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Abstract
Graph is a widely existed data structure in many real world scenarios, such as social networks, citation networks and knowl-
edge graphs. Recently, Graph Convolutional Network (GCN) has been proposed as a powerful method for graph-based semi-
supervised learning, which has the similar operation and structure as Convolutional Neural Networks (CNNs). However, 
like many CNNs, it is often necessary to go through a lot of laborious experiments to determine the appropriate network 
structure and parameter settings. Fully exploiting and utilizing the prior knowledge that nearby nodes have the same labels 
in graph-based neural network is still a challenge. In this paper, we propose a model which utilizes the prior knowledge on 
graph to enhance GCN. To be specific, we decompose the objective function of semi-supervised learning on graphs into a 
supervised term and an unsupervised term. For the unsupervised term, we present the concept of local inconsistency and 
devise a loss term to describe the property in graphs. The supervised term captures the information from the labeled data 
while the proposed unsupervised term captures the relationships among both labeled data and unlabeled data. Combining 
supervised term and unsupervised term, our proposed model includes more intrinsic properties of graph-structured data and 
improves the GCN model with no increase in time complexity. Experiments on three node classification benchmarks show 
that our proposed model is superior to GCN and seven existing graph-based semi-supervised learning methods.

Keywords  Graph convolutional network · Semi-supervised learning · Prior knowledge · Node classification

1  Introduction

As a universal language for describing complex data and 
systems, graphs exist widely in the real world, such as social 
network [15], protein-protein interaction network [10] and 
traffic network [24, 40]. Analysis on graphs can bring us 
more insights and implicit information of data by utiliz-
ing the relations and interactions among the components 
[13]. One of the most important problems in graph analysis 
is classifying nodes of a graph with only a small portion 

of labeled nodes and the graph structure. In the context of 
machine learning, this problem is framed as graph-based 
semi-supervised classification [19]. The problem is worth 
studying since many machine learning models require a 
large amount of labeled data which is hard and expensive 
to obtain.

Conventionally, a large number of graph-based semi-
supervised learning algorithms define the objective function 
as the weighted sum of supervised and unsupervised loss [2, 
38, 42, 44]. For example, graph Laplacian regularization is 
typically used as the unsupervised loss, which is based on 
the assumption that connected nodes in graph are likely to 
have the same label [39]. These algorithms are efficient since 
the distribution of nodes label is constrained to be in accord 
with the graph structure. However, edges in graph do not 
only indicate nodes similarity, but also contain additional 
intrinsic information about the graph structure, which does 
not be fully exploited in graph Laplacian-based algorithms.

Since convolutional neural networks (CNNs) [22] have 
achieved state-of-the-art performance in a broad range of 
tasks from regular Euclidean domains like image [20], 
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acoustics [34] and natural language [17], generalizing 
CNNs to non-Euclidean domains is proven to be a promis-
ing direction for graph analysis. Recently developed Graph 
Convolutional Neural Networks (GCNNs) [5, 8, 19] have 
achieved remarkable success and been widely applied in 
graph analysis. As for graph-based semi-supervised learn-
ing, Graph Convolutional Network (GCN) [19] utilizes 
convolution operation defined on graphs to extract features. 
The GCN model overcomes the shortcomings of the conven-
tional methods by propagating features based on the graph 
structure through multiple layers. On a number of bench-
marks of graph-based semi-supervised classification, GCN 
outperforms state-of-the-art methods both in accuracy and 
efficiency. MoNet [30] and Graph Attention Network (GAT) 
[37] further improve GCN through introducing more com-
plex propagation mechanisms. The propagation and updating 
rule for GNNs are straightforward and GNNs have achieved 
the state-of-the-art performance in many tasks. However, 
these models have similar limits with many CNN-based 
models that the working mechanism such as the represen-
tation properties and capacities have not been made clear. 
The design of model structure is mostly based on intuition, 
heuristic method and experiment results. Besides, a lot of 
effort is required for parameter tuning due to lack of prior 
knowledge in the optimization objective.

Our basic motivation is based on homophily theory [28] 
in sociology that two connected nodes in graph are more 
likely to share similar interests. The prior knowledge is 
adopted as the basic assumption in graph Laplacian-based 
methods [42, 44]. Nevertheless, no GCNNs have encoded 
the prior knowledge in the model to directly optimize. In 
[19], GCN is used as a powerful feature extractor and the 
loss function is totally supervised which only defined on 
labeled nodes. However, the lack of unsupervised informa-
tion in the optimization objective leads to over-fit on the 
labeled data. In graph Laplacian based methods, the prior 
knowledge that similar nodes have the same labels is used 
as unsupervised information. Therefore, our idea is to use 
GCN as the feature extractor and include the unsupervised 
information in the optimization objective. To be specific, we 
define local inconsistency as the distance between the prob-
ability mass function (pmf) of two connected nodes. Then 
we introduce the inconsistency loss which is an unsuper-
vised loss imposing a penalty on local inconsistency. Finally, 
we propose the new loss function for GCN as the ensemble 
of supervised loss and unsupervised loss. Compared with 
the conventional Laplacian-based methods, our proposal 
contains more structural information by using GCN-based 
structure. Besides, we further improved the original GCN 
model by encoding prior knowledge in the loss function.

In this paper, we propose Prior Knowledge enhanced 
Graph Convolutional Network (PKGCN) to overcome the 
shortcomings of both graph Laplacian regularization based 

methods and the GCN model. The main contributions of our 
work can be summarized as follows:

•	 We propose a new paradigm which combines the graph 
Laplacian-based methods and GCN to overcome the 
shortcomings from two kinds of methods.

