|U|  .  When 
Xi =

{
xi
}
(i = 1, 2,… , |U|) , the information granularity is 

minimum and the uncertainty is also minimum; when 
Xi = U and Xj = ∅ (j = 1, 2,… , l, j ≠ i) , the information 
granularity is maximum and the uncertainty is also 
maximum.

2.2  k‑modes algorithm

k-modes algorithm [5] is a simple and practical cluster-
ing algorithm for categorical data. k-modes algorithm uses 
difference degree to replace the euclidean distance. For 
xi =

[
xi1, xi2,… , xim

]
 and xj =

[
xj1, xj2,… , xjm

]
 , the differ-

ence degree of two samples on each attribute is defined as

(1)IND(B) = {(x, y) ∈ U × U|f (x, a) = f (y, a),∀a ∈ B}.

(2)[x]B = {y ∈ U|(x, y) ∈ IND(B)}.

(3)
RBX =

{
x ∈ U|[x]B ⊆ X

}
and

RBX =
{
x ∈ U|[x]B ∩ X ≠ ∅

}
.

(4)GKB(U) =
1

|U|
l∑

i=1

||Xi
||2

|U|2 .

Therefore the difference degree of two samples is as

A smaller difference degree means that the two samples are 
more similar. k-modes algorithm is a greedy algorithm. The 
algorithm repeatedly adjusts the clustering result until the 
clustering result is convergent. Therefore k-modes algorithm 
is summarized as Algorithm 1.

Algorithm 1 k-modes algorithm.
Input: data set U = [x1, x2, · · · , xn]; the number of clusters k.
Output: the clustering result C = [C1, C2, · · · , Ck].
1: Randomly choose k modes;
2: Compute the distances between samples and modes;
3: Each sample is partitioned into the nearest cluster according

Eq.(6) and update the k modes;
4: Repeat the above steps until the clustering result is convergent.

From Algorithm 1, it is known that k-modes algorithm 
can deal with categorical data and the clustering result is 
local optimum although k-modes algorithm iteratively 
adjusts the clustering result. It is obvious that there are still 
some problems for k-modes algorithm. For many unlabeled 
data sets, how to determine the number of clusters is not 
easy; in addition, the weight of each attribute is equal in 
Eq. (6); however, the equal weight mechanism cannot make 
that the difference degree can represent the similarity well 
because the equal weight does not present the significant of 
each attribute. Therefore it is necessary to improve k-modes 
algorithm.

3  Fuzzy rough clustering algorithm

In this section, we will introduce the detail principles of 
FRC. At first, we explain how to determine the weights 
of attributes by rough set; then we describe the method of 
dimension reduction and the steps of FRC.

3.1  The methods determining the weights 
of attributes

The attribute weighting mechanism is widely used in clus-
tering tasks. For many tasks, if there are many redundant or 
irrelevant attributes, the distance or difference degree cannot 
measure the dissimilarity well. The attribute weighting mecha-
nism gives a weight for each attribute. The large weight means 
that the attribute has a greater influence on the distance or 

(5)�
(
xip, xjp

)
=

{
1 if xip ≠ xjp
0 otherwise

(p = 1, 2,… ,m).

(6)�
(
xi, xj

)
=

m∑
p=1

�
(
xip, xjp

)
.
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difference degree. Therefore the attribute weighting mecha-
nism can reduce or eliminate the adverse effects of redundant 
attributes and it can achieve the effect of dimension reduc-
tion without information loss. Rough set is an effective tool to 
analyze categorical data set and it can obtain knowledge and 
patterns without any prior knowledge. The performance of 
k-modes can be improved by rough set.

Let  U =
{
x1, x2,… , xn

}
 and A =

{
a1, a2,… , am

}
 . 

