
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2020) 11:433–447
https://doi.org/10.1007/s13042-019-00984-9

ORIGINAL ARTICLE

DCSVM: fast multi‑class classification using support vector machines

Duleep Rathgamage Don1 · Ionut E. Iacob1

Received: 8 November 2018 / Accepted: 10 July 2019 / Published online: 19 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Using binary classification techniques to perform multi-class classification of data is still of great practical interest due to the
robustness and simplicity of binary classifiers. These techniques produce a single multi-class classification decision based on
many binary decisions. Our work relies on the simple observation that as dimensionality increases so does the data sparsity
and, consequently, a single binary classifier may separate multiple classes. Therefore, we claim that the number of binary
decisions can be significantly reduced. We present Divide and Conquer Support Vector Machines (DCSVM), an efficient
algorithm for multi-class classification using Support Vector Machines. DCSVM is a divide and conquer algorithm which
relies on data sparsity in high dimensional space and performs a smart partitioning of the whole training data set into dis-
joint subsets that are easily separable. A single prediction performed between two partitions eliminates at once one or more
classes in one partition, leaving only a reduced number of candidate classes for subsequent steps. The algorithm continues
recursively, reducing the number of classes at each step, until a final binary decision is made between the last two classes left
in the competition. In the best case scenario, our algorithm makes a final decision between k classes in O(log k) decision steps
and in the worst case scenario DCSVM makes a final decision in k−1 steps, which is not worse than the existent techniques.

Keywords Multiclass classification · SVM · Divide and conquer

Mathematics Subject Classification 62H30 · 68T10

1 Introduction

Machine learning classification is the task of performing
data categorization based on previously seen data categories
(labels or classes). When only two classes are present it is
called binary classification and for more than two classes it
is called multiclass classification. Binary classification is
inherently simpler to perform and decomposing a multiclass
classification problem into a number of binary classification
problems (called transformation to binary) has been a popu-
lar method for producing multiclass classification [12, 16].
The transformation to binary methods inherit the robustness
and simplicity of the binary methods but suffer, in general,
from producing many pairs of binary classifiers and typically

using a large number of binary decisions for producing a sin-
gle multiclass classification decision. In this article we pro-
pose a new method of performing multiclass classification
using transformation to binary with a significantly reduced
number of binary decisions. Our method relies on the key
observation that in high dimensional space the sparsity of
the data may increase significantly. As a consequence, a sin-
gle binary classifier may accurately perform classification
for more than the two classes the classifier was designed
for. We show how to detect such practical situations and
efficiently exploit them to perform multiclass classification
with less binary decision.

According to Wikipedia [29], the curse of dimensional-
ity refers to various phenomena that arise when analyzing
and organizing data in high-dimensional spaces (often with
hundreds or thousands of dimensions) that do not occur
in low-dimensional settings such as the three-dimensional
physical space. The expression was introduced by Richard E.
Bellman in a highly acclaimed article considering problems
in dynamic optimization [2, 3]. In essence, as dimensionality
increases, the volume of the space increases rapidly, and the

 * Ionut E. Iacob
 ieiacob@GeorgiaSouthern.edu

 Duleep Rathgamage Don
 dr04108@GeorgiaSouthern.edu

1 Department of Mathematical Sciences, Georgia Southern
University, Statesboro, USA

http://orcid.org/0000-0003-3641-0194
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-019-00984-9&domain=pdf

434 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

available data become sparser and sparser. In general, this
sparsity is problematic for any method that requires statisti-
cal significance. In order to obtain a statistically sound and
reliable result, the amount of data needed to support the
result often grows exponentially with the dimensionality,
which would prevent common data processing techniques
from being efficient.

Since its introduction, the Support Vector Machines
(SVM) [7] has quickly become a popular tool for classifi-
cation which has attracted a lot of interest in the machine
learning community. However, SVM is primarily a binary
classification tool. The multiclass classification with SVM
is still an ongoing research problem (see, for example, [4,
24, 25, 30] for some recent work and [14, 20] for real-life
applications). We present an SVM-based multi-class clas-
sification method that exploits the curse of dimensionality to
efficiently perform classification of highly dimensional data.

Our method, the Divide and Conquer SVM (DCSVM)
algorithm, exploits the curse of dimensionality and the
power of SVM binary classifiers to produce faster multi-
class classificaitons. The algorithm’s idea is described next
using the example in Fig. 1. The figure shows 6 classes
(1—red, 2—blue, 3—green, 4—black, 5—orange, and
6—maroon) of two-dimensional points and a linear SVM
separation of classes 1 and 2 (the line that separates the
points in these classes). It happens that the SVM model for
classifying classes 1 and 2 completely separates the points
in classes 4 (which takes class 2’s side) and 6 (which takes
class 1’s side). Moreover, the classifier does a relatively
good job classifying most points of the class 5 as class 2

(with relatively few points classified as 1) and a poor job
on classifying the points of class 3 (as the points in this
class are classified about half as 1’s and the other half as
2’s). With DCSVM we use the SVM classifier for classes
1 and 2 for a candidate of an unknown class: if the classi-
fier predicts 1, then we next decide between classes 1, 6, 3,
and 5; if the classifier predicts class 2, then we next decide
between classes 2, 4, 3, and 5. Notice that in either case one
or more classes are eliminated, and we are left to predict a
fewer number of classes. That is, a multi-class classification
problem of a smaller size (less classes). The algorithm then
proceeds recursively on the smaller problem. In the best case
scenario at each step half of the k classes will be eliminated
and the algorithm will finish in ⌈log k⌉ steps. Notice that,
in the above scenario, classes 2 and 4 are completely sepa-
rated from classes 1 and 6, whereas classes 3 and 5 are not
clearly on one side or the other of the separation line. For
this reason, classes 3 and 5 are part of the next decision step,
regardless of the prediction of the first classifier.

However, there is a significant difference between classes
3 and 5. While class 3 is almost divided in half by the sepa-
ration line, class 5 can be predicted as “2” with a relatively
small error. In DCSVM we use a threshold value � to indi-
cate the maximum classification error accepted in order to
consider a class on one side or the other of a separation line.
For instance, let us consider that only 2% of the points of
class 5 are on the same side as class 1. With the threshold
value set to 0.02, DCSVM will separate classes 1, 3, and 6
(when 1 is predicted) from classes 2, 3, 4, and 5 (when 2 is
predicted). A higher threshold value will produce a better
separation of classes (less overlapping) and less classes to
process in the subsequent steps. This comes at the price of
possibly sacrificing the accuracy of the final prediction.