•	 We introduce a new loss function of GCN for graph-
based semi-supervised classification. In addition to 
labeled information, the loss function further incorpo-
rates prior knowledge on graphs and imposes a penalty 
on local inconsistency.

•	 Extensive experiments show that our method yields bet-
ter results than the GCN model with no increase in time 
complexity and no particular modification of the GCN 
model structure.

The rest of this paper is organized as follows. In Sect.  2, the 
related works are briefly reviewed, including semi-super-
vised learning and graph-based neural network. In Sect. 3, 
we introduce notations and preliminaries. The proposed 
PKGCN is presented in details in sect.  4. The experiments 
and analysis are shown in Sect. 5. Finally, we give our con-
clusions in Sect. 6.

2 � Related work

2.1 � Semi‑supervised learning

Semi-supervised learning [6, 43] aims at making use of a 
small amount of labeled data and a large amount of unla-
beled data to learn a classifier. A common assumption in 
semi-supervised learning is the manifold assumption that 
data distributes in a manifold structure and nearby samples 
have similar output values. Currently, there are four para-
digms in semi-supervised learning: generative methods, 
semi-supervised support vector machine (S3VM), graph-
based methods and disagreement-based methods. Genera-
tive methods [11, 32] assume that all samples are generated 
from the same latent model. The missing labels are regarded 
as the missing parameters and can be estimated by EM algo-
rithm. S3VM is a generalization of SVM and based on the 
assumption of low-density separation. The most famous 
method in this paradigm is the transductive vector machine 
(TSVM) [16]. Graph-based methods [2, 26, 38, 44] consider 
the relationships among data and map the data to a graph. 
Disagreement-based methods assume that different views of 
data are compatible and complementary. One of the common 
algorithms is co-training [3], which trains multiple classi-
fiers and each classifier passes its most-confident samples 
to other classifiers.

The problem we consider in this paper is the graph-based 
semi-supervised classification. Methods can be roughly 
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divided into two categories. The first category uses a graph 
Laplacian regularization term in the loss function, which is 
based on the assumption that adjacent nodes in the graph 
tend to share the same labels. Therefore a large penalty will 
incur when data points with high proximity are predicted to 
have different labels. Various methods based on this assump-
tion adopt variants of graph Laplacian in the loss function, 
including LP [44], ManiReg [2], SemiEmb [38] and ICA 
[26]. The graph Laplacian regularizer is efficient when the 
graph fits the task. However, edges could contain additional 
information except for proximity, which is not leveraged in 
graph Laplacian regularization based methods. The second 
category is based on graph embedding, which aims to obtain 
a low-dimensional vector for each node while preserving 
the graph structure [13]. The embeddings can be used as 
input features of downstream machine learning models. 
Inspired by skip-gram model [29], DeepWalk [33] learns 
node embeddings through predicting its context generated 
by random walk. Node2vec [14] improves DeepWalk by 
employing a biased random walk scheme. Planetoid [39] 
learns node embedding through jointly predicting the class 
label and the context of the node in the graph. However, 
these methods are not end-to-end as random walk sequences 
generation and parameters learning are optimized separately.

2.2 � Graph‑based neural networks

The most primitive graph-based neural network is Graph 
Neural Network (GNN) [35] which extends recurrent neural 
network for graph-structured data. To learn parameters, GNN 
needs to iteratively apply contraction maps until convergence 
to obtain node embedding, which restricts the model efficiency 
and ability. Gated Graph Neural Network (GGNN) [23] further 
improves GNN through introducing gate mechanism and thus 
removes the need for contraction maps. Besides GNN, Graph 
Convolutional Neural Networks (GCNNs) are another kinds 
of graph-based neural networks which generalizes CNNs to 
graph domain. According to the difference of convolutional 
operations, GCNNs can be classified into two types [4]: spatial 
methods and spectral methods. Spatial methods consider con-
volution as a patch operator and operate on spatially neighbors 
to propagate node information [1, 9, 30, 31]. Spectral methods 
generalize Convolutional Theorem [27] on graphs as the mul-
tiplication of a graph signal and a spectral filter [5, 36]. How-
ever, these models require computing the eigenvectors of graph 
Laplacian matrix, which is computationally expensive for large 
graphs. To improve efficiency, ChebyNet [8] simplifies the 
spectral filter as a Kth-order truncated Chebyshev polynomial 
expansion of the diagonal matrix of Laplacian eigenvalue. 
GCN [19] further reduces the computational cost of ChebyNet 
by limiting K = 1 and using renormalization trick. Through 
simplification and approximation, the spectral filter of GCN 
is spatially localized and only uses the first-order neighbors. 

However, our proposed model is different from previous work 
as we introduce prior knowledge on graphs in the optimiza-
tion objective of GCN through combining supervised term and 
unsupervised term.

3 � Notations and preliminary

Given the undirected graph G = (V, E) , V = {v1, v2, ..., vN} 
is a set of N = |V| nodes and E = {(vi, vj) ∣ vi, vj ∈ V} 
is a set of M = |E| edges. For a given node vi , we use 
N(vi) = {vj ∣ (vi, vj) ∈ E} to denote the set of nodes directly 
connected to node vi . We use � ∈ ℝ

N×N to denote the adja-
cency matrix. Aij = 1 if (i, j) ∈ E , otherwise Aij = 0 . The 
degree matrix � ∈ ℝ

N×N is a diagonal matrix Dii =
∑

j Aij . 
We denote �i ∈ ℝ

D as the feature vector of node vi . � ∈ ℝ
N×D 

as the feature matrix of all nodes in the graph. Let VL be the 
set of labeled nodes and VU be the set of unlabeled nodes. 
VL ∪ VU = V . For each node in VL , the label is denoted as a 
one-hot vector �i ∈ ℝ

C , where C is the number of classes. We 
use YL to denote the set of labels for nodes in VL . The problem 
of graph-based semi-supervised learning is to predict the label 
of nodes in VU with � , � and YL.

