
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:3155–3166 
https://doi.org/10.1007/s13042-019-01006-4

ORIGINAL ARTICLE

Enhance the recognition ability to occlusions and small objects 
with Robust Faster R‑CNN

Tao Zhou1 · Zhixin Li1 · Canlong Zhang1

Received: 29 March 2019 / Accepted: 21 August 2019 / Published online: 26 August 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Recognizing objects with vastly different size scales and objects with occlusions is a fundamental challenge in computer 
vision. This paper addresses this issue by proposing a novel approach denoted as Robust Faster R-CNN for detecting objects 
in multi-label images. Robust Faster R-CNN employs a cascaded network structure based on the Faster R-CNN architecture 
to extract features from objects with different size scales. However, the proposed design provides greater robustness than 
Faster R-CNN by replacing the RoIPooling operation with RoIAligns to eliminate the harsh quantization conducted by 
RoIPooling, and we design a multi-scale RoIAligns operation by adding multiple pool sizes for adapting the detection ability 
of the network to objects with different sizes. Furthermore, we combine an adversarial network with the proposed network 
to generate training samples with occlusions significantly affecting the classification ability of the model, which improves 
its robustness to occlusions. Experimental results for the PASCAL VOC 2012 and 2007 datasets demonstrate the superiority 
of the proposed object detection approach relative to several state-of-the-art approaches.
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1 Introduction

Object detection is one of the fundamental problems in com-
puter vision that has been substantially addressed due to the 
great advances in deep learning over the past few years. It 
is well known that prevalent object detectors mostly regard 
detection as a problem of classifying candidate boxes[4, 5, 
17]. This has led to the increasingly successful of the appli-
cation of CNN(convolutional neural networks) in image rec-
ognition tasks [18, 25–27]. As a result, an increasing number 
of novel object detection methods based on CNNs [2, 10, 19] 
have been proposed. These structurally diverse frameworks 
have improved the accuracy of object detection to a cer-
tain degree, and many have achieved real-time performance 
for many benchmark datasets. However, images typically 
contain occlusions and small objects to which most current 
object detection methods are not sensitive. Insensitivity to 
these objects will inevitably restrict the accuracy of object 

detection. Therefore, the development of detection methods 
that are sensitive to occlusions and small objects in images 
is a key problem that must be addressed to provide more 
robust object detection.

In general, the problem associated with small object 
detection is actually a problem involving the detection of 
objects with vastly different size scales, which is a very com-
mon problem in object detection. Hence detection of small 
objects become more challenging. As such, current object 
detection methods accommodate the detection of small 
objects by generating feature representations of different 
scales. A number of empirical studies [13, 14, 17] have sug-
gested that feature representations generated by multi-scale 
feature maps are very helpful for detecting small objects, 
especially large-scale feature maps. This indicates that multi-
scale feature extraction methods can be expected to enhance 
the detection of small objects. We are thus motivated to 
attempt to design a multi-scale feature extraction method 
and integrate it into our model. The problem of ensuring 
sensitivity to occlusions is generally addressed by capturing 
a large number of variations in visual features within a large 
dataset. However, capturing all possible occlusions within a 
dataset is not possible, and occlusions with low probabilities 
will be absent from even very large datasets. So, how can 
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we get these rare occlusions? Moreover, an effort to address 
this issue by collecting larger data sets is highly inefficient. 
Therefore we consider trying to use an adversarial network 
to generate the occlusions what we need.

This paper addresses these problems by proposing an 
improved approach denoted as Robust Faster R-CNN. The 
novel design employs a cascaded network structure based 
on the Faster R-CNN architecture to extract features from 
objects with different scales in multi-label data. In addition, 
we train the adversarial network to generate training sam-
ples with occlusions significantly affecting the classification 
ability of the model, which improves its robustness to occlu-
sions. Furthermore, we design a multi-scale RoIAlign opera-
tion by adding multiple pool sizes for adapting the detec-
tion ability of the network to objects with different sizes. 
Experimental results for the PASCAL VOC 2012 and 2007 
datasets, which are widely used benchmarks for evaluating 
object detection performance, demonstrate that our approach 
performs more effectively and more accurately than several 
state-of-the-art approaches.

2  Related work

In the past few years, many works have been carried out on 
various object detection models. These models are usually 
based on two types of frameworks: One kind of object detec-
tion method rely on region proposal. These region-based 
methods divide the object detection task into two stages. 
In the first stage, a dedicated region proposal generation 
network(RPN) is grafted onto a deep convolutional neu-
ral networks (CNNs) to extract features from the proposed 
regions, and thereby generate high quality candidate boxes. 
Then a region-wise sub-network is designed to classify 
and refine these candidate boxes in the second stage. And 
another region-free methods divide the object detection task 
into one stage.