For ∀a ∈ A , the partition of the universe on a is as 
U∕a =

{
X1,X2,… ,Xla

}
 where la is the number of equiva-

lence classes on a. Therefore the information granularity of 
the partition on a is as

GKa(U) is the uncertainty of the knowledge on a; a small 
information granularity means the uncertainty of the parti-
tion on a is small; in other words, the objects of the universe 
can be discriminated well on the attribute a. Therefore the 
attribute a should be given a large weight when computing 
the distance or difference degree. The weight of the attribute 
a which is denoted as wa is defined as

In order to explain the principle of the weights of attrib-
utes, an example is introduced. Table  1 is the decision 
table of an information system. U =

{
x1, x2, x3, x4, x5, x6

}
 

and A =
{
a1, a2, a3, a4

}
 . From the decision table, 

U∕a1 =
{{

x1
}
,
{
x2
}
,
{
x3, x4

}
,
{
x5
}
,
{
x6
}}

 , 
U∕a2 =

{{
x1, x3, x4, x5, x6

}
,
{
x2
}}

 , 
U∕a3 =

{{
x1, x2

}
,
{
x3, x4

}
,
{
x5, x6

}}
 a n d 

U∕a4 =
{{

x1, x2, x5, x6
}
,
{
x3, x4

}}
 . From the partitions of 

the attributes, it is obvious that the objects of the universe can 
be better discriminated by a rather than the other attributes. 
Therefore the attribute a has the largest weight.

(7)GKa(U) =
1

|U|
la∑
i=1

||Xi
||2

|U|2 .

(8)Weighta =

∑
∀b∈A

GKb(U)

GKa(U)
and �a =

Weighta∑
∀b∈A

Weightb
.

3.2  Dimension reduction

For U∕A =
{
X1,X2,… ,Xl

}
 , the partition can be seen as an 

initial clustering result. However, because of redundant and 
irrelevant attributes, the initial clustering result often does not 
accord with the real result. In order to improve the quality 
of the partition, attribute reduction is a common method for 
categorical data, but the complexity of rough set algorithm 
is high and the clustering algorithm with rough set attribute 
reduction will bring a large time overheard. Manifold learning 
is an effective algorithm to decrease the number of dimen-
sion which can reconstruct data points in a low dimensional 
embedding space according to their neighbors [22]. Therefore 
in this paper, we will transform categorical data into numerical 
data and utilize manifold learning to decrease the dimension 
of data points.

For ∀a ∈ A , let U∕a =
{
X1,X2,… ,Xla

}
 , it is obvious that 

the difference of data points in the same equivalence class 
should be as small as possible and the difference of data points 
in different equivalence classes should be as large as possible. 
For ∀xi ∈ U , the dissimilarity between xi and data point in the 
same equivalence class is defined as follow

For ∀xi ∈ U , the dissimilarity between xi and data point in 
different equivalence classes is defined as follow

Therefore the significance of the attribute a for xi can be 
defined as follow

∴GKa1
(U) =

1

6
⋅

(
1

36
+

1

36
+

4

36
+

1

36
+

1

36

)
≈ 0.0370

GKa2
(U) =

1

6
⋅

(
1

36
+

25

36

)
≈ 0.1204

GKa3
(U) =

1

6
⋅

(
4

36
+

4

36
+

4

36

)
≈ 0.0556

GKa4
(U) =

1

6
⋅

(
16

36
+

4

36

)
≈ 0.0926

∴�a1
=0.42152 �a2

= 0.12954

�a3
=0.28051 �a4

= 0.16843.

(9)ds
(
xi, y

)
=

m∑
j=1

�j ⋅ �
(
xij, yj

)
and y ∈

[
xi
]
a
.

(10)df
(
xi, y

)
=

m∑
j=1

�j ⋅ �
(
xij, yj

)
and y ∉

[
xi
]
a
.

(11)

siga
�
xi
�
=

1

1 +
∑

y∈U ds
�
xi, y

�
∕
���
�
xi
�
a

���
+

1

1 + exp
�
−
∑

y∈U df
�
xi, y

�
∕
���U −

�
xi
�
a

���
� .