GCN [19] generalizes and simplifies convolutional theorem 
[27] on graphs as follows:

Here, � ∈ ℝ
N is signal defined on the nodes of the graph 

and �
�
∈ ℝ

N is spectral representation of the filter param-
eterized by � ∈ ℝ . Using renormalization trick �̃ = � + � , 
D̃ii =

∑
j Ãij and generalizing to signals with multiple input 

channels and filters, the propagation rule becomes:

Here, �(l) ∈ ℝ
N×D(l) is the input and �(l+1) ∈ ℝ

N×�(l+1) is the 
output of lth layer of GCN. �(0) = � . �(⋅) denotes the acti-
vation function. �(l) is the trainable parameter of lth layer.

For semi-supervised node classification, [19] used a two-
layer GCN. Given the nodes features matrix � ∈ ℝ

N×D as 
input, the GCN model applies a softmax classifier on the 
output:

Here, �̂ = �̃
−

1

2 �̃�̃
−

1

2 is calculated in the pre-processing 
step. �(0) ∈ ℝ

D×H is the parameter of the input-to-hidden 
layer with H feature maps. �(1) ∈ ℝ

H×C is the parameter 
of the hidden-to-output layer. ReLU is the activation func-
tion defined as ReLU(x) = max(x, 0) . The softmax activa-
tion function is defined as softmax(xi) = exp(xi)∕

∑
i exp(xi) . 

� ∈ ℝ
N×C is the output the GCN model and C is the 

(1)�
𝜃
⋆ � ≈ 𝜃(� + �

−
1

2��
−

1

2 )�.

(2)�(l+1) = 𝜎

(
�̃

−
1

2 �̃�̃
−

1

2�(l)�(l)
)
.

(3)� = f (�,�) = softmax
(
�̂ ReLU

(
�̂��(0)

)
W

(1)
)
.
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dimension of the output features, which is equal to the num-
ber of classes. The ith row vector �i ∈ ℝ

C is the discrete 
predicted class pmf of node vi over C classes. The loss func-
tion is the negative logarithmic likelihood defining over all 
labeled examples:

GCN works well since the graph convolution operation 
aggregates feature information from neighboring nodes and 
propagates it layer by layer. However, since the loss func-
tion is the negative logarithmic likelihood only defined on 
the labeled nodes, the GCN model lacks instructions for 
unlabeled nodes in the optimization objective, resulting in 
over-fitting on the labeled nodes.

4 � The proposed method

In this Section, we first introduce the concept and the defini-
tion of local inconsistency. Next, We introduce how to cal-
culate inconsistency loss with local inconsistency. Finally, 
we introduce the final model combining supervised loss and 
inconsistency loss. The pseudocode of the proposed PKGCN 
is presented in Algorithm 1.

4.1 � Local inconsistency

The social correlation theory homophily [28] states that 
two connected users are likely to share similar interests. For 
example, in a citation network, nodes represent papers and 
edges represent citation relationships. Links usually exist 
between two papers in similar field. In our proposed model, 
we adopt the assumption that linked nodes are more likely 
to belong to the same class (as shown in Fig. 1, linked nodes 
form a densely connected cluster).

Under the assumption, two linked nodes should have high 
similarity in terms of pmf predicted by the model. Note that 
the pmf is defined as the probability that a discrete random 
variable X takes on a particular value x, that is, P(X = x) . We 
define local inconsistency on graphs as the distance of pmfs 
between two linked nodes. We give the formal definition of 
local inconsistency as follow:

Definition 1  (local inconsistency) Let G = (V, E) be a graph. 
vi ∈ V , vj ∈ V are two nodes linked by edge (vi, vj) ∈ E . 
�i ∈ ℝ

C and �j ∈ ℝ
C are the pmfs over C classes of vi and 

vj respectively. The local inconsistency of vi and vj is

where d(⋅, ⋅) is a distance measure of pmfs.

(4)L = −
∑
l∈YL

C∑
c=1

Ylc log Zlc.

(5)Ilocal(vi, vj) = d(�i,�j),

Here, we provide two forms of distance measure func-
tion d(⋅, ⋅) . The first one is the Euclidean distance, which 
is a normal distance measure in Euclidean vector space. 
Euclidean distance is defined as

Since the variables of the distance function are pmfs, we 
also use Jensen–Shannon divergence (JS divergence) [25] 
to measure the distance. JS divergence is a method of meas-
uring the similarity between two pmfs. It is based on the 
Kullback–Leibler divergence [21], but it is symmetric and 
always has a finite value. Given two discrete pmfs P and Q 
defined on the same probability space, the JS divergence 
between P and Q is defined to be

The local inconsistency measures the similarity between two 
nodes’ pmfs predicted by GCN [19]. High local inconsist-
ency indicates low similarity, vice versa. Under the previous 
assumption, two nodes linked by an edge should have a high 
similarity between their predicted class pmfs, resulting in 
low local inconsistency.

