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Abstract
Fuzzy C-means (FCM) algorithm is a fuzzy clustering algorithm based on objective function compared with typical “hard 
clustering” such as k-means algorithm. FCM algorithm calculates the membership degree of each sample to all classes and 
obtain more reliable and accurate classification results. However, in the process of clustering, FCM algorithm needs to deter-
mine the number of clusters manually, and is sensitive to the initial clustering center. It is easy to generate problems such as 
multiple clustering iterations, slow convergence speed and local optimal solution. To address those problems, we propose to 
combine the FCM algorithm and DPC (Clustering by fast search and find of density peaks) algorithm. First, DPC algorithm 
is used to automatically select the center and number of clusters, and then FCM algorithm is used to realize clustering. The 
comparison experiments show that the improved FCM algorithm has a faster convergence speed and higher accuracy.
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1 Introduction

Clustering [1–4] is a process of dividing the data object set 
into multiple groups and clusters, which recognizes differ-
ent groups (clusters) underlying data. Clustering is different 
from classification. Classification needs class labels while 
there are no labels for clustering [5–10]. Currently, cluster-
ing analysis has been widely used in many areas [11–14], 
such as business intelligence, image pattern recognition, 
web search, biology and security, and so forth. Traditional 
clustering algorithms are mainly categorized as partition-
ing clustering, hierarchical clustering, density-based clus-
tering, grid-based clustering, and model-based clustering. 
The k-means algorithm [15] is a classical partition-based 
clustering method. The k-means algorithm is simple in prin-
ciple, easy to implement and fast in convergence. However, 

by adopting iterative algorithm, k-means algorithm can 
only obtain local optimal solution. In addition, the value 
of parameter k in k-means algorithm needs to be given in 
advance, and the initial clustering center has a great impact 
on the clustering results. DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise) algorithm [16] is 
a representative density-based clustering algorithm. Differ-
ent from partitioning and hierarchical clustering, DBSCAN 
algorithm defines clusters as areas with higher density than 
the remainder of the data set, which can divide areas with 
sufficient density into clusters and find clusters of arbitrary 
shapes in spatial databases. BIRCH (Balanced Iterative 
Reducing and Clustering Using Hierarchies) algorithm [17] 
is based on hierarchical clustering, and it used the limited 
memory resources to complete the high quality of the clus-
tering of large datasets. BIRCH, however, does not work 
well if the clusters aren’t spherical because it uses the con-
cept of radius or diameter to control the boundaries of the 
clusters. The spectral clustering algorithm [18] is based on 
the spectral theory of graph theory. It transforms the cluster-
ing problem into the optimal partition problem of graph. The 
spectral clustering can overcome the shortcomings of some 
classical clustering algorithms, which ensures that the result 
converges to the global optimal solution, and has a good 
application prospect for data clustering.

On the other hand, clustering analysis is generally clas-
sified into two types: hard clustering, and soft clustering 
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[19–21]. Traditional clustering analysis is a hard partition, in 
other words, every object to be identified is strictly divided 
into a certain class with distinct boundaries. Most of the 
algorithms mentioned above are hard clustering. In order to 
improve the accuracy of clustering algorithm, fuzzy math-
ematical method [22–24] is introduced into clustering analy-
sis. The concept of fuzzy clustering analysis was firstly pro-
posed by Ruspini [25]. It generally refers to the construction 
of fuzzy matrix based on the object’s properties of the object 
itself and the determination of clustering relationship based 
on certain membership degree. By means of fuzzy math-
ematics, the fuzzy relationship between samples is quan-
titatively determined, resulting in objective and accurate 
clustering. Fuzzy c-means algorithm [26, 27] is one of fuzzy 
clustering algorithms that are widely used. However, there 
are some underlying drawbacks of FCM algorithm. One of 
the issues is that the number of clusters that is determined 
artificially is sensitive to the initial clustering center. Also 
FCM algorithm is easy to generate problems such as multi-
ple clustering iterations, slow convergence speed and local 
optimal solution. Many algorithms have been proposed to 
improve the FCM algorithm. Geweniger [28] combined the 
median c-means algorithm with the fuzzy c-means approach 
to improve the accuracy of this algorithm. Xue Zhenxia [29] 
presented a fuzzy rough semi-supervised outlier detection 
approach with the help of some labeled samples and fuzzy 
rough C-means clustering. This method introduces an objec-
tive function, which minimizes the sum squared error of 
clustering results and the deviation from known labeled 
examples as well as the number of outliers. As a result, bet-
ter clustering results for normal points and better accuracy 
for outlier detection can be achieved. Zexuan [30] introduced 
a novel adaptive method to compute the weights of local spa-
tial in the objective function, the new adaptive fuzzy clus-
tering algorithm is allowing the suppression of noise and 
helping to resolve classification ambiguity. Fritz Heinrich 
[31] proposed several fuzzy clustering methods which are 
able to handle the presence of noise. Lai et al. [32] presented 
a rough k-means clustering algorithm by minimizing the dis-
similarity to solve the divergence problem of the original 
approaches that the cluster centers may not be converged to 
their final positions. Wang [33] presented a rough-set [34, 
35] based measurement for the membership degree of fuzzy 
C-means algorithm, and take the advantage of the positive 
region set and the boundary region set of rough set. In this 
paper, the FCM algorithm is combined with DPC algorithm. 
As a density-based clustering algorithm, DPC can get the 
cluster center while using less parameters than other cluster-
ing algorithms. Experiment results and analysis demonstrate 
that the proposed algorithms can effectively solve the prob-
lem that the FCM algorithm is sensitive to the initial cluster 
center and improve the accuracy of the algorithm.