Table 1  The decision table of 
an information system

a
1

a
2

a
3

a
4

x
1 0 0 0 1
x
2 1 1 0 1
x
3 2 0 1 0
x
4

2 0 1 0
x
5

3 0 2 1
x
6

4 0 2 1
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In Eq. (11), siga
(
xi
)
 includes the discrimination information 

of equivalence partition. A large value of siga
(
xi
)
 means that 

the attribute a is more important for xi . If the significance of 
each data point is calculated, a new significant matrix can be 
obtained. The new significant matrix S ∈ ℝ

m×n is defined as

In Eq. (12), S is numerical and the significant matrix can be 
seen as a new representation of X which means that the cat-
egorical data set X is transformed into a numerical data set. 
Therefore we can introduce manifold learning to decrease 
the dimensions of S.

Let Y =
[
Y1,Y2,… ,Yn

]
= P

T
S and P ∈ ℝ

m×d (d < m) , the 
data points can be reconstructed by their neighbors. Therefore 
the problem can be expressed as follow

where Wij is the weight between Yi and Yj ; � is a param-
eter and 𝛼 > 0 . The first term of Eq. (13) is the reconstruc-
tion error; the second term is the generalization ability. 
Let Dii =

∑n

j=1
Wij and L = D −W ; Eq. (13) can be also 

expressed as follow

From Eq. (14), P can be solved by the following generalized 
eigenvalue problem:

Therefore From Eq. (15), it can known that

P is made up of the d eigenvectors corresponding to the d 
smallest eigenvalues. If P is solved, Y = P

T
S is the result of 

dimension reduction.

3.3  The clustering processes of FRC

After data points is executed by the dimension reduction 
algorithm, a low dimension representation of data points 
can be obtained. Therefore it can use k-means clustering 
algorithm with fuzzy partition to get the final clusters. Let k 
be the number of clusters and Z =

[
z1, z2,… , zk

]
∈ ℝ

d×k be 
the cluster center points; however, how to select an appropri-
ate k value is an important problem. Rough set can generate 
a partition of the universe for each attribute. Therefore it 

(12)S =

⎡
⎢⎢⎣

siga1

�
x1
�
⋯ siga1

�
xn
�

⋮ ⋱ ⋮

sigam

�
x1
�
⋯ sigam

�
xn
�
⎤
⎥⎥⎦
m×n

.

(13)
min
P

n�
i=1

n�
j=1

Wij
���Yi − Yj

���
2

2
+ �‖P‖2

F

s.t. PT
SDS

T
P = 1

.

(14)
min
P

tr
�
P
T
SLS

T
P
�
+ �‖P‖2

F

s.t. PT
SDS

T
P = 1

.

(15)SLS
T
P + �P = �SDS

T
P.

(16)
(
SLS

T + �I
)
P = �SDS

T
P.

can employ the partition results to decrease the range of the 
number of clusters. Let U be a categorical data set and A be a 
attribute set; for ∀a ∈ A , U∕a =

{
X1,X2,… ,Xla

}
 ; the range 

of k should satisfy the following equation:

For the new data points Y , let �i be the standard deviation 
of Yi (i = 1, 2,… , d) . For a unlabeled data set, �i can reflect 
the scatter of data set on this attribute and a large �i means a 
good discernibility. �i can be normalized as follow

It is obvious that �i can be seen as the weight of the ith 
attribute. Therefore the objective optimization function of 
clustering algorithm can be expressed as follow

Therefore the membership uit is updated as

The center point ztj is updated as

From the above descriptions, the detail steps of FRC algo-
rithm are summarized as Algorithm 2.

Algorithm 2 FRC algorithm.
Input: the information system 〈U,A, V, f〉;
Output: the clustering result C = [C1, C2, · · · , Ck].
1: for a ∈ A do
2: Compute the partition of rough set U/a;
3: Compute the weight ωa and ω ← ω ∪ ωa;
4: end for
5: Determine the number of clusters k ;
6: Compute S according to Eq.(12);
7: Compute P according to Eq.(16) and Y = P TS;
8: for Yi ∈ Y do
9: Compute the standard deviation δi of Yi;
10: end for
11: Normalize δ = [δ1, δ2, · · · , δk] into [0, 1];
12: Randomly choose k center points Z;
13: while The objective function is not convergence do
14: Update uit as Eq.(20) (i = 1, 2, · · · , n; t = 1, 2, · · · , k);
15: Update ztj as Eq.(21) (t = 1, 2, · · · , k; j = 1, 2, · · · , d);
16: end while
17: Obtain the final membership matrix of the universe;
18: Obtain the final clustering result C = [C1, C2, · · · , Ck] from

the membership matrix by k-means.