Clearly, the method presented in the example above is
suitable for multiclass classification using a binary classi-
fier, in general. Our choice of using SVM is based on the
SVM algorithm’s remarkable power in producing accurate
binary classification. Our main contribution is producing a
multiclass classification decision faster than the previously
proposed methods, based on performing significantly less
binary decisions. We do so without sacrificing the accuracy
of the previously proposed methods. However, the accuracy
of each binary decision and how fast a binary decision is
produced depend solely on the performance of the binary
classifier being used. Of course, using binary classifiers
for multiclass classification has the obvious disadvantage
of having to create a large number of classifiers (k(k−1)∕2
for k classes), this process is highly parallelizable. A major
challenge for our method was deciding which classifiers to
use and in which order to achieve best results. For this pur-
pose, we introduce some measures (Definitions 3 and 4) in
Sect. 3.1 and explain how to use these measures to achieve
our goals.

Fig. 1 Binary SVM classifier for classes 1 and 2 out of a dataset of
six classes

435International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

The content of this article is organized as follows. We
give a brief description of binary classification with SVM
and related work on using SVM for multi-class classifica-
tion in Sect. 2. DCSVM is described in detail in Sect. 3 and
experimental results (including performance comparisons
with one-versus-one approach) are given in Sect. 4. We con-
clude in Sect. 5.

2 Preliminaries and related work

Support Vector Machines (SVM) [7] was primary developed
as a tool for the binary classification problem by finding a
separation hyperplane for the classes in feature space. If such
a plane cannot be find, the “separating plane” requirement
is softened and a maximal margin separation is produced
instead. Formally, the problem of finding a maximal margin
separation can be stated as a quadratic optimization prob-
lem. Given a set of L training vectors �i ∈ ℝ

d , i = 1…L
with labels yi ∈ {− 1, 1} and a feature space projection
� ∶ ℝ

d
→ H , the SVM method consists in finding the solu-

tion of the following:

where � ∈ H is the weights vector and C ∈ ℝ
+ is a cost reg-

ularization constant. The corresponding decision function is:

An interesting property of the method is that the dot product
can be represented by a kernel function:

which is computationally much less expensive than actually
projecting � and �′ into the feature space H.

In the case of multiple classes, the problem formulation
becomes more complicated and inherently more difficult to
address. Given a set of L training vectors �i ∈ ℝ

d , i = 1…L
with labels yi ∈ {1,… , k} , one must find a way to distin-
guish between k classes.

Several approaches were proposed, which can be grouped
into direct methods (a single optimization problem formu-
lation for multi-class classification) and indirect methods
(using multiple binary classifiers to produce multi-class clas-
sification). Many of the indirect methods were introduced, in
fact, as methods for multi-class classification using binary
classifiers, in general. They are not limited to the SVM
method.

A comparison [16] of these methods of multi-class
classification using binary SVM classifiers shows that

min
�∈H,b∈ℝ,�i∈ℝ

1

2
�

T
� + C

L∑
i=1

�i

subject to yi
�
⟨�,�(�i)⟩ + b

�
≥ 1 − �i

�i ≥ 0, i = 1…L

f (�) = sign(⟨�,�(�)⟩ + b)

k(�, ��) =
⟨
�(�),�

(
�
�
)⟩

one-versus-one method and its Directed Acyclic Graph
improvement are more suitable for practical use.

2.1 Direct formulation of multi‑class classification

Direct formulations to distinguish between k classes in a
single optimization problem were given in [6, 8, 27, 28] or,
more recently, in [15, 30]. Each of these formulations has
a single objective function for training all k-binary SVMs
simultaneously and maximize the margins from each class
to the remaining ones. The decision function then chooses
the “best classified” class.

For instance, Crammer et al. in [8] solve the following
optimization problem for k classes:

where �i,j is the Kronecker delta function. The corresponding
decision function is:

The original formulation addresses the classification with-
out taking into account the bias terms bt (for each of the k
classes). These can be easily included in the formulation
using additional constraints (see, for instance, [16]). Cram-
mer’s formulation is among the most compact optimization
problem formulations for multi-class classification problem.

A common issue of the single optimization problem for-
mulations for multi-class classification is the large number
of variables involved. For instance, (1), although a com-
pact formulation, includes L × k variables (not taking into
account bi’s, if included), which yields large computation
complexity. In [15], Crammer’s formulation is extended by
relaxing its constraints and subsequently solving a single
l-variable quadratic programming problem for multi-class
classification.

2.2 One‑versus‑rest approach

The one-versus-rest approach [5, 26, 27] is an indirect
method relying on binary classifiers as follows. For each
class t ∈ {1,… , k} a binary classifier ft is created between
class t (as positive examples in the training set) and all the
other classes, {1,… , t − 1, t + 1,… , k} (all as negative
examples in the training set). The corresponding decision
function is then:

That is, the class label is determined by the binary classi-
fier that gives maximum output value (the winner among all

(1)

min
�m∈H,�i∈ℝ

1

2

k∑
m=1

�
T
m
�m + C

L∑
i=1

�i

subject to
�
�yi

,�(�i)
�
− ⟨�t,�(�i)⟩ ≥ 1 − �yi,t − �i

�i ≥ 0, i = 1…L, t = 1… k

argmaxmfm(�) = argmaxm⟨�m,�(�)⟩

f (�) = argmax1≤t≤kft(�)

436 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

classifiers). A well-known shortcoming of the one-versus-
rest approach is the highly imbalanced training set for each
binary classifier (the more classes, the bigger the imbal-
ance). Assuming equal number of training examples for all
classes, the ratio of positive to negative examples for each
binary classifier is 1∕(k−1) . The symmetry of the original
problem is lost and the classification results may be dramati-
cally affected (especially for sparse classes).

2.3 One‑versus‑one approach

The one-versus-one approach ([11, 18, 19, 22] or the
improvement by Platt et al. [23]) aims to remove the imbal-
ance problem of the one-versus-rest method by training
binary classifiers strictly with data in the two classifier’s
classes. For each pair of classes, s, t ∈ {1,… , k} a binary
classifier fs,t is created. This classifier is trained using all
data in class s as positive examples and all data in class t
as negative examples, hence all balanced binary classifiers.
Each binary classifier is the result of a smaller optimization
problem, at the cost of producing k(k−1)∕2 classifiers. The
corresponding decision function is based on majority voting.
All classifiers fs,t are used on an input data item � and each
class appears in exactly k−1 classifiers, hence an opportunity
for up to k−1 votes out of the k(k−1)∕2 binary classification
rounds. The class with the majority of votes is the winner.