(6)dEUC(P,Q) =
√∑

x∈X

[P(x) − Q(x)]2.

(7)

dJS(P,Q) =
∑
x∈X

1

2

[
P(x) log

(
P(x)

P(x)+Q(x)

2

)
+ Q(x) log

(
Q(x)

P(x)+Q(x)

2

)]
.

Fig. 1   Visualization of the Cora dataset. Nodes correspond to scien-
tific publications and edges to citations. Marker color represents the 
groundtruth class of the node. Nodes belonging to the same class are 
more likely to connect with each other, forming a densely connected 
cluster. More details of the dataset are given in Sect. 5.1
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4.2 � Inconsistency loss

For a given node vi , N(vi) is the set of nodes directly connected 
with vi . Zi ∈ ℝ

C is the class pmf of node vi predicted by GCN 
model. The local inconsistency of node vi and its neighbor 
vj ∈ N(vi) can be computed using Eq. (5). The node inconsist-
ency of vi is the average of local inconsistency between node 
vi and all its neighbors vj ∈ N(vi):

We define the inconsistency loss as the average of total 
inconsistency over all nodes in the graph G:

Note that Eq. (9) can be simplified as Eq. (10) when the local 
inconsistency Ilocal(vi, vj) is defined as a symmetric function 
of node vi and its neighbor vj:

Here, 1

|N(vi)| is the weight for the local inconsistency 
Ilocal(vi, vj) of node vi and its neighbor vj . The weight takes 
the maximum value when N(vi) = 1 , which means the node 
has only one neighbor. As the number of node neighbor 
increases, the weight becomes smaller. The inconsistency 
loss Lincon is actually a weighted sum of the local inconsist-
ency between node pairs (vi, vj) . The weight of Ilocal(vi, vj) is 
proportional to 1∕|N(vi)| . Therefore, nodes with fewer neigh-
bors would appear less but contribute more in the inconsist-
ency loss. The intuition behind the weights is that node with 
fewer neighbors is more likely to be the same class as its 
neighbor,thus taking more weights in the loss function. Lincon 
is unsupervised because no label information occurs in the 
definition. The inconsistency loss encourages nodes in the 
graph to match the predicted pmf of its neighbors’ pmfs.

4.3 � Combine supervised loss and inconsistency loss

For semi-supervised node classification, the objective func-
tion of GCN model is a supervised loss defined as the cross-
entropy error between predicted values and the ground-truth 
labels,

(8)Inode(vi) =
1

|N(vi)|
∑

vj∈N(vi)

Ilocal(vi, vj).

(9)

Lincon =
1

N

N�
i=1

Inode(vi) =
1

N

N�
i=1

⎡
⎢⎢⎣

1

�N(vi)�
�

vj∈N(vi)

Ilocal(vi, vj)

⎤
⎥⎥⎦
.

(10)Lincon =
1

N

∑
(i,j)∈E

[(
1

|N(vi)| +
1

|N(vj)|
)
Ilocal(vi, vj)

]
.

(11)Lsup = −
∑
l∈YL

C∑
c=1

Ylc log Zlc.

The conventional supervised loss Lsup constraints the model 
to well fit the distribution of labeled nodes. However, the 
model can not generalize well on unlabeled nodes as sam-
ples are not independent identically distributed (i.i.d). To 
improve the generalization ability on testing instances, we 
add the inconsistency loss on the initial supervised loss. The 
new loss function is defined as:

where k is the tradeoff weight adjusting the proportion of 
inconsistency loss in total loss. Our proposed method is a 
more generalized form of GCN. When we set k = 0 , the 
proposal is reduced to GCN.

Algorithm 1 describes the training process of our pro-
posed PKGCN model. The loss function L is defined as 
the weighted sum of Lsup and Lincon . In Algorithm 1, k(t) 
is the tradeoff weight function. We propose two strategies 
to implement k(t): static strategy and dynamic strategy. For 
static strategy, we choose a constant value of k with the high-
est classification accuracy on the validation set. For dynamic 
strategy, we first give k(t) a initial value k(t) = 0 and then 
increase k(t) as the number of training epoch increases. Our 
basic motivation is to train the model under more supervised 
information at the beginning and then transit to unsuper-
vised information learning. We discuss different strategies 
for choosing the tradeoff weight function k(t) in Sect. 5.4.2.

Algorithm 1 PKGCN
1: Input:
2: X ∈ RN×D : the data feature matrix
3: Y ∈ RN×C : the masked ground truth label matrix
4: YL: the indices set of training data
5: A: the adjacency matrix
6: k(t): the tradeoff weight function
7: n epoch: the number of training epochs
8: Output: The trained model
9: Randomly initialize W(0) and W(1) with Glorot initializer
10: for t in range(0, n epoch) do

11: Z ← softmax Â ReLU ÂXW(0) W(1) Eq. (3)

12: Lsup ← −
l∈YL

C

c=1

Ylc logZlc Eq. (11)

13: Lincon ← 1
N

N

i=1

Inode(vi) Eq. (5) (8) (9)

14: L ← Lsup + k(t)Lincon Eq. (12)

15: Updating W(0) and W(1) using
∂L

∂W(0) and
∂L

∂W(1)
16: end for

5 � Experimental study

5.1 � Datasets

For comparison, we utilize three standard citation network 
benchmark datasets: Cora, Citeseer, and Pubmed employed 
in previous study [19]. In the above three datasets, nodes 
are scientific publications and edges are citation links. We 
treat the links as undirected edges and construct a binary, 
symmetric adjacency matrix A. Zachary’s karate club net-
work [41] is used for case study in Section 5.4.3. Random 

(12)L = Lsup + kLincon,
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graphs are used for complexity analysis in 5.4.4. An over-
view of the statistics of the datasets is given in Table 1 and 
detailed descriptions are given below:

•	 Cora the Cora dataset contains 2708 scientific publica-
tions and 5429 citation links. Each document is described 
by a 0/1-valued word vector of 1433 dimensions and 
classified into one of 7 classes. Only 5.2% nodes are 
labeled for training.