With the rise of CNN, the two-stage methods has quickly 
become the mainstream of object detection in recent years. 
Such as R-CNN [5], Fast R-CNN [4], Faster R-CNN [17], 
SPPnet [6], R-FCN [2]. R-CNN [5] method extracted region 
proposals using the Selective Search method [23], and linear 
support vector machine (SVM) was adopted as a classifier for 
region proposals. However, for R-CNN, the process of generat-
ing region proposals was computationally slow. Accordingly, 
Fast R-CNN [4] was developed to increase the computational 
speed of the region proposal generation process by developing 
a novel RoIPooling (i.e., Spatial Pyramid-Pooling) that allowed 
the classification layers to reuse features computed over CNN 
feature maps. Then, Faster R-CNN [17] replaced the Selective 
Search method with a network of region proposal generation 
to further increase the computational speed of region proposal 
generation. Moreover the convolutional layers were shared 

with other components, which realized end-to-end training of 
the entire network. Faster R-CNN was elected as the state-
of-the-art method in the ILSVRC and COCO 2015 competi-
tions, and a performance of 69.9 was obtained for the PASCAL 
VOC 2007 dataset [3]. In addition, single-stage object detec-
tion methods, such as SSD [14], YOLO [16], and RON [11], 
have been developed in recent years. These methods directly 
estimate object candidates without a reliance on region pro-
posal, and are therefore computationally faster than two-stage 
methods. While these methods have a great performance for 
salient and universal object, they are hard to recognize occlu-
sions and small object.

The current success of object detection is closely related 
to the application of large-scale dataset. But for occlusion 
problem, some of the rare occlusions are not easy to find in 
large-scale dataset. However, it is inefficient to expand the 
dataset by adding rare occlusion samples. Therefore, instead 
of attempting to collect the dataset to find rare occlusions, 
we attempt to generate occlusions which will be rare occlu-
sion samples. Hence, we do a lot of work about adversarial 
networks. As an alternative to relying on large-scale datasets 
to capture all possible variations of visual features, A-Fast-
R-CNN [24] proposed the training of an Adversarial Spatial 
Dropout Network (ASDN) to generate low probablity adver-
sarial examples in convolutional features. This approach has 
recently demonstrated good performance [22]. This inspire 
us and motivate us to find wonderful idea to enhance the 
ability of our model to solve the occlusion problem. Other 
methods have proposed the use of a cascaded network to 
recognize occluded or invisible key points [1]. In addition, 
a 1 × 1 convolutional layer has been employed to reduce 
the number of network parameters and thereby accelerate 
calculations [21]. Although these past developments have 
resulted in considerable improvements in object detection 
for images with small objects and occlusions, none of these 
methods can effectively solve both problems simultaneously 
with reasonable accuracy and computational speed.

In contrast, the proposed methods in this paper combine 
a highly effective network structure, multi-layer fusion, 
multi-scale pooling, and a more effective training strategy 
to take full advantage of CNNs for object detection, and 
extracts features with different size scales without substan-
tially reducing the computational speed. In conjunction with 
the adversarial network, the proposed method can adapt to 
widely varying object characteristics in multi-label images.

3  Improved model

3.1  Multi‑cascaded network

The different depth features of a CNN correspond to different 
levels of semantic features. In general, the features extracted 
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by a deep network contain a greater proportion of high-level 
semantic information, while features extracted by a shallow 
network contain more detailed features. Therefore, the feature 
map becomes increasingly abstract as the depth of the network 
increases, and the reduced proportion of detailed information 
results in a decreased recognition effect for small objects. The 
solution to this problem employed by nearly all current meth-
ods that have achieved good classification and object detection 
results is to adopt image pyramids, i.e., multi-scale training. 
However, this method is computationally intensive. This has 
led to efforts seeking to enhance the recognition of multi-scale 
objects by modifying the network structure.