(17)2 ≤ k ≤ max {|U∕a|} ∀a ∈ A.

(18)�i ← �i∕

d∑
j=1

�j.

(19)

min
U,Z

1

n

n∑
i=1

d∑
j=1

k∑
t=1

uit ⋅ �j ⋅
(
xij − ztj

)2

−
1

k

d∑
j=1

k∑
t=1

k∑
l=t+1

�j ⋅
(
ztj − zlj

)2

s.t. 0 ≤ uit ≤ 1

.

(20)

uit = 1∕

(
1 +

d∑
j=1

�j ⋅
(
xij − ztj

)2
)

i = 1, 2,… , n; t = 1, 2,… , k.

(21)
ztj =

∑n

i=1
uitxij∑n

i=1
uit

t = 1, 2,… , k; j = 1, 2,… , d.
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From Algorithm 2, it is known that the range of the num-
ber of clusters is decreased by the number of equivalence 
classes which is based on rough set. In Eq. (11), the signifi-
cance of an attribute for a sample can be measured by the 
weight. In addition, the weighting mechanism of Eq. (19) 
makes that the dissimilarity can better represent the real dis-
similarity. It is also known that FRC algorithm is different 
from k-modes algorithm and FRC algorithm can transforms 
categorical data set into numeric data set; therefore it can use 
many nonlinear dimension reduction algorithms to decrease 
the number of dimensions which is different from the attrib-
ute reduction algorithms based on rough set.

4  Experiments and results

In this section, we choose k-modes [5], DKmodes [3], 
WKModes [4] as comparison algorithms and all algorithms 
are executed on MATLAB 2017Ra. The details of data sets1 
are showed as Table 2. In order to measure the experimental 
results of the algorithms, the following evaluation criteria 
are used in this paper [34].

(1) Jaccard coefficient: 

(2) Fowlkes and Mallows index: 

(3) Czekanowski–Dice index: 

(22)J =
SS

SS + SD + DS
.

(23)FM =

√
SS

SS + SD
⋅

SS

SS + DS
.

(4) Kulczynski index: 

where SS is the number of data points which are in the same 
cluster and also belong to the same class; SD is the number 
of data points which are in the same cluster but belong to 
different classes; DS is the number of data points which are 
in different clusters but belong to the same classes; DD is 
the number of data points which are in different clusters and 
also belong to different classes. For the evaluation criteria, 
0 ≤ J, FM, CD, K ≤ 1 and a larger value indicates a better 
performance.

In order to test the performance of FRC, we execute 
k-modes, DKmodes, WKModes and FRC on the experimen-
tal data sets. For FRC, � is set to 5, d = 0.85 ⋅ col where col 
is the number of attributes. The test results are showed as 
Tables 3, 4, 5, 6, 7 and 8.     

Tables 3, 4, 5, 6, 7 and 8 show the test results of the four 
algorithms on the experimental data set and the bold results 
are the best results. From the results, it can be seen that 
the J, FM, CD and K of FRC algorithm are better than the 
three comparison algorithms on the experimental data sets 
except for nursery and student data sets. The results prove 
that FRC algorithm is an effective algorithm for clustering 
task. In FRC algorithm, it introduces the attribute weighting 
mechanism and the data set type conversion mechanism. 
The attribute weighting mechanism gives a weight for each 
attribute and an attribute with a larger weight has a large 

(24)CD =
2 ⋅ SS

2 ⋅ SS + DS + SD
.

(25)K =
1

2
⋅

(
SS

SS + SD
+

SS

SS + DS

)
.