2  Priliminaries

In this section, we introduce the standard DPC algorithm and 
the original fuzzy C-means Algorithm. Through this section 
we can understand these basic notions and descriptions.

2.1  DPC algorithm

In 2014, Alex Rodriguez and Alessandro Laio [36] proposed 
a clustering algorithm named clustering by fast search and 
find of density peaks. The advantage of this algorithm [37, 
38] is that it requires fewer parameters, is insensitive to 
noise, and can find clusters with arbitrary shapes and dimen-
sions. The clustering algorithm is divided into two steps. 
The first step is to calculate the local density and distance 
of samples according to the parameters input by users, and 
find the clustering center, which is also called density peak. 
Then, the appropriate clustering center is selected from the 
samples according to the decision graph. In the second step, 
the remaining samples are allocated to the cluster where the 
nearest and densest samples are located.

The algorithm has its basis with the assumptions that 
cluster centers are surrounded by neighbors with lower local 
density. They are also at a relatively large distance between 
any points with a higher local density. So, for each data point 
i, compute two quantities: its local density �i and its distance 
�i from points of higher density. Both of these quantities 
depend only on the distance disij between the data points. 
The definition of the local density �i and distance �i is shown 
in Eqs. (1) and (2), respectively:

In the above equation, disij is the distance between sample 

i and j, and dc is the truncation distance, 𝜒(x)
{

1, x < 0

0, x ≥ 0
.

For the highest density point, the distance is 
�i = maxj(disij).

In addition, Alex Rodriguez and Alessandro Laio also 
proposed a method to calculate local density using gaussian 
kernel function, as shown in Eq. (3):

By comparing Eq. (1) and (3), it is easy to know that Eq. (1) 
is a discrete value and Eq. (3) is a continuous value. There-
fore, the latter is less likely to collide, which means different 
data points have the same local density value. In Eqs. (2), the 

(1)�i =
∑
j

�(disij − dc)

(2)𝛿i = min
j∶𝜌j>𝜌i

(disij)

(3)�i =
∑
j≠i

e
−

(
disij

dc

)2
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distance between the sample and its nearest one with a higher 
local density � is � . DPC algorithm uses the local density � and 
distance � to construct decision graph and choose samples with 
large values both in � and � as a clustering center. Then the 
algorithm allocates the rest of the sample j to the cluster with 
the highest local density on the nearest sample.

2.2  Fuzzy C‑means algorithm

FCM algorithm is an unsupervised learning method based on 
the objective function optimization, which realizes the parti-
tion of a given dataset through the iterative optimization of the 
objective function [27]. FCM algorithm studies the clustering 
problem by means of fuzzy mathematics. The clustering result 
is a numerical value representing the membership degree of 
each data point to the clustering center.