The above-described effect of increasing network depth 
on network performance has been clearly demonstrated by 
the VGG16 model [20], which is illustrated in Fig. 1. As 
can be clearly seen in the figure, the convolution layers 
of the VGG16 model adopts multiple small 3 × 3 convo-
lutional kernels in succession, which increases the depth 
of the network while reducing the number of parameters, 
and thereby reducing the computational complexity of the 
model. In addition, the use of a smaller core facilitates the 
use a greater number of filters compared with algorithms 
adopting large convolution kernels, such as AlexNet [12]. 
This in turn facilities the use of a greater number of acti-
vation functions, which will enhance the learning of more 
complex patterns and concepts. However, small convo-
lutional kernels can provide less information regarding 
the scale, shape, and position of objects, particularly for 
small objects. Furthermore, extant filled edge features 
are counted several times, which increases the number of 
errors. In contrast, larger convolution kernels can capture 
more spatial context, which facilitates the recognition of 

objects with more spatial context, which facilitates the 
recognition of objects with different scales. However, it 
is noted that the effect of the number of convolutional 
kernels is equivalent to the effect of the number of param-
eters. Therefore the number of kernels mainly determined 
by the quantity of parameters in the cascade networks. 
If the convolutional layers brings lots of parameters to 
the network, this will undoubtedly limit performance. We 
must control the number of parameters while improving 
performance. Accordingly, an optimal tradeoff is required 
between the quality of feature representation and the com-
putational performance. This is addressed in the present 
work by designing the multi-cascaded network structure 
of the improved Faster R-CNN model illustrated in Fig. 1. 
The structure adds two shallow networks to the original 
VGG16 model, where one layer contains five 5 × 5 con-
volution kernels and the other layer contains three 7 × 7 
convolution kernels. In addition, the two shallow networks 
added to the original VGG16 model make the final output 
feature map size equivalent to that of the VGG16 model, 
but with more detailed object information owing to its 
higher resolution. Because of high resolution feature map 
has more information of objects but contains more infor-
mation of objects. Each cascaded network has the same 
number of pooling layers, as marked in the figure, which 
ensures that the feature maps used for fusion are consist-
ent in size. The concat layer splices the feature map and 
maintains constant fusion feature map sizes. Actually, this 
represents matrix splicing, as is demonstrated clearly in 
Fig. 1. Batch normalization (BN) and scale operations are 
added after each convolution layer, which can increase the 
training rate and the classification effect [8].

Fig. 1  The improved Faster R-CNN model with multi-scale RoIAligns and cascaded network structure
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3.2  Parameter transferring

As shown in Fig. 2, the parameters pre-trained with the 
Faster R-CNN model are directly transferred to the improved 
Faster R-CNN model to reduce the training time [15]. Only 
the parameters pre-trained on Faster R-CNN for the last 
fc6 layer are not transferred because the use of multi-scale 
ROIAlign in the improved Faster R-CNN model changes the 
dimensions of the fc6 layer. Then, additional training is con-
ducted to fine-tune the parameters for the improved Faster 
R-CNN model. Moreover, the transferred fc7 can be seen as 
a means of guaranteeing the representation capabilities of 
the transferred model parameters.

3.3  Multi‑scale ROIAligns

The RoIPool operation [17] is a standard operation for 
extracting a small feature map (e.g., 7 × 7 ) from an RoI. 
First, RoIPool quantizes a floating number RoI to the dis-
crete granularity of the feature map, this quantized RoI 
is then subdivided into spatial bins which are themselves 
quantized, Finally, the feature values representative of each 
bin are aggregated (usually by a max pooling operation). 
For example, quantization can be performed on a continu-
ous coordinate x by computing round(x∕16 ), where 16 is 
a feature map stride and the round(⋅ ) function represents 
rounding. However, these quantizations introduce misalign-
ments between the RoI and the extracted features. While 
this may not impact classification, which is robust for large 
objects, it has a largely negative effect on predicting pixel-
accurate object boxes (i.e., for small objects). Furthermore, 

the RoIPool operation breaks pixel-to-pixel translation-
equivariance. Therefore, the present work adopts the RoIA-
lign operation proposed in Mask R-CNN [7]. This eliminates 
the harsh quantization of RoIPool, and properly aligns the 
extracted features with the input. As shown in Fig. 3, RoIA-
lign avoids any quantization of the RoI boundaries or bins 
(e.g., it applies x∕16 rather than round(x∕16)). Then, bilinear 
interpolation is employed to compute the exact values of the 
input features at four regularly sampled locations in each 
RoI bin, and the result is aggregated using a max pooling 
operation.

