
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2020) 11:841–851
https://doi.org/10.1007/s13042-019-00990-x

ORIGINAL ARTICLE

DeepSite: bidirectional LSTM and CNN models for predicting
DNA–protein binding

Yongqing Zhang1,2 · Shaojie Qiao3  · Shengjie Ji1 · Yizhou Li4

Received: 28 June 2018 / Accepted: 22 July 2019 / Published online: 29 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Transcription factors are cis-regulatory molecules that bind to specific sub-regions of DNA promoters and initiate transcrip-
tion, the process that regulates the conversion of genetic information from DNA to RNA. Several computational methods
have been developed to predict DNA–protein binding sites in DNA sequence using convolutional neural network (CNN).
However, these techniques could indicate the dependency information of DNA sequence information in the framework of
CNN. In addition, these methods are not accurate enough in prediction of the DNA–protein binding sites from the DNA
sequence. In this study, we employ the bidirectional long short-term memory (BLSTM) and CNN to capture long-term
dependencies between the sequence motifs in DNA, which is called DeepSite. Apart from traditional CNN, which includes
six layers: input layer, BLSTM layer, CNN layer, pooling layer, full connection layer and output layer, DeepSite approach
can predict DNA–protein binding sites with 87.12% sensitivity, 91.06% specificity, 89.19% accuracy and 0.783 MCC, when
tested on the 690 Chip-seq experiments from ENCODE. Lastly, we conclude that our proposed method can also be applied
to find DNA–protein binding sites in different DNA sequences.

Keywords  DNA–protein binding · Deep learning · Bidirectional long short-term memory · Convolutional neural networks

Abbreviations
Acc	� Accuracy
AUC​	� The area under the ROC curve
BLSTM	� Bidirectional long short-term memory
BP	� Back-propagation algorithm
CNN	� Convolutional neural network
ENCODE	� The Encyclopedia of DNA elements
FN	� The number of false negative
FP	� The number of false positive
GPU	� Graphical processing units
MCC	� Mathews correlation coefficient
PFM	� Positional frequency matrix

Pre	� Precision
PSSM	� Position specific scoring matrix
ROC	� Receiver operating characteristic
Sen	� Sensitivity
Spe	� Specificity
TN	� The number of true negatives
TP	� The number of true positive
TFs	� Transcription factors
TFBS	� Transcription factor binding site

1  Introduction

Accurately modeling the specificity of the transcription fac-
tors sequence is an essential problem in understanding the
function and evolution of the genome [1–5]. TF is a protein
that can bind to DNA sequence and regulate gene expres-
sion. The transcription factor binding sites are a subset of
DNA binding sites. These sites can be defined as short seg-
ments of DNA that are specifically bound by one or more
proteins with various functions. Particularly, the characteri-
zation of binding affinity of TFs to the DNA sequence deter-
mines the relative expression of genes downstream of the
transcription factor binding sites (TFBS). The mechanism

 *	 Shaojie Qiao
	 sjqiao@cuit.edu.cn

1	 School of Computer Science, Chengdu University
of Information Technology, Chengdu 610225, China

2	 School of Computer Science and Engineering, University
of Electronic Science and Technology of China,
Chengdu 610054, China

3	 School of Software Engineering, Chengdu University
of Information Technology, Chengdu 610225, China

4	 College of Chemistry, Sichuan University, Chengdu 610064,
China

http://orcid.org/0000-0002-4703-780X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-019-00990-x&domain=pdf

842	 International Journal of Machine Learning and Cybernetics (2020) 11:841–851

1 3

by which TFs select specific binding regions is complex and
there are a large number of DNA–protein binding sites to be
determined at different levels.

With the high-throughput technologies developing,
such as ChIP-seq [6], ChIP-exo [7] and ChIP-nexus [8], a
huge volume of experiments verified the TFs binding sites.
However, they are time-consuming and expensive. Fortu-
nately, these experimental data can serve as training data
for machine learning models to learn the binding patterns of
TF. Many computational approaches have been proposed to
predict DNA–protein binding [9–12]. For example, Cirillo
et al. [9] proposed PAnDA approach to predict DNA–pro-
tein binding with human transcription factors by using gene
expression profiles, protein–protein interaction and recogni-
tion motifs. Zhang et al. [10] proposed an approach named
DiseMLA to discover TFBS motifs on high-throughput
dataset, which aims to optimize the phase of motif search-
ing with a more comprehensive criterion. Zhu et al. [11]
presented LSUE for inferring DNA–protein binding from
new ChIP-seq datasets, which mainly utilize the local cor-
relations between available datasets. Schmidt et al. [12] pre-
sented a framework, namely TEPIC2, allowing for a fast,
accurate and versatile prediction and analyzing DNA–pro-
tein binding from epigenetic data.

Recently, deep learning technology has shown the capa-
bility of improving discriminating ability compared with
other machine learning methods [13, 14], and has been
widely applied in bioinformatics [15, 16], i.e., protein struc-
ture prediction [17], gene expression regulation [18, 19] and
protein classification [20]. The convolutional neural network
(CNN) has successfully predicted the DNA–protein binding
[21–24]. These methods not only outperform other existing
methods in terms of prediction accuracy, but also can easily
extract binding motifs directly from the learned parameters
of CNN. For example, DeepBind [21] is known to outper-
form the state-of-the-art experimental and computational
methods to identify the binding preference of DNA-binding
and RNA-binding proteins, which is a convolutional neu-
ral network trained on a large amount of data from high-
throughput experiments. DeepSEA [22] also trains a CNN
framework to predict the noncoding-variant effects from
DNA sequences. Zeng et al. [23] proposed a systematic
exploration of CNN architectures to predict DNA sequence
binding in 690 transcription factor ChIP-seq experiments
from the Encyclopedia of DNA Elements (ENCODE) pro-
ject [25]. Cao et al. [24] introduced some tricks of CNN to
improve the performance of DNA sequence related predic-
tion tasks and took the DNA–protein binding as an illustra-
tive task for demonstration. Fast convolution on the graphic
processing unit (GPU) allows CNN to be trained on large-
scale datasets. Wang et al. [26] proposed a specific study on
the relationship between generalization and uncertainty by
incorporating complexity of classification, which concludes

that the generalization ability of a classifier is statistically
becoming better with the increase of uncertainty when the
complexity of the classification problem is relatively high.
Wang et al. [27] investigated the multiple-instance active
learning (MIAL) by incorporating diversity and informa-
tiveness. Two diversity criteria are proposed for MIAL by
utilizing a support vector machine based MIL classifier.
However, these techniques cannot indicate the dependency
information of DNA sequences in the framework of CNN. In
addition, these methods are not accurate enough in predict-
ing DNA–protein binding from DNA sequences.

