
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127
https://doi.org/10.1007/s13042-019-01003-7

ORIGINAL ARTICLE

PKGCN: prior knowledge enhanced graph convolutional network
for graph‑based semi‑supervised learning

Shaowei Yu1,2 · Xuebing Yang1 · Wensheng Zhang1 

Received: 4 March 2019 / Accepted: 19 August 2019 / Published online: 27 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Graph is a widely existed data structure in many real world scenarios, such as social networks, citation networks and knowl-
edge graphs. Recently, Graph Convolutional Network (GCN) has been proposed as a powerful method for graph-based semi-
supervised learning, which has the similar operation and structure as Convolutional Neural Networks (CNNs). However,
like many CNNs, it is often necessary to go through a lot of laborious experiments to determine the appropriate network
structure and parameter settings. Fully exploiting and utilizing the prior knowledge that nearby nodes have the same labels
in graph-based neural network is still a challenge. In this paper, we propose a model which utilizes the prior knowledge on
graph to enhance GCN. To be specific, we decompose the objective function of semi-supervised learning on graphs into a
supervised term and an unsupervised term. For the unsupervised term, we present the concept of local inconsistency and
devise a loss term to describe the property in graphs. The supervised term captures the information from the labeled data
while the proposed unsupervised term captures the relationships among both labeled data and unlabeled data. Combining
supervised term and unsupervised term, our proposed model includes more intrinsic properties of graph-structured data and
improves the GCN model with no increase in time complexity. Experiments on three node classification benchmarks show
that our proposed model is superior to GCN and seven existing graph-based semi-supervised learning methods.

Keywords  Graph convolutional network · Semi-supervised learning · Prior knowledge · Node classification

1  Introduction

As a universal language for describing complex data and
systems, graphs exist widely in the real world, such as social
network [15], protein-protein interaction network [10] and
traffic network [24, 40]. Analysis on graphs can bring us
more insights and implicit information of data by utiliz-
ing the relations and interactions among the components
[13]. One of the most important problems in graph analysis
is classifying nodes of a graph with only a small portion

of labeled nodes and the graph structure. In the context of
machine learning, this problem is framed as graph-based
semi-supervised classification [19]. The problem is worth
studying since many machine learning models require a
large amount of labeled data which is hard and expensive
to obtain.

Conventionally, a large number of graph-based semi-
supervised learning algorithms define the objective function
as the weighted sum of supervised and unsupervised loss [2,
38, 42, 44]. For example, graph Laplacian regularization is
typically used as the unsupervised loss, which is based on
the assumption that connected nodes in graph are likely to
have the same label [39]. These algorithms are efficient since
the distribution of nodes label is constrained to be in accord
with the graph structure. However, edges in graph do not
only indicate nodes similarity, but also contain additional
intrinsic information about the graph structure, which does
not be fully exploited in graph Laplacian-based algorithms.

Since convolutional neural networks (CNNs) [22] have
achieved state-of-the-art performance in a broad range of
tasks from regular Euclidean domains like image [20],

 *	 Shaowei Yu
	 yushaowei2017@ia.ac.cn

	 Xuebing Yang
	 yangxuebing2013@ia.ac.cn

	 Wensheng Zhang
	 zhangwenshengia@hotmail.com

1	 Institute of Automation, Chinese Academy of Sciences, 95
Zhongguancun East Road, 100190 Beijing, China

2	 University of Chinese Academy of Sciences, Beijing, China

http://orcid.org/0000-0003-0752-941X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-019-01003-7&domain=pdf

3116	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

acoustics [34] and natural language [17], generalizing
CNNs to non-Euclidean domains is proven to be a promis-
ing direction for graph analysis. Recently developed Graph
Convolutional Neural Networks (GCNNs) [5, 8, 19] have
achieved remarkable success and been widely applied in
graph analysis. As for graph-based semi-supervised learn-
ing, Graph Convolutional Network (GCN) [19] utilizes
convolution operation defined on graphs to extract features.
The GCN model overcomes the shortcomings of the conven-
tional methods by propagating features based on the graph
structure through multiple layers. On a number of bench-
marks of graph-based semi-supervised classification, GCN
outperforms state-of-the-art methods both in accuracy and
efficiency. MoNet [30] and Graph Attention Network (GAT)
[37] further improve GCN through introducing more com-
plex propagation mechanisms. The propagation and updating
rule for GNNs are straightforward and GNNs have achieved
the state-of-the-art performance in many tasks. However,
these models have similar limits with many CNN-based
models that the working mechanism such as the represen-
tation properties and capacities have not been made clear.
The design of model structure is mostly based on intuition,
heuristic method and experiment results. Besides, a lot of
effort is required for parameter tuning due to lack of prior
knowledge in the optimization objective.

Our basic motivation is based on homophily theory [28]
in sociology that two connected nodes in graph are more
likely to share similar interests. The prior knowledge is
adopted as the basic assumption in graph Laplacian-based
methods [42, 44]. Nevertheless, no GCNNs have encoded
the prior knowledge in the model to directly optimize. In
[19], GCN is used as a powerful feature extractor and the
loss function is totally supervised which only defined on
labeled nodes. However, the lack of unsupervised informa-
tion in the optimization objective leads to over-fit on the
labeled data. In graph Laplacian based methods, the prior
knowledge that similar nodes have the same labels is used
as unsupervised information. Therefore, our idea is to use
GCN as the feature extractor and include the unsupervised
information in the optimization objective. To be specific, we
define local inconsistency as the distance between the prob-
ability mass function (pmf) of two connected nodes. Then
we introduce the inconsistency loss which is an unsuper-
vised loss imposing a penalty on local inconsistency. Finally,
we propose the new loss function for GCN as the ensemble
of supervised loss and unsupervised loss. Compared with
the conventional Laplacian-based methods, our proposal
contains more structural information by using GCN-based
structure. Besides, we further improved the original GCN
model by encoding prior knowledge in the loss function.

In this paper, we propose Prior Knowledge enhanced
Graph Convolutional Network (PKGCN) to overcome the
shortcomings of both graph Laplacian regularization based

methods and the GCN model. The main contributions of our
work can be summarized as follows:

•	 We propose a new paradigm which combines the graph
Laplacian-based methods and GCN to overcome the
shortcomings from two kinds of methods.

•	 We introduce a new loss function of GCN for graph-
based semi-supervised classification. In addition to
labeled information, the loss function further incorpo-
rates prior knowledge on graphs and imposes a penalty
on local inconsistency.