Fig. 2  Faster R-CNN parameter transference to the improved Faster R-CNN model

Fig. 3  Process of the RoIAlign operation, where the dashed grid rep-
resents a feature map, the solid lines an RoI (with 7 × 7 bins), and the 
dots the 4 sampling points in each bin. Here, RoIAlign computes the 
value of each sampling point by bilinear interpolation based on the 
nearby grid points on the feature map. No quantization performed on 
any coordinates involved in the RoI, its bins, or the sampling points
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The Faster R-CNN framework tends to lose a considerable 
amount of object information during feature map generation, 
which seriously detracts from its small object detection per-
formance [15]. For example, an object originally composed 
of 32 × 32 pixels has only 2 × 2 pixels remaining in the last 
layer of the feature map. This problem is generally addressed 
by enlarging the feature map and utilizing a smaller anchor 
scale in the RPN. The Faster R-CNN framework applies the 
RoIPool operation to the feature map with a pool size of 
7 × 7 for each RoI proposed by the RPN. However, capturing 
object features at different size scales is quite difficult when 
employing a single pool size. The present work addresses 
this issue by applying two pooled sizes of 11 × 3 and 3 × 11 , 
as has been previously proposed for enhancing small object 
detection in the R2CNN model [9]. The 3 × 11 pool size 
is designed to capture more horizontal features, and there-
fore aids in the detection of objects with widths that are 
much greater than their heights. In contrast, the 11 × 3 pool 
size is designed to capture more vertical features, and is 
therefore helpful for detecting objects with heights that are 
much greater than their widths. Furthermore, a pool size 
of 11 × 11 is also added to enhance the robustness of the 
proposed model for detecting objects at small size scales. 
In addition, the adoption of a smaller anchor scale has been 
demonstrated to enhance small object detection [9]. There-
fore, we added smaller anchor scales to the original scales 
of (8, 16, 32) so that the proposed model utilized anchor 
scales of (4, 8, 16, 32), which would generate 12 anchors in 
the RPN. The proposed multi-scale RoIAlign operation can 
therefore pool features extracted at variable size scales, and 
thereby improves the accuracy of object detection.

3.4  Feature descending fusion

Since we use multi-scale poolingIn addition, which the multi-
scale RoIAlign operation leads to the larger dimensions of 
subsequent provides a fully-connected layer with larger dimen-
sions, and increases the computational time consumed of asso-
ciated with object detection. The improved Faster R-CNN 
model also uses the convolution layer as well as the pooling 
layer to reduce the parameter redundancy of the fully con-
nected layer, as has been previously proposed [21]. It is well 
known that the use of different dimensions in the multi-scale 
RoIAlign operation makes direct feature splicing impossible. 
However, this can be addressed through the use of a flatten 
layer to transform the pooled feature map (i.e., a multidimen-
sional matrix) into a number of one-dimensional vectors, such 
as was applied in the R2CNN model. However, the present 
work seeks to avoid parameter redundancy prior to using the 
flatten layer by reducing the number of model parameters via 
the application of a convolutional layer with a kernel size of 
1 × 1 and a step size of 1. We accordingly reduce the dimen-
sionality of each of the four pooled feature maps, while the 

dimension of the 7 × 7 feature map is reduced to 512, that of 
the 11 × 11 feature map is reduced to 128, and the dimensions 
of the of 3 × 11 and 11 × 3 feature maps are reduced to 256. 
Then, we use flatten layers to transform the pooled feature 
map into four one-dimensional vectors, and the concat layer 
is employed to pass the vectors to the fully connected layer.

This process is illustrated in Fig. 4, where we have added 
a 1 × 1 convolution layer after each multi-scale pooling layer. 
As is well known, the convolution process using a 1 × 1 kernel 
typically acts to decrease dimensionality, which here refers to 
the number of image channels (thickness), while the width and 
height of the image is not changed.

4  Adversarial network

The functionality of an adversarial network A(X), where X is a 
set of features, is first analyzed by comparing the loss function 
obtained for an object detector network F(X) to that obtained 
for A(X), while adopting the terms Fc(X) and Fl(X) to represent 
the class and predicted bounding box location outputs, respec-
tively, and C and L to represent the respective groundtruth 
class and bounding box locations for X. Accordingly, the loss 
function of F(X) can be given as follows. 

Here, the first term is the SoftMax loss and the second term 
is the loss based on Fl(X) and L. The purpose of an adver-
sarial network is to learn how to predict those X that Fl(X) 
would fail to accurately classify. Accordingly, A(X) gener-
ates new adversarial examples for a given X, which are then 

(1)EF=Esoftmax(Fc(X),C) + Ebbox(Fl(X), L)

Fig. 4  The feature filtering structure using convolution layers with a 
kernel size of 1 × 1
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added to the training samples. The adversarial network is 
trained via the following loss function.

Therefore, obtaining a low value of EF for examples gener-
ated by A(X) that are easily classified by F(X) results in a 
high value of EA . In contrast, obtaining a high value of EF 
for examples generated by A(X) that are difficult for F(X) 
to classify results in a low value of EA . As such, the two 
networks perform exactly opposite tasks.