In this study, we focus on exploring the method of clas-
sifying whether a DNA segment binds to any TF. There-
fore, we propose a computational prediction approach for
DNA–protein binding based on BLSTM [28] and CNN,
we call it DeepSite, to solve the aforementioned disadvan-
tages of the existing methods. Based on DeepSite model,
both the long as well as short dependency information of
DNA sequences can be captured by mining the information
from every mediate hidden value of BLSTM and CNN.
The experimental results on the benchmark datasets show
that DeepSite outperforms other existing deep learning
methods. DeepSite approach can predict DNA-binding
sites with 87.12% sensitivity, 91.06% specificity, 89.19%
accuracy and 0.783 MCC when tested on the dataset used
in 690 Chip-seq experiments. When compared with the
CNN model, our method predicts DNA-binding sites with
a 5.28%, 8.35%, 6.89% and 0.138 improvement in sensi-
tively, specificity, accuracy and MCC value, respectively.

The original contributions of the proposed model are
threefold: (1) we introduce BLSTM layer in the Deep-
Site algorithm to capture the long and short dependency
information of DNA sequence, which improves its predic-
tive performance; (2) a novel hybrid BLSTM and CNN
framework for predicting DNA–protein binding from DNA
sequences; (3) the experimental results demonstrate that
the proposed approach performs better in identification of
DNA–protein binding in DNA sequence.

2 � Materials and methods

In this study, we present a deep learning-based approach,
DeepSite (Fig. 1), to predict TBFS in DNA sequence by
integrating a BLSTM and a CNN. We first describe the
problem of transcription factor binding site by deep learn-
ing method. Then, we introduce the ChIP-seq experiments
dataset from ENCODE, which is used to train and evaluate
DeepSite. Next, we give the technical details about two
different deep neural networks, BLSTM and CNN. Finally,
we describe the proposed method DeepSite and how to
implement in detail.

843International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

2.1 � Problem statement

This study focus on discovering the DNA–protein binding
in DNA sequence, and the task of DNA–protein binding can
be viewed as a binary sequence classification problem. The
problem can be formulized as: as input, the training set is
represented by {X(i), y(i)}n

i=1
 , where X(i) is a matrix, of dimen-

sion 4 × N , and N is the length of a DNA sequence (101 base
pairs in our experiments). Each base pair in the sequence is
represented as one of the four one-hot vectors [1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1]. This matrix is called
Positional frequency matrix (PFM), which has four rows
corresponding to each channel of genetic alphabet, namely
{A,T ,C,G} . Our labels, y(i) can be a scalar or vector, depend-
ing on the number of transcription factor binding sites being
studied. Nonetheless, the number of dimension is equal to
the classification tasks, and each element of y(i) is a binary
label in the standard space {0, 1} . The goal is to accurately
predict the label in the testing data, that is, to accurately
predict whether a transcription factor combined with a given
DNA sequence.

2.2 � Dataset

As was performed in Alipanahi [21], Zhou [22] and Zeng
[23], we obtain 690 ChIP-seq experiments from ENCODE1.
We use the similar DNA sequence data by Zeng [23], the

positive dataset consists of the centering 101 base pair
region of each ChIP-seq peak, and the negative dataset con-
sists of shuffled positive sequences with matching dinucleo-
tide composition.

We generate the dataset based on the 690 ChIP-seq exper-
imental data. In this study, we focus on the task of clas-
sifying whether a DNA segment binds to any TF. All the
training data are combined into a whole dataset, the number
of DNA sequences in the training set is 2,725,808, and the
number of DNA sequences in the testing set is 255,700. In
order to reduce the runtime of DeepSite, we firstly use 10%
of training set and testing set to evaluate the performance.
Finally, all the datatsets are used to assess the performance
of DeepSite.

2.3 � Bidirectional LSTM networks

Compared with traditional RNN, LSTM shows the abil-
ity to increase the dependence on long-distance evolu-
tion. Zhu et al. [29] used the traditional RNN to solve pro-
tein–protein network problems. One explanation may be
their different processing of protein sequence data. Given
a sequence, the tradition RNN, from t = 1 to n, works iter-
atively by Eqs. (1) and (2) to calculate the hidden vector
sequence h = (h1, h2,… , hn) and outputs a vector sequence
y = (y1, y2,… , yn).

where x = (x1, x2,… , xn) is the input vector, t represents the
index of input, output and hidden vectors, W is a weight
matrix that is computed in the phase of training, b∗ is the
offset vector, and f() and g() denote the activation function.

LSTM is a special type of RNN and is well suitable for
capturing the long and short dependency information in
sequence [30]. A memory mechanism is applied in LSTM
to replace the hidden function in the traditional RNN. The
commonly-used LSTM unit consists of a memory cell,
a forget gate, an input gate and an output gate, which is
designed to enhance the ability of LSTM to model long-
range dependence. LSTM memory cell is given in the fol-
lowing equations:

(1)ht =f (Wxh ∗ xt +Whh ∗ ht−1 + bh)

(2)yt =g(Why ∗ ht + by)

(3)ft =�(Wxf ∗ xt +Whf ∗ ht−1 + bf)

(4)it =�(Wxi ∗ xt +Whi ∗ ht−1 + bi)

(5)
ct =ft

⨂

ct−1 + it

⨂

tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

(6)ot =�(Wxo ∗ xt +Who ∗ ht−1 + bo)

(7)ht = ot

⨂

tanh(ct)

Fig. 1   The working mechanism of DeepSite model

1  http://hgdow​nload​.cse.ucsc.edu/golde​nPath​/hg19/encod​eDCC/
wgEnc​odeAw​gTfbs​Unifo​rm/

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/

844	 International Journal of Machine Learning and Cybernetics (2020) 11:841–851

1 3

where � is the logistic Sigmoid function, tanh is a function to
push the values to be between −1 and 1, f, i, c, o represent the
forget gate, input gate, cell vectors and output gate, respec-
tively, which are specified to be the same value as given in
the hidden vector h, Wxf is the input-forget gate matrix, and
Whf is the hidden-forget gate matrix. The index t refers to the
time step.