Let dataset X =
{
X1,X2,… ,Xn

}
 is a collection of n data, 

where each sample Xi has p features. We divide the n samples 
into C fuzzy groups, and set the central matrix of the dataset as 
V =

{
V1,V2,… ,VC

}
 . The objective function defining FCM 

is:

where U = (uij) is an n × c dimension membership matrix, 
and uij represents the membership between Vi and Xj . 
dij = xj − Vi is the Euclidean distance between the sample 
j and the cluster center i. m (m > 1) is the fuzzy exponent in 
the algorithm, usually set as 2. Equation (4) also needs to 
meet the following conditions:

Finally, the minimum objective function J(U,V) of FCM 
algorithm was obtained through iterative optimization, and U 
and V can be obtained as follows:

(4)J(U,V) =

C∑
i=1

n∑
j=1

(uij)
m(dij)

2

(5)

⎧⎪⎪⎨⎪⎪⎩

C∑
i=1

uij = 1, j = 1, 2,… , n;

0 ≤ uij ≤ 1, i = 1, 2,… ,C; j = 1, 2,… , n;

0 <
n∑
j=1

uij < n, i = 1, 2,… ,C;

3  DP‑FCM algorithm

3.1  The improvement of DP‑FCM algorithm

FCM algorithm needs to set the cluster centers and clus-
ter number artificially, and is sensitive to the initial cluster 
centers. The algorithm is easy to generate problems such as 
multiple clustering iterations, slow convergence, local opti-
mal solution and poor stability. Therefore, we propose a new 
density peak-based FCM algorithm (DP-FCM).

In DP-FCM, the first step is to determine the centers 
of the clusters based on the two parameters: �i and �i of 
dataset. We define the density distance index �i:

Traverse the n sample points and find the �i values of all the 
points. Sort the density distance values in descending order and 
extract the first z points. Calculate an average density distance:

It is easy to know that the points of the density distance 
value show a downward trend. The points with larger value 
maintain a higher possibility to be the clustering center. 
When 𝜑i > 𝜑ave , we specify that Ci at that point is a cluster-
ing center. Then, the clustering center is selected according 
to the decision graph drawn [39].

The second step of DP-FCM is to put the selected clus-
tering center point into the FCM algorithm and obtain the 
clustering result.

(6)uij =

⎧
⎪⎨⎪⎩

1

∑C

k=1

dij

dkj

1
m−2

1

(7)Vi =

∑n

j=1
(uij)

mxj∑n

j=1
(uij)

m

(8)�i = �i�i

(9)�ave =
1

z

z∑
i=1

�i
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3.2  The steps of DP‑FCM algorithm

Through the analysis of the above steps, we can see that for 
a dataset with n samples, the time complexity of the algo-
rithm mainly comes from the local density of �i , distance �i 
and FCM algorithm time complexity. If the Eq. (1) is used 
to calculate the local density of �i , we need to look for sam-
ples that are less than dc away from sample i, the worst time 
complexity is O(n2) . If Eq. (3) is used to calculate the local 
density of �i , we need to calculate the sum of weighted val-
ues of distances between each sample i with other samples, 
its time complexity is O(n2) . The time complexity of the dis-
tance of �i is O

(
n2
)
 . The time complexity of FCM algorithm 

is O(npCL) , where n is the number of samples in the dataset, 
p is the dimension of the dataset, C is the number of clusters, 
and L is the number of iterations. Therefore, the total time 
of algorithm complexity is O(2n2 + npCL).

4  Experimental results

In order to test the effect of DP-FCM algorithm, we use 
several classical artificial datasets and real datasets in UCI 
repository. We also compare our DP-FCM algorithm with 

FCM algorithm, k-means algorithm, DBSCAN algorithm 
and NMF(Non-negative Matrix Factorization)-based 
model. Among them, k-means algorithm and DBSCAN 
algorithm are classical algorithms in the clustering algo-
rithm based on partition and the clustering algorithm 
based on density, respectively. NMF algorithm is repre-
sentative work in clustering. FCM algorithm is dependent 
on its initial cluster center and has poor stability. The opti-
mized DP-FCM algorithm can solve these problems well 
and improve the effectiveness of the algorithm.

4.1  The datasets and evaluation indexes 
of experiment

Table 1 lists the experimental datasets, including 6 arti-
ficial datasets and 10 real datasets from UCI (Table 2).

Clustering performance measurement is also known 
as the validity indexes of clustering. To evaluate the per-
formance, we apply metrics of Accuracy, ARI (Adjusted 
Rand index) and NMI (Normalized Mutual Information) 
[40]. These metrics are widely used in the fields of infor-
mation retrieval and statistics to evaluate the quality of 
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clustering results. The range of the three evaluation met-
rics is between 0 and 1. And the larger the value is, the 
better the clustering effect is.