4.1  Adversarial spatial dropout network training

We apply stage-wise training to the ASDN, as was con-
ducted in a previous work [24]. Here, the ASDN is first 
pre-trained on a multi-label image dataset to obtain a pre-
liminary perception of the dataset appropriate for use dur-
ing the joint training of the ASDN and the improved Faster 
R-CNN. Subsequently, the ASDN is trained by fixing all of 
the network layers.

As shown in Fig. 5, the ASDN has the same structure as 
the improved Faster R-CNN framework in terms of the con-
volutional layers, RoIPooling layer, and the fully connected 
layers. The convolutional features for each feature map after 
the RoIPooling layer are applied as the inputs for the ASDN. 
Given a feature map of size d × d , the ASDN will generate 
a mask representative of those parts of the feature map to be 
occluded by assigning zeros in an effort to increase the value 
of EF obtained for the improved Faster R-CNN by introduc-
ing occluded features that are more difficult to classify. This 
is conducted by applying a d∕3 × d∕3 sliding window that 
deletes the values in all the channels at its corresponding 
position, and thereby generates a new feature vector. All of 
the new feature vectors obtained in this manner are passed to 
the Softmax loss layer to calculate the loss function, and the 
feature vector obtaining the highest loss is selected. Then, 
the window creates a single d × d mask with 1 for the central 
window location and 0 for the other pixels. The sliding win-
dow process is represented by mapping the window back to 

(2)EA= −Esoftmax(Fc(A(X)),C)

the image, as shown in Fig. 6a. In this way, the ASDN gener-
ates spatial masks for n feature maps and obtains n training 
samples that have high losses. The binary cross entropy loss 
is used to train the ASDN, which is given as follows.

Here, Aij(X
p) represents the outputs of the ASDN at location 

(i, j) given an input feature map Xp , and if Mij = 1, we drop 
out the values of all the channels in the corresponding spatial 
location of the feature map X. The output generated by the 
ASDN is not a binary mask but rather a continuous heatmap. 
The ASDN uses importance sampling to select the 1 / 3 of 
the pixels in a heatmap, which are assigned a value of 1, 
while the remaining 2 / 3 pixels are set to 0. As illustrated in 
Fig. 6b, the application of occlusions generating high loss in 
the ASDN learning process results in a recognition of those 
parts of objects that are most significant for classification.In 
this case, we use the masks to occlude these parts to make 
the classification harder.

4.2  Joint training

We jointly optimize the pre-trained ASDN and our improved 
Faster R-CNN model. In the joint model, the ASDN shares 
the convolutional layers and RoIPooling layer with the 
improved Faster R-CNN model, but uses its own separate 
fully connected layers. Naturally, the parameters of the two 
networks must be optimized independently in accordance 
with their diametrically opposed tasks. For training the 
improved Faster R-CNN model, we first use the pre-trained 
ASDN to generate masks for creating modified feature maps 
after the RoIPoolings layer during the forward propagation 
training stage, and then pass the modified features to the 
improved Faster R-CNN model for calculating losses and 

(3)
E = −

1
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Fig. 5  Architecture of the Adversarial Spatial Dropout Network (ASDN) in combination with the improved Faster R-CNN framework. Occlu-
sion masks are created to generate training examples that are difficult to classify



3161International Journal of Machine Learning and Cybernetics (2019) 10:3155–3166 

1 3

model training. Although the features are modified, their 
labels remain unchanged. This ensures that more diverse 
examples are introduced when training the improved Faster 
R-CNN model, and results in greater robustness for clas-
sifying objects with occlusions. For training the ASDN, 
the sampling strategy applied to convert the heatmap into a 
binary mask makes the classification loss calculation non-
differentiable, so that the gradients from the classification 
loss are not available for back-propagation during training. 
Same as A Fast R-CNN [24], only those hard example masks 
are used as ground-truth to train the adversarial network 
by using the same loss as described in Eq. (3) to compute 
which binary masks lead to significant drops in Robust 
Faster R-CNN classification scores.

5  Experiment

5.1  Datasets and evaluation metrics

The PASCAL VOC 2007 and 2012 datasets employed in 
the experiments contain a total of 9963 and 22,531 images, 
respectively, and are divided into train, val, and test sub-
sets. Our experiments employed 5011 trainval and 4952 test 
images for VOC 2007 and 11,540 trainval and 10,991 test 
images for VOC 2012. The average precision (AP) and the 
mean of the AP (mAP) were employed as the evaluation met-
rics in compliance with the PASCAL challenge protocols. 