⨂

 represents the vector product. It is worthwhile
to note that the initial values of c0 = 0 and h0 = 0.

In the phase of sequence tagging, we have access to both
past and future input features for a given time, so we can
use a BLSTM as proposed in [28]. By doing so, we can effi-
ciently make use of past features and future features within a
specific time interval. The back-propagation is used to train
BLSTM. In this study, we apply the forward and backward
LSTM in the entire DNA sequence in order to capture long-
term dependent relationship of DNA sequence. The hid-
den states only need to be set to 0 at the beginning of each
sequence. In particular, we make a batch implementation
that can handle multiple sentences at the same time.

2.4 � Convolutional neural networks

CNN is a well-known deep learning framework, which has
been widely applied in image recognition [31], speech recog-
nition [32], computer vision [33], natural language processing
[34], bioinformatics [21, 22] and other artificial intelligence
research fields [35, 36]. Wang et al. [37] investigated essential
relationships between generalization capabilities and fuzzi-
ness of fuzzy classifiers. The study makes a claim and offers
sound evidence behind the observation that higher fuzziness
of a fuzzy classifier may imply better generalization aspects of
the classifier. The components of CNN include convolutional,
pooling and fully connected layers. The convolutional layer
is proposed to extract and represent the local information of
original features through several feature maps and kernels.
The pooling layer is employed to compress the resolution of
the feature maps to achieve spatial invariance. After several
convolution and pooling operations, there may be one or more
fully connected layers to perform advanced reasoning. The
output of the last fully connected layer transfer to an output
layer. For a classifier or regression task, softmax regression is
commonly-used because it can produce a well-formed prob-
ability distribution corresponding to the outputs.

2.5 � The proposed model

The proposed model is introduced in this section, includ-
ing the structure of the networks and its learning algorithm.
Adam algorithm [38] is used to update the parameters. We
used a bidirectional LSTM structure to deal with the order
and reverse order dependency information in the DNA
sequence. The network structure and the proposed algorithm
are implemented based on Keras library. All of them are

conducted on graphical processing units (GPU) to accelerate
the training time.

We combine a BLSTM network and a CNN network to
build a BLSTM-CNN model, which is shown in Fig. 1. This
framework can efficiently characterize a possibly highly-
complex order in DNA sequence via BLSTM layer and to
generate filters that generalize sequence patterns via CNN
and max pooling layers. With this neural network, both the
long and short dependency information of DNA sequence
can be captured by tapping the information from every medi-
ate hidden value of BLSTM and CNN.

As shown in Fig. 1, the first input layer uses one-hot
coding to represent each input sequence as a 4-row binary
matrix, and the length of each sequence is 101 base pair.

The second layer is a BLSTM layer where each LSTM
block in the first layer will receive the input sequence
extracted from the trace of interest on the DNA and encodes
its own interpretation regarding the overall contributions of
the past history into its hidden state. Then, this interpretation
is propagated to the next LSTM blocks located above and
to the right of itself. Once the last nucletide is observed, the
last unrolled LSTM block makes the final decision on the
goodness of the probe.

The third layer is a convolutional layer composed of dif-
ferent convolutional kernels with rectified linear units as the
activation function. Each convolutional kernel works as a
motif detector that scans the input matrices and produces dif-
ferent strengths of signals that are correlated to underlying
sequence patterns. The vertical and horizontal dimensions
in the convolution box are 1 and 24, respectively.

The fourth layer is a max pooling layer that maximize
the output signals of each convolutional kernel along the
whole sequence.

The fifth layer is a fully connected layer with rectified
linear units as activation unit. The size of fully connected
layer is 32, the same as Zeng [23].

The last layer performs a non-linear transformation with
sigmoid activation and produces a value between 0 and 1
that represents the probability of a binding preference of
each probe.

2.6 � Model parameters and training procedure

DeepSite is trained by using the standard back-propagation
algorithm [39] and mini-batch gradient descent with the Adag-
rad [40] variation. Wang et al. [41] proposed a new deep learn-
ing approach to train multilayer feed-forward neural networks,
which dose not need to iteratively tune the weights. It uses
restricted Boltzman machine as the layer-wise training and
use the generalized inverse of a matrix as the supervised fine-
tuning. Dropout [42] and the phase of early stopping are used
for regularization and model selection. Detailed parameter
configurations are given in the next section.

845International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

All models use a genetic SGD forward and backward train-
ing method in this study. We choose the most complicated and
best model BLSTM-CNN to display the performance of train-
ing. In experiments, the training dataset is divided into batches
and one batch is processed at a time. Each batch contains a
series of sentences which is determined by the parameter of
batch size. As recommended by Alipanahi [21], the batch size
is specified to 64. The weights and bias are set to the default
values in Keras. Each model is optimized by training for 100
epochs. The learning rate changes from 0.001 to 0.008. The
dropout ratio is specified to 0.1, 0.3, and 0.5, respectively. The
number of cells w.r.t. BLSTM changes from 32 to 400 and the
default value is 32. The filter number of CNN changes from
32 to 400 and the default value is 32.

All experiments are conducted by the Python library Keras,
running on a machine with 24 Xeon processor and 256GB of
memory and 1 Nvidia Tesla K40C GPU.

3 � Results and discussions

In order to examine the performance of the proposed Deep-
Site, experiments based on ChIP-seq from ENCODE bench-
marks against three selected state-of-the-art algorithms are
performed. In the following, the evaluation matric are out-
lined first. Then the parameter tuning was discussed, includ-
ing learning rate, dropout ratio, number of cells in LSTM and
number of convolution kernels in CNN. Finally, the perfor-
mance comparison was employed other deep learning method,
three existing predictors and other different datasets.

3.1 � Evaluation metrics

In this study, five evaluation measurements are used in this
study, that is, sensitivity (Sen), specificity (Spe), accuracy
(Acc), precision (Pre) and the Mathew’s correlation coefficient
(MCC) are employed to evaluate predictive capability. They
are calculated by the following equations:

(8)Sen =
TP

TP + FN

(9)Spe =
TN

TN + FP

(10)Acc =
TP + TN

TP + FN + TN + FP

(11)Pre =
TP

TP + FP

(12)MCC =
TP ⋅ TN − FN ⋅ FP

√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, FN is
the number of false negatives, P is the number of positives,
and N is the number of negatives.

However, these five measurements are threshold depend-
ent. Hence, the method chosen for reporting these evalua-
tion measurements is critical for making a fair comparison
between different predictors. In this study, the area under the
receiver operating characteristic (ROC) curve (AUC​), which
is threshold-independent and increases in direct proportion
to the overall prediction performance, is used to evaluate the
prediction performance.

3.2 � Parameter tuning

3.2.1 � Selecting the learning rate

The hyper-parameters for TFBS task needed to be tuned in
order to obtain optimal results. The learning rate is one of
the most important hyper-parameters to be tuned for train-
ing deep neural networks. If the learning rate is a little bit
lower, the phase of training is more reliable, but the phase of
optimization will cost much time because the update value
of the loss function is small for each time optimization. If
the learning rate is high, the phase of training may not con-
verge or even diverge. A higher interval of learning rate may
cause the optimizer skips the optimal value, which makes
the optimization of loss function become worse. The range
of learning rate is different for different datasets as well as
parameter configuration. In this study, we observe different
metrics when the learning rate changes from 0.001 to 0.008.
The experimental results are given in Table 1 and Fig. 2.

From Table 1, we observe that when learning rate is set to
0.001, the proposed algorithm obtains the best values of all
evaluation metrics. The values of Sen, Acc, Pre and MCC of
are 72.23%, 79.85%, 83.05% and 0.598, respectively, when
the learning rate is set to 0.001 which improves approximately
7.74%, 3.42%, 1.01% and 0.064 when the learning rate is set
to 0.008. Figure 2 shows the performance of AUC​ when the
learning rate changes from 0.001 to 0.008. We can see that: as

Table 1   Performance of DeepSite model with different learning rates

Learning rate Sen (%) Acc (%) Pre (%) MCC

0.001 72.23 79.85 83.05 0.598
0.002 71.41 79.31 82.72 0.582
0.003 70.28 79.18 83.19 0.586
0.004 69.06 78.26 81.08 0.575
0.005 67.30 78.20 83.54 0.569
0.006 67.01 77.50 85.47 0.560
0.007 66.87 77.36 82.05 0.551
0.008 64.49 76.43 82.04 0.534

846	 International Journal of Machine Learning and Cybernetics (2020) 11:841–851

1 3

the learning rate increases gradually, the AUC​ of the predictor
decreases drastically. By empirical studies, the learning rate is
specified to 0.001 in the following experiments.

3.2.2 � Selecting the dropout ratio

Overfitting is a common problem in deep neural network.
Dropout is a technique for addressing this problem, which
randomly set some intermediate values to zero in training the
neural network [42]. To prevent the phenomenon of overfit-
ting, we investigate whether the dropout method was a fea-
sible strategy to improve training accuracy. Based on Fig. 3,
as the dropout ratio increases, the AUC​ substantially grows,
suggesting that adding dropout to the model may improve
the robustness. A similar trend is also observed from the
results in Table 2. The MCC is 0.706, 0.704 and 0.70 on
0.1, 0.3 and 0.5 dropout ratio, respectively. Therefore, the
dropout ratio is chosen as 0.1 in the next model.

3.2.3 � Selecting the number of cells in LSTM

In this section, we attempt to empirically demonstrate how
to choose the number of cells in LSTM. We evaluate the Sen,
Spe, Acc, Pre, MCC and AUC​ values on the training dataset
by gradually varying the value from 32, 64, 128 to 400.

Figure 4 shows the performance of the metric of AUC​
w.r.t these four algorithms including LSTM, BLSTM,
LSTM-CNN and DeepSite with different number of cells

from 32 to 400. As shown in Fig. 4, the AUC​ of BLSTM
improves significantly with the number of cells from 32 to
300. After that, the value of the AUC​ remain unchanged.
For the LSTM, when the number of cells varies from 32
to 300, the AUC​ increase drastically. After that, the values
of AUC​ keep stable. LSTM-CNN and DeepSite algorithm
have almost the same trend in terms of AUC​ with different
number of cells from 32 to 400, the AUC​ increase gradually.
According to Fig. 4, we find that the value of AUC​ increases
with the number of cells from 32 to 256. After that, the
improvement of four methods is not obvious, even more cells
have been used. This can be explained by the reason that
these four methods have reached to the peak value of AUC​.
We can conclude that the best number of cells is 256 in this
set of experiments.

Table 3 shows the values of Sen, Spe, Acc, Pre and MCC
by specifying different values of the cell numbers. Experi-
mental results show that our algorithm achieve 0.686, 0.691,
0.706, 0.713, 0.716, 0.724 and 0.721 for MCC on 32, 64,
128, 256, 300, 350 and 400 cells, respectively, which out-
performs BLSTM with the gap of 0.089, 0.044, 0.039, 0.015,
0.017, 0.021 and 0.017 for MCC on 32, 64, 128, 256, 300,
350 and 400 cells, respectively. In order to facilitate com-
parison, we lastly specify the number of cells to 256 in four
methods.

As we can see from Table 3, our proposed, DeepSite
algorithm, achieve the best results in all metrics when the
number of cells are specified to different values, e.g., for
DeepSite, when the cell number equals 350, it obtains the
best value of the Sen metric.

3.2.4 � Selecting the number of convolution kernels in CNN

In this section, we discuss how to choose the number of
convolutional kernels in CNN. We evaluate the values of
Sen, Spe, Acc, Pre, MCC and AUC​ on the training dataset
by gradually varying the value of the convolution kernels
from 32, 64 to 400.

Figure 5 shows the variation curves of AUC​ under dif-
ferent number of convolution kernels. We can observe that
the value of AUC​ increases with the number of convolution
kernels and DeepSite model outperforms CNN. Specifically,
the AUC​ of CNN significantly improves with the number of
convolution kernels from 32 to 300 and keeps stable with the
number of convolution kernels from 300 to 400. In terms of
DeepSite and LSTM-CNN models, they have the same trend

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

A
U

C

Learning Rate

DeepSite

Fig. 2   AUC​ of DeepSite model with different learning rates

Table 2   Performance of the
DeepSite model with different
dropout ratios

Dropout ratio Sen (%) Spe (%) Acc (%) Pre (%) MCC

DeepSite 0.1 80.24 89.82 85.28 87.64 0.706
0.3 81.90 88.26 85.25 86.26 0.704
0.5 78.76 90.49 84.93 88.18 0.700

847International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

of AUC​ with the number of convolution kernels changing.
These two methods are increased slowly with the number of
convolution kernels from 32 to 128. After that, the value of
AUC​ is stable. The peak performance of DeepSite is better
than LSTM-CNN and CNN models.

Table 4 demonstrates the mean value and standard devia-
tion of AUC​ between DeepSite and other deep learning predic-
tors with different number of convolution kernels. According
to Table 4, we can see that the best value of the average AUC​
w.r.t DeepSite is higher than that of the CNN and LSTM-CNN
algorithms. In addition, the standard deviation of DeepSite
is lower than that of CNN and LSTM-CNN algorithms. The
results demonstrate that DeepSite model is more accurate and
stable at predicting the DNA–protein bindings.

Table 5 shows the measurements of Sen, Spe, Acc, Pre
and MCC under different number of convolution kernels.

According to results of the model with the best-performing
number of kernels, we can see that the proposed method
achieves better performance than other classical models.

3.2.5 � Peak performance of LSTM, BLSTM, LSTM‑CNN
and DeepSite models

Different methods have very different architectures, and we
compare the peak performance of LSTM, BLSTM, LSTM-
CNN and DeepSite models based on the results from Table 3.
The peak performance results are shown in Table 6.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Acc MCC AUC

0.1
0.3
0.5

Fig. 3   The performance variation curves of Acc, MCC and AUC​
under different dropout ratio by DeepSite

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

32 64 128 256 300 350 400

A
U

C

Number of Cells

LSTM
BLSTM

LSTM-CNN
DeepSite

Fig. 4   Performance of variation curves of AUC​ of LSTM, BLSTM,
LSTM-CNN and DeepSite models with different number of cells

Table 3   Performance comparison of DeepSite and other deep learn-
ing predictors with different number of cells

Cell numbers LSTM BLSTM LSTM-CNN DeepSite

Sen (%) 32 71.20 78.24 77.32 81.94
64 78.95 77.69 78.98 75.43

128 75.55 79.50 81.56 81.24
256 78.73 81.50 81.22 82.09
300 77.30 78.45 82.61 83.46
350 82.96 82.98 83.57 84.94
400 80.28 81.43 81.05 81.58

Spe (%) 32 87.26 81.42 89.06 86.55
64 85.17 86.59 89.28 92.29

128 90.65 86.86 87.98 89.82
256 89.67 87.99 89.32 90.60
300 87.40 90.71 89.21 89.57
350 89.72 90.90 90.22 90.95
400 89.71 89.38 89.90 89.14

Acc (%) 32 79.18 79.91 83.50 84.37
64 82.22 82.37 84.40 84.30

128 83.50 83.37 84.94 85.28
256 83.96 84.92 85.48 85.62
300 84.84 84.89 85.08 85.88
350 85.29 85.12 85.67 86.20
400 85.24 85.02 85.48 86.10

Pre (%) 32 84.52 79.13 86.42 84.58
64 82.74 83.91 86.90 89.80

128 87.92 84.49 85.93 87.64
256 87.42 85.94 87.26 88.47
300 87.28 88.37 88.07. 88.28
350 87.54 88.62 88.12 88.79
400 87.05 88.55 87.78 87.56

MCC 32 0.591 0.597 0.671 0.686
64 0.643 0.647 0.688 0.691

128 0.673 0.667 0.698 0.706
256 0.692 0.698 0.709 0.713
300 0.698 0.699 0.702 0.716
350 0.704 0.703 0.713 0.724
400 0.705 0.704 0.710 0.721

848	 International Journal of Machine Learning and Cybernetics (2020) 11:841–851

1 3

According to Table 6, the peak values of different experi-
ments show that our method achieves 84.94% for Sen and 0.724
for MCC , respectively, works better than LSTM, BLSTM and
BLSTM-CNN models in all cases. The results demonstrates
that the combination of BLSTM and CNN obtains much better
performance than other deep learning models. Furthermore,
the results show the advantage of BLSTM which captures the
long and short dependency information of DNA sequences.

3.3 � Performance comparison

3.3.1 � Performance comparison with different methods

In this section, the discriminative performances of these
three deep learning methods, including CNN, BLSTM
and BLSTM-CNN, will be investigated. Each method was
evaluated on the same training dataset. The details of the
parameters for different methods are shown in Table 7.
These parameters are optimized by above analysis and
then choose the best parameters for these methods.

Figure 6 illustrates the ROC curves of three deep learn-
ing methods on the same dataset.

As shown in Fig. 6, we find that the AUC​ of BLSTM-
CNN is 0.932, which demonstrates improvement of

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

32 64 128 200 300 400

A
U

C

Number of Convolutional Kernels

CNN
LSTM-CNN

DeepSite

Fig. 5   Performance of variation curves of AUC​ under different num-
ber of convolution kernels

Table 4   AUC​ of DeepSite and other deep learning predictors with
different convolution kernels

Convolution
kernel num-
bers

CNN LSTM-CNN DeepSite

32 0.871 ± 0.0026 0.920 ± 0.0012 0.925 ± 0.0004
64 0.890 ± 0.0023 0.922 ± 0.0012 0.927 ± 0.0002
128 0.897 ± 0.0019 0.925 ± 0.0006 0.930 ± 0.0005
200 0.905 ± 0.0009 0.927 ± 0.0006 0.930 ± 0.0007
300 0.911 ± 0.0008 0.927 ± 0.0008 0.930 ± 0.0006
400 0.910 ± 0.0009 0.927 ± 0.0008 0.929 ± 0.0006

Table 5   Performance comparison of DeepSite and other deep learn-
ing predictors with different number of convolution kernels

Convolution
kernel numbers

CNN LSTM-CNN DeepSite

Sen (%) 32 74.29 79.18 80.09
64 73.56 79.67 80.55

128 76.20 80.01 80.24
200 78.88 79.13 80.88
300 80.07 80.33 82.08
400 77.18 79.12 81.19

Spe (%) 32 83.38 88.62 89.36
64 87.51 86.96 89.04

128 86.63 87.98 89.82
200 85.89 88.70 89.96
300 88.54 90.24 90.98
400 85.90 89.18 88.98

Acc (%) 32 79.07 84.15 84.97
64 80.90 84.45 85.02

128 81.69 84.94 85.28
200 82.57 84.97 85.30
300 83.16 84.98 85.36
400 83.14 84.97 85.28

Pre (%) 32 80.10 86.23 87.14
64 84.13 84.93 86.87

128 83.69 85.93 87.64
200 83.45 86.57 88.76
300 86.85 87.96 88.90
400 83.66 86.98 87.32

MCC 32 0.580 0.683 0.699
64 0.619 0.688 0.700

128 0.633 0.698 0.706
200 0.650 0.699 0.708
300 0.663 0.704 0.706
400 0.661 0.699 0.705

Table 6   Peak Performance of LSTM, BLSTM, LSTM-CNN and
DeepSite models

LSTM BLSTM BLSTM-CNN DeepSite

Sen (%) 82.96 82.98 83.57 84.94
Spe (%) 90.65 90.71 90.22 92.29
Acc (%) 85.29 85.12 85.67 86.20
Pre (%) 87.54 88.62 88.12 89.80
MCC 0.705 0.704 0.713 0.724

849International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

approximately 0.005 and 0.035, when compared with the
BLSTM and CNN, respectively. From the comparison
results between these three methods given in Fig. 6, we
empirically demonstrate that these three deep learning meth-
ods are highly useful, and the combination of BLSTM and
CNN, DeepSite, obtains the best ROC curve for effectively
predicting DNA–protein binding. It indicated the advantage
of BLSTM which captured the long and short dependency
information of DNA sequence.

3.3.2 � Performance comparison with existing predictors

In this section, we demonstrate the efficacy of the proposed
DeepSite algorithm, by comparing it with the state-of-the-
art method, including DeepBind [21], DeepSEA [22] and
Zeng [23], on the same training and testing datasets, and the
results are shown in Table 8.

We obtained the source code of DeepBind from the url:
http://tools​.genes​.toron​to.edu/deepb​ind/nbtco​de/. We run
DeepBind with the Docker Enterprise container platform
so it can be run on different systems without the environment
dependency problems.

DeepSEA model contains three convolution layers with
320, 480 and 960 kernels and two max pooling layers in
alternating order to learn the motifs. On the third convolu-
tion layer, it has a fully connected layer and the last layer is
the Sigmoid output layer.

We implemented the best model in Zeng using the train-
ing pipeline. The best model in Zeng has 128 convolution
filters and the window size is 24, a global max pooling layer.
In addition, their model always has a fully connected layer
with 32 neurons after the global max pooling layer.

According to Table 8, we can see that DeepSite outper-
forms other classifiers in all metrics including the MCC which
is an overall index for evaluating the quality of binary pre-
diction. The Sen, Acc, Pre and MCC of DeepSite predictor
are 80.09%, 85.62%, 88.47% and 0.713, respectively, which
improves approximately 3.89%, 3.93%, 4.78% and 0.08 when
compared with the Zeng predictor, respectively. As for Deep-
Bind and DeepSEA models, tDeepSite also have an improve-
ment of 0.147 and 0.057 in MCC, respectively. These results
demonstrate that: by adding the recurrent connections, the per-
formance of DeepSite algorithm can be significantly improved.

3.3.3 � Performance comparison with different datasets

To further assess the performance of DeepSite, we conduct
experiments on four different datasets with 10%, 30%, 50%
and 100% of the size of data by using DeepSite and CNN.
Figure 7 shows the performance variation curves of AUC
under different cardinality of datasets.

From Fig. 7, we find that the value of AUC​ increases
with the cardinality of data and the performance of DeepSite
wins CNN in most cases. Table 9 gives the values of Sen,
Spe, Acc, Pre and MCC under different number of data. The
results show that the our method achieve 0.713, 0.765, 0.770
and 0.783 for MCC on 10%, 30%, 50%, and 100% of the
size of data, respectively, performing better than the CNN
model with 0.008, 0.116, 0.131, 0.138 on 10%, 30%, 50%,
and 100% of the size of data. This may be explained by the
fact that the 100% of the size of dataset has more training
data and DeepSite can make good use of the large number
of training instances to improve its performance.

Table 7   Parameter setting of CNN, BLSTM, BLSTM-CNN models

Parameter CNN BLSTM BLSTM-CNN

Learning rate 0.001 0.001 0.001
Dropout ratio 0.1 0.1 0.1
Kernel numbers 128 – 128
Cell numbers – 256 256
Epochs 100 100 100
Batch size 64 64 64

Fig. 6   Performance comparison of ROC curves for CNN, BLSTM
and BLSTM-CNN on the same dataset

Table 8   Performance comparison of DeepSite and classical predic-
tors

Predictor Sen (%) Acc (%) Pre (%) MCC

DeepBind 69.26 78.21 81.96 0.566
DeepSEA 64.66 81.58 94.81 0.656
Zeng 76.20 81.69 83.69 0.633
DeepSite 80.09 85.62 88.47 0.713

http://tools.genes.toronto.edu/deepbind/nbtcode/

850	 International Journal of Machine Learning and Cybernetics (2020) 11:841–851

1 3

4 � Conclusions

In this study, we present a combined BLSTM and CNN
framework to predict DNA–protein binding in DNA
sequences, which is called DeepSite. DeepSite uses BLSTM
to capture context dependency information of DNA subse-
quences, and then spreads it into the CNN layer to extract

the discriminative features, and finally outputs these features
to a full connection layer. Experimental results with a train-
ing dataset have demonstrated the efficacy of the proposed
DeepSite. The DeepSite model proposed in this study can
be applied to identify DNA–protein binding. For the ongo-
ing work, we will further investigate the applicability of the
proposed model to other types of molecules binding predic-
tion problems, e.g., RNA-protein binding, which potentially
can help scientists identify new DNA–protein binding sites
in test sequences.

Acknowledgements  This work was supported in part by the National
Natural Science Foundation of China under Grants nos. 61702058,
61772091, 61802035, 71701026; the China Postdoctoral Science Foun-
dation funded project under Grant no. 2017M612948; the Scientific
Research Foundation for Education Department of Sichuan Province
under Grant no. 18ZA0098; the Sichuan Science and Technology Pro-
gram under Grant nos. 2018JY0448, 2019YFG0106, 2019YFS0067,
2018GZ0307; the Natural Science Foundation of Guangxi under
Grant no. 2018GXNSFDA138005; the Innovative Research Team
Construction Plan in Universities of Sichuan Province under Grant
no. 18TD0027; the Fund of Science and Technology Department
of Guizhou Province under Grant no. J[2014]2134; the Scientific
Research Foundation for Young Academic Leaders of Chengdu Uni-
versity of Information Technology under Grant nos. J201706, J201701;
the Scientific Research Foundation for Advanced Talents of Chengdu
University of Information Technology under Grant nos. KYTZ201717,
KYTZ201715, KYTZ201750; Guangdong Key Laboratory Project
under Grant no. 2017B030314073.

Compliance with ethical standards 

Conflict of interest  There is no conflict of interest.

References

	 1.	 Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas R,
Morgunova E, Enge M, Taipale M, Wei G (2013) DNA-binding
specificities of human transcription factors. Cell 152(1):327–339

	 2.	 Zhou TY, Shen N, Yang L, Abe N, Horton J, Mann RS, Bus-
semaker HJ, Gordân R, Rohs R (2015) Quantitative modeling of
transcription factor binding specificities using DNA shape. Proc
Natl Acad Sci 112(15):4654–4659

	 3.	 Slattery M, Zhou T, Yang L, Dantas AC, Gordan R, Rohs R
(2014) Absence of a simple code: how transcription factors read
the genome. Trends Biochem Sci 39(9):381–399

	 4.	 Zhang YQ, Cao XY, Zhong S (2016) Genemo: a search engine
for web-based functional genomic data. Nucleic Acids Res
44(W1):W122–W127

	 5.	 Fan S, Huang K, Ai R, Wang M, Wang W (2016) Predicting CPG
methylation levels by integrating infinium humanmethylation 450
beadchip array data. Genomics 107(4):132–137

	 6.	 Furey TS (2012) Chip-seq and beyond: new and improved meth-
odologies to detect and characterize protein–DNA interactions.
Nat Rev Genet 13(12):840–52

	 7.	 Wang L, Chen J, Wang C, Uuskülareimand L, Chen K, Medinari-
vera A, Young EJ, Zimmermann MT, Yan H, Sun Z (2014) Mace:
model based analysis of chip-exo. Nucleic Acids Res 42(20):e156

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

10 30 50 100

A
U

C

The amout of data (%)

CNN
DeepSite

Fig. 7   AUC​ of CNN and DeepSite models under different sizes of
data

Table 9   Performance comparison of DeepSite and CNN under differ-
ent sizes of datasets

Amount of data (%) CNN DeepSite

Sen (%) 10 76.20 80.09
30 75.28 84.06
50 76.33 87.30

100 81.85 87.12
Spe (%) 10 86.63 90.60

30 88.79 91.96
50 87.06 89.69

100 82.71 91.06
Acc (%) 10 81.69 85.62

30 82.39 88.22
50 81.98 88.56

100 82.30 89.19
Pre (%) 10 83.69 88.47

30 85.81 90.39
50 84.15 88.40

100 81.00 89.77
MCC 10 0.633 0.713

30 0.649 0.765
50 0.639 0.770

100 0.645 0.783

851International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

	 8.	 He QY, Johnston J, Zeitlinger JL (2015) Chip-nexus: a novel chip-
exo protocol for improved detection of in vivo transcription factor
binding footprints. Nat Biotechnol 33(4):395–401

	 9.	 Cirillo D, Bottaorfila T, Tartaglia GG (2015) By the company they
keep: interaction networks define the binding ability of transcrip-
tion factors. Nucleic Acids Res 43(19):e125

	10.	 Zhang HB, Lin Z, Huang DS (2016) Discmla: an efficient discrim-
inative motif learning algorithm over high-throughput datasets.
IEEE ACM Trans Comput Biol Bioinform 15(6):1810–1820

	11.	 Zhu L, Guo WL, Lu CY, Huang DS (2017) Collaborative com-
pletion of transcription factor binding profiles via local sensitive
unified embedding. IEEE Trans Nanobiosci 15(8):946–958

	12.	 Schmidt F, Kern F, Ebert P, Baumgarten N, Schulz MH (2018)
Tepic 2—an extended framework for transcription factor binding
prediction and integrative epigenomic analysis. Bioinformatics
35(9):1608–1619

	13.	 Huang DS (2004) A constructive approach for finding arbitrary
roots of polynomials by neural networks. IEEE Trans Neural Netw
15(2):477–491

	14.	 Zhang YQ, Zhang DL, Mi G, Ma DC, Li GB, Guo YZ, Li ML,
Zhu M (2012) Using ensemble methods to deal with imbalanced
data in predicting protein–protein interactions. Comput Biol Chem
36:36–41

	15.	 Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics.
Brief Bioinform 18(5):851–869

	16.	 Zhang YQ, Qiao SJ, Ji SJ, Zhou JL (2018) Ensemble-cnn: Predict-
ing dna binding sites in protein sequences by an ensemble deep
learning method. In: Proceedings of 2018 international conference
on intelligent computing. Springer, Wuhan, China, pp 301–306

	17.	 Spencer M, Eickholt J, Cheng JL (2015) A deep learning network
approach to ab initio protein secondary structure prediction. IEEE
ACM Trans Comput Biol Bioinform 12(1):103–112

	18.	 Chen YF, Li Y, Narayan R, Subramanian A, Xie XH (2016)
Gene expression inference with deep learning. Bioinformatics
32(12):1–8

	19.	 Zhang Y, Qiao S, Ji S, Han N, Liu D, Zhou J (2019) Identification
of DNA–protein binding sites by bootstrap multiple convolutional
neural networks on sequence information. Eng Appl Artif Intell
79:58–66

	20.	 Asgari E, Mofrad MRK (2015) Continuous distributed representa-
tion of biological sequences for deep proteomics and genomics.
PLoS One 10(11):1–15

	21.	 Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting
the sequence specificities of DNA- and RNA-binding proteins by
deep learning. Nat Biotechnol 33(8):831–839

	22.	 Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding
variants with deep learning-based sequence model. Nat Methods
12(10):931–934

	23.	 Zeng H, Edwards MD, Liu G, Gifford DK (2016) Convolutional
neural network architectures for predicting DNA–protein binding.
Bioinformatics 32(12):i121–i127

	24.	 Cao Z, Zhang SH (2018) Simple tricks of convolutional neural
network architectures improve DNA–protein binding prediction.
Bioinformatics 35(11):1837–1843

	25.	 Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M,
Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S (2012)
Gencode: the reference human genome annotation for the encode
project. Genome Res 22(9):1760–1774

	26.	 Wang X, Wang R, Chen X (2018) Discovering the relationship
between generalization and uncertainty by incorporating complex-
ity of classification. IEEE Trans Cybern 48(2):703–715

	27.	 Wang R, Wang X, Kwong S, Chen X (2017) Incorporating diver-
sity and informativeness in multiple-instance active learning.
IEEE Trans Fuzzy Syst 25(6):1460–1475

	28.	 Graves A, Mohamed AR, Hinton G (2013) Speech recognition
with deep recurrent neural networks. In: IEEE international con-
ference on acoustics, speech and signal processing. IEEE, Van-
couver, BC, Canada, pp 6645–6649

	29.	 Zhu L, Deng SP, Huang S (2015) A two-stage geometric method
for pruning unreliable links in protein–protein networks. IEEE
Trans Nanobiosci 14(5):528–534

	30.	 Klaus G, Rupesh KS, Jan K, Bas RS, Jürgen S (2015) LSTM:
a search space odyssey. IEEE Trans Neural Netw Learn Syst
28(10):2222–2232

	31.	 Krizhevsky A, Sutskever T, Hinton G (2012) Imagenet classifica-
tion with deep convolutional neural networks. In: Advances in
neural information processing systems 25: 26th annual conference
on neural information processing systems. Lake Tahoe, Nevada,
USA, pp 1097–1105

	32.	 Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Apply-
ing convolutional neural networks concepts to hybrid NN-HMM
model for speech recognition. In: 2012 IEEE international con-
ference on acoustics, speech and signal processing. IEEE, Kyoto,
Japan, pp 4277–4280

	33.	 Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li FF
(2014) Large-scale video classification with convolutional neural
networks. In: 2014 IEEE conference on computer vision and pat-
tern recognition. IEEE, Columbus, OH, USA, pp 1725–1732

	34.	 Wang T, Wu DJ, Coates A, Ng AY (2012) End-to-end text rec-
ognition with convolutional neural networks. In: Proceedings of
the 21st international conference on pattern recognition. IEEE,
Tsukuba, Japan, pp 3304–3308

	35.	 Cecotti H, Graser A (2011) Convolutional neural networks for
p300 detection with application to brain–computer interfaces.
IEEE Trans Pattern Anal Mach Intell 33(3):433–445

	36.	 Ouyang WL, Wang XG, Zeng XY, Qiu S, Luo P, Tian YL, Li
HS, Yang S, Wang Z, Loy CC (2015) Deepid-net: deformable
deep convolutional neural networks for object detection. In: IEEE
conference on computer vision and pattern recognition. IEEE,
Boston, MA, USA, pp 2403–2412

	37.	 Wang X, Xing H, Li Y, Hua Q, Dong C, Pedrycz W (2015) A
study on relationship between generalization abilities and fuzzi-
ness of base classifiers in ensemble learning. IEEE Trans Fuzzy
Syst 23(5):1638–1654

	38.	 Kingma D, Ba J (2014) ADAM: a method for stochastic optimiza-
tion. In: Proceedings of 3rd international conference on learning
representations. San Diego, CA, USA, pp 1–15

	39.	 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning repre-
sentations by back-propagating errors. Nature 323(6088):533–536

	40.	 Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods
for online learning and stochastic optimization. J Mach Learn Res
12(7):257–269

	41.	 Wang X, Zhang T, Wang R (2019) Non-iterative deep learning:
incorporating restricted Boltzmann machine into multilayer ran-
dom weight neural networks. IEEE Trans Syst Man Cybern Syst
49(7):1299–1380

	42.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Problem statement
	2.2 Dataset
	2.3 Bidirectional LSTM networks
	2.4 Convolutional neural networks
	2.5 The proposed model
	2.6 Model parameters and training procedure

	3 Results and discussions
	3.1 Evaluation metrics
	3.2 Parameter tuning
	3.2.1 Selecting the learning rate
	3.2.2 Selecting the dropout ratio
	3.2.3 Selecting the number of cells in LSTM
	3.2.4 Selecting the number of convolution kernels in CNN
	3.2.5 Peak performance of LSTM, BLSTM, LSTM-CNN and DeepSite models

	3.3 Performance comparison
	3.3.1 Performance comparison with different methods
	3.3.2 Performance comparison with existing predictors
	3.3.3 Performance comparison with different datasets

	4 Conclusions
	Acknowledgements
	References