An improvement on the number of voting rounds was
originally proposed by Platt et al. in [23] and more recently
also used in [1, 17]. Their method, called Directed Acyclic
Graph SVM (DAGSVM), forms a decision-graph structure
for the testing phase and it takes exactly k−1 individual vot-
ing rounds to decide the label of a data item � . In a nutshell,
DAGSVM uses one binary classifier at the time and subse-
quently removes the losing class from all subsequent clas-
sifications. There is no particular criterion on the order of
using each binary classifier in this process.

3 Divide and conquer SVM (DCSVM)

As noted in the introduction and illustrated in Fig. 1, the
key idea is that any binary classifier may, in practice, sepa-
rate more than two classes. Which raises a natural question:
which classes are separated (and with what accuracy) by
each binary classifier? DCSVM combines the one-versus-
one method’s simplicity of producing balanced, fast binary
classifiers with the classification speed of the DAGSVM’s
decision graph. The essential difference consists of produc-
ing the most efficient decision tree capable of delivering the
decision in at most k−1 steps in the worst case scenario, or
O(log k) steps in the best case scenario.

3.1 DCSVM training

Let us introduce some notations and then we will proceed to
the formal description of the algorithm. Given a data set D
of k classes (labels) where to each data item � ∈ D has been
assigned a label l ∈ {1,… , k} , we want to construct a deci-
sion function dcsvm ∶ D → {1,… , k} so that dcsvm(�) = l ,
where l is the corresponding label of � ∈ D . As usual, by
considering a split D = R ∪ T of the data set D into two
disjoint sets R (the training set) and T (the test set), we will
be using the data in R to construct our decision function
dcsvm() and then the data in T to measure its accuracy. Fur-
thermore, we consider R = R1 ∪ R2 ∪⋯ ∪ Rk as an union of
disjoint sets Rl , where each x ∈ Rl has label l, l = 1,… , k .
(Similarly, we consider T = T1 ∪ T2 ∪… ∪ Tk as a union of
disjoint sets Tl , where each x ∈ Tl has label l, l = 1,… , k.)

Let svmi,j ∶ D → {i, j} , be a SVM binary classi-
fier created using the training set Ri ∪ Rj , i < j and
i = 1,… , k−1, j = 2,… , k . There are k(k−1)∕2 such one-
versus-one binary classifiers. We must clearly specify that
the svm() decision function we consider here is not the ideal
one, but the practical one, likely affected by misclassifica-
tion errors. That is, for some � ∈ Ri ∪ Ti , we may have that
svmi,j(�) = j.

Our goal is to create the dcsvm() decision function that
uses a minimal number of binary decisions for k-classes
classification, while not sacrificing the classification accu-
racy. While seeking to achieve this goal, we were explor-
ing metrics from Decision Trees classification (such as Gini
impurity, Information gain, etc). However, our situation is
different. In most cases, DCSVM decision trees do not sepa-
rate a set of classes into disjoint subsets. Some classes may
appear in both subtrees rooted at the same decision node.
We hence tried to identify other metrics that would help
reaching our goal.

We start by defining a few measures we use in the process
of identifying the shortest path to a multi-class classification
decision.

Definition 1 (Class Predictions Likelihoods) The class pre-
dictions likelihoods of a SVM binary classifier svmi,j(⋅) for
a label l ∈ {1,… , k} , denoted respectively as Ci,j(l, i) and
Ci,j(l, j) , are:

Each class prediction likelihood represents the expected
outcome likelihood for i or j when a binary classifier
svmi,j(⋅) is used for prediction on all data items in Rl . These

Ci,j(l, i) =
|{� ∈ Rl | svmi,j(�) = i}|

|Rl|

Ci,j(l, j) =
|{� ∈ Rl | svmi,j(�) = j}|

|Rl|
= 1 − Ci,j(l, i)

437International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

likelihoods are computed for each binary classifier and each
class in the training data set.

All pairs of likelihood predictions, for every binary clas-
sifier svmi,j(⋅) and classes are stored in a table, as follows.

Definition 2 (All-Predictions Table) We arrange all classes
predictions likelihoods in rows (corresponding to each
binary classifier svmi,j) and columns (corresponding to each
class 1,… , k) to form a table T where each entry is given by
a pair of predictions likelihoods as follows:

Figure 2 shows the All-Predictions Table computed for
the glass data set in [9]. The data set contains 6 classes,
labeled as 1, 2, 3, 5, 6, and 7 (notice that label 4 is skipped in
the original glass data set). Each row corresponds to a binary
classifier svm1,2,⋯ , svm6,7 and the columns correspond to
the class labels. Each table cell contains a pair of likelihood
predictions (as percentages) for the row classifier and class
column. For instance, C1,2(1, 1) = 100% , C1,2(1, 2) = 0% and
C1,6(2, 1) = 91.8% , C1,6(2, 6) = 8.2%.

The table gives also a general overview of how good
the binary classifiers are for separating other classes. As
in the example described in Sect. 1, by setting precision
goal (called precision threshold and denoted by �) one
can enforce each binary classifier to perform with some
accuracy, if possible. For instance, choosing � = 5% would
require a precision of at least 1 − � = 95% , which in turn
would allow “svm 1 vs. 7” (row 5 in Fig. 2) separate only
classes 1, 5, and 7. For � = 10% , the same binary classifier
would separate classes 1, 3, 5, and 7. We must emphasize
that while � is clearly related to the multiclass classifica-
tion accuracy, it does not indicate a guaranteed accuracy
overall. � can be considered an expected accuracy only for

T[svmi,j, l] =
(
Ci,j(l, i), Ci,j(l, j)

)

some classes: namely for those that can be decided with
that accuracy by some binary classifiers.

We formally define next two measures for the quality
of the classification of each svmi,j(⋅) . The impurity index
measures how good the binary classifier is for classifying
all classes as i or j for a given precision threshold � . In a
nutshell, a class l is classified as “definitely” i by svmi,j(⋅)
if Ci,j(l, i) ≥ 1 − � ; as “definitely” j if Ci,j(l, j) ≥ 1 − � ; oth-
erwise, it is classified as “undecided” i or j. The impurity
index counts how many “undecided” decisions a binary
classifier produces. The lower the index, the better the
separation. The balance index measures how “balanced”
a separation is in terms of the number of classes predicted
as i and j. The larger the index, the better.