Test speed and convergence speed are also important met-
rics for evaluating model performance. The experimental 
results obtained for the proposed improved Faster R-CNN 
and Robust Faster R-CNN frameworks were compared with 
results obtained using several state-of-the-art approaches, 
including Faster R-CNN, A-Fast-R-CNN, SSD, and RON. 
All of the experimental results were obtained by running the 
models on a PC equipped with an i7 processor with a 4.20 
GHz clock speed, a GTX 1080Ti single core GPU, and 16 
GB memory.

5.2  Convergence and joint model training

We initialized the parameters of the improved Faster R-CNN 
with the Faster R-CNN parameters trained on the VOC 2007 
trainval subset. To accommodate the changed dimensions 
of the fully connected fc6 layer in the improved model, this 
layer was initialized from zero-mean Gaussian distributions 
with standard deviations 0.01, and the learning rate was 
set to 0.01 and scaled by a factor of 0.1 every 20 epoches 
based on momentum and weight decay values of 0.9 and 
0.0005, respectively, for a total of 60 epoches. Training for 
the Faster R-CNN model and the improved Faster R-CNN 
model included a number of iterations set to 60 epochs, 
where each epoch consisted of 2000 iterations. The mAP 
values of the training models were calculated at different 
iterations during the training processes prior to generating 
the final models, and the results are presented in Fig. 7. The 

Fig. 6  a Examples of occlusions 
that are sifted to select the hard 
occlusions, and are used as the 
groundtruth for training the 
ASDN. b Examples of occlu-
sion masks generated by the 
ASDN, where the black regions 
represent occlusions repre-
sentative of the most significant 
pixels for classification
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figure indicates that the mAP scores for the training models 
began to converge after a little less than 40 epochs, or 70K 
iterations. Over these number of iterations, the improved 
Faster R-CNN training model yielded an mAP score of 
77.5% and that of the Faster R-CNN training model was 
73.2%. These results demonstrate that the improved Faster 
R-CNN model has a faster convergence rate than the Faster 
R-CNN model. The ASDN was pre-trained for 12K itera-
tions. Then, the joint model was trained for 120K iterations. 
We again adopted a varying learning rate, which was ini-
tially 0.001 and decreased to 0.0001 after 60K iterations 
based on the momentum and weight decay values adopted 
in the previous part.

5.3  Ablation experiments

The ablation experiments were designed to evaluate the 
influence of different anchor scales and different RoIPool 
sizes on the object detection performance of the models 
trained with the VOC 2007 dataset, including the Faster 
R-CNN, cascaded network, which is an equivalent network 
structure to that of the improved Faster R-CNN, but which 

adopts the standard RoIPool operation, and Robust Faster 
R-CNN. Although RoIPooling can also capture the differ-
ent scale features of the object, but compared with RoIAl-
igns having lower accuracy. Owing to RoIAligns removes 
the strict quantization of RoIPooling, correctly aligning the 
extracted features with RoI. These quantization of RoIPool-
ing introduce misalignment problem between the RoI and 
the extracted features. Furthermore RoIPooling breaks pixel-
to-pixel translation-equivariance. Meanwhile quantization 
lead to miss some information of features. While this may 
not effect on accuracy of detecting large objects, for small 
objects, the problem of quantization will reduce the accuracy 
of recognition. The results are presented in Table 1. The 
results clearly indicate that the cascaded network with four 
pool sizes ( 3 × 11 , 11 × 3 , 7 × 7 , 11 × 11 ) performed better 
than Faster R-CNN with a single pool size ( 7 × 7 ), and the 
cascaded network with a single pool size ( 7 × 7 ) and three 
pool sizes ( 3 × 11 , 11 × 3 , 7 × 7 ). Firstly, these results dem-
onstrate the benefits of the developed multi-scale RoIAlign 
operation over the standard RoIPool operation owing to the 
enhanced capability of the multi-scale operation to extract 
features at variable scales. Secondly, these results demon-
strate the cascaded network we designed has a very positive 
effect on the accuracy from the experimental results and 
the cascaded network can capture more information so that 
it can recognize more objects of different sizes. With the 
increase of depth of the network, the feature map becomes 
more and more abstract. Some information will be ignored 
through convolution and pooling, especially small objects. 
Low-resolution feature map is unfavorable to the recogni-
tion of small objects. Hence, we designed a cascaded net-
work structure to extract features from objects with differ-
ent scales. Finally, these results demonstrate the benefits of 
including horizontally and vertically biased pool sizes, and 
also demonstrate that the addition of the 11 × 11 pool size 
enhances the object detection performance of the cascaded 
network. This latter benefit is mainly because the additional 
11 × 11 pool size can enhance the detection of smaller 
objects in the VOC dataset. FT means fine-tuning and it 
has also contributed greatly to the improvement of model 
performance. Compared with the results obtained for the 
improved Faster R-CNN model, the Robust Faster R-CNN 