Table 2  The details of the 
experimental data sets

Samples Attributes Type Classes Distribution

student 300 32 Categorical 3 {50, 72, 178}

Germany 300 20 Categorical 2 {220, 80}

Thoracic 470 17 Categorical 2 {70, 400}

adult 300 12 Categorical 2
{230, 70}

nursery 500 9 Categorical 4
{112, 6, 89, 93}

car 500 7 Categorical 4 {124, 341, 20, 15}

Table 3  The test results of the 
algorithms on Germany data set

DKmodes WKModes k-modes FRC

J 0.4417 ± 0.0440 0.4239 ± 0.0513 0.4532 ± 0.0619 0.5435 ± 0.0190
FM 0.6124 ± 0.0416 0.5951 ± 0.0475 0.6229 ± 0.0569 0.7132 ± 0.0184
CD 0.6115 ± 0.0419 0.5937 ± 0.0477 0.6214 ± 0.0569 0.7040 ± 0.0160
K 0.6134 ± 0.0413 0.5964 ± 0.0474 0.6243 ± 0.0570 0.7224 ± 0.0209
Time cost 5.8688 1.0906 0.2266 705.5525

1 http://archi ve.ics.uci.edu/ml/index .php

http://archive.ics.uci.edu/ml/index.php
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impact on the distance. By the data set type conversion 
mechanism, a categorical data set can be transformed into 
a numeric data set and then linear or nonlinear dimension 
reduction algorithms can be used to decrease the dimen-
sion of data set. The above mechanisms effectively avoid 
the influence of redundant attributes on the performance 
of the algorithm. Therefore the clustering results of FRC 
algorithm are better than the comparison algorithms on the 

most data sets. Tables 3, 4, 5, 6, 7 and 8 also show the time 
cost of the four algorithms. From the results, it is known 
that k-modes algorithm cost the least time, WKModes is 
the second least, DKmodes is the third least and FRC algo-
rithm spends much more time on clustering task than the 
comparison algorithms which means the time complexity 
of FRC algorithm is high. WKModes and DKModes are the 
developments of k-modes algorithm; WKModes uses the 

Table 4  The test results of the 
algorithms on student data set

DKmodes WKModes k-modes FRC

J 0.2458 ± 0.0116 0.2531 ± 0.0236 0.2900 ± 0.0303 0.2822 ± 0.0078
FM 0.3967 ± 0.0143 0.4054 ± 0.0290 0.4503 ± 0.0369 0.4401 ± 0.0095
CD 0.3944 ± 0.0148 0.4035 ± 0.0285 0.4487 ± 0.0363 0.4401 ± 0.0095
K 0.3991 ± 0.0138 0.4074 ± 0.0296 0.4518 ± 0.0377 0.4402 ± 0.0095
Time cost 7.3526 2.4812 0.2824 1065.8253

Table 5  The test results of the 
algorithms on nursery data set

DKmodes WKModes k-modes FRC

J 0.5078 ± 0.1159 0.3264 ± 0.0523 0.2623 ± 0.0342 0.2002 ± 0.0105
FM 0.6697 ± 0.1049 0.4927 ± 0.0594 0.4158 ± 0.0433 0.3340 ± 0.0162
CD 0.6657 ± 0.1051 0.4899 ± 0.0592 0.4145 ± 0.0430 0.3334 ± 0.0142
K 0.6737 ± 0.1046 0.4955 ± 0.0597 0.4172 ± 0.0435 0.3347 ± 0.0183
Time cost 4.0427 1.1652 0.3391 332.0208

Table 6  The test results of the 
algorithms on Thoracic data set

DKmodes WKModes k-modes FRC

J 0.4955 ± 0.1075 0.5054 ± 0.0735 0.5351 ± 0.0970 0.7314 ± 0.0061
FM 0.6635 ± 0.0787 0.6735 ± 0.0583 0.6971 ± 0.0758 0.8524 ± 0.0045
CD 0.6570 ± 0.0810 0.6685 ± 0.0615 0.6923 ± 0.0787 0.8449 ± 0.0041
K 0.6701 ± 0.0764 0.6786 ± 0.0551 0.7019 ± 0.0729 0.8601 ± 0.0050
Time cost 10.5341 1.3735 0.2817 1226.2209