•	 Citeseer the Citeseer dataset contains 3327 scientific 
publications and 4732 citation links. Each document is 
described by a 0/1-valued word vector of 3703 dimen-
sions and classified into one of 6 classes. Only 3.6% 
nodes are labeled for training.

•	 Pubmed the Pubmed dataset contains 19717 scientific 
publications and 44,338 citation links. Each document 
is described by a Term-Frequency–Inverse Document 
Frequency (TF–IDF) vector of 500 dimensions and clas-
sified into one of 3 classes. Only 0.3% nodes are labeled 
for training.

•	 Zachary’s karate club Zachary’s karate club dataset is 
a well-known social network. The dataset contains 34 
nodes and 77 edges. Each node represents a member of 
the club, and each edge represents that a relationship 
exists between two members. All members are classi-
fied into one of 2 groups after an argument between two 
teachers. We randomly choose 6 nodes for training.

•	 Random graphs we generate random graphs for exper-
imental study of time complexity. For a graph with N 
nodes, we create 2N edges uniformly at random. For node 
vi in the graph, we take ith row of the identity matrix 
IN as its feature. For training set, we randomly sample 
10% nodes as the labeled nodes and assign each node a 
random C-dimensional one-hot vector as its label. In our 
experiment, we set C = 5.

5.2 � Baseline algorithms

We compare our proposed method PKGCN and its variants 
with the state-of-the-art model GCN [19] and other semi-
supervised learning methods, including label propagation 
(LP) [44], semi-supervised embedding (SemiEmb) [38], 

manifold regularization (ManiReg) [2], Skip-gram based 
graph embeddings (DeepWalk) [33], iterative classification 
algorithm (ICA) [26] and Planetoid [39]. We also compare 
our model with ChebyNet in [8] using higher-order Cheby-
shev filters.

5.3 � Evaluation metric and experimental set‑up

We strictly follow the training, validation and test data split 
provided by [19] and [39]. For all datasets, we use 20 nodes 
per class for training, 500 nodes for validation and 1000 
nodes for test. Node labels in the validation set are not used 
for training. For the multi-classification problem, we evalu-
ate the models with micro-f1 (accuracy) and macro-f1 on 
the test set.

For a fair comparison, all experiments in the paper are 
implemented with PyTorch 1.0.0 on GeForceⓇ GTX 1080 
Ti. Furthermore, we use the same hyper-parameters setting 
as in [19] except stopping rules: Adam [18] optimizer with 
a learning rate of 0.01, dropout rate of 0.5, L2 regularization 
weight of 5 × 10−4 , two convolutional layers, and 16 hidden 
units. We initialize weights using Glorot initialization [12] 
and row-normalize input feature vectors. We train the model 
on Cora, Citeseer and Pubmed for 1000, 1000, 200 epochs 
respectively.

The only hyper-parameter we need to choose is the trade-
off weight k in our model. In our experiment, we choose k 
with the highest accuracy on the validation set.

5.4 � Results and analysis

In this subsection, we first compare the variants of PKGCN 
and the results of statistical test indicate PKGCN-EUC is the 
best model. Then, PKGCN is compared with GCN and other 
baselines and the results show that our proposed method is 
superior to GCN. We further analyze the effect of tradeoff 
between supervised loss and inconsistency loss and find that 
an appropriate setting of tradeoff is most effective. Finally, 
we show that the time complexity of PKGCN is in linear 
with the number of edges.

5.4.1 � Semi‑supervised node classification

First, we conduct experiments of GCN, PKGCN-JS and 
PKGCN-EUC with different training epochs. PKGCN-
JS and PKGCN-EUC are variants of our proposed model 
using JS divergence and Euclidean distance as the distance 
measure function respectively. The results are shown in 
Tables 2, 3 and 4. We report the mean accuracy of 10 
independent runs using different random seeds.

Two conclusions can be drawn from the above experi-
mental results:

Table 1   Dataset statistics

Dataset Nodes Edges Classes Features Label rate (%)

Cora 2708 5429 7 1433 5.2
Citeseer 3327 4732 6 3703 3.6
Pubmed 19717 44338 3 500 0.3
Zachary’s karate 

club
34 77 2 34 17.6
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•	 Under the same training epochs settings, both PKGCN-
JS and PKGCN-EUC outperform GCN, and PKGCN-
EUC outperforms PKGCN-JS;

•	 In general, the performance of GCN degrades as its 
training epoch increases (when exceeds 200). However, 
as the number of training epochs increases, the perfor-
mance of PKGCN-JS and PKGCN-EUC increases.

Then, we run the experiments of variants of PKGCN with 
random weight initialization for 100 times. We report the 
mean micro-f1 and macro-f1 in Table 5. The result shows 
that PKGCN-EUC performs better than PKGCN-JS on Cora 

and Citeseer dataset considering both micro-f1 and macro-
f1. On Pubmed dataset, PKGCN-JS has no difference in per-
formance compared to PKGCN-JS. Then, we conduct the 
t-test to evaluate the significance of the results in Table 5. As 
shown in Table 6, the p values suggest that PKGCN-EUC is 
better than PKGCN-JS on Cora and Citeseer dataset under 
the significance level of � = 0.001.

