
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2020) 11:841–851 
https://doi.org/10.1007/s13042-019-00990-x

ORIGINAL ARTICLE

DeepSite: bidirectional LSTM and CNN models for predicting 
DNA–protein binding

Yongqing Zhang1,2 · Shaojie Qiao3   · Shengjie Ji1 · Yizhou Li4

Received: 28 June 2018 / Accepted: 22 July 2019 / Published online: 29 July 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Transcription factors are cis-regulatory molecules that bind to specific sub-regions of DNA promoters and initiate transcrip-
tion, the process that regulates the conversion of genetic information from DNA to RNA. Several computational methods 
have been developed to predict DNA–protein binding sites in DNA sequence using convolutional neural network (CNN). 
However, these techniques could indicate the dependency information of DNA sequence information in the framework of 
CNN. In addition, these methods are not accurate enough in prediction of the DNA–protein binding sites from the DNA 
sequence. In this study, we employ the bidirectional long short-term memory (BLSTM) and CNN to capture long-term 
dependencies between the sequence motifs in DNA, which is called DeepSite. Apart from traditional CNN, which includes 
six layers: input layer, BLSTM layer, CNN layer, pooling layer, full connection layer and output layer, DeepSite approach 
can predict DNA–protein binding sites with 87.12% sensitivity, 91.06% specificity, 89.19% accuracy and 0.783 MCC, when 
tested on the 690 Chip-seq experiments from ENCODE. Lastly, we conclude that our proposed method can also be applied 
to find DNA–protein binding sites in different DNA sequences.
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Abbreviations
Acc	� Accuracy
AUC​	� The area under the ROC curve
BLSTM	� Bidirectional long short-term memory
BP	� Back-propagation algorithm
CNN	� Convolutional neural network
ENCODE	� The Encyclopedia of DNA elements
FN	� The number of false negative
FP	� The number of false positive
GPU	� Graphical processing units
MCC	� Mathews correlation coefficient
PFM	� Positional frequency matrix

Pre	� Precision
PSSM	� Position specific scoring matrix
ROC	� Receiver operating characteristic
Sen	� Sensitivity
Spe	� Specificity
TN	� The number of true negatives
TP	� The number of true positive
TFs	� Transcription factors
TFBS	� Transcription factor binding site

1  Introduction

Accurately modeling the specificity of the transcription fac-
tors sequence is an essential problem in understanding the 
function and evolution of the genome [1–5]. TF is a protein 
that can bind to DNA sequence and regulate gene expres-
sion. The transcription factor binding sites are a subset of 
DNA binding sites. These sites can be defined as short seg-
ments of DNA that are specifically bound by one or more 
proteins with various functions. Particularly, the characteri-
zation of binding affinity of TFs to the DNA sequence deter-
mines the relative expression of genes downstream of the 
transcription factor binding sites (TFBS). The mechanism 
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by which TFs select specific binding regions is complex and 
there are a large number of DNA–protein binding sites to be 
determined at different levels.

With the high-throughput technologies developing, 
such as ChIP-seq [6], ChIP-exo [7] and ChIP-nexus [8], a 
huge volume of experiments verified the TFs binding sites. 
However, they are time-consuming and expensive. Fortu-
nately, these experimental data can serve as training data 
for machine learning models to learn the binding patterns of 
TF. Many computational approaches have been proposed to 
predict DNA–protein binding [9–12]. For example, Cirillo 
et al. [9] proposed PAnDA approach to predict DNA–pro-
tein binding with human transcription factors by using gene 
expression profiles, protein–protein interaction and recogni-
tion motifs. Zhang et al. [10] proposed an approach named 
DiseMLA to discover TFBS motifs on high-throughput 
dataset, which aims to optimize the phase of motif search-
ing with a more comprehensive criterion. Zhu et al. [11] 
presented LSUE for inferring DNA–protein binding from 
new ChIP-seq datasets, which mainly utilize the local cor-
relations between available datasets. Schmidt et al. [12] pre-
sented a framework, namely TEPIC2, allowing for a fast, 
accurate and versatile prediction and analyzing DNA–pro-
tein binding from epigenetic data.

Recently, deep learning technology has shown the capa-
bility of improving discriminating ability compared with 
other machine learning methods [13, 14], and has been 
widely applied in bioinformatics [15, 16], i.e., protein struc-
ture prediction [17], gene expression regulation [18, 19] and 
protein classification [20]. The convolutional neural network 
(CNN) has successfully predicted the DNA–protein binding 
[21–24]. These methods not only outperform other existing 
methods in terms of prediction accuracy, but also can easily 
extract binding motifs directly from the learned parameters 
of CNN. For example, DeepBind [21] is known to outper-
form the state-of-the-art experimental and computational 
methods to identify the binding preference of DNA-binding 
and RNA-binding proteins, which is a convolutional neu-
ral network trained on a large amount of data from high-
throughput experiments. DeepSEA [22] also trains a CNN 
framework to predict the noncoding-variant effects from 
DNA sequences. Zeng et al. [23] proposed a systematic 
exploration of CNN architectures to predict DNA sequence 
binding in 690 transcription factor ChIP-seq experiments 
from the Encyclopedia of DNA Elements (ENCODE) pro-
ject [25]. Cao et al. [24] introduced some tricks of CNN to 
improve the performance of DNA sequence related predic-
tion tasks and took the DNA–protein binding as an illustra-
tive task for demonstration. Fast convolution on the graphic 
processing unit (GPU) allows CNN to be trained on large-
scale datasets. Wang et al. [26] proposed a specific study on 
the relationship between generalization and uncertainty by 
incorporating complexity of classification, which concludes 

that the generalization ability of a classifier is statistically 
becoming better with the increase of uncertainty when the 
complexity of the classification problem is relatively high. 
Wang et al. [27] investigated the multiple-instance active 
learning (MIAL) by incorporating diversity and informa-
tiveness. Two diversity criteria are proposed for MIAL by 
utilizing a support vector machine based MIL classifier. 
However, these techniques cannot indicate the dependency 
information of DNA sequences in the framework of CNN. In 
addition, these methods are not accurate enough in predict-
ing DNA–protein binding from DNA sequences.

In this study, we focus on exploring the method of clas-
sifying whether a DNA segment binds to any TF. There-
fore, we propose a computational prediction approach for 
DNA–protein binding based on BLSTM [28] and CNN, 
we call it DeepSite, to solve the aforementioned disadvan-
tages of the existing methods. Based on DeepSite model, 
both the long as well as short dependency information of 
DNA sequences can be captured by mining the information 
from every mediate hidden value of BLSTM and CNN. 
The experimental results on the benchmark datasets show 
that DeepSite outperforms other existing deep learning 
methods. DeepSite approach can predict DNA-binding 
sites with 87.12% sensitivity, 91.06% specificity, 89.19% 
accuracy and 0.783 MCC when tested on the dataset used 
in 690 Chip-seq experiments. When compared with the 
CNN model, our method predicts DNA-binding sites with 
a 5.28%, 8.35%, 6.89% and 0.138 improvement in sensi-
tively, specificity, accuracy and MCC value, respectively.

The original contributions of the proposed model are 
threefold: (1) we introduce BLSTM layer in the Deep-
Site algorithm to capture the long and short dependency 
information of DNA sequence, which improves its predic-
tive performance; (2) a novel hybrid BLSTM and CNN 
framework for predicting DNA–protein binding from DNA 
sequences; (3) the experimental results demonstrate that 
the proposed approach performs better in identification of 
DNA–protein binding in DNA sequence.

2 � Materials and methods

In this study, we present a deep learning-based approach, 
DeepSite (Fig. 1), to predict TBFS in DNA sequence by 
integrating a BLSTM and a CNN. We first describe the 
problem of transcription factor binding site by deep learn-
ing method. Then, we introduce the ChIP-seq experiments 
dataset from ENCODE, which is used to train and evaluate 
DeepSite. Next, we give the technical details about two 
different deep neural networks, BLSTM and CNN. Finally, 
we describe the proposed method DeepSite and how to 
implement in detail.
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2.1 � Problem statement

This study focus on discovering the DNA–protein binding 
in DNA sequence, and the task of DNA–protein binding can 
be viewed as a binary sequence classification problem. The 
problem can be formulized as: as input, the training set is 
represented by {X(i), y(i)}n

i=1
 , where X(i) is a matrix, of dimen-

sion 4 × N , and N is the length of a DNA sequence (101 base 
pairs in our experiments). Each base pair in the sequence is 
represented as one of the four one-hot vectors [1, 0, 0, 0], 
[0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1]. This matrix is called 
Positional frequency matrix (PFM), which has four rows 
corresponding to each channel of genetic alphabet, namely 
{A,T ,C,G} . Our labels, y(i) can be a scalar or vector, depend-
ing on the number of transcription factor binding sites being 
studied. Nonetheless, the number of dimension is equal to 
the classification tasks, and each element of y(i) is a binary 
label in the standard space {0, 1} . The goal is to accurately 
predict the label in the testing data, that is, to accurately 
predict whether a transcription factor combined with a given 
DNA sequence.

2.2 � Dataset

As was performed in Alipanahi [21], Zhou [22] and Zeng 
[23], we obtain 690 ChIP-seq experiments from ENCODE1. 
We use the similar DNA sequence data by Zeng [23], the 

positive dataset consists of the centering 101 base pair 
region of each ChIP-seq peak, and the negative dataset con-
sists of shuffled positive sequences with matching dinucleo-
tide composition.

We generate the dataset based on the 690 ChIP-seq exper-
imental data. In this study, we focus on the task of clas-
sifying whether a DNA segment binds to any TF. All the 
training data are combined into a whole dataset, the number 
of DNA sequences in the training set is 2,725,808, and the 
number of DNA sequences in the testing set is 255,700. In 
order to reduce the runtime of DeepSite, we firstly use 10% 
of training set and testing set to evaluate the performance. 
Finally, all the datatsets are used to assess the performance 
of DeepSite.

2.3 � Bidirectional LSTM networks

Compared with traditional RNN, LSTM shows the abil-
ity to increase the dependence on long-distance evolu-
tion. Zhu et al. [29] used the traditional RNN to solve pro-
tein–protein network problems. One explanation may be 
their different processing of protein sequence data. Given 
a sequence, the tradition RNN, from t = 1 to n, works iter-
atively by Eqs. (1) and (2) to calculate the hidden vector 
sequence h = (h1, h2,… , hn) and outputs a vector sequence 
y = (y1, y2,… , yn).

where x = (x1, x2,… , xn) is the input vector, t represents the 
index of input, output and hidden vectors, W is a weight 
matrix that is computed in the phase of training, b∗ is the 
offset vector, and f() and g() denote the activation function.

LSTM is a special type of RNN and is well suitable for 
capturing the long and short dependency information in 
sequence [30]. A memory mechanism is applied in LSTM 
to replace the hidden function in the traditional RNN. The 
commonly-used LSTM unit consists of a memory cell, 
a forget gate, an input gate and an output gate, which is 
designed to enhance the ability of LSTM to model long-
range dependence. LSTM memory cell is given in the fol-
lowing equations:

(1)ht =f (Wxh ∗ xt +Whh ∗ ht−1 + bh)

(2)yt =g(Why ∗ ht + by)

(3)ft =�(Wxf ∗ xt +Whf ∗ ht−1 + bf )

(4)it =�(Wxi ∗ xt +Whi ∗ ht−1 + bi)

(5)
ct =ft

⨂

ct−1 + it

⨂

tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

(6)ot =�(Wxo ∗ xt +Who ∗ ht−1 + bo)

(7)ht = ot

⨂

tanh(ct)

Fig. 1   The working mechanism of DeepSite model

1  http://hgdow​nload​.cse.ucsc.edu/golde​nPath​/hg19/encod​eDCC/
wgEnc​odeAw​gTfbs​Unifo​rm/

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
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where � is the logistic Sigmoid function, tanh is a function to 
push the values to be between −1 and 1, f, i, c, o represent the 
forget gate, input gate, cell vectors and output gate, respec-
tively, which are specified to be the same value as given in 
the hidden vector h, Wxf  is the input-forget gate matrix, and 
Whf  is the hidden-forget gate matrix. The index t refers to the 
time step. 

⨂

 represents the vector product. It is worthwhile 
to note that the initial values of c0 = 0 and h0 = 0.

In the phase of sequence tagging, we have access to both 
past and future input features for a given time, so we can 
use a BLSTM as proposed in [28]. By doing so, we can effi-
ciently make use of past features and future features within a 
specific time interval. The back-propagation is used to train 
BLSTM. In this study, we apply the forward and backward 
LSTM in the entire DNA sequence in order to capture long-
term dependent relationship of DNA sequence. The hid-
den states only need to be set to 0 at the beginning of each 
sequence. In particular, we make a batch implementation 
that can handle multiple sentences at the same time.

2.4 � Convolutional neural networks

CNN is a well-known deep learning framework, which has 
been widely applied in image recognition [31], speech recog-
nition [32], computer vision [33], natural language processing 
[34], bioinformatics [21, 22] and other artificial intelligence 
research fields [35, 36]. Wang et al. [37] investigated essential 
relationships between generalization capabilities and fuzzi-
ness of fuzzy classifiers. The study makes a claim and offers 
sound evidence behind the observation that higher fuzziness 
of a fuzzy classifier may imply better generalization aspects of 
the classifier. The components of CNN include convolutional, 
pooling and fully connected layers. The convolutional layer 
is proposed to extract and represent the local information of 
original features through several feature maps and kernels. 
The pooling layer is employed to compress the resolution of 
the feature maps to achieve spatial invariance. After several 
convolution and pooling operations, there may be one or more 
fully connected layers to perform advanced reasoning. The 
output of the last fully connected layer transfer to an output 
layer. For a classifier or regression task, softmax regression is 
commonly-used because it can produce a well-formed prob-
ability distribution corresponding to the outputs.

2.5 � The proposed model

The proposed model is introduced in this section, includ-
ing the structure of the networks and its learning algorithm. 
Adam algorithm [38] is used to update the parameters. We 
used a bidirectional LSTM structure to deal with the order 
and reverse order dependency information in the DNA 
sequence. The network structure and the proposed algorithm 
are implemented based on Keras library. All of them are 

conducted on graphical processing units (GPU) to accelerate 
the training time.

We combine a BLSTM network and a CNN network to 
build a BLSTM-CNN model, which is shown in Fig. 1. This 
framework can efficiently characterize a possibly highly-
complex order in DNA sequence via BLSTM layer and to 
generate filters that generalize sequence patterns via CNN 
and max pooling layers. With this neural network, both the 
long and short dependency information of DNA sequence 
can be captured by tapping the information from every medi-
ate hidden value of BLSTM and CNN.

As shown in Fig. 1, the first input layer uses one-hot 
coding to represent each input sequence as a 4-row binary 
matrix, and the length of each sequence is 101 base pair.

The second layer is a BLSTM layer where each LSTM 
block in the first layer will receive the input sequence 
extracted from the trace of interest on the DNA and encodes 
its own interpretation regarding the overall contributions of 
the past history into its hidden state. Then, this interpretation 
is propagated to the next LSTM blocks located above and 
to the right of itself. Once the last nucletide is observed, the 
last unrolled LSTM block makes the final decision on the 
goodness of the probe.

The third layer is a convolutional layer composed of dif-
ferent convolutional kernels with rectified linear units as the 
activation function. Each convolutional kernel works as a 
motif detector that scans the input matrices and produces dif-
ferent strengths of signals that are correlated to underlying 
sequence patterns. The vertical and horizontal dimensions 
in the convolution box are 1 and 24, respectively.

The fourth layer is a max pooling layer that maximize 
the output signals of each convolutional kernel along the 
whole sequence.

The fifth layer is a fully connected layer with rectified 
linear units as activation unit. The size of fully connected 
layer is 32, the same as Zeng [23].

The last layer performs a non-linear transformation with 
sigmoid activation and produces a value between 0 and 1 
that represents the probability of a binding preference of 
each probe.

2.6 � Model parameters and training procedure

DeepSite is trained by using the standard back-propagation 
algorithm [39] and mini-batch gradient descent with the Adag-
rad [40] variation. Wang et al. [41] proposed a new deep learn-
ing approach to train multilayer feed-forward neural networks, 
which dose not need to iteratively tune the weights. It uses 
restricted Boltzman machine as the layer-wise training and 
use the generalized inverse of a matrix as the supervised fine-
tuning. Dropout [42] and the phase of early stopping are used 
for regularization and model selection. Detailed parameter 
configurations are given in the next section.
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All models use a genetic SGD forward and backward train-
ing method in this study. We choose the most complicated and 
best model BLSTM-CNN to display the performance of train-
ing. In experiments, the training dataset is divided into batches 
and one batch is processed at a time. Each batch contains a 
series of sentences which is determined by the parameter of 
batch size. As recommended by Alipanahi [21], the batch size 
is specified to 64. The weights and bias are set to the default 
values in Keras. Each model is optimized by training for 100 
epochs. The learning rate changes from 0.001 to 0.008. The 
dropout ratio is specified to 0.1, 0.3, and 0.5, respectively. The 
number of cells w.r.t. BLSTM changes from 32 to 400 and the 
default value is 32. The filter number of CNN changes from 
32 to 400 and the default value is 32.

All experiments are conducted by the Python library Keras, 
running on a machine with 24 Xeon processor and 256GB of 
memory and 1 Nvidia Tesla K40C GPU.

3 � Results and discussions

In order to examine the performance of the proposed Deep-
Site, experiments based on ChIP-seq from ENCODE bench-
marks against three selected state-of-the-art algorithms are 
performed. In the following, the evaluation matric are out-
lined first. Then the parameter tuning was discussed, includ-
ing learning rate, dropout ratio, number of cells in LSTM and 
number of convolution kernels in CNN. Finally, the perfor-
mance comparison was employed other deep learning method, 
three existing predictors and other different datasets.

3.1 � Evaluation metrics

In this study, five evaluation measurements are used in this 
study, that is, sensitivity (Sen), specificity (Spe), accuracy 
(Acc), precision (Pre) and the Mathew’s correlation coefficient 
(MCC) are employed to evaluate predictive capability. They 
are calculated by the following equations:

(8)Sen =
TP

TP + FN

(9)Spe =
TN

TN + FP

(10)Acc =
TP + TN

TP + FN + TN + FP

(11)Pre =
TP

TP + FP

(12)MCC =
TP ⋅ TN − FN ⋅ FP

√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

where TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives, FN is 
the number of false negatives, P is the number of positives, 
and N is the number of negatives.

However, these five measurements are threshold depend-
ent. Hence, the method chosen for reporting these evalua-
tion measurements is critical for making a fair comparison 
between different predictors. In this study, the area under the 
receiver operating characteristic (ROC) curve (AUC​), which 
is threshold-independent and increases in direct proportion 
to the overall prediction performance, is used to evaluate the 
prediction performance.

3.2 � Parameter tuning

3.2.1 � Selecting the learning rate

The hyper-parameters for TFBS task needed to be tuned in 
order to obtain optimal results. The learning rate is one of 
the most important hyper-parameters to be tuned for train-
ing deep neural networks. If the learning rate is a little bit 
lower, the phase of training is more reliable, but the phase of 
optimization will cost much time because the update value 
of the loss function is small for each time optimization. If 
the learning rate is high, the phase of training may not con-
verge or even diverge. A higher interval of learning rate may 
cause the optimizer skips the optimal value, which makes 
the optimization of loss function become worse. The range 
of learning rate is different for different datasets as well as 
parameter configuration. In this study, we observe different 
metrics when the learning rate changes from 0.001 to 0.008. 
The experimental results are given in Table 1 and Fig. 2.

From Table 1, we observe that when learning rate is set to 
0.001, the proposed algorithm obtains the best values of all 
evaluation metrics. The values of Sen, Acc, Pre and MCC of 
are 72.23%, 79.85%, 83.05% and 0.598, respectively, when 
the learning rate is set to 0.001 which improves approximately 
7.74%, 3.42%, 1.01% and 0.064 when the learning rate is set 
to 0.008. Figure 2 shows the performance of AUC​ when the 
learning rate changes from 0.001 to 0.008. We can see that: as 

Table 1   Performance of DeepSite model with different learning rates

Learning rate Sen (%) Acc (%) Pre (%) MCC

0.001 72.23 79.85 83.05 0.598
0.002 71.41 79.31 82.72 0.582
0.003 70.28 79.18 83.19 0.586
0.004 69.06 78.26 81.08 0.575
0.005 67.30 78.20 83.54 0.569
0.006 67.01 77.50 85.47 0.560
0.007 66.87 77.36 82.05 0.551
0.008 64.49 76.43 82.04 0.534
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the learning rate increases gradually, the AUC​ of the predictor 
decreases drastically. By empirical studies, the learning rate is 
specified to 0.001 in the following experiments.

3.2.2 � Selecting the dropout ratio

Overfitting is a common problem in deep neural network. 
Dropout is a technique for addressing this problem, which 
randomly set some intermediate values to zero in training the 
neural network [42]. To prevent the phenomenon of overfit-
ting, we investigate whether the dropout method was a fea-
sible strategy to improve training accuracy. Based on Fig. 3, 
as the dropout ratio increases, the AUC​ substantially grows, 
suggesting that adding dropout to the model may improve 
the robustness. A similar trend is also observed from the 
results in Table 2. The MCC is 0.706, 0.704 and 0.70 on 
0.1, 0.3 and 0.5 dropout ratio, respectively. Therefore, the 
dropout ratio is chosen as 0.1 in the next model.

3.2.3 � Selecting the number of cells in LSTM

In this section, we attempt to empirically demonstrate how 
to choose the number of cells in LSTM. We evaluate the Sen, 
Spe, Acc, Pre, MCC and AUC​ values on the training dataset 
by gradually varying the value from 32, 64, 128 to 400.

Figure 4 shows the performance of the metric of AUC​ 
w.r.t these four algorithms including LSTM, BLSTM, 
LSTM-CNN and DeepSite with different number of cells 

from 32 to 400. As shown in Fig. 4, the AUC​ of BLSTM 
improves significantly with the number of cells from 32 to 
300. After that, the value of the AUC​ remain unchanged. 
For the LSTM, when the number of cells varies from 32 
to 300, the AUC​ increase drastically. After that, the values 
of AUC​ keep stable. LSTM-CNN and DeepSite algorithm 
have almost the same trend in terms of AUC​ with different 
number of cells from 32 to 400, the AUC​ increase gradually. 
According to Fig. 4, we find that the value of AUC​ increases 
with the number of cells from 32 to 256. After that, the 
improvement of four methods is not obvious, even more cells 
have been used. This can be explained by the reason that 
these four methods have reached to the peak value of AUC​. 
We can conclude that the best number of cells is 256 in this 
set of experiments.

Table 3 shows the values of Sen, Spe, Acc, Pre and MCC 
by specifying different values of the cell numbers. Experi-
mental results show that our algorithm achieve 0.686, 0.691, 
0.706, 0.713, 0.716, 0.724 and 0.721 for MCC on 32, 64, 
128, 256, 300, 350 and 400 cells, respectively, which out-
performs BLSTM with the gap of 0.089, 0.044, 0.039, 0.015, 
0.017, 0.021 and 0.017 for MCC on 32, 64, 128, 256, 300, 
350 and 400 cells, respectively. In order to facilitate com-
parison, we lastly specify the number of cells to 256 in four 
methods.

As we can see from Table 3, our proposed, DeepSite 
algorithm, achieve the best results in all metrics when the 
number of cells are specified to different values, e.g., for 
DeepSite, when the cell number equals 350, it obtains the 
best value of the Sen metric.

3.2.4 � Selecting the number of convolution kernels in CNN

In this section, we discuss how to choose the number of 
convolutional kernels in CNN. We evaluate the values of 
Sen, Spe, Acc, Pre, MCC and AUC​ on the training dataset 
by gradually varying the value of the convolution kernels 
from 32, 64 to 400.

Figure 5 shows the variation curves of AUC​ under dif-
ferent number of convolution kernels. We can observe that 
the value of AUC​ increases with the number of convolution 
kernels and DeepSite model outperforms CNN. Specifically, 
the AUC​ of CNN significantly improves with the number of 
convolution kernels from 32 to 300 and keeps stable with the 
number of convolution kernels from 300 to 400. In terms of 
DeepSite and LSTM-CNN models, they have the same trend 
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 0.9
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Fig. 2   AUC​ of DeepSite model with different learning rates

Table 2   Performance of the 
DeepSite model with different 
dropout ratios

Dropout ratio Sen (%) Spe (%) Acc (%) Pre (%) MCC

DeepSite 0.1 80.24 89.82 85.28 87.64 0.706
0.3 81.90 88.26 85.25 86.26 0.704
0.5 78.76 90.49 84.93 88.18 0.700



847International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

of AUC​ with the number of convolution kernels changing. 
These two methods are increased slowly with the number of 
convolution kernels from 32 to 128. After that, the value of 
AUC​ is stable. The peak performance of DeepSite is better 
than LSTM-CNN and CNN models.

Table 4 demonstrates the mean value and standard devia-
tion of AUC​ between DeepSite and other deep learning predic-
tors with different number of convolution kernels. According 
to Table 4, we can see that the best value of the average AUC​ 
w.r.t DeepSite is higher than that of the CNN and LSTM-CNN 
algorithms. In addition, the standard deviation of DeepSite 
is lower than that of CNN and LSTM-CNN algorithms. The 
results demonstrate that DeepSite model is more accurate and 
stable at predicting the DNA–protein bindings.

Table 5 shows the measurements of Sen, Spe, Acc, Pre 
and MCC under different number of convolution kernels. 

According to results of the model with the best-performing 
number of kernels, we can see that the proposed method 
achieves better performance than other classical models.

3.2.5 � Peak performance of LSTM, BLSTM, LSTM‑CNN 
and DeepSite models

Different methods have very different architectures, and we 
compare the peak performance of LSTM, BLSTM, LSTM-
CNN and DeepSite models based on the results from Table 3. 
The peak performance results are shown in Table 6.
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Table 3   Performance comparison of DeepSite and other deep learn-
ing predictors with different number of cells

Cell numbers LSTM BLSTM LSTM-CNN DeepSite

Sen (%) 32 71.20 78.24 77.32 81.94
64 78.95 77.69 78.98 75.43

128 75.55 79.50 81.56 81.24
256 78.73 81.50 81.22 82.09
300 77.30 78.45 82.61 83.46
350 82.96 82.98 83.57 84.94
400 80.28 81.43 81.05 81.58

Spe (%) 32 87.26 81.42 89.06 86.55
64 85.17 86.59 89.28 92.29

128 90.65 86.86 87.98 89.82
256 89.67 87.99 89.32 90.60
300 87.40 90.71 89.21 89.57
350 89.72 90.90 90.22 90.95
400 89.71 89.38 89.90 89.14

Acc (%) 32 79.18 79.91 83.50 84.37
64 82.22 82.37 84.40 84.30

128 83.50 83.37 84.94 85.28
256 83.96 84.92 85.48 85.62
300 84.84 84.89 85.08 85.88
350 85.29 85.12 85.67 86.20
400 85.24 85.02 85.48 86.10

Pre (%) 32 84.52 79.13 86.42 84.58
64 82.74 83.91 86.90 89.80

128 87.92 84.49 85.93 87.64
256 87.42 85.94 87.26 88.47
300 87.28 88.37 88.07. 88.28
350 87.54 88.62 88.12 88.79
400 87.05 88.55 87.78 87.56

MCC 32 0.591 0.597 0.671 0.686
64 0.643 0.647 0.688 0.691

128 0.673 0.667 0.698 0.706
256 0.692 0.698 0.709 0.713
300 0.698 0.699 0.702 0.716
350 0.704 0.703 0.713 0.724
400 0.705 0.704 0.710 0.721
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According to Table 6, the peak values of different experi-
ments show that our method achieves 84.94% for Sen and 0.724 
for MCC , respectively, works better than LSTM, BLSTM and 
BLSTM-CNN models in all cases. The results demonstrates 
that the combination of BLSTM and CNN obtains much better 
performance than other deep learning models. Furthermore, 
the results show the advantage of BLSTM which captures the 
long and short dependency information of DNA sequences.

3.3 � Performance comparison

3.3.1 � Performance comparison with different methods

In this section, the discriminative performances of these 
three deep learning methods, including CNN, BLSTM 
and BLSTM-CNN, will be investigated. Each method was 
evaluated on the same training dataset. The details of the 
parameters for different methods are shown in Table 7. 
These parameters are optimized by above analysis and 
then choose the best parameters for these methods. 

Figure 6 illustrates the ROC curves of three deep learn-
ing methods on the same dataset.

As shown in Fig. 6, we find that the AUC​ of BLSTM-
CNN is 0.932, which demonstrates improvement of 

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

32 64 128 200 300 400

A
U

C

Number of Convolutional Kernels

CNN
LSTM-CNN

DeepSite

Fig. 5   Performance of variation curves of AUC​ under different num-
ber of convolution kernels

Table 4   AUC​ of DeepSite and other deep learning predictors with 
different convolution kernels

Convolution 
kernel num-
bers

CNN LSTM-CNN DeepSite

32 0.871 ± 0.0026 0.920 ± 0.0012 0.925 ± 0.0004
64 0.890 ± 0.0023 0.922 ± 0.0012 0.927 ± 0.0002
128 0.897 ± 0.0019 0.925 ± 0.0006 0.930 ± 0.0005
200 0.905 ± 0.0009 0.927 ± 0.0006 0.930 ± 0.0007
300 0.911 ± 0.0008 0.927 ± 0.0008 0.930 ± 0.0006
400 0.910 ± 0.0009 0.927 ± 0.0008 0.929 ± 0.0006

Table 5   Performance comparison of DeepSite and other deep learn-
ing predictors with different number of convolution kernels

Convolution 
kernel numbers

CNN LSTM-CNN DeepSite

Sen (%) 32 74.29 79.18 80.09
64 73.56 79.67 80.55

128 76.20 80.01 80.24
200 78.88 79.13 80.88
300 80.07 80.33 82.08
400 77.18 79.12 81.19

Spe (%) 32 83.38 88.62 89.36
64 87.51 86.96 89.04

128 86.63 87.98 89.82
200 85.89 88.70 89.96
300 88.54 90.24 90.98
400 85.90 89.18 88.98

Acc (%) 32 79.07 84.15 84.97
64 80.90 84.45 85.02

128 81.69 84.94 85.28
200 82.57 84.97 85.30
300 83.16 84.98 85.36
400 83.14 84.97 85.28

Pre (%) 32 80.10 86.23 87.14
64 84.13 84.93 86.87

128 83.69 85.93 87.64
200 83.45 86.57 88.76
300 86.85 87.96 88.90
400 83.66 86.98 87.32

MCC 32 0.580 0.683 0.699
64 0.619 0.688 0.700

128 0.633 0.698 0.706
200 0.650 0.699 0.708
300 0.663 0.704 0.706
400 0.661 0.699 0.705

Table 6   Peak Performance of LSTM, BLSTM, LSTM-CNN and 
DeepSite models

LSTM BLSTM BLSTM-CNN DeepSite

Sen (%) 82.96 82.98 83.57 84.94
Spe (%) 90.65 90.71 90.22 92.29
Acc (%) 85.29 85.12 85.67 86.20
Pre (%) 87.54 88.62 88.12 89.80
MCC 0.705 0.704 0.713 0.724



849International Journal of Machine Learning and Cybernetics (2020) 11:841–851	

1 3

approximately 0.005 and 0.035, when compared with the 
BLSTM and CNN, respectively. From the comparison 
results between these three methods given in Fig. 6, we 
empirically demonstrate that these three deep learning meth-
ods are highly useful, and the combination of BLSTM and 
CNN, DeepSite, obtains the best ROC curve for effectively 
predicting DNA–protein binding. It indicated the advantage 
of BLSTM which captured the long and short dependency 
information of DNA sequence.

3.3.2 � Performance comparison with existing predictors

In this section, we demonstrate the efficacy of the proposed 
DeepSite algorithm, by comparing it with the state-of-the-
art method, including DeepBind [21], DeepSEA [22] and 
Zeng [23], on the same training and testing datasets, and the 
results are shown in Table 8.

We obtained the source code of DeepBind from the url: 
http://tools​.genes​.toron​to.edu/deepb​ind/nbtco​de/. We run 
DeepBind with the Docker Enterprise container platform 
so it can be run on different systems without the environment 
dependency problems.

DeepSEA model contains three convolution layers with 
320, 480 and 960 kernels and two max pooling layers in 
alternating order to learn the motifs. On the third convolu-
tion layer, it has a fully connected layer and the last layer is 
the Sigmoid output layer.

We implemented the best model in Zeng using the train-
ing pipeline. The best model in Zeng has 128 convolution 
filters and the window size is 24, a global max pooling layer. 
In addition, their model always has a fully connected layer 
with 32 neurons after the global max pooling layer.

According to Table 8, we can see that DeepSite outper-
forms other classifiers in all metrics including the MCC which 
is an overall index for evaluating the quality of binary pre-
diction. The Sen, Acc, Pre and MCC of DeepSite predictor 
are 80.09%, 85.62%, 88.47% and 0.713, respectively, which 
improves approximately 3.89%, 3.93%, 4.78% and 0.08 when 
compared with the Zeng predictor, respectively. As for Deep-
Bind and DeepSEA models, tDeepSite also have an improve-
ment of 0.147 and 0.057 in MCC, respectively. These results 
demonstrate that: by adding the recurrent connections, the per-
formance of DeepSite algorithm can be significantly improved.

3.3.3 � Performance comparison with different datasets

To further assess the performance of DeepSite, we conduct 
experiments on four different datasets with 10%, 30%, 50% 
and 100% of the size of data by using DeepSite and CNN. 
Figure 7 shows the performance variation curves of AUC 
under different cardinality of datasets.

From Fig. 7, we find that the value of AUC​ increases 
with the cardinality of data and the performance of DeepSite 
wins CNN in most cases. Table 9 gives the values of Sen, 
Spe, Acc, Pre and MCC under different number of data. The 
results show that the our method achieve 0.713, 0.765, 0.770 
and 0.783 for MCC on 10%, 30%, 50%, and 100% of the 
size of data, respectively, performing better than the CNN 
model with 0.008, 0.116, 0.131, 0.138 on 10%, 30%, 50%, 
and 100% of the size of data. This may be explained by the 
fact that the 100% of the size of dataset has more training 
data and DeepSite can make good use of the large number 
of training instances to improve its performance.

Table 7   Parameter setting of CNN, BLSTM, BLSTM-CNN models

Parameter CNN BLSTM BLSTM-CNN

Learning rate 0.001 0.001 0.001
Dropout ratio 0.1 0.1 0.1
Kernel numbers 128 – 128
Cell numbers – 256 256
Epochs 100 100 100
Batch size 64 64 64

Fig. 6   Performance comparison of ROC curves for CNN, BLSTM 
and BLSTM-CNN on the same dataset

Table 8   Performance comparison of DeepSite and classical predic-
tors

Predictor Sen (%) Acc (%) Pre (%) MCC

DeepBind 69.26 78.21 81.96 0.566
DeepSEA 64.66 81.58 94.81 0.656
Zeng 76.20 81.69 83.69 0.633
DeepSite 80.09 85.62 88.47 0.713

http://tools.genes.toronto.edu/deepbind/nbtcode/
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4 � Conclusions

In this study, we present a combined BLSTM and CNN 
framework to predict DNA–protein binding in DNA 
sequences, which is called DeepSite. DeepSite uses BLSTM 
to capture context dependency information of DNA subse-
quences, and then spreads it into the CNN layer to extract 

the discriminative features, and finally outputs these features 
to a full connection layer. Experimental results with a train-
ing dataset have demonstrated the efficacy of the proposed 
DeepSite. The DeepSite model proposed in this study can 
be applied to identify DNA–protein binding. For the ongo-
ing work, we will further investigate the applicability of the 
proposed model to other types of molecules binding predic-
tion problems, e.g., RNA-protein binding, which potentially 
can help scientists identify new DNA–protein binding sites 
in test sequences.
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