Table 7  The test results of the 
algorithms on adult data set

DKmodes WKModes k-modes FRC

J 0.4284 ± 0.0329 0.4387 ± 0.0649 0.4905 ± 0.0912 0.6360 ± 0.0040
FM 0.6032 ± 0.0323 0.6100 ± 0.0554 0.6565 ± ± 0.0771 0.7961 ± 0.0037
CD 0.5991 ± 0.0318 0.6074 ± 0.0554 0.6536 ± 0.0768 0.7775 ± 0.0030
K 0.6074 ± 0.0328 0.6126 ± 0.0554 0.6594 ± 0.0776 0.8151 ± 0.0044
Time cost 3.0153 1.4524 0.2161 387.2299

Table 8  The test results of the 
algorithms on car data set

DKmodes WKModes k-modes FRC

J 0.3615 ± 0.0570 0.3172 ± 0.0589 0.3123 ± 0.0702 0.4100 ± 0.0538
FM 0.5605 ± 0.0666 0.5073 ± 0.0721 0.4904 ± 0.0762 0.5861 ± 0.0618
CD 0.5283 ± 0.0655 0.4785 ± 0.0697 0.4718 ± 0.0787 0.5796 ± 0.0525
K 0.5948 ± 0.0679 0.5378 ± 0.0745 0.5099 ± 0.0740 0.5927 ± 0.0716
Time cost 5.7890 1.0897 0.5179 660.6340
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equivalence partition of current attribute to determine the 
importance of current attribute in each cluster; DKmodes 
considers the frequency of mode components in the cur-
rent cluster when it determines the dissimilarity between 
data point and center point; it is obvious that WKModes 
and DKModes introduce the more complex dissimilarity 
measurement methods to measure the dissimilarity, there-
fore WKModes and DKModes cost more time than k-modes 
algorithm; for FRC algorithm, it uses information granular-
ity of equivalence partition on each attribute to determine 
the weight of the attribute and also uses the significance of 
each attribute for each data point to transform categorical 
data set into numeric data set; the time complexity of the 
above steps is O

(
mn2

)
 ; the time complexity of the dimension 

reduction of FRC algorithm is O
(
n2
)
 ; the time complexity 

of Eq(19) is O(n ⋅ k ⋅ d ⋅ I) ≈ O(n) where I is the number of 
iterations; therefore the time complexity of FRC algorithm is 
O
(
mn2

)
 . For the comparison algorithms, there is no the data 

set type conversion mechanism; therefore the time complex-
ity of each comparison algorithm is not larger than O

(
mn2

)
 . 

From the analysis, it is known that the complexity of FRC 
algorithm is highest.

In order to test the impacts of the parameter � on the 
performance of FRC algorithm, we choose Germany as the 
experimental data set and FRC algorithm is executed on the 
data set; � is changed in [0, 100] and the other parameter is 
set as the above experiment; the test results are showed as 
Figs. 1, 2, 3 and 4.

Figures 1, 2, 3 and 4 show the results of FRC algorithm 
tested on Germany data set with different � values. From 
the results, it can be seen that the improvement of the 
performance of FRC algorithm is the largest when � = 5 . 
When 𝛼 < 15 , the performance of FRC algorithm increases 
with the increase of � value; after � is larger than 15, the 
performance of FRC algorithm almost keeps stable. For 
FRC algorithm, � is a parameter which can affect the gen-
eralization ability of FRC algorithm. If � → 0 , Eq. (13) 
is equal to LPP algorithm [16]. If 𝛼 > 0 , the optimization 
problem of Eq. (13) considers the the generalization abil-
ity, therefore FRC algorithm can obtain a better gener-
alization ability and the test results of Figs. 1, 2, 3 and 4 
also prove the conclusion. If � is a large value, the impact 
of the first term of Eq. (13) will be decreased. If � is too 
large, the impact of the first term of Eq. (13) is almost 

Fig. 1  The J of FRC algorithm with different � values

Fig. 2  The FM of FRC algorithm with different � values

Fig. 3  The CD of FRC algorithm with different � values

Fig. 4  The K of FRC algorithm with different � values
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ignored. In a word, an appropriate � value is important for 
the performance of FRC algorithm.