We report the mean accuracy of 100 runs with random 
weight initialization in Table 7. Results are summarized 
in Table 7 where the highest accuracy in each column is 
highlighted in bold. Results of baseline methods are taken 
from [19]. On Cora and Citeseer dataset, PKGCN-EUC 
outperforms the GCN model with an improvement of 2.1% 
and 1.4% in accuracy respectively. On Pubmed dataset, our 
methods perform comparably to GCN and outperform other 
baselines significantly.

To explain the results, we further calculate the inconsist-
ency rate, defined as the proportion of edges linking two 
nodes belonging to different classes divided by the number 
of classes. As shown in Table 8, the inconsistency rate of 
Cora dataset is less than 2.71% , which verifies our observa-
tion statistically. Our model is based on the assumption that 
nearby nodes should have the same class labels and similar 
predicted pmf. The inconsistency rate can reflect how the 

Table 2   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Cora dataset for different training epochs.

GCN (%) PKGCN-JS (%) PKGCN-
EUC 
(%)

200 81.25 82.05 82.36
400 80.89 82.45 83.16
600 80.81 82.63 83.45
800 80.96 82.83 83.82
1000 81.14 82.88 83.80
1200 80.93 82.94 83.68

Table 3   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Citeseer dataset for different training epochs

GCN (%) PKGCN-JS (%) PKGCN-
EUC 
(%)

200 70.05 70.46 70.48
400 69.62 70.63 71.09
600 69.74 70.88 71.24
800 69.87 70.81 71.16
1000 69.88 71.04 71.48
1200 69.43 70.61 71.33

Table 4   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Pubmed dataset for different training epochs

GCN (%) PKGCN-JS (%) PKGCN-
EUC 
(%)

200 78.07 78.16 78.47
400 77.83 77.89 78.00
600 77.81 77.71 77.71
800 77.60 77.66 77.75
1000 77.65 77.62 77.80
1200 77.64 77.44 77.65

Table 5   Mean and standard deviations of micro-f1 and macro-f1 for 
PKGCN-JS and PKGCN-EUC

The highest accuracy is highlighted in bold

PKGCN-JS PKGCN-EUC

Cora micro-f1 0.827 ± 0.0037 (k = 6.0) �.��� ± �.���� 
(k = 2.0)

macro-f1 0.817 ± 0.0033 (k = 6.0) �.��� ± �.���� 
(k = 2.0)

Citeseer micro-f1 0.708 ± 0.0057 (k = 5.5) �.��� ± �.���� 
(k = 1.5)

macro-f1 0.679 ± 0.0054 (k = 5.5) �.��� ± �.���� 
(k = 1.5)

Pubmed micro-f1 0.784 ± 0.0037 (k = 2.0) 0.784 ± 0.0040 
(k = 0.5)

macro-f1 0.777 ± 0.0035 (k = 2.0) 0.777 ± 0.0036 
(k = 0.5)

Table 6   Results of t-test comparing PKGCN-JS and PKGCN-EUC 
using micro-f1 and macro-f1

Dataset Metric t p value

Cora micro-f1 16.9691 < 0.0010

macro-f1 14.9992 < 0.0010

Citeseer micro-f1 11.0673 < 0.0010

macro-f1 5.2865 < 0.0010

Pubmed micro-f1 0 0.5000
macro-f1 0 0.5000
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graph data deviates from the assumption. Since the incon-
sistency rate of Pubmed dataset ( 6.60% ) is higher than Cora 
( 2.71% ) and Citeseer ( 4.35% ), the performance on Pubmed 
dataset is worse than that on Cora and Citeseer. This result 
indicates that our proposed PKGCN may not always be 
effective to improve GCN and the performance depends on 
the degree of the correspondence between the graph data 
and the assumption.

5.4.2 � Effect of tradeoff between supervised loss 
and inconsistency loss

The tradeoff weight k is a critical parameter in our model, 
determining the proportion of inconsistency loss in the 
total loss. First, we analyze the effect of static tradeoff 
weight k on classification accuracy, supervised loss and 
inconsistency loss. In our experiment, we change k from 
0 to 12 with a step of 1 every 100 epochs. For each k, 
we repeat the experiment 100 times. We plot the median 
curve, upper quartile and lower quartile on the test set in 
Fig. 2. When k = 0 , the classification accuracy approxi-
mately equals to which of the GCN model. As k increases, 
the classification accuracy increases first and then 
decreases, however, the variance of accuracy decreases 

first and then increase (Fig. 2a, b). As k increases, more 
weight is placed on the inconsistency loss. Therefore the 
supervised loss increases (Fig. 2c, d) and the inconsistency 
loss decreases (Fig.  2e, f).

We then analyze the effect of dynamic tradeoff weight on 
classification accuracy. We devised several implementations 
of tradeoff weight function k(t), see Tables 9, 10 and Fig. 3. 
Table 9 shows the classification accuracy of PKGCN-JS 
with different k(t). All models with an increasing tradeoff 
weight function outperform the models with a decreasing 
one. Table 10 shows that PKGCN-EUC with an increas-
ing tradeoff weight function outperforms PKGCN-EUC 
with a decreasing one. Furthermore, on Cora and Citeseer, 
PKGCN-EUC with a increasing dynamic tradeoff function 
(84.2% for Cora and 72.7% for Citeseer) outperforms the 
model with a fixed tradeoff in Tabel 7 (83.6% for Cora and 
71.7% for Citeseer). The results verify our conjecture in 
Sect. 4.3. That is, the model needs the inconsistency loss in 
the late stage of the training process to improve generaliza-
tion on unlabeled data.