Fig. 7  The mAP scores obtained during model training based on the 
PASCAL VOC 2007 dataset

Table 1  Ablation experiment 
results on the VOC 2007 dataset

Approach Anchor Pooled sizes mAP

Faster RCNN (8,16,32) 7 × 7 73.2
Faster RCNN (4,8,16,32) 7 × 7 73.3
Cascade network (4,8,16,32) 7 × 7 73.9
Cascade network+RoIAligns (4,8,16,32) 3 × 11 , 11 × 3 , 7 × 7 74.5
Cascade network+RoIAligns (4,8,16,32) 3 × 11 , 11 × 3 , 7 × 7 , 11 × 11 74.8
Cascade network+RoIAligns+FT (4,8,16,32) 3 × 11 , 11 × 3 , 7 × 7 , 11 × 11 75.2
Cascade network+RoIAligns+FT+ASDN (4,8,16,32) 3 × 11 , 11 × 3 , 7 × 7 , 11 × 11 77.5
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model provided an mAP that was 2.3% greater, reflecting the 
effectiveness of the ASDN.  

5.4  Results

The AP and mAP values obtained for various images in 
the VOC 2007 dataset and the VOC 2012 dataset by means 
of the proposed object detection frameworks and the vari-
ous state-of-the-art approaches are listed in Tables 2 and 3, 
respectively. The results indicate that the detection perfor-
mances of the proposed Robust Faster R-CNN models are 
significantly better than that of Faster R-CNN, and their 
detection accuracy for small objects in particular, such as 
bird and plant, is significantly improved. These results con-
firm the feasibility of the proposed multi-scale RoIAlign 
operation. Although the mAP value obtained by the state-of-
the-art RON approach for the VOC 2007 dataset is slightly 
greater than that obtained by the proposed robust model, 
the robust model performs 4.3% better than Faster R-CNN, 
which demonstrates the effectiveness of our approach. The 
results in the tables also clearly demonstrate that the inclu-
sion of the ASDN provides significantly greater object 
detection performance than the improved Faster R-CNN 
model, which confirms the effectiveness of the ASDN.

Some examples of object detection results obtained by 
the Robust Faster R-CNN model for the VOC 2007 and 
2012 datasets are shown in Fig. 8. These examples dem-
onstrate qualitatively that Robust Faster R-CNN can recog-
nize objects with different sizes and width-to-height aspect 
ratios, and can predict their locations well, particularly for 
objects like planes, birds, and people. The results in Fig. 8 
also demonstrate the robustness of the proposed approach 
to occlusions, such as in the car, plant, and people images 
that include occlusions.

We also qualitatively compare some examples of object 
detection results obtained by the Robust Faster R-CNN and 
Faster R-CNN models for the VOC 2007 and 2012 datasets 
in Fig. 9. In the first case, a bus suffering from occlusion at 
the top left of the image is ignored by Faster R-CNN, while 
the proposed method correctly labeled this vague object as 
a bus. In the second case, a woman on the rightmost side 
of figure is shown with only half a body and is carrying 
a small child in her arms. Here, Faster R-CNN detects no 
object whatsoever at this location in the image, while a per-
son is detected using our proposed method. These examples 
represent a striking contrast between Faster R-CNN and the 
proposed method. Finally, the third case presents a chair suf-
fering from occlusion, which is ignored by Faster R-CNN, 

Table 2  Object detection results on the PASCAL VOC 2007 dataset

Bold values indicate the best performance under each test item

Faster R-CNN A-Fast-RCNN SSD RON Robust 
Faster 
R-CNN

aero 76.5 75.7 79.8 86.0 79.8
bike 79.0 83.6 79.5 82.5 84.1
bird 70.9 68.4 74.5 76.9 76.8
boat 65.5 58.0 63.4 69.1 68.0
blt 52.1 44.7 51.9 59.2 57.4
bus 83.1 81.9 84.9 86.2 87.8
car 84.7 80.4 85.6 85.5 88.1
cat 86.4 86.3 87.2 87.2 88.5
chair 52.0 53.7 56.6 59.9 59.0
cow 81.9 76.1 80.1 81.4 84.4
tabel 65.7 72.5 70.0 73.3 72.3
dog 84.8 82.6 85.4 85.9 86.9
hrs 84.6 83.9 84.9 86.8 90.0
mbk 77.5 77.1 80.9 82.2 83.2
per 76.7 73.1 78.2 79.6 82.6
plant 38.8 38.1 49.0 52.4 43.6
shp 73.6 70.0 78.4 78.2 77.2
sofa 73.9 69.7 72.4 76.0 77.0
train 83.0 78.8 84.6 86.2 85.6
tv 72.6 73.1 75.5 78.0 77.6
mAP 73.2 71.4 75.1 77.6 77.5