Definition 3 (SVM Impurity and Balance Indexes) For an
accuracy threshold � of a SVM classifier svmi,j(⋅) , we define:

– the impurity index, denoted as Pi,j(�) , as:

– the balance index, denoted as Bi,j(�) , as:

 where �� is the step function:

For instance, the impurity index for row svm1,6 and thresh-
old � = 0.05 in Fig. 2 is:

Pi,j(�) =

(
k∑

l=1

(
��(Ci,j(l, i)) + ��(Ci,j(l, j))

)
)

− k

Bi,j(�) = min

(
k −

k∑

l=1

��(Ci,j(l, j)), k −

k∑

l=1

��(Ci,j(l, i))

)

𝜒𝜃(x) =

{
1 if x > 𝜃

0 if x ≤ 𝜃

Fig. 2 The All-Predictions table for the glass data set in [9]

438 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

and indicates that 3 of the classes (namely 2, 5, and 7) are
undecided when the required precision is at least � = 5%.

For accuracy threshold � = 0.05 , the balance index for
row svm1,2 in Fig. 2 is B1,2 = 1 and for row svm5,6 is B5,6 = 2.

The SVM score, defined next, is a measure of the preci-
sion of the binary classifier svmi,j(⋅) for classifying classes i
and j. The higher the score the better the classifier precision.

Definition 4 (SVM Score) The score of a SVM classifier
svmi,j(⋅) , denoted as Si,j , is

For instance, the table in Fig. 2 shows that

P1,6(0.05) =
(
(1 + 0) + (1 + 1) + (1 + 0) + (1 + 1)

+ (0 + 1) + (1 + 1)
)
− 6 = 3

Si,j =
Ci,j(i, i) + Ci,j(j, j)

2

S1,2 =
C1,2(1, 1) + C1,2(2, 2)

2
=

100% + 100%

2
= 100%.

Algorithm 1 describes the DCSVM training and pro-
ceeds as follows. In the main procedure, TrainDCSVM,
the SVM binary classifiers for all class pairs are trained
(line 4) and the predictions likelihoods are stored in the
predictions table (line 5). The decision function dcsvm
is created as an empty tree (line 8) and then recursively
populated in the DCSVM-SubTree procedure (line 10). The
recursion procedure creates a left and/or a right node at
each step (lines 12 and 19, respectively) or may stop with
creating a left and/or a right label (lines 9 and 16, respec-
tively). Each new node is associated to the binary svmi,j
that is the decider at that node (line 5), or with a class label
if an end node (lines 9 and 16).

An important part of the DCSVM-SubTree procedure
is choosing the “optimal” svm from a current predictions
likelihoods table (line 4). For this purpose, we use the
SVM Impurity Index, Balance, and Score from Defini-
tions 3 and 4, respectively. The order these measures are
used may influence the decision tree shape and precision.

439International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

If Score is used then the Impurity and Balance Indexes
are used to break a tie, the resulting tree favors accuracy
over the speed of decisions (may yield bushier trees). If
Impurity and Balance Indexes are used first, then Score, if
a tie, the resulting tree may be more balanced. The deci-
sion speed is favored while possibly sacrificing accuracy.

A dcsvm decision tree for the glass data set is shown in
Fig. 3. Clearly, the algorithm may produce highly unbal-
anced dcsvm decision trees (when some classes are decided
faster than others) or very balanced decision trees (when
most of class labels are leaves situated at about same depth).
Regardless of outcome, the following result is almost
immediate.

Proposition 1 (Worst case scenario) The dcsvm decision tree
constructed in Algorithm 1 has depth at most k−1.

Proof The lists of classes labeled i and j (lines 6, 7 in
DCSVM-SubTree procedure) contain at least one label each:
i or j, respectively. Once a class column is removed from T
at some tree node n, it will not appear again in a node or leaf

in the subtree rooted at that node n. Hence with each recur-
sion the number of classes decreases by at least one (lines
11, 18) from k to 2, ending the recursion with a left or a right
label node in lines 9 or 16, respectively.

Notice that a scenario where each dcsvm decision tree
label has depth k is possible in practice: when no svmi,j
binary classifier is a good separator for classes other than
i and j (and therefore at each node only classes i and j are
separated, while the other are undecided and will appear
in both left and right branches). We call this the worst case
scenario, for obvious reasons. The opposite case scenario is
also possible in practice: each svmi,j separates all classes into
two disjoint lists of about same lengths. The dcsvm decision
tree is also very balanced in this case, but a lot smaller.

Proposition 2 (Best case scenario) The dcsvm decision
tree constructed in Algorithm 1 when each svmi,j produced
balanced, disjoint separation between all classes has depth
⌈log k⌉.

Proof Clearly, this is a case scenario where at each recur-
sion step a node is created such that half of the classes are
assigned to the left subtree and the other half to the right
subtree. This produces a balanced binary tree (not neces-
sarily complete) with k leaves. The tree has 1, then at each
level the number of nodes doubles: 1, 2, 4, 8, etc. At the
maximum depth h, there are exactly 2h leaves (nodes) if the
tree is complete. Since our tree is balanced (one level must
be complete before moving to the next) but not necessary
complete:

Hence the depth is ⌈log k⌉.
2h−1 < k ≤ 2h ⇒ h − 1 < log k ≤ h ⇒ ⌈log k⌉ = h

Fig. 3 DCSVM decision tree (a) with a decision process example (b),
for the glass data set

440 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

The DCSVM classifier Algorithm 2 relies on the dcsvm
decision tree produced by Algorithm 1 to take any data
item � and predict its label. The algorithm starts at the
decision tree root node (line 4) then each node’s asso-
ciated svm predicts the path to follow (lines 6–12) until
a leaf node is reached. The label of the leaf node is the
DCSVM’s prediction (line 14) for the input data item � .
An example of a prediction path in a dcsvm tree is illus-
trated in Fig. 3b.

Propositions 1 and 2 directly justify the following
result.

Theorem 1 The Algorithm 2 performs multi-class classi-
fication of any data item � in at most k−1 binary decisions
steps (in the worst case scenario) and at most ⌈log k⌉ binary
decision steps (in the best case scenario).

We illustrate next how the dcsvm decision tree is created
and how a prediction is computed using a working example.

3.2 A working example

We use the glass data set [9] to illustrate DCSVM at work.
This data set contains 6 classes, labeled 1, 2, 3, 5, 6, and 7
(notice there is no label 4). Consequently, 6 ∗ (6 − 1)∕2 = 15
binary svm classifiers are created and then the “all predic-
tions likelihoods” table T is computed (Fig. 2). Let us
choose the accuracy threshold � = 0 , for simplicity. That is,
a class l is classified by an svmi,j as only i if svmi,j predicts
that all data items in Rl have class i; l is classified as only j if
svmi,j predicts that all data items in Rl have class j; else, l is
undecided and will appear on both sides of the decision tree
node associated with svmi,j.

We have chosen the “glass” data set as the working exam-
ples mostly based on its size: not trivially small, not artifi-
cial, and not too big to have a visual representation of the
method so that the reader can follow. The “glass” data set is
not necessary the best case scenario (Fig. 3 shows a decision
tree that is not perfectly balanced) but also not the worst
case scenario. We consider it has the advantage of showing
both sides.

We follow next the DCSVM-SubTree procedure in
Algorithm 1 and construct the dcsvm decision tree. Notice
that Si,j = 100% for all svmi,j , so score does not matter for
choosing the optimal svmi,j in line 4. The choice will be
solely based on the impurity and balance indexes. Table 1
shows all values for these measures for the initial predic-
tions likelihoods table. The table shows rows 1, 13, and 14
as candidates with minimum impurity indexes. Then a tie
between rows 13 and 14 as the winners among these. Row
13 comes first and hence svm5,6 is selected as the root node.
Figure 3a shows the full decision tree, with svm5,6 as the root
node. Subsequently, svm5,6 labels classes 1, 2, 3, and 5 as

“5” (left), and classes 6 and 7 as “6” (right). The algorithm
continues recursively with classes {1, 2, 3, 5} to the left, and
classes {6, 7} to the right. The right branch will be completed
immediately with one more tree node (for svm6,7) and two
corresponding leaf nodes (for labels 6 and 7).

For the left branch the algorithm will proceed with a
reduced All-Predictions table: rows 4, 5, 8, 9, 11, 12, 13,
14, and 15 and columns for classes 6 and 7 are removed. The
optimality measures will be subsequently computed for all
svm and classes still in competition (1, 2, 3, and 5) in the left
branch. The corresponding measures are given in Table 2
(for an easier identification, the indices in the first column
are kept the same as the original indices in the All-Predict
table in Fig. 2). There is a tie between svm1,2 and svm2,5 , and
svm1,2 is being used first. A node is consequently created,
with a leaf as a left child. The rest of the tree is subsequently
created in the same manner.

Table 1 svm optimality measures for glass data set and the initial All-
Predictions table

svm
i,j P

i,j(0) B
i,j(0) S

i,j (%)

1. svm1,2 0 1 100
2. svm1,3 4 1 100
3. svm1,5 3 1 100
4. svm1,6 3 1 100
5. svm1,7 3 1 100
6. svm2,3 3 1 100
7. svm2,5 1 2 100
8. svm2,6 3 1 100
9. svm2,7 2 1 100
10. svm3,5 2 1 100
11. svm3,6 1 1 100
12. svm3,7 3 1 100
13. svm5,6 0 2 100
14. svm5,7 0 2 100
15. svm6,7 4 1 100

Table 2 Optimality measures in the second step of creating the deci-
sion tree in Fig. 3b

svm
i,j P

i,j(0) B
i,j(0) S

i,j (%)

1. svm1,2 0 1 100
2. svm1,3 2 1 100
3. svm1,5 1 1 100
6. svm2,3 1 1 100
7. svm2,5 0 1 100
10. svm3,5 2 1 100

441International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

4 Experimental results

We implemented DCSVM in R v3.4.3 using the e1071
library [10], running on Windows 10, 64-bit Intel Core i7
CPU @3.40GHz, 16GB RAM. For testing, we used 14 data
sets from the UCI repository [9] (as listed in Table 3). We
performed three sets of experiments: (1) multi-class pre-
diction accuracy comparison, (2) prediction performance in
terms of speed (time and number of binary decisions) and
resources (number of support vectors), and (3) DCSVM per-
formance comparisons for different data sets and accuracy
threshold parameter values. For the first set of experiments
we compared three multi-class predictors: the built-in multi-
class SVM (from the e1071 library), our R implementation
of one-versus-one, and the R implementation of DCSVM.
For a fair comparison, in the second set of experiments we
compared only the R implementations of one-versus-one and
DCSVM. The built-in multi-class SVM would benefit of the
inherent speed of native code it relies on. Finally, the third
set of experiments focused on the DCSVM’s R implementa-
tion performance and fine tuning.

4.1 Accuracies comparison: built‑in multi‑class
SVM, one‑versus‑one, and DCSVM

The main goal of DCSVM is to improve multi-class predic-
tion performance while not sacrificing the prediction accu-
racy. The first experimental results compare multi-class pre-
diction accuracy of: (1) built-in SVM multi-class prediction
(in the e1071 package), (2) one-versus-one implementation
in R, and (3) DCSVM implementation in R. For the experi-
ment, we used cross-validation with 80% data for training
and 20% for testing, for each data set. We ran 10 trials and

averaged the results. The results are displayed in Fig. 4 and
show no significant differences between the three methods.

Next, we performed the Wilcoxon signed rank test on
sequences of accuracies from each trial and compared accu-
racies of DCSVM vs. built-in SVM (BI), and of DCSVM vs.
one-versus-one implementation in R (OvsO). The p-value
of the results, for each data set, are presented in Table 4.
The results in Table 4 show that there is no compelling
evidence to conclude the median of the accuracies of the
DCSVM trials differ from the median of one-versus-one

Table 3 Data sets No Dataset Classes

1. artificial 6
2. iris 3
3. segmentation 7
4. heart 5
5. wine 3
6. wine-quality 6
7. glass 6
8. covertype 7
9. svmguide4 6
10. vowel 11
11. usps 10
12. letter 26
13. poker 10
14. sensorless 11

Fig. 4 Multi-class prediction accuracy comparison: built-in SVM,
one-versus-one, and DCSVM

Table 4 p values from Wilcoxon signed rank test

No Dataset BI – DCSVM OvsO – DCSVM

1. artificial 0.472211684046012 1
2. iris 1 1
3. segmentation 0.371093369522698 0.371093369522698
4. heart 0.58621368107314 1
5. wine 0.850106739138526 1
6. wine-quality 0.93216149611896 1
7. glass 0.0491095391972045 1
8. covertype 1 1
9. svmguide4 0.00585709908528413 0.0567594463860135
10. vowel 0.019769406440668 1
11. usps 0.915345283110766 0.160967196971152
12. letter 0.00588927004181748 0.396438915257121
13. poker 0.461450987833361 1
14. sensorless 0.00592153702414871 0.722674457315873

442 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

method (the null hypothesis is not rejected, according to
values in the “OvsO—DCSVM” column of the table).
Interestingly, there are likely differences in the median
when comparing DCSVM and the built-in method for a few
data sets (as usual, we consider the null hypothesis being
rejected when p value < 0.05). For instance, one of the
smallest p value corresponds to the “svmguide4” data set:
0.00585709908528413. However, as Fig. 4 shows, all these
instances correspond to situations where DCSVM’s aver-
age accuracy is better than the built-in method’s accuracy
(including the case of the “svmguide4” data set). These con-
clusions (and data presented in Table 4) are consistent with
the prediction accuracies over all data sets in our experi-
ments in Fig. 5: on median, DCSVM performs similarly to
the one-versus-one implementation and slightly better than
the built-in method.

4.2 Prediction performance comparison

For this purpose, we compared the R implementations of
one-versus-one method and DCSVM. We analyzed predic-
tion performance in three aspects: the average number of
support vectors, the average number of binary decisions, and
time. The number of support vectors used was computed by
summing up all support vectors from every binary decider,
over all steps of binary decisions until the multi-class pre-
diction was achieved. The number of such support vectors
is clearly proportional not only to the number of decision
steps (which are illustrated separately), but also to the con-
figuration of data separated by each binary classifier. The

corresponding performance results are presented in Figs. 6,
7, and 8, respectively. Due to large variations in size between
the data sets we used, we split the data sets into two size-bal-
anced groups and displayed each graph side-by-side for each
group. DCSVM significantly outperforms one-versus-one,
clearly being much less computationally intensive (number
of support vectors for prediction) and faster (number of
binary decisions and prediction times).

From the first two sets of experimental results we can
conclude already that DCSVM achieved the goal of being
a faster multi-class predictor without sacrificing prediction
accuracy. This conclusion is also supported by the overall
comparison (for all data sets in our experiments) of the

Fig. 5 Prediction accuracies comparison for all data sets

Fig. 6 Average number of Support Vectors for multi-class predictions

443International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

number of support vectors used for prediction, as illustrated
in Fig. 9.

4.3 DCSVM performance fine tuning

In this set of experiments we analyze in close detail DCS-
VM’s performance in terms of the accuracy threshold
parameter. Figure 10 shows the trade-off between accuracy
(top) and the average prediction steps (bottom) with various
threshold values. Clearly, the accuracy threshold parameter
permits a trade-off between accuracy and speed. However,
this is largely data dependent. The more separable the data
is, the less influence the threshold has on speed. For less

Fig. 7 Average number of binary decisions for multi-class predictions Fig. 8 Average prediction times for multi-class predictions

Fig. 9 Total number of Support Vectors for multi-class predictions
(aggregated over all data sets and for one-versus-one and DCSVM
methods)

444 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

separable data (such as the letter data set), fine adjustment
of the threshold permits trade-off between prediction accu-
racy and prediction speed. This is not the case for the vowel
data set, which is highly separable: changes in the threshold
influence neither the accuracy of prediction nor the average
number of prediction steps.

Figure 11 shows how DCSVM accuracy compares to
other multi-class classification methods (BI, built-in;
OvsO, one-against-one) for various threshold values. For
less separable data (such as letter) DCSVM’s accuracy
drops sharply with the threshold (starting at some small
threshold value) compared to the accuracy of one-against-
one method, which we found to perform better than the
built-in method. The built-in and one-against-one methods
do not depend on the threshold value, of course. They
are shown on the same graph for comparison purpose.
However, it is interesting to notice that by increasing the
threshold the prediction accuracy of DCSVM on letter
data sets decreases from a comparable value with one-
versus-one method’s accuracy (which performs best on
this data set) to the accuracy of the built-in method. With a
threshold value � = 2% the prediction accuracy of DCSVM
is still above the accuracy of the built-in method (for the
letter data set).

Table 5 shows side-by-side accuracies of multi-class
classification using (1) built-in (BI), (2) one-against-one
(OvsO), and (3) DCSVM (for a few threshold values �).
DCSVM performs very well in terms of accuracy (compared
to the other methods) for all data sets, for threshold values
� ∈ {2%, 1%, 0.1%, 0.01%} (the smaller the threshold, the
better the accuracy, in general). A larger threshold � may
increase the prediction speed (Table 6) and reduce the com-
putation effort (Table 7). Interesting to notice: Table 6 shows
that in all cases displayed in the table the number of decision
steps is less than k−1 , where k is the number of classes in the
respective data set. In terms of the number of SVM binary
decisions DCSVM outperforms (even when the threshold
� is not very small) one-against-one and its improvement
DAGSVM, which reaches multi-class prediction after k−1
steps. In this context it worth mentioning that recent work
on improving DAGSVM performance [1, 13, 21] focus on
combining DAGSVM with other methods or learning the
optimal DAG structure for computational efficiency, not on
reducing the number of binary decisions. Moreover, previ-
ous work ([16] and more recently [1, 13, 21]) indicates that
DAGSVM performs similarly to one-against-one in terms of
accuracy and all recent efforts were concentrated on improv-
ing its computational efficiency.

The All-Predictions table in Fig. 2 collects all informa-
tion used by DCSVM to construct its multi-class prediction
strategy (the dcsvm decision tree in Algorithm 1). The same
information can be used to predict how much separation
can be achieved for different threshold values. For instance,

Fig. 10 Accuracy and the average number of prediction steps for dif-
ferent thresholds

Fig. 11 Accuracy for predicting “letter” with each method, for differ-
ent split thresholds

445International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

for the glass data set All-Predictions table in Fig. 2 and for
a threshold value � = 2% there are 58 entries in the table
where the percentage of predicting one class or the other is at
least 100 − � = 98% (out of a total of 15 × 6 = 90 entries in
the table). The percentage 58∕90 = 64.4% is a good indicator
of purity for DCSVM with threshold � = 2% : the higher the
percentage, the more separation is produced at each step and
hence a shallow decision tree. Figure 12 shows the class sep-
aration percentages for threshold values 0 ≤ � ≤ 5 and four
data sets (letter, vowel, usps, and sensorless). Intuitively, as
threshold increases so does the separation percentage. The
letter and usps data sets display an almost linear increase
of separation with threshold. sensorless displays a sharp
increase for small threshold values, then it tends to flatten,
that is, not much gain for significant increase in threshold
(and hence possibly less accuracy). Lastly, vowel displays a

step-like behavior: not much gain in separation until thresh-
old value reaches approx � = 2.3% , a steep increase until �
approaches 3% , then nothing much happens again. One can
use these indicators to decide the trade-off between speed
and accuracy of predictions.

5 Conclusion and future work

In this paper we present DCSVM, a fast algorithm for
multi-class classification using Support Vector Machines.
Our method relies on dividing the whole training data set
into two partitions that are easily separable by a single
binary classifier. Then, a prediction between the two train-
ing set partitions would eliminate one or more classes at
the time. The algorithm continues recursively until a final

Table 5 Prediction accuracies
for different split thresholds

No Dataset BI OvsO DCSVM

� = 2 � = 1 � = 0.1 � = 0.01

1 artificial1 98.85 98.76 98.70 98.70 98.76 98.76
2 iris 96.97 96.97 96.97 96.97 96.97 96.97
3 segmentation 27.71 27.71 29.44 29.44 29.44 29.44
4 heart 58.82 58.82 59.12 59.12 59.12 59.12
5 wine 96.97 96.97 96.97 96.97 96.97 96.97
6 wine-quality 62.33 62.33 62.39 62.39 62.39 62.39
7 glass 87.55 91.70 91.29 91.29 91.29 91.29
8 covertype 49.95 49.95 49.95 49.95 49.95 49.95
9 svmguide4 57.88 71.21 72.73 72.73 72.73 72.73
10 vowel 94.34 97.26 97.26 97.26 97.26 97.26
11 usps 94.17 93.94 93.89 94.08 94.17 94.17
12 letter 95.25 96.43 95.52 96.00 96.41 96.41
13 poker 55.94 55.96 55.56 55.83 55.96 55.96
14 sensorless 97.46 98.87 98.32 98.60 98.86 98.87

Table 6 DCSVM average
number of steps per decision,
for different split thresholds vs.
“1 vs. 1” and DAGSVM number
of steps per decision

No Dataset � = 2 � = 1 � = 0.1 � = 0.01 1 vs. 1 DAGSVM

1 artificial1 3.76 3.75 3.67 3.67 15 5
2 iris 1.71 1.71 1.71 1.71 3 2
3 segmentation 5.63 5.63 5.63 5.63 21 6
4 heart 4.00 4.00 4.00 4.00 10 4
5 wine 1.69 1.69 1.69 1.69 3 2
6 wine-quality 4.85 4.86 4.87 4.87 15 5
7 glass 4.09 4.12 4.12 4.12 15 5
8 covertype 5.93 5.93 5.93 5.93 21 6
9 svmguide4 4.63 4.88 4.88 4.88 15 5
10 vowel 5.41 5.41 5.41 5.41 55 10
11 usps 7.16 7.29 7.80 7.80 45 9
12 letter 17.63 19.56 22.29 22.29 325 25
13 poker 8.36 8.40 8.43 8.43 45 9
14 sensorless 5.44 5.49 6.28 6.93 55 10

446 International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

binary decision is made between the last two classes left in
the competition. Our algorithm performs consistently bet-
ter than the existent methods on average. In the best case
scenario, our algorithm makes a final decision between k
classes in O(log k) decision steps between different parti-
tions of the training data set. In the worst case scenario,
DCSVM makes a final decision in k−1 steps, which is not
worse than the existent techniques.

The SVM divide and conquer technique we present for
multi-class classification can be easily used with any binary
classifier. It is rather a consequence of increasing data spar-
sity with the dimensionality of the space, which can be
exploited, in general, in favor of producing fast multi-class
classification using binary classifiers. Our experimental
results on a few popular data sets show the applicability of
the method.

A clear limitation of using binary classifiers to produce
multiclass classification is the large number of binary classi-
fiers to be created (quadratic in the number of classes). This
can be very computationally expensive for large number of
classes. However, this is a general problem for multiclass
classifiers, in general. In the case of using binary classifiers
the limitation can be partially overcome by using paralleli-
zation (binary classifiers can be independently created, in
parallel).

Our choice of using SVMs as binary classifiers relies on
the fact that SVM binary classifiers produce optimal sepa-
ration hyperplanes (the underlaying optimization problem
finds a global minimum, rather than a local minimum). It
would be interesting, as future work, to compare with tech-
niques that produce direct multiclass classification (using

neural networks, decision trees, k-nearest neighbours,
etc) rather than relying on binary classifiers. Also, possi-
bly adapting some decision trees metrics (Gini impurity,

Table 7 DCSVM: Average support vectors per decision, for different
split thresholds

No Dataset � = 2 � = 1 � = 0.1 � = 0.01

1 artificial1 115.17 117.29 127.22 127.22
2 iris 32.47 32.47 32.47 32.47
3 segmentation 305.49 305.49 305.49 305.49
4 heart 270.18 270.18 270.18 270.18
5 wine 66.41 66.41 66.41 66.41
6 wine-quality 1154.49 1155.55 1157.13 1157.13
7 glass 112.14 114.37 114.37 114.37
8 covertype 4528.47 4528.47 4528.47 4528.47
9 svmguide4 236.58 245.71 245.71 245.71
10 vowel 218.36 218.36 218.36 218.36
11 usps 785.21 798.41 846.84 846.84
12 letter 2822.54 3110.42 3307.19 3307.19
13 poker 22166.49 22735.92 22803.01 22807.62
14 sensorless 2977.89 3057.77 3404.91 3735.30

Fig. 12 Number of separated classes for different thresholds

447International Journal of Machine Learning and Cybernetics (2020) 11:433–447

1 3

Information gain) for producing better DCSVM decision
trees would be another direction to explore in future work.
Yet, other directions to further investigate would be related
to the precision threshold � : a data-driven procedure for its
selection and the possible benefits of using variable � val-
ues on different decision tree branches (the shallow ones).
The former would help practitioners understand trade-offs
between different values, while the latter may improve clas-
sification accuracy for some classes with the price of a small
increase of tree-branch depth (hence more decision steps).

Acknowledgements We would like to express our appreciation to the
anonymous reviewers for their numerous suggestions that improved the
quality of this paper. We owe our reviewers not only corrections and
improvements but also some interesting future directions to investigate.

References

 1. Agarwal N, Balasubramanian VN, Jawahar C (2018) Improv-
ing multiclass classification by deep networks using DAGSVM
and Triplet Loss. Pattern Recogn Lett 112:184–190. https ://doi.
org/10.1016/j.patre c.2018.06.034. http://www.scien cedir ect.com/
scien ce/artic le/pii/S0167 86551 83027 45

 2. Bellman R (2003) Dynamic programming. Dover books on com-
puter science series. Dover Publications, New York

 3. Bellman R, Corporation R (1957) Dynamic programming. Rand
corporation research study. Princeton University Press, Princeton

 4. Bishwas AK, Mani A, Palade V (2017) An all-pair approach
for big data multiclass classification with quantum SVM. CoRR
abs/1704.07664

 5. Bottou L, Cortes C, Denker J, Drucker H, Guyon I, Jackel L,
Lecun Y, Muller U, Sackinger E, Simard P, Vapnik V (1994)
Comparison of classifier methods: a case study in handwritten
digit recognition. In: IAPR (ed) Proceedings of the international
conference on pattern recognition, Jerusalem, vol II, pp 77–82,
IEEE

 6. Bredensteiner EJ, Bennett KP (1999) Multicategory classification
by support vector machines. Comput Optim Appl 12(1–3):53–79

 7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20:273–297

 8. Crammer K, Singer Y (2002) On the algorithmic implementation
of multiclass kernel-based vector machines. J Mach Learn Res
2:265–292

 9. Dheeru D, Taniskidou EK (2017) UCI machine learning reposi-
tory. http://archi ve.ics.uci.edu/ml

 10. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A
(2018) e1071: Misc functions of the department of statistics
(e1071), TU Wien. R package version 1.7-0. http://cran.r-proje
ct.org/packa ge=e1071 . Accessed Nov 2018

 11. Friedman JH (1996) Another approach to polychotomous classi-
fication. Tech. rep., Department of Statistics, Stanford University.
http://www-stat.stanf ord.edu/~jhf/ftp/poly.ps.Z. Accessed Nov
2018

 12. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F
(2011) An overview of ensemble methods for binary classifiers
in multi-class problems: experimental study on one-vs-one and
one-vs-all schemes. Pattern Recogn 44(8):1761–1776

 13. Gao T, Koller D (2011) Discriminative learning of relaxed hierar-
chy for large-scale visual recognition, pp 2072–2079. https ://doi.
org/10.1109/ICCV.2011.61264 81. (Cited By 100)

 14. Hajikhodaverdikhan P, Nazari M, Mohsenizadeh M, Sham-
shirband S, Chau K wing (2018) Earthquake prediction with mete-
orological data by particle filter-based support vector regression.
Eng Appl Comput Fluid Mech 12(1):679–688

 15. He X, Wang Z, Jin C, Zheng Y, Xue X (2012) A simplified multi-
class support vector machine with reduced dual optimization. Pat-
tern Recogn Lett 33:71–82

 16. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass
support vector machines. IEEE Trans Neural Netw 13(2):415–425

 17. Joutsijoki H, Juhola M (2012) DAGSVM vs. DAGKNN: an
experimental case study with benthic macroinvertebrate dataset.
In: Perner P (ed) Machine learning and data mining in pattern
recognition. Springer, Berlin, Heidelberg, pp 439–453

 18. Knerr S, Personnaz L, Dreyfus G (1990) Single-layer learning
revisited: a stepwise procedure for building and training a neural
network. In: Fogelman Soulié F, Hérault J (eds) Neurocomputing:
algorithms, architectures and applications, NATO ASI Series, vol
F68, pp 41–50. Springer

 19. Kreßel UHG (1999) Advances in kernel methods. chap. Pairwise
classification and support vector machines. MIT Press, Cam-
bridge, pp 255–268

 20. Moazenzadeh R, Mohammadi B, Shamshirband S, Chau KW
(2018) Coupling a firefly algorithm with support vector regres-
sion to predict evaporation in northern Iran. Eng Appl Computat
Fluid Mech 12(1):584–597

 21. Panda P, Roy K (2016) Attention tree: learning hierarchies
of visual features for large-scale image recognition. CoRR
abs/1608.00611. http://arxiv .org/abs/1608.00611

 22. Park SH, Fürnkranz J (2007) Efficient pairwise classification. In:
Kok JN, Koronacki J, Mantaras RLD, Matwin S, Mladenič D,
Skowron A (eds) Machine learning: ECML 2007, pp 658–665.
Springer, Berlin, Heidelberg

 23. Platt JC, Cristianini N, Shawe-Taylor J (1999) Large margin dags
for multiclass classification. In: Proceedings of the 12th inter-
national conference on neural information processing systems,
NIPS’99, pp 547–553. MIT Press, Cambridge

 24. Rosales-Perez A, Garcia S, Terashima-Marin H, Coello CAC,
Herrera F (2018) Mc2esvm: Multiclass classification based on
cooperative evolution of support vector machines. IEEE Computat
Intell Mag 13(2):18–29

 25. Silva-Palacios D, Ferri C, Ramírez-Quintana MJ (2018) Probabil-
istic class hierarchies for multiclass classification. J Comput Sci
26:254–263

 26. Szedmak S, Shawe-Taylor J, Saunders C, Hardoon D (2004)
Multiclass classification by l1 norm support vector machine. In:
Pattern recognition and machine learning in computer vision
workshop

 27. Vapnik V (1998) Statistical learning theory. Wiley, New York
 28. Weston J W C (1999)Multi-class support vector machines. In: Pro-

ceedings of the European symposium on artificial neural networks
ESANN99, pp 219–224

 29. Wikipedia: Curse of dimensionality (2018) https ://en.wikip edia.
org/wiki/Curse _of_dimen siona lity. Accessed Nov 2018

 30. Xu J, Liu X, Huo Z, Deng C, Nie F, Huang H (2017) Multi-class
support vector machine via maximizing multi-class margins. In:
Proceedings of the 26th international joint conference on artificial
intelligence, pp 3154–3160. AAAI Press

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.patrec.2018.06.034
https://doi.org/10.1016/j.patrec.2018.06.034
http://www.sciencedirect.com/science/article/pii/S0167865518302745
http://www.sciencedirect.com/science/article/pii/S0167865518302745
http://archive.ics.uci.edu/ml
http://cran.r-project.org/package=e1071
http://cran.r-project.org/package=e1071
http://www-stat.stanford.edu/%7ejhf/ftp/poly.ps.Z
https://doi.org/10.1109/ICCV.2011.6126481
https://doi.org/10.1109/ICCV.2011.6126481
http://arxiv.org/abs/1608.00611
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality

	DCSVM: fast multi-class classification using support vector machines
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Direct formulation of multi-class classification
	2.2 One-versus-rest approach
	2.3 One-versus-one approach

	3 Divide and conquer SVM (DCSVM)
	3.1 DCSVM training
	3.2 A working example

	4 Experimental results
	4.1 Accuracies comparison: built-in multi-class SVM, one-versus-one, and DCSVM
	4.2 Prediction performance comparison
	4.3 DCSVM performance fine tuning

	5 Conclusion and future work
	Acknowledgements
	References