5.4.3 � Case study on Karate club network

We analyze why PKGCN is superior to GCN through visual-
izing the predicted results on the Karate club network. We 
set k = 1 for PKGCN-JS and run 10 epochs. Other param-
eters are the same as in Sect. 5.3. The results are shown in 
Fig.  4. Note that PKGCN correctly classified node 24 while 
GCN does not, as PKGCN imposes a penalty on the incon-
sistency of predicted class pmf between two adjacent nodes. 
The inconsistency loss encourages the model to predict the 
pmf of small-degree nodes to be consistent with their neigh-
bors. Therefore, PKGCN can achieve better performance 
than GCN.

5.4.4 � Computational complexity

As analysed in [19], the computational complexity of GCN 
is O(|E|DHC) , which is dominated by Eq. (3). Our proposed 
PKGCN is based on GCN with an additional inconsistency 
loss entry. Using the sparse matrix operations, the time com-
plexity of evaluating Eq. (9) is O(|E|C) . Thus our proposed 
model has the same time complexity as the GCN model. We 
repeat the experiment on random graphs of different sizes for 
ten times and report the mean training time per epoch. See 
Sect. 5.1 for more details about random graph dataset used 
in our experiment. As shown in Fig.  5, the time complexity 
of PKGCN is linear in the number of graph edges.

Table 7   Summary of results in terms of classification accuracies for 
Cora, Citeseer and Pubmed

Method Cora (%) Citeseer (%) Pubmed (%)

ManiReg [2] 59.5 60.1 70.7
SemiEmb [38] 59.0 59.6 71.7
LP [44] 68.0 45.3 63.0
DeepWalk [33] 67.2 43.2 65.3
ICA [26] 75.1 69.1 73.9
Planetoid [39] 75.7 64.7 77.2
ChebyNet [8] 81.2 69.8 74.4
GCN [19] 81.5 70.3 79.0
PKGCN-JS (ours) 82.7 (k = 6.0) 70.8 (k = 5.5) 78.4 (k = 2.0)

PKGCN-EUC (ours) 83.6 (k = 2.0) 71.7 (k = 1.5) 78.4 (k = 0.5)

Table 8   The proportion of edges linking two nodes belonging to dif-
ferent classes and the inconsistency rate of Cora, Citeseer and Pub-
med respectively

Dataset Proportion (%) Inconsist-
ency rate 
(%)

Cora 18.97 2.71
Citeseer 26.10 4.35
Pubmed 19.80 6.60
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Fig. 2   The test classification 
accuracy (row 1), supervised 
loss (row 2) and inconsistency 
loss (row 3) of PKGCN-JS on 
the Citeseer (column 1) and 
Cora (column 2) datasets with 
tradeoff weight k changing 
from 0 to 12. Each experiment 
repeats 100 times. Black lines 
denote the median. Red and 
green dots denote the upper 
and lower quartiles respectively 
(color figure online)

(a)Test accuracy of Cora (b) Test accuracy of Citeseer

(c) Supervised loss of Cora (d) Supervised loss of Citeseer

(e) Inconsistency loss of Cora (f) Inconsistency loss of Citeseer

Table 9   Classification accuracies of PKGCN-JS for Cora, Citeseer 
with different implementations of dynamic tradeoff weight function 
k(t)

The highest accuracy is highlighted in bold

Cora (%) Citeseer (%)

Increasing k
1
(t) = t∕100 82.8 70.7

k
2
(t) = t

2∕10000 82.5 70.1
Decreasing k

4
(t) = 10 − t∕100 82.0 69.5

k
5
(t) = 10 − t

2∕10000 81.4 69.3

k
6
(t) = 10 −

√
t∕10 82.2 69.5

Table 10   Classification accuracies of PKGCN-EUC for Cora, Cite-
seer with different implementations of dynamic tradeoff weight func-
tion k(t)

The highest accuracy is highlighted in bold

k(t) Cora (%) Citeseer (%)

increasing k
1
(t) = t∕500 84.1 72.7

k
2
(t) = t

2∕50000 83.6 72.5

k
3
(t) =

√
t∕250 84.2 72.4

decreasing k
4
(t) = 2 − t∕500 81.6 70.2

k
5
(t) = 2 − t

2∕50000 81.2 70.3

k
6
(t) = 2 −

√
t∕250 82.3 70.7
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5.5 � Discussion

5.5.1 � Insights of PKGCN

Our proposed PKGCN enhances GCN through introduc-
ing the prior knowledge that adjacent nodes belong to the 
same class. The propagation rule and the network structure 
of PKGCN are the same with GCN. However its loss func-
tion includes an additional unsupervised term defined on 
both labeled and unlabeled nodes. With the prior knowledge, 
PKGCN achieves better generalization ability on unlabeled 
data. On datasets with low inconsistency rate such as Cora 
( 2.71% ) and Citeseer ( 4.35% ), PKGCN improves GCN with 
2.1% and 1.4% in accuracy respectively. This result indicates 
that prior knowledge contributes to improving GCN when 
the assumption is consistent with data. We further analyze 
the effect of tradeoff in our model. As shown in Fig. 2, the 
tradeoff parameter controls the importance of supervised 
term and unsupervised term in total loss. The relationship 
between accuracy and tradeoff is approximately quadratic 
and maximum is obtained with a medium value. Experi-
ments about dynamic tradeoff indicate that PKGCN learns 
the supervised information in early stage, and generalizes to 
unlabeled data with prior knowledge in late stage. Finally, 
as shown in Fig. 5, PKGCN does not increase the time com-
plexity when compared to GCN, thus our proposed method 
is effective and practical.