•	 Extensive experiments show that our method yields bet-
ter results than the GCN model with no increase in time
complexity and no particular modification of the GCN
model structure.

The rest of this paper is organized as follows. In Sect. 2, the
related works are briefly reviewed, including semi-super-
vised learning and graph-based neural network. In Sect. 3,
we introduce notations and preliminaries. The proposed
PKGCN is presented in details in sect. 4. The experiments
and analysis are shown in Sect. 5. Finally, we give our con-
clusions in Sect. 6.

2 � Related work

2.1 � Semi‑supervised learning

Semi-supervised learning [6, 43] aims at making use of a
small amount of labeled data and a large amount of unla-
beled data to learn a classifier. A common assumption in
semi-supervised learning is the manifold assumption that
data distributes in a manifold structure and nearby samples
have similar output values. Currently, there are four para-
digms in semi-supervised learning: generative methods,
semi-supervised support vector machine (S3VM), graph-
based methods and disagreement-based methods. Genera-
tive methods [11, 32] assume that all samples are generated
from the same latent model. The missing labels are regarded
as the missing parameters and can be estimated by EM algo-
rithm. S3VM is a generalization of SVM and based on the
assumption of low-density separation. The most famous
method in this paradigm is the transductive vector machine
(TSVM) [16]. Graph-based methods [2, 26, 38, 44] consider
the relationships among data and map the data to a graph.
Disagreement-based methods assume that different views of
data are compatible and complementary. One of the common
algorithms is co-training [3], which trains multiple classi-
fiers and each classifier passes its most-confident samples
to other classifiers.

The problem we consider in this paper is the graph-based
semi-supervised classification. Methods can be roughly

3117International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

divided into two categories. The first category uses a graph
Laplacian regularization term in the loss function, which is
based on the assumption that adjacent nodes in the graph
tend to share the same labels. Therefore a large penalty will
incur when data points with high proximity are predicted to
have different labels. Various methods based on this assump-
tion adopt variants of graph Laplacian in the loss function,
including LP [44], ManiReg [2], SemiEmb [38] and ICA
[26]. The graph Laplacian regularizer is efficient when the
graph fits the task. However, edges could contain additional
information except for proximity, which is not leveraged in
graph Laplacian regularization based methods. The second
category is based on graph embedding, which aims to obtain
a low-dimensional vector for each node while preserving
the graph structure [13]. The embeddings can be used as
input features of downstream machine learning models.
Inspired by skip-gram model [29], DeepWalk [33] learns
node embeddings through predicting its context generated
by random walk. Node2vec [14] improves DeepWalk by
employing a biased random walk scheme. Planetoid [39]
learns node embedding through jointly predicting the class
label and the context of the node in the graph. However,
these methods are not end-to-end as random walk sequences
generation and parameters learning are optimized separately.

2.2 � Graph‑based neural networks

The most primitive graph-based neural network is Graph
Neural Network (GNN) [35] which extends recurrent neural
network for graph-structured data. To learn parameters, GNN
needs to iteratively apply contraction maps until convergence
to obtain node embedding, which restricts the model efficiency
and ability. Gated Graph Neural Network (GGNN) [23] further
improves GNN through introducing gate mechanism and thus
removes the need for contraction maps. Besides GNN, Graph
Convolutional Neural Networks (GCNNs) are another kinds
of graph-based neural networks which generalizes CNNs to
graph domain. According to the difference of convolutional
operations, GCNNs can be classified into two types [4]: spatial
methods and spectral methods. Spatial methods consider con-
volution as a patch operator and operate on spatially neighbors
to propagate node information [1, 9, 30, 31]. Spectral methods
generalize Convolutional Theorem [27] on graphs as the mul-
tiplication of a graph signal and a spectral filter [5, 36]. How-
ever, these models require computing the eigenvectors of graph
Laplacian matrix, which is computationally expensive for large
graphs. To improve efficiency, ChebyNet [8] simplifies the
spectral filter as a Kth-order truncated Chebyshev polynomial
expansion of the diagonal matrix of Laplacian eigenvalue.
GCN [19] further reduces the computational cost of ChebyNet
by limiting K = 1 and using renormalization trick. Through
simplification and approximation, the spectral filter of GCN
is spatially localized and only uses the first-order neighbors.

However, our proposed model is different from previous work
as we introduce prior knowledge on graphs in the optimiza-
tion objective of GCN through combining supervised term and
unsupervised term.

3 � Notations and preliminary

Given the undirected graph G = (V, E) , V = {v1, v2, ..., vN}
is a set of N = |V| nodes and E = {(vi, vj) ∣ vi, vj ∈ V}
is a set of M = |E| edges. For a given node vi , we use
N(vi) = {vj ∣ (vi, vj) ∈ E} to denote the set of nodes directly
connected to node vi . We use � ∈ ℝ

N×N to denote the adja-
cency matrix. Aij = 1 if (i, j) ∈ E , otherwise Aij = 0 . The
degree matrix � ∈ ℝ

N×N is a diagonal matrix Dii =
∑

j Aij .
We denote �i ∈ ℝ

D as the feature vector of node vi . � ∈ ℝ
N×D

as the feature matrix of all nodes in the graph. Let VL be the
set of labeled nodes and VU be the set of unlabeled nodes.
VL ∪ VU = V . For each node in VL , the label is denoted as a
one-hot vector �i ∈ ℝ

C , where C is the number of classes. We
use YL to denote the set of labels for nodes in VL . The problem
of graph-based semi-supervised learning is to predict the label
of nodes in VU with � , � and YL.

GCN [19] generalizes and simplifies convolutional theorem
[27] on graphs as follows:

Here, � ∈ ℝ
N is signal defined on the nodes of the graph

and �
�
∈ ℝ

N is spectral representation of the filter param-
eterized by � ∈ ℝ . Using renormalization trick �̃ = � + � ,
D̃ii =

∑
j Ãij and generalizing to signals with multiple input

channels and filters, the propagation rule becomes:

Here, �(l) ∈ ℝ
N×D(l) is the input and �(l+1) ∈ ℝ

N×�(l+1) is the
output of lth layer of GCN. �(0) = � . �(⋅) denotes the acti-
vation function. �(l) is the trainable parameter of lth layer.

For semi-supervised node classification, [19] used a two-
layer GCN. Given the nodes features matrix � ∈ ℝ

N×D as
input, the GCN model applies a softmax classifier on the
output:

Here, �̂ = �̃
−

1

2 �̃�̃
−

1

2 is calculated in the pre-processing
step. �(0) ∈ ℝ

D×H is the parameter of the input-to-hidden
layer with H feature maps. �(1) ∈ ℝ

H×C is the parameter
of the hidden-to-output layer. ReLU is the activation func-
tion defined as ReLU(x) = max(x, 0) . The softmax activa-
tion function is defined as softmax(xi) = exp(xi)∕

∑
i exp(xi) .

� ∈ ℝ
N×C is the output the GCN model and C is the

(1)�
𝜃
⋆ � ≈ 𝜃(� + �

−
1

2��
−

1

2)�.

(2)�(l+1) = 𝜎

(
�̃

−
1

2 �̃�̃
−

1

2�(l)�(l)
)
.

(3)� = f (�,�) = softmax
(
�̂ ReLU

(
�̂��(0)

)
W

(1)
)
.

3118	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

dimension of the output features, which is equal to the num-
ber of classes. The ith row vector �i ∈ ℝ

C is the discrete
predicted class pmf of node vi over C classes. The loss func-
tion is the negative logarithmic likelihood defining over all
labeled examples:

GCN works well since the graph convolution operation
aggregates feature information from neighboring nodes and
propagates it layer by layer. However, since the loss func-
tion is the negative logarithmic likelihood only defined on
the labeled nodes, the GCN model lacks instructions for
unlabeled nodes in the optimization objective, resulting in
over-fitting on the labeled nodes.

4 � The proposed method

In this Section, we first introduce the concept and the defini-
tion of local inconsistency. Next, We introduce how to cal-
culate inconsistency loss with local inconsistency. Finally,
we introduce the final model combining supervised loss and
inconsistency loss. The pseudocode of the proposed PKGCN
is presented in Algorithm 1.

4.1 � Local inconsistency

The social correlation theory homophily [28] states that
two connected users are likely to share similar interests. For
example, in a citation network, nodes represent papers and
edges represent citation relationships. Links usually exist
between two papers in similar field. In our proposed model,
we adopt the assumption that linked nodes are more likely
to belong to the same class (as shown in Fig. 1, linked nodes
form a densely connected cluster).

Under the assumption, two linked nodes should have high
similarity in terms of pmf predicted by the model. Note that
the pmf is defined as the probability that a discrete random
variable X takes on a particular value x, that is, P(X = x) . We
define local inconsistency on graphs as the distance of pmfs
between two linked nodes. We give the formal definition of
local inconsistency as follow:

Definition 1  (local inconsistency) Let G = (V, E) be a graph.
vi ∈ V , vj ∈ V are two nodes linked by edge (vi, vj) ∈ E .
�i ∈ ℝ

C and �j ∈ ℝ
C are the pmfs over C classes of vi and

vj respectively. The local inconsistency of vi and vj is

where d(⋅, ⋅) is a distance measure of pmfs.

(4)L = −
∑
l∈YL

C∑
c=1

Ylc log Zlc.

(5)Ilocal(vi, vj) = d(�i,�j),

Here, we provide two forms of distance measure func-
tion d(⋅, ⋅) . The first one is the Euclidean distance, which
is a normal distance measure in Euclidean vector space.
Euclidean distance is defined as

Since the variables of the distance function are pmfs, we
also use Jensen–Shannon divergence (JS divergence) [25]
to measure the distance. JS divergence is a method of meas-
uring the similarity between two pmfs. It is based on the
Kullback–Leibler divergence [21], but it is symmetric and
always has a finite value. Given two discrete pmfs P and Q
defined on the same probability space, the JS divergence
between P and Q is defined to be

The local inconsistency measures the similarity between two
nodes’ pmfs predicted by GCN [19]. High local inconsist-
ency indicates low similarity, vice versa. Under the previous
assumption, two nodes linked by an edge should have a high
similarity between their predicted class pmfs, resulting in
low local inconsistency.

(6)dEUC(P,Q) =
√∑

x∈X

[P(x) − Q(x)]2.

(7)

dJS(P,Q) =
∑
x∈X

1

2

[
P(x) log

(
P(x)

P(x)+Q(x)

2

)
+ Q(x) log

(
Q(x)

P(x)+Q(x)

2

)]
.

Fig. 1   Visualization of the Cora dataset. Nodes correspond to scien-
tific publications and edges to citations. Marker color represents the
groundtruth class of the node. Nodes belonging to the same class are
more likely to connect with each other, forming a densely connected
cluster. More details of the dataset are given in Sect. 5.1

3119International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

4.2 � Inconsistency loss

For a given node vi , N(vi) is the set of nodes directly connected
with vi . Zi ∈ ℝ

C is the class pmf of node vi predicted by GCN
model. The local inconsistency of node vi and its neighbor
vj ∈ N(vi) can be computed using Eq. (5). The node inconsist-
ency of vi is the average of local inconsistency between node
vi and all its neighbors vj ∈ N(vi):

We define the inconsistency loss as the average of total
inconsistency over all nodes in the graph G:

Note that Eq. (9) can be simplified as Eq. (10) when the local
inconsistency Ilocal(vi, vj) is defined as a symmetric function
of node vi and its neighbor vj:

Here, 1

|N(vi)| is the weight for the local inconsistency
Ilocal(vi, vj) of node vi and its neighbor vj . The weight takes
the maximum value when N(vi) = 1 , which means the node
has only one neighbor. As the number of node neighbor
increases, the weight becomes smaller. The inconsistency
loss Lincon is actually a weighted sum of the local inconsist-
ency between node pairs (vi, vj) . The weight of Ilocal(vi, vj) is
proportional to 1∕|N(vi)| . Therefore, nodes with fewer neigh-
bors would appear less but contribute more in the inconsist-
ency loss. The intuition behind the weights is that node with
fewer neighbors is more likely to be the same class as its
neighbor,thus taking more weights in the loss function. Lincon
is unsupervised because no label information occurs in the
definition. The inconsistency loss encourages nodes in the
graph to match the predicted pmf of its neighbors’ pmfs.

4.3 � Combine supervised loss and inconsistency loss

For semi-supervised node classification, the objective func-
tion of GCN model is a supervised loss defined as the cross-
entropy error between predicted values and the ground-truth
labels,

(8)Inode(vi) =
1

|N(vi)|
∑

vj∈N(vi)

Ilocal(vi, vj).

(9)

Lincon =
1

N

N�
i=1

Inode(vi) =
1

N

N�
i=1

⎡
⎢⎢⎣

1

�N(vi)�
�

vj∈N(vi)

Ilocal(vi, vj)

⎤
⎥⎥⎦
.

(10)Lincon =
1

N

∑
(i,j)∈E

[(
1

|N(vi)| +
1

|N(vj)|
)
Ilocal(vi, vj)

]
.

(11)Lsup = −
∑
l∈YL

C∑
c=1

Ylc log Zlc.

The conventional supervised loss Lsup constraints the model
to well fit the distribution of labeled nodes. However, the
model can not generalize well on unlabeled nodes as sam-
ples are not independent identically distributed (i.i.d). To
improve the generalization ability on testing instances, we
add the inconsistency loss on the initial supervised loss. The
new loss function is defined as:

where k is the tradeoff weight adjusting the proportion of
inconsistency loss in total loss. Our proposed method is a
more generalized form of GCN. When we set k = 0 , the
proposal is reduced to GCN.

Algorithm 1 describes the training process of our pro-
posed PKGCN model. The loss function L is defined as
the weighted sum of Lsup and Lincon . In Algorithm 1, k(t)
is the tradeoff weight function. We propose two strategies
to implement k(t): static strategy and dynamic strategy. For
static strategy, we choose a constant value of k with the high-
est classification accuracy on the validation set. For dynamic
strategy, we first give k(t) a initial value k(t) = 0 and then
increase k(t) as the number of training epoch increases. Our
basic motivation is to train the model under more supervised
information at the beginning and then transit to unsuper-
vised information learning. We discuss different strategies
for choosing the tradeoff weight function k(t) in Sect. 5.4.2.

Algorithm 1 PKGCN
1: Input:
2: X ∈ RN×D : the data feature matrix
3: Y ∈ RN×C : the masked ground truth label matrix
4: YL: the indices set of training data
5: A: the adjacency matrix
6: k(t): the tradeoff weight function
7: n epoch: the number of training epochs
8: Output: The trained model
9: Randomly initialize W(0) and W(1) with Glorot initializer
10: for t in range(0, n epoch) do

11: Z ← softmax Â ReLU ÂXW(0) W(1) Eq. (3)

12: Lsup ← −
l∈YL

C

c=1

Ylc logZlc Eq. (11)

13: Lincon ← 1
N

N

i=1

Inode(vi) Eq. (5) (8) (9)

14: L ← Lsup + k(t)Lincon Eq. (12)

15: Updating W(0) and W(1) using
∂L

∂W(0) and
∂L

∂W(1)
16: end for

5 � Experimental study

5.1 � Datasets

For comparison, we utilize three standard citation network
benchmark datasets: Cora, Citeseer, and Pubmed employed
in previous study [19]. In the above three datasets, nodes
are scientific publications and edges are citation links. We
treat the links as undirected edges and construct a binary,
symmetric adjacency matrix A. Zachary’s karate club net-
work [41] is used for case study in Section 5.4.3. Random

(12)L = Lsup + kLincon,

3120	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

graphs are used for complexity analysis in 5.4.4. An over-
view of the statistics of the datasets is given in Table 1 and
detailed descriptions are given below:

•	 Cora the Cora dataset contains 2708 scientific publica-
tions and 5429 citation links. Each document is described
by a 0/1-valued word vector of 1433 dimensions and
classified into one of 7 classes. Only 5.2% nodes are
labeled for training.

•	 Citeseer the Citeseer dataset contains 3327 scientific
publications and 4732 citation links. Each document is
described by a 0/1-valued word vector of 3703 dimen-
sions and classified into one of 6 classes. Only 3.6%
nodes are labeled for training.

•	 Pubmed the Pubmed dataset contains 19717 scientific
publications and 44,338 citation links. Each document
is described by a Term-Frequency–Inverse Document
Frequency (TF–IDF) vector of 500 dimensions and clas-
sified into one of 3 classes. Only 0.3% nodes are labeled
for training.

•	 Zachary’s karate club Zachary’s karate club dataset is
a well-known social network. The dataset contains 34
nodes and 77 edges. Each node represents a member of
the club, and each edge represents that a relationship
exists between two members. All members are classi-
fied into one of 2 groups after an argument between two
teachers. We randomly choose 6 nodes for training.

•	 Random graphs we generate random graphs for exper-
imental study of time complexity. For a graph with N
nodes, we create 2N edges uniformly at random. For node
vi in the graph, we take ith row of the identity matrix
IN as its feature. For training set, we randomly sample
10% nodes as the labeled nodes and assign each node a
random C-dimensional one-hot vector as its label. In our
experiment, we set C = 5.

5.2 � Baseline algorithms

We compare our proposed method PKGCN and its variants
with the state-of-the-art model GCN [19] and other semi-
supervised learning methods, including label propagation
(LP) [44], semi-supervised embedding (SemiEmb) [38],

manifold regularization (ManiReg) [2], Skip-gram based
graph embeddings (DeepWalk) [33], iterative classification
algorithm (ICA) [26] and Planetoid [39]. We also compare
our model with ChebyNet in [8] using higher-order Cheby-
shev filters.

5.3 � Evaluation metric and experimental set‑up

We strictly follow the training, validation and test data split
provided by [19] and [39]. For all datasets, we use 20 nodes
per class for training, 500 nodes for validation and 1000
nodes for test. Node labels in the validation set are not used
for training. For the multi-classification problem, we evalu-
ate the models with micro-f1 (accuracy) and macro-f1 on
the test set.

For a fair comparison, all experiments in the paper are
implemented with PyTorch 1.0.0 on GeForceⓇ GTX 1080
Ti. Furthermore, we use the same hyper-parameters setting
as in [19] except stopping rules: Adam [18] optimizer with
a learning rate of 0.01, dropout rate of 0.5, L2 regularization
weight of 5 × 10−4 , two convolutional layers, and 16 hidden
units. We initialize weights using Glorot initialization [12]
and row-normalize input feature vectors. We train the model
on Cora, Citeseer and Pubmed for 1000, 1000, 200 epochs
respectively.

The only hyper-parameter we need to choose is the trade-
off weight k in our model. In our experiment, we choose k
with the highest accuracy on the validation set.

5.4 � Results and analysis

In this subsection, we first compare the variants of PKGCN
and the results of statistical test indicate PKGCN-EUC is the
best model. Then, PKGCN is compared with GCN and other
baselines and the results show that our proposed method is
superior to GCN. We further analyze the effect of tradeoff
between supervised loss and inconsistency loss and find that
an appropriate setting of tradeoff is most effective. Finally,
we show that the time complexity of PKGCN is in linear
with the number of edges.

5.4.1 � Semi‑supervised node classification

First, we conduct experiments of GCN, PKGCN-JS and
PKGCN-EUC with different training epochs. PKGCN-
JS and PKGCN-EUC are variants of our proposed model
using JS divergence and Euclidean distance as the distance
measure function respectively. The results are shown in
Tables 2, 3 and 4. We report the mean accuracy of 10
independent runs using different random seeds.

Two conclusions can be drawn from the above experi-
mental results:

Table 1   Dataset statistics

Dataset Nodes Edges Classes Features Label rate (%)

Cora 2708 5429 7 1433 5.2
Citeseer 3327 4732 6 3703 3.6
Pubmed 19717 44338 3 500 0.3
Zachary’s karate

club
34 77 2 34 17.6

3121International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

•	 Under the same training epochs settings, both PKGCN-
JS and PKGCN-EUC outperform GCN, and PKGCN-
EUC outperforms PKGCN-JS;

•	 In general, the performance of GCN degrades as its
training epoch increases (when exceeds 200). However,
as the number of training epochs increases, the perfor-
mance of PKGCN-JS and PKGCN-EUC increases.

Then, we run the experiments of variants of PKGCN with
random weight initialization for 100 times. We report the
mean micro-f1 and macro-f1 in Table 5. The result shows
that PKGCN-EUC performs better than PKGCN-JS on Cora

and Citeseer dataset considering both micro-f1 and macro-
f1. On Pubmed dataset, PKGCN-JS has no difference in per-
formance compared to PKGCN-JS. Then, we conduct the
t-test to evaluate the significance of the results in Table 5. As
shown in Table 6, the p values suggest that PKGCN-EUC is
better than PKGCN-JS on Cora and Citeseer dataset under
the significance level of � = 0.001.

We report the mean accuracy of 100 runs with random
weight initialization in Table 7. Results are summarized
in Table 7 where the highest accuracy in each column is
highlighted in bold. Results of baseline methods are taken
from [19]. On Cora and Citeseer dataset, PKGCN-EUC
outperforms the GCN model with an improvement of 2.1%
and 1.4% in accuracy respectively. On Pubmed dataset, our
methods perform comparably to GCN and outperform other
baselines significantly.

To explain the results, we further calculate the inconsist-
ency rate, defined as the proportion of edges linking two
nodes belonging to different classes divided by the number
of classes. As shown in Table 8, the inconsistency rate of
Cora dataset is less than 2.71% , which verifies our observa-
tion statistically. Our model is based on the assumption that
nearby nodes should have the same class labels and similar
predicted pmf. The inconsistency rate can reflect how the

Table 2   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Cora dataset for different training epochs.

GCN (%) PKGCN-JS (%) PKGCN-
EUC
(%)

200 81.25 82.05 82.36
400 80.89 82.45 83.16
600 80.81 82.63 83.45
800 80.96 82.83 83.82
1000 81.14 82.88 83.80
1200 80.93 82.94 83.68

Table 3   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Citeseer dataset for different training epochs

GCN (%) PKGCN-JS (%) PKGCN-
EUC
(%)

200 70.05 70.46 70.48
400 69.62 70.63 71.09
600 69.74 70.88 71.24
800 69.87 70.81 71.16
1000 69.88 71.04 71.48
1200 69.43 70.61 71.33

Table 4   Classification accuracies of GCN, PKGCN-JS and PKGCN-
EUC on Pubmed dataset for different training epochs

GCN (%) PKGCN-JS (%) PKGCN-
EUC
(%)

200 78.07 78.16 78.47
400 77.83 77.89 78.00
600 77.81 77.71 77.71
800 77.60 77.66 77.75
1000 77.65 77.62 77.80
1200 77.64 77.44 77.65

Table 5   Mean and standard deviations of micro-f1 and macro-f1 for
PKGCN-JS and PKGCN-EUC

The highest accuracy is highlighted in bold

PKGCN-JS PKGCN-EUC

Cora micro-f1 0.827 ± 0.0037 (k = 6.0) �.��� ± �.����
(k = 2.0)

macro-f1 0.817 ± 0.0033 (k = 6.0) �.��� ± �.����
(k = 2.0)

Citeseer micro-f1 0.708 ± 0.0057 (k = 5.5) �.��� ± �.����
(k = 1.5)

macro-f1 0.679 ± 0.0054 (k = 5.5) �.��� ± �.����
(k = 1.5)

Pubmed micro-f1 0.784 ± 0.0037 (k = 2.0) 0.784 ± 0.0040
(k = 0.5)

macro-f1 0.777 ± 0.0035 (k = 2.0) 0.777 ± 0.0036
(k = 0.5)

Table 6   Results of t-test comparing PKGCN-JS and PKGCN-EUC
using micro-f1 and macro-f1

Dataset Metric t p value

Cora micro-f1 16.9691 < 0.0010

macro-f1 14.9992 < 0.0010

Citeseer micro-f1 11.0673 < 0.0010

macro-f1 5.2865 < 0.0010

Pubmed micro-f1 0 0.5000
macro-f1 0 0.5000

3122	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

graph data deviates from the assumption. Since the incon-
sistency rate of Pubmed dataset ( 6.60% ) is higher than Cora
( 2.71% ) and Citeseer ( 4.35% ), the performance on Pubmed
dataset is worse than that on Cora and Citeseer. This result
indicates that our proposed PKGCN may not always be
effective to improve GCN and the performance depends on
the degree of the correspondence between the graph data
and the assumption.

5.4.2 � Effect of tradeoff between supervised loss
and inconsistency loss

The tradeoff weight k is a critical parameter in our model,
determining the proportion of inconsistency loss in the
total loss. First, we analyze the effect of static tradeoff
weight k on classification accuracy, supervised loss and
inconsistency loss. In our experiment, we change k from
0 to 12 with a step of 1 every 100 epochs. For each k,
we repeat the experiment 100 times. We plot the median
curve, upper quartile and lower quartile on the test set in
Fig. 2. When k = 0 , the classification accuracy approxi-
mately equals to which of the GCN model. As k increases,
the classification accuracy increases first and then
decreases, however, the variance of accuracy decreases

first and then increase (Fig. 2a, b). As k increases, more
weight is placed on the inconsistency loss. Therefore the
supervised loss increases (Fig. 2c, d) and the inconsistency
loss decreases (Fig. 2e, f).

We then analyze the effect of dynamic tradeoff weight on
classification accuracy. We devised several implementations
of tradeoff weight function k(t), see Tables 9, 10 and Fig. 3.
Table 9 shows the classification accuracy of PKGCN-JS
with different k(t). All models with an increasing tradeoff
weight function outperform the models with a decreasing
one. Table 10 shows that PKGCN-EUC with an increas-
ing tradeoff weight function outperforms PKGCN-EUC
with a decreasing one. Furthermore, on Cora and Citeseer,
PKGCN-EUC with a increasing dynamic tradeoff function
(84.2% for Cora and 72.7% for Citeseer) outperforms the
model with a fixed tradeoff in Tabel 7 (83.6% for Cora and
71.7% for Citeseer). The results verify our conjecture in
Sect. 4.3. That is, the model needs the inconsistency loss in
the late stage of the training process to improve generaliza-
tion on unlabeled data.

5.4.3 � Case study on Karate club network

We analyze why PKGCN is superior to GCN through visual-
izing the predicted results on the Karate club network. We
set k = 1 for PKGCN-JS and run 10 epochs. Other param-
eters are the same as in Sect. 5.3. The results are shown in
Fig. 4. Note that PKGCN correctly classified node 24 while
GCN does not, as PKGCN imposes a penalty on the incon-
sistency of predicted class pmf between two adjacent nodes.
The inconsistency loss encourages the model to predict the
pmf of small-degree nodes to be consistent with their neigh-
bors. Therefore, PKGCN can achieve better performance
than GCN.

5.4.4 � Computational complexity

As analysed in [19], the computational complexity of GCN
is O(|E|DHC) , which is dominated by Eq. (3). Our proposed
PKGCN is based on GCN with an additional inconsistency
loss entry. Using the sparse matrix operations, the time com-
plexity of evaluating Eq. (9) is O(|E|C) . Thus our proposed
model has the same time complexity as the GCN model. We
repeat the experiment on random graphs of different sizes for
ten times and report the mean training time per epoch. See
Sect. 5.1 for more details about random graph dataset used
in our experiment. As shown in Fig. 5, the time complexity
of PKGCN is linear in the number of graph edges.

Table 7   Summary of results in terms of classification accuracies for
Cora, Citeseer and Pubmed

Method Cora (%) Citeseer (%) Pubmed (%)

ManiReg [2] 59.5 60.1 70.7
SemiEmb [38] 59.0 59.6 71.7
LP [44] 68.0 45.3 63.0
DeepWalk [33] 67.2 43.2 65.3
ICA [26] 75.1 69.1 73.9
Planetoid [39] 75.7 64.7 77.2
ChebyNet [8] 81.2 69.8 74.4
GCN [19] 81.5 70.3 79.0
PKGCN-JS (ours) 82.7 (k = 6.0) 70.8 (k = 5.5) 78.4 (k = 2.0)

PKGCN-EUC (ours) 83.6 (k = 2.0) 71.7 (k = 1.5) 78.4 (k = 0.5)

Table 8   The proportion of edges linking two nodes belonging to dif-
ferent classes and the inconsistency rate of Cora, Citeseer and Pub-
med respectively

Dataset Proportion (%) Inconsist-
ency rate
(%)

Cora 18.97 2.71
Citeseer 26.10 4.35
Pubmed 19.80 6.60

3123International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

Fig. 2   The test classification
accuracy (row 1), supervised
loss (row 2) and inconsistency
loss (row 3) of PKGCN-JS on
the Citeseer (column 1) and
Cora (column 2) datasets with
tradeoff weight k changing
from 0 to 12. Each experiment
repeats 100 times. Black lines
denote the median. Red and
green dots denote the upper
and lower quartiles respectively
(color figure online)

(a)Test accuracy of Cora (b) Test accuracy of Citeseer

(c) Supervised loss of Cora (d) Supervised loss of Citeseer

(e) Inconsistency loss of Cora (f) Inconsistency loss of Citeseer

Table 9   Classification accuracies of PKGCN-JS for Cora, Citeseer
with different implementations of dynamic tradeoff weight function
k(t)

The highest accuracy is highlighted in bold

Cora (%) Citeseer (%)

Increasing k
1
(t) = t∕100 82.8 70.7

k
2
(t) = t

2∕10000 82.5 70.1
Decreasing k

4
(t) = 10 − t∕100 82.0 69.5

k
5
(t) = 10 − t

2∕10000 81.4 69.3

k
6
(t) = 10 −

√
t∕10 82.2 69.5

Table 10   Classification accuracies of PKGCN-EUC for Cora, Cite-
seer with different implementations of dynamic tradeoff weight func-
tion k(t)

The highest accuracy is highlighted in bold

k(t) Cora (%) Citeseer (%)

increasing k
1
(t) = t∕500 84.1 72.7

k
2
(t) = t

2∕50000 83.6 72.5

k
3
(t) =

√
t∕250 84.2 72.4

decreasing k
4
(t) = 2 − t∕500 81.6 70.2

k
5
(t) = 2 − t

2∕50000 81.2 70.3

k
6
(t) = 2 −

√
t∕250 82.3 70.7

3124	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

5.5 � Discussion

5.5.1 � Insights of PKGCN

Our proposed PKGCN enhances GCN through introduc-
ing the prior knowledge that adjacent nodes belong to the
same class. The propagation rule and the network structure
of PKGCN are the same with GCN. However its loss func-
tion includes an additional unsupervised term defined on
both labeled and unlabeled nodes. With the prior knowledge,
PKGCN achieves better generalization ability on unlabeled
data. On datasets with low inconsistency rate such as Cora
( 2.71% ) and Citeseer ( 4.35% ), PKGCN improves GCN with
2.1% and 1.4% in accuracy respectively. This result indicates
that prior knowledge contributes to improving GCN when
the assumption is consistent with data. We further analyze
the effect of tradeoff in our model. As shown in Fig. 2, the
tradeoff parameter controls the importance of supervised
term and unsupervised term in total loss. The relationship
between accuracy and tradeoff is approximately quadratic
and maximum is obtained with a medium value. Experi-
ments about dynamic tradeoff indicate that PKGCN learns
the supervised information in early stage, and generalizes to
unlabeled data with prior knowledge in late stage. Finally,
as shown in Fig. 5, PKGCN does not increase the time com-
plexity when compared to GCN, thus our proposed method
is effective and practical.

5.5.2 � A general framework

Our proposed method is actually a special case under the
Bayesian framework. We define the probability vi and

vj connected by an edge having the same class label as
P(same, vi, vj) . Using Bayesian formula, the probability can
be decomposed into

Fig. 3   Different implementations of dynamic tradeoff functions k(t)
in Algorithm 1. k

1
(t) , k

2
(t) and k

3
(t) are increasing functions. k

3
(t) ,

k
4
(t) and k(5) are decreasing functions. The value of each function

changes from 0 to 10 (or from 10 to 0) with a step of t = 100 . Details
about the implement of functions can be found in Table 9

(a)

(b)

(c)

Fig. 4   Visualization of the predicted results. a shows the Karate club
network and the groundtruth label of each node. b presents the pre-
dicted results of GCN. c presents the predicted results of PKGCN-JS.
Note that PKGCN-JS correctly classifies node 24 while GCN does
not

3125International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

Here, P(vi) is the prior probability of node vi . P(vj|vi) is the
probability of node vj given node vi . P(same|vi, vj) is the
probability that two nodes belong to the same class given vi
and vj . The prior probabilities P(vi) and P(vj|vi) are either
given by an “oracle” or estimated from labeled data. In this
paper, P(vi) =

1

N
 and P(vj|vi) = 1

|N(vi)| . For P(same|vi, vj) , we
define it to be inversely proportional to the local inconsist-
ency as

P(same|vi, vj) decreases from 1 to 0 as Ilocal(vi, vj) increase
from 0 to +∞ . Using the Taylor’s theorem that
f (x) =

1

1+x
≈ 1 − x ( x ≈ 0 ), we can approximate Eq. (14) with

The objective is to maximize the sum of probability over all
node pairs in graph,

which is equivalent to minimizing the inconsistency loss
in Eq. (9). Under this framework, we can incorporate more
prior knowledge in the model for using different prior prob-
ability P(vi) and P(vj|vi) , and adopt flexible definition of
P(same|vi, vj) . For example, in the heterogeneous graph, we
can define P(same|vi, vj) to be related with the relation type
between vi and vj , or the meta path from vi to vj.

5.5.3 � Limitations and future work

Here, we list some limitations of our proposed method and
point out some possible solutions.

(13)P(same, vi, vj) = P(vi)P(vj|vi)P(same|vi, vj).

(14)P(same|vi, vj) = 1

1 + Ilocal(vi, vj)
.

(15)P(same|vi, vj) ≈ 1 − Ilocal(vi, vj).

(16)

N∑
i=1

∑
j∈N(vi)

P(same, vi, vj) = const. −

N∑
i=1

∑
j∈N(vi)

[
1

N|N(vi)| Ilocal(vi, vj)
]
,

First, since our model is based on GCN, the memory
requirement of PKGCN is also linear in the size of dataset
under the full-batch gradient descent optimization proce-
dure. The recently proposed FastGCN [7] and GraphSAGE
[15] overcome the limitation through sampling mini-batch
nodes at each layer. An interesting research direction is
applying our paradigm to sampling-based graph neural
networks, where a new design of inconsistency loss would
be needed.

Second, our model is currently limited to undirected,
homogeneous and static graph. However, graph-structured
data is usually directed, heterogeneous and dynamic in the
real world. In addition, edge features are also important
information in graph mining. In future work, we will inves-
tigate extending our model to varying types of graphs.

Third, the tradeoff parameter is determined through
experiment on the validation set. However, we can use
gradient descent to automatically learn a better parameter.
In future, we will exploit how to ensemble tradeoff param-
eter optimization and model parameter learning together.

Fourth, the prior knowledge that adjacent nodes belong
to the same category is commonly used as a basic assump-
tion in graph-based semi-supervised learning [2, 42, 44].
The homophily theory has also been studied in sociol-
ogy by [28]. However, the assumption is somewhat strong
since it is valid only when the classes are well separated
and clustered. One potential approach could be adopting
a more general assumption that the labels of the k-hop
neighbors (k ≥ 1) may affect the node’s category distribu-
tion and we can use attention mechanism (e.g. GAT [37])
to selectively capture these relations.

Finally, we will also study the method for quantitatively
evaluating the consistency between prior knowledge and
graph data. This helps us to understand what is the right
time to use our model.

Fig. 5   Training time per epoch
for random graphs

3126	 International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127

1 3

6 � Conclusions

In this paper, we propose PKGCN which utilizes the prior
knowledge on graphs to enhance GCN for graph-based
semi-supervised learning. The prior knowledge that adja-
cent nodes have the same labels is incorporated through
defining the optimization objective as a tradeoff between
the supervised term and the unsupervised term. In our
paradigm, the graph Laplacian-based models and GCN are
combined to overcome the disadvantages of both methods.
Furthermore, PKGCN does not increase time complexity
while achieving a compelling performance. Comprehen-
sive experiments show that PKGCN is better than GCN
and significantly outperforms other models, which verified
the effectiveness of our design encoding prior knowledge
to the loss function.

Acknowledgements  This work was funded by the National Natu-
ral Science Foundation of China under Grant No. U1636220 and
61532006, and Beijing Municipal Natural Science Foundation under
Grant No. 4172063.

Compliance with ethical standards 

Conflict of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Atwood J, Towsley DF (2016) Diffusion-convolutional neural
networks. In: Advances in neural information processing sys-
tems, pp 1993–2001

	 2.	 Belkin M, Niyogi P, Sindhwani V, Bartlett P (2006) Manifold
regularization: a geometric framework for learning from exam-
ples. J Mach Learn Res 7(1):2399–2434

	 3.	 Blum A, Mitchell TM (1998) Combining labeled and unlabeled
data with co-training. In: Proceedings of the 11th annual confer-
ence on computational learning theory, pp 92–100

	 4.	 Bronstein MM, Bruna J, Lecun Y, Szlam A, Vandergheynst P
(2017) Geometric deep learning: going beyond euclidean data.
IEEE Signal Process Mag 34(4):18–42

	 5.	 Bruna J, Zaremba W, Szlam A, Lecun Y (2014) Spectral networks
and locally connected networks on graphs. In: Proceedings of the
2th international conference on learning representations

	 6.	 Chapelle OZA, Scholkopf B (2006) Semi-supervised learning.
MIT Press, Cambridge

	 7.	 Chen J, Ma T, Xiao C (2018) Fastgcn: Fast learning with graph
convolutional networks via importance sampling. In: Proceedings
of the 6th international conference on learning representations

	 8.	 Defferrard M, Bresson X, Vandergheynst P (2016) Convolu-
tional neural networks on graphs with fast localized spectral
filtering. pp 3844–3852

	 9.	 Duvenaud DK, Maclaurin D, Aguileraiparraguirre J, Gomez-
bombarelli R, Hirzel TD, Aspuruguzik A, Adams RP (2015)
Convolutional networks on graphs for learning molecular fin-
gerprints. In: Advances in neural information processing sys-
tems, pp 2224–2232

	10.	 Fout A, Byrd J, Shariat B, Benhur A (2017) Protein interface
prediction using graph convolutional networks. In: Advances in
neural information processing systems, pp 6530–6539

	11.	 Fujino A, Ueda N, Saito K (2005) A hybrid generative/discrimi-
native approach to semi-supervised classifier design. In: Pro-
ceedings of the 19th AAAI conference on artificial intelligence,
pp 764–769

	12.	 Glorot X, Bengio Y (2010) Understanding the difficulty of train-
ing deep feedforward neural networks. In: Proceedings of the
13th international conference on artificial intelligence and sta-
tistics, pp 249–256

	13.	 Goyal P, Ferrara E (2018) Graph embedding techniques,
applications, and performance: a survey. Knowl Based Syst
151:78–94

	14.	 Grover A, Leskovec J (2016) Node2vec: scalable feature learning
for networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pp
855–864

	15.	 Hamilton WL, Ying Z, Leskovec J (2017) Inductive representa-
tion learning on large graphs. In: Advances in neural information
processing systems, pp 1024–1034

	16.	 Joachims T (1999) Transductive inference for text classification
using support vector machines. In: Proceedings of the 16th inter-
national conference on machine learning, pp 200–209

	17.	 Kim Y (2014) Convolutional neural networks for sentence clas-
sification. In: Proceedings of the conference on empirical methods
in natural language processing, pp 1746–1751

	18.	 Kingma D, Ba J (2015) Adam: a method for stochastic optimiza-
tion. In: Proceedings of the 3th international conference on learn-
ing representations

	19.	 Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: Proceedings of the 5th interna-
tional conference on learning representations, pp 1–14

	20.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

	21.	 Kullback S, Leibler RA (1951) On information and sufficiency.
Ann Math Stat 22(1):79–86

	22.	 Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86:2278–2324

	23.	 Li Y, Tarlow D, Brockschmidt M, Zemel RS (2016) Gated graph
sequence neural networks. In: Proceedings of the 5th international
conference on learning representations

	24.	 Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. In: Pro-
ceedings of the 27th international joint conference on artificial
intelligence

	25.	 Lin J (1991) Divergence measures based on the shannon entropy.
IEEE Trans Inf Theory 37(1):145–151

	26.	 Lu Q, Getoor L (2003) Link-based classification. In: Proceed-
ings of the 20th international conference on machine learning, pp
496–503

	27.	 Mallat S (1999) A wavelet tour of signal processing, 2nd edn.
Elsevier, San Diego

	28.	 Mcpherson M, Smithlovin L, Cook JM (2001) Birds of a feather:
Homophily in social networks. Rev Soc 27(1):415–444

	29.	 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. In: Proceedings of the
neural information processing systems conference, pp 3111–3119

	30.	 Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein
MM (2017) Geometric deep learning on graphs and manifolds
using mixture model cnns. pp 5425–5434

	31.	 Niepert M, Ahmed MO, Kutzkov K (2016) Learning convolu-
tional neural networks for graphs. In: Proceedings of the 20th
international conference on machine learning, pp 2014–2023

3127International Journal of Machine Learning and Cybernetics (2019) 10:3115–3127	

1 3

	32.	 Nigam K, Mccallum A, Thrun S, Mitchell TM (2000) Text clas-
sification from labeled and unlabeled documents using em. Mach
Learn 39(2):103–134

	33.	 Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: Online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 701–710

	34.	 Sainath TN, Vinyals O, Senior A, Sak H (2015) Convolutional,
long short-term memory, fully connected deep neural networks.
In: 2015 IEEE international conference on acoustics, speech and
signal processing (ICASSP), IEEE, pp 4580–4584

	35.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G
(2009) The graph neural network model. IEEE Trans Neural Netw
20(1):61–80

	36.	 Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P
(2013) The emerging field of signal processing on graphs: extend-
ing high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Process Mag 30(3):83–98

	37.	 Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio
Y (2018) Graph attention networks. In: Proceedings of the 6th
international conference on learning representations

	38.	 Weston J, Ratle F, Mobahi H, Collobert R (2008) Deep learn-
ing via semi-supervised embedding. In: Proceedings of the 25th
international conference on machine learning, pp 1168–1175

	39.	 Yang Z, Cohen W, Salakhutdinov R (2016) Revisiting semi-super-
vised learning with graph embeddings. In: Proceedings of the 33th
international conference on machine learning, pp 40–48

	40.	 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting. pp
3634–3640

	41.	 Zachary WW (1977) An information flow model for conflict and
fission in small groups. J Anthropol Res 33(4):452–473

	42.	 Zhou D, Bousquet O, Lal TN, Weston J, Olkopf BS (2004) Learn-
ing with local and global consistency. Adv Neural Inf Process Syst
16:321–328

	43.	 Zhu X (2005) Zhu X (2005) Semi-supervised learning literature
survey. Tech. rep., University of Wisconsin-Madison Department
of Computer Sciences

	44.	 Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised learn-
ing using Gaussian fields and harmonic functions. In: Proceed-
ings of the 20th international conference on machine learning, pp
912–919

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	PKGCN: prior knowledge enhanced graph convolutional network for graph-based semi-supervised learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Semi-supervised learning
	2.2 Graph-based neural networks

	3 Notations and preliminary
	4 The proposed method
	4.1 Local inconsistency
	4.2 Inconsistency loss
	4.3 Combine supervised loss and inconsistency loss

	5 Experimental study
	5.1 Datasets
	5.2 Baseline algorithms
	5.3 Evaluation metric and experimental set-up
	5.4 Results and analysis
	5.4.1 Semi-supervised node classification
	5.4.2 Effect of tradeoff between supervised loss and inconsistency loss
	5.4.3 Case study on Karate club network
	5.4.4 Computational complexity

	5.5 Discussion
	5.5.1 Insights of PKGCN
	5.5.2 A general framework
	5.5.3 Limitations and future work

	6 Conclusions
	Acknowledgements
	References