Specifically, Accuracy measures the percentage of cor-
rectly classified data points in the clustering solution over 
the pre-defined class labels. The Accuracy is calculated as:

where Ci is the set of instances in the i th cluster, Li is 
the class labels for all instances in the i th cluster. And 
max(Ci|Li) is the number of instances with the majority 
label in the i th cluster (e.g. if label l appears in the i th clus-
ter more often than any other labels, then max(Ci|Li) is the 
number of instances in Ci with the lable l ). |X| is the number 
of elements in dataset X.

ARI (Adjusted Rand Index) takes into account the num-
ber of instances that exist in the same cluster and different 
clusters. The expected value of such a validation measure 
is not zero when comparing partitions. ARI is defined as:

where n11 number of pairs of instances that are in the same 
cluster. n00 Number of pairs of instances that are in different 
clusters. n10 Number of pairs of instances that should be in 

(10)Accuracy =

k∑
i=1

max(Ci|Li)
|X|

(11)ARI =
n11 + n00

n11 + n10 + n01 + n00

the same cluster in A, but in different clusters in B. n01 Num-
ber of pairs of instances that should be in different clusters 
in A, but in the same cluster in B.

NMI (Normalized Mutual Information) is a measure of 
the interdependencies between variables.

X and Y are the random variables. I(X;Y) represents the 
mutual information of two variables. HX is the entropy of X. 
They are defined as follows:

4.2  Analysis of experimental results on the artificial 
datasets

Figures 1, 2, 3, 4, 5 and 6 shows the clustering results of 
DP-FCM algorithm on six different artificial datasets. The 
datasets including D31, R15, Square3, Long1, Shapes and 
Twenty, which are described in Table 1. The coordinates 
of x-axis and y-axis represent two-dimensional plane. By 

(12)NMI =
I(X;Y)√
H(X)H(Y)

(13)I(X;Y) =
∑
x,y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

(14)

HX =

n∑
i=1

p(xi)I(xi) =

n∑
i=1

p(xi) log
1

p(xi)
= −

n∑
i=1

p
(
xi
)
log p(xi)

(15)

HY =

n∑
i=1

p(yi)I(yi) =

n∑
i=1

p(yi) log
1

p(yi)
= −

n∑
i=1

p(yi) log p(yi)

Table 1  Description of the classical artificial datasets

Dataset Size Attribute Cluster

R15 600 2 15
D31 3100 2 31
Square3 1000 2 4
Shapes 1000 2 4
Long1 1000 2 2
Twenty 1000 2 20

Table 2  Description of the real datasets

Dataset Size Attribute Cluster

Jain 373 2 2
Aggregation 788 2 7
Flame 240 2 2
Art 300 4 3
Compound 399 2 6
Seeds 210 7 3
Wingnut 1016 2 2
Iris 150 4 3
Pima 768 8 2
Wine 178 13 3

Fig. 1  Clustering result of D31
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mapping the results to a two-dimensional plane, we can 
see that DP-FCM algorithm has a significant lift on the 
clustering of balanced datasets.

4.3  Analysis of experimental results on the real 
datasets in UCI

The experimental results on the real datasets in UCI are shown 
in Tables 3, 4 and 5. The tables show Accuracy, ARI(Adjusted 
Rand index), NMI(Normalized Mutual Information) of clus-
tering results for each algorithm respectively. The experimen-
tal results are percentages, and the bolded values in the three 
tables represent the best experimental results.

Fig. 2  Clustering result of R15

Fig. 3  Clustering result of Square3

Fig. 4  Clustering result of Long1

Fig. 5  Clustering result of Shapes

Fig. 6  Clustering result of Twenty
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5  Summary and conclusion

FCM algorithm needs to determine the number of clusters man-
ually and is sensitive to the initial clustering center. To solve 
this problem, we propose an improved FCM algorithm based 
on density peak: DP-FCM algorithm. This algorithm uses the 
density peak of data points to optimize the selection of the ini-
tial clustering center, which reduces the number of iterations, 
improves the convergence speed and avoids falling into the 
local optimal solution, and effectively solves the shortcomings 
of the original algorithm. In the experiment, 16 datasets in UCI 

were used to analyze the algorithm from three aspects, accu-
racy, ARI, and NMI. The experimental results show that DP-
FCM algorithm is superior to the comparative FCM algorithm, 
K-means algorithm, DBSCAN algorithm and NMF algorithm, 
which shows DP-FCM an effective clustering algorithm.
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