5.5.2 � A general framework

Our proposed method is actually a special case under the 
Bayesian framework. We define the probability vi and 

vj connected by an edge having the same class label as 
P(same, vi, vj) . Using Bayesian formula, the probability can 
be decomposed into

Fig. 3   Different implementations of dynamic tradeoff functions k(t) 
in Algorithm  1. k

1
(t) , k

2
(t) and k

3
(t) are increasing functions. k

3
(t) , 

k
4
(t) and k(5) are decreasing functions. The value of each function 

changes from 0 to 10 (or from 10 to 0) with a step of t = 100 . Details 
about the implement of functions can be found in Table 9

(a)

(b)

(c)

Fig. 4   Visualization of the predicted results. a shows the Karate club 
network and the groundtruth label of each node. b presents the pre-
dicted results of GCN. c presents the predicted results of PKGCN-JS. 
Note that PKGCN-JS correctly classifies node 24 while GCN does 
not
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Here, P(vi) is the prior probability of node vi . P(vj|vi) is the 
probability of node vj given node vi . P(same|vi, vj) is the 
probability that two nodes belong to the same class given vi 
and vj . The prior probabilities P(vi) and P(vj|vi) are either 
given by an “oracle” or estimated from labeled data. In this 
paper, P(vi) =

1

N
 and P(vj|vi) = 1

|N(vi)| . For P(same|vi, vj) , we 
define it to be inversely proportional to the local inconsist-
ency as

P(same|vi, vj) decreases from 1 to 0 as Ilocal(vi, vj) increase 
from 0 to +∞ . Using the Taylor’s theorem that 
f (x) =

1

1+x
≈ 1 − x ( x ≈ 0 ), we can approximate Eq. (14) with

The objective is to maximize the sum of probability over all 
node pairs in graph,

which is equivalent to minimizing the inconsistency loss 
in Eq. (9). Under this framework, we can incorporate more 
prior knowledge in the model for using different prior prob-
ability P(vi) and P(vj|vi) , and adopt flexible definition of 
P(same|vi, vj) . For example, in the heterogeneous graph, we 
can define P(same|vi, vj) to be related with the relation type 
between vi and vj , or the meta path from vi to vj.

5.5.3 � Limitations and future work

Here, we list some limitations of our proposed method and 
point out some possible solutions.

(13)P(same, vi, vj) = P(vi)P(vj|vi)P(same|vi, vj).

(14)P(same|vi, vj) = 1

1 + Ilocal(vi, vj)
.

(15)P(same|vi, vj) ≈ 1 − Ilocal(vi, vj).

(16)

N∑
i=1

∑
j∈N(vi)

P(same, vi, vj) = const. −

N∑
i=1

∑
j∈N(vi)

[
1

N|N(vi)| Ilocal(vi, vj)
]
,

First, since our model is based on GCN, the memory 
requirement of PKGCN is also linear in the size of dataset 
under the full-batch gradient descent optimization proce-
dure. The recently proposed FastGCN [7] and GraphSAGE 
[15] overcome the limitation through sampling mini-batch 
nodes at each layer. An interesting research direction is 
applying our paradigm to sampling-based graph neural 
networks, where a new design of inconsistency loss would 
be needed.

Second, our model is currently limited to undirected, 
homogeneous and static graph. However, graph-structured 
data is usually directed, heterogeneous and dynamic in the 
real world. In addition, edge features are also important 
information in graph mining. In future work, we will inves-
tigate extending our model to varying types of graphs.

Third, the tradeoff parameter is determined through 
experiment on the validation set. However, we can use 
gradient descent to automatically learn a better parameter. 
In future, we will exploit how to ensemble tradeoff param-
eter optimization and model parameter learning together.

Fourth, the prior knowledge that adjacent nodes belong 
to the same category is commonly used as a basic assump-
tion in graph-based semi-supervised learning [2, 42, 44]. 
The homophily theory has also been studied in sociol-
ogy by [28]. However, the assumption is somewhat strong 
since it is valid only when the classes are well separated 
and clustered. One potential approach could be adopting 
a more general assumption that the labels of the k-hop 
neighbors (k ≥ 1) may affect the node’s category distribu-
tion and we can use attention mechanism (e.g. GAT [37]) 
to selectively capture these relations.

Finally, we will also study the method for quantitatively 
evaluating the consistency between prior knowledge and 
graph data. This helps us to understand what is the right 
time to use our model.

Fig. 5   Training time per epoch 
for random graphs
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6 � Conclusions

In this paper, we propose PKGCN which utilizes the prior 
knowledge on graphs to enhance GCN for graph-based 
semi-supervised learning. The prior knowledge that adja-
cent nodes have the same labels is incorporated through 
defining the optimization objective as a tradeoff between 
the supervised term and the unsupervised term. In our 
paradigm, the graph Laplacian-based models and GCN are 
combined to overcome the disadvantages of both methods. 
Furthermore, PKGCN does not increase time complexity 
while achieving a compelling performance. Comprehen-
sive experiments show that PKGCN is better than GCN 
and significantly outperforms other models, which verified 
the effectiveness of our design encoding prior knowledge 
to the loss function.
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