Table 3  Object detection results on the PASCAL VOC 2012 dataset

Bold values indicate the best performance under each test item

Faster R-CNN A-Fast-RCNN SSD RON Robust 
Faster 
R-CNN

aero 84.9 82.2 84.9 86.5 87.0
bike 79.8 75.6 82.6 82.9 83.5
bird 74.3 69.2 74.4 76.6 78.9
boat 53.9 52.0 55.8 60.9 60.1
blt 49.8 47.2 50.0 55.8 57.6
bus 77.5 76.3 80.3 81.7 83.2
car 75.9 71.2 78.9 80.2 80.5
cat 88.5 88.5 88.8 91.1 90.2
chair 45.6 46.8 53.7 57.3 51.6
cow 77.1 74.0 76.8 81.1 82.4
tabel 55.3 58.1 59.4 60.4 61.6
dog 86.9 85.6 87.6 87.2 89.9
hrs 81.7 80.3 83.7 84.8 89.8
mbk 80.9 80.5 82.6 84.9 82.8
per 79.6 74.7 81.4 81.7 86.6
plant 40.1 41.5 47.2 51.9 47.4
shp 72.6 70.4 75.5 79.1 74.2
sofa 60.9 62.2 65.6 68.6 70.0
train 81.2 77.4 84.3 84.1 86.6
tv 61.5 67.0 68.1 70.3 69.9
mAP 70.4 69.0 73.1 75.4 75.7
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while the proposed method correctly labels this object as a 
chair. These illustrations demonstrate the obvious advan-
tages of the proposed method over Faster R-CNN for iden-
tifying small objects and objects with occlusions. 

Finally, Table 4 lists the detection and computational 
performance results obtained by Faster R-CNN and Robust 
Faster R-CNN, which are two-stage methods, and SSD and 
RON, which are single-stage methods, for the VOC 2012 
dataset images. Here, we collected the object detection time 
for each image, and averaged all of the detection times (ms/
image). The results indicate that the two-stage methods 
generally provide a greater accuracy but lower computa-
tional speed than the one-stage methods. In addition, we 

Fig. 8  Selected examples of object detection results on the PASCAL VOC 2007 and VOC 2012

(a) bus is not detect. (b) people is not detect. (c) chair is not detect.

(d) bus is detected. (e) people is detected. (f) chair is detected.

Fig. 9  Qualitative results of faster R-CNN vs. Robust Faster R-CNN on VOC. In every pair of detection results (top vs. bottom), the top is based 
on faster R-CNN, and the bottom is detection result of Robust Faster R-CNN

Table 4  Detection and computational performance results of the pro-
posed Robust Faster R-CNN and one-stage SSD and RON methods 
on the PASCAL VOC 2012 dataset

The two-stage methods generally provide greater accuracy but lower 
computational speed than the one-stage methods
Bold values indicate the best performance under each test item

Method One-stage Two-stage

SSD RON Faster R-CNN Robust 
Faster 
R-CNN

Test time (ms/
image)

46 67 200 234

mAP 73.1 75.4 70.4 75.7
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note that, while the computational speed of Robust Faster 
R-CNN was less than that of Faster R-CNN, this is expected 
because the use of the multi-scale RoIAlign operation in 
Robust Faster R-CNN consumes more computational time 
than the RoIPool operation in Faster R-CNN. Moreover, 
the difference between the two is quite small, and Robust 
Faster R-CNN still meets the requirements of real-time 
object detection. Consequently, the proposed approach pro-
vides dramatically increased detection performance relative 
to Faster R-CNN with only a slight reduction in computa-
tional speed.

6  Conclusion

This paper presented an effective framework denoted as 
Robust Faster R-CNN for detecting objects with different 
size scales and occlusions. The use of a cascaded network as 
well as the multi-scale RoIAlign operation to learn semantic 
multi-scale feature representations made the proposed model 
invariant to objects with different sizes and width-to-height 
aspect ratios, such as people, cars, and planes. An ASDN 
was combined with the proposed network to generate train-
ing samples with occlusions significantly affecting the clas-
sification ability of the model, which improved its robustness 
to occlusions. Experimental results obtained by the proposed 
approach and various state-of-the-art approaches for images in 
the PASCAL VOC 2012 and 2007 datasets demonstrated that 
the Robust Faster R-CNN model generally obtained superior 
detection accuracy, and the speed of detection was not signifi-
cantly reduced relative to that of the Faster R-CNN model.
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