In order to test the scalability of FRC algorithm, we 
choose Germany as the experimental data set; the param-
eter is set as � = 5 ; FRC is executed on adult data set with 
different dimensions. The test results are showed as Figs. 5, 
6, 7 and 8 and Table 9.

Figures 5, 6, 7 and 8 show the test results of FRC algo-
rithm on adult data set with different dimensions. From the 
results, it can be seen that the values of evaluation criteria 
are different when d is different. In other words, d can effect 
the performance of FRC algorithm. For FRC algorithm, d 
determines the dimensions of data set after dimension reduc-
tion. If d is too small, much effective discriminant informa-
tion is removed from data. If d is too large, it is obvious that 
much reductant or ineffective information is also added into 
data which decreases the performance of FRC algorithm. 
Table 9 shows the time cost of FRC algorithm with different 
dimensions. From the results, it is known that the overall 
change of time cost is increased. It is known that the time 
cost of FRC algorithm is mainly determined by the data 
processing of Sects. 3.1 and 3.2 and the time complexity 
is O

(
mn2

)
 ; if d is changed, it can effect the time cost of 

the clustering steps and the time complexity of Eq. (19) is 
O(n ⋅ k ⋅ d ⋅ I) . Therefore the change of the time cost of FRC 
algorithm is also changed when d is changed.

In order to test the effectiveness of FRC algorithm, we 
choose Germany as the experimental data set and execute 
FRC algorithm and FRC algorithm without dimension 
reduction which is denoted as UFRC. For the two algorithm, 
� is set to 5, d = 3 . The results are showed as Fig. 9.

Figure 9 shows the results of FRC algorithm and UFRC 
algorithm on Germany data set. From the results, it is known 
that FRC algorithm outperforms UFRC algorithm on J, 
FM, K and CD evaluation criteria. It means the dimension 

Fig. 5  The J of FRC algorithm with different dimensions

Fig. 6  The FM of FRC algorithm with different dimensions

Fig. 7  The CD of FRC algorithm with different dimensions

Fig. 8  The K of FRC algorithm with different dimensions
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reduction can improve the performance of the algorithm. For 
FRC algorithm, dimension reduction is to remove and elimi-
nate irrelevant and redundant information. In the dimension 
reduction algorithm, nonlinear transformation is introduced; 
redundant or redundant information can be removed, there-
fore the dimension reduction algorithm can improve the per-
formance of FRC algorithm.

5  Conclusions

In this paper, a fuzzy rough clustering algorithm (FRC) for 
categorical data is proposed. FRC algorithm uses the par-
tition of rough set to compute the information granularity 
of each attribute and introduces information granularity to 
determine the weights of attributes. Different from original 
k-modes algorithm, FRC algorithm transforms categorical 
data set into numeric data set and employs nonlinear dimen-
sion reduction algorithm to decrease the dimensions of data 
set; the objective optimization function of RFC algorithm 
considers intra-cluster distance and inter-cluster distance of 
clustering result and FRC algorithm can obtain a clustering 
result with minimum intra-cluster dissimilarity and maxi-
mum inter-cluster dissimilarity. FRC algorithm and the com-
parison algorithms are executed on real data sets. The exper-
imental results show that RFC algorithm outperforms the 
comparison algorithms on the most data sets and it proves 
that FRC algorithm is an effective clustering algorithm for 
categorical data. However, FRC algorithm randomly chooses 
k modes which reduces the convergence speed; in addition, 
the weights of attributes are the same for each cluster which 

is not fit for the theory of subspace learning. Therefore we 
can introduce a method to select high quality initial center 
points and use subspace clustering to further improve the 
performance of FRC algorithm in the future.
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