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Abstract
Ensemble learning has attracted much attention of researchers studying variable selection due to its great power in improv-
ing selection accuracy and stabilizing selection results. In this paper, we present a novel ensemble pruning technique called 
Pruned-ST2E to obtain more effective variable selection ensembles. The order to aggregate the individuals generated by the 
ST2E algorithm (Xin and Zhu in J Comput Graph Stat 21(2):275–294, 2012) is rearranged. To estimate the importance of each 
candidate variable, only some members ranked ahead are remained. Experiments with simulated and real-world data show 
that the performance of Pruned-ST2E is comparable or superior to several other benchmark methods. Through analyzing the 
accuracy–diversity pattern in both ST2E and Pruned-ST2E, it is revealed that the inserted pruning step excludes less accurate 
members. The reserved members also become more concentrated on the true importance vector. Moreover, Pruned-ST2E is 
easy to implement. Therefore, Pruned-ST2E can be considered as an alternative for tackling variable selection tasks in practice.

Keywords Variable selection ensemble · Ensemble pruning · Variable selection · Selection accuracy · Aggregation order

1 Introduction

Variable selection is an important topic in statistics since it 
can be used to improve the accuracy and interpretability of 
the predictions given by the estimated models. With large 
amount of high-dimensional data emerging in many research 
and application areas, it has become an indispensable tool 
for solving various problems. Thus, it is particularly impor-
tant to perform variable selection effectively and efficiently. 
Nowadays, the popular methods include subset selection [1, 
19], coefficient shrinkage [6, 7, 9, 25, 36], variable screening 
[8], Bayesian methods [12, 24] and so on. However, to be 
effective, variable selection generally requires careful tuning 

of some parameters in the analysis. The correct specifica-
tion of these parameters is a difficult task, even for expert 
statisticians. For this reason, variable ranking (i.e., sorting 
the variables in terms of their importance in the prediction 
of the outcome) is often carried out first. Once the variables 
are properly ranked [10, 28, 34], selection can be achieved 
by using a thresholding rule. In present work, we will follow 
the latter practice to perform variable selection.

Many scholars [20, 23, 28] have argued that variable 
selection serves two different objectives depending on 
whether the modelling purpose is for prediction or for inter-
pretation. The former aims at seeking a parsimonious model 
so that future data can be well forecast or prediction accu-
racy can be maximized. But for the latter, analysts would like 
to identify the truly important variables (i.e., having actual 
influence on an outcome) from the numerous candidate ones, 
or to maximize selection accuracy. Due to the significant 
difference between predictive models and explanatory mod-
els, the corresponding variable selection approaches are also 
very different. With selection accuracy as the target, we will 
address variable ranking and selection problems in linear 
regression models by using ensemble learning techniques.

Ensemble learning, a widely used technique to enhance the 
performance of single learning machines, has been shown to 
be effective to address a large range of prediction tasks [13, 18, 
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22]. Most of the existing ensemble methods, such as bagging 
and boosting, were developed to handle prediction problems 
better, and the finally obtained models can be called prediction 
ensembles (PEs). So far, some methods have been specially 
designed to construct variable selection ensembles (VSEs). 
With some traditional methods such as lasso [25], genetic algo-
rithm [34], more variables than necessary are often picked out 
(i.e., having high false positive rate). However, if the selection 
process is repeated using slightly different data for a number of 
trials, the frequency that the truly important variables are cho-
sen will be high, while that of unimportant ones being falsely 
considered as important will be low. As a result, the important 
variables can be easily distinguished from the remaining ones. 
This explains why ensemble learning is effective in the context 
of variable selection.

Like PEs, the process of creating a VSE generally con-
sists of two steps, that is, ensemble generation and ensemble 
integration. The first step addresses how to generate a series 
of accurate and diverse members. And the second step aims 
to fuse them in a suitable way so that selection accuracy is 
maximized. In generation process, the usual practice is to 
apply a base learner (i.e., a variable selection method) on 
multiple different training sets or to inject some randomness 
into the learner. When fusing the results produced by each 
member, a simple averaging rule is commonly employed. 
The existing VSE approaches mainly include parallel genetic 
algorithm (PGA) [34], stability selection [17], random lasso 
[27], bagged stepwise search (BSS) [35], stochastic stepwise 
ensembles (ST2E) [28], PBoostGA [30], AddNoiseGA [31] 
and stochastic correlation coefficient ensembles (SCCE) [3].

In the study of PEs, it has become well-known that it 
is usually beneficial to only select some members, instead 
of keeping all members, to construct a subensemble after 
Zhou et al. [33] proven the “many-could-be-better-than-all” 
theorem. Since then, a large variety of ensemble pruning 
techniques [5, 15, 16, 18, 22] have been proposed in the 
“overproduce and choose” framework. Compared with full 
ensembles, the pruned ensembles need less storage, imple-
ment a prediction faster, and more importantly, achieve 
higher prediction accuracy. Borrowing the similar idea to 
VSEs, we surmise that VSEs can also benefit from selective 
fusion. As far as we know, however, there is little litera-
ture adopting ensemble pruning to constitute a VSE. So 
far, only Zhang et al. [32] made an attempt to address this 
issue and put forward one heuristic algorithm. Different 
from them, we propose a more effective algorithm to get 
better selection results. Considering that ST2E [28] per-
forms very well in various situations, the novel algorithm 
is developed to improve it by inserting a pruning step.

The rest of the paper is organized as follows. Section 2 
presents the novel ensemble pruning method Pruned-ST2E 
for variable ranking and selection, in detail. In Sect. 3, a 
novel manner to analyze the working mechanism of VSEs 

is provided. Section 4 devotes to examining the performance 
of Pruned-ST2E and comparing it with several existing tech-
niques by using some simulations. Meanwhile, some real-
world examples are analyzed in Sect. 5. Finally, Sect. 6 offers 
conclusions, together with some future work of the paper.

2  Pruning in ordered stochastic stepwise 
ensembles for variable ranking 
and selection

2.1  Brief introduction of stochastic stepwise 
ensembles (ST2Es)

Since the novel method is developed on the basis of ST2E 
[28], we first give it a brief introduction here. In the genera-
tion phase, ST2E executes the stochastic stepwise (abbrevi-
ated as ST2) algorithm multiple times to create its constitu-
ent members. Subsequently, a simple averaging rule is used 
to combine the selection results of each member. Instead of 
adding (deleting) one variable in the forward (backward) step 
as traditional stepwise selection does, ST2 adds (deletes) a 
group of variables at one time, and the group size is randomly 
decided. Meanwhile, only a randomly selected few, rather than 
all possible, groups are assessed and the best one is chosen. 
The forward and backward selection steps are implemented 
iteratively until no improvement of the objective function 
such as AIC (Akaike Information Criterion) or BIC (Bayes-
ian Information Criterion) can be made. In doing so, ST2 can 
always select some important variables. On the other hand, 
ST2 will produce different selection results even by running 
it on the same data since it is a stochastic search algorithm. 
Therefore, it can be easily imagined that ST2E can construct a 
VSE containing a series of diverse but accurate variable selec-
tors. Due to page limitation, please interested readers refer 
to Xin and Zhu [28] for more details of the ST2E algorithm.

It is noteworthy that there are two critical tuning param-
eters in ST2E, i.e., � and � , to determine the group size and 
the number of candidate groups to evaluate when executing 
ST2 algorithm to produce an ensemble member. Xin and 
Zhu [28] suggested to take � = 1∕2 and choose � ( 𝜅 > 1 ) 
through looking for the start of an “elbow” in the diversity 
plot. In later experimental studies, we will carry out some 
simulations to justify this choice.

2.2  Pruned‑ST2E: novel technique to prune ST2E

With regard to the existing VSE approaches [3, 17, 27–29, 
34, 35], they usually integrate all the generated members into 
an ensemble. Some evidence [28, 29, 34, 35] has proven that 
strength and diversity are two critical ingredients to ensure the 
good performance of a VSE. Nevertheless, these two terms 
haven’t been simultaneously considered when generating the 
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ensemble members. Hence, there inevitably exist some indi-
viduals whose role is trivial or even negative. Meanwhile, a 
thresholding rule needs to be adopted to attain final selection 
results with an unsupervised learning mode once the variables 
are ranked. In other words, it will be conducive if the differ-
ence between the average measure of important variable group 
and that of unimportant group can be enlarged. In this aspect, it 
is hence deserved to remove the redundant members of a VSE.

In any existing approach to prune PEs, the essential step 
is to identify unnecessary members. To achieve this purpose, 

ranking-based and search-based strategies [15, 16, 18] are 
two commonly used approaches to select an ensemble subset. 
Here, we apply the idea of ranking-based strategies to VSEs. 
The core idea is to first sort all the individuals according to 
a certain criterion. Then, the top individuals whose rank is 
above a given threshold are kept to compose a subensemble. 
Because of the good performance of ST2E [28], we apply 
selective learning to its ensemble members. To ease presenta-
tion, the novel algorithm is denoted by Pruned-ST2E whose 
detailed steps are listed in the following Algorithm 1. 

Input

y: n× 1 vector.

X: n× p design matrix.

λ: a parameter in ST2 to control group size in a step.

κ: a parameter in ST2 to control number of groups to assess.

B: size of full ensemble.

U : size of pruned subensemble.

Output

Average importance measure computed as

R(j) =
1
U

U∑

r=1

E′(r, j), j = 1, 2, · · · , p. (1)

Main steps of Pruned-ST2E

1. Initialize a matrix E of order B × p with all elements being 0.

2. For b = 1, 2, · · · , B

(a) Provide y and X as the input of the ST2 algorithm to perform variable selection, i.e., Sb =

ST2(X,y, λ, κ).

(b) Let

E(b, j) =





1, if Xj ∈ Sb,

0, if Xj /∈ Sb,
j = 1, 2, · · · , p. (2)

3. EndFor

4. Sort all the ensemble members in ascending order according to the number of their selected vari-

ables, i.e.,

Nb =
p∑

j=1

E(b, j), b = 1, 2, · · · , B. (3)

5. Select the U members sorted on top of the ranked list, i.e., arrange the U rows of E ranked ahead

into a new matrix E′.

Algorithm 1. The proposed Pruned-ST2E algorithm.
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It is worth mentioning that ST2E differs from Pruned-
ST2E only in steps 4–5 of Algorithm 1. Specifically, ST2E 
computes the average importance measures of each vari-
able j (j = 1, 2… , p) by averaging all the ensemble mem-
bers, that is, R(j) = (1∕B)

∑B

r=1
�(r, j) . In Pruned-ST2E, 

the aggregation order of the ensemble members in ST2E 
is first rearranged and only U(U < B) members that are 
ranked ahead are incorporated to estimate R(j) by (1). To 
guide the aggregation process, the number of variables 
selected in each trial (i.e., Nb defined in (3)) is used. The 
main reason for choosing this measure is explained below.

Roughly speaking, some ensemble members can cor-
rectly choose a part of, or all of the really important vari-
ables. But for the other members, they not only deem all 
the truly important variables as important, but also some 
additional unimportant ones. It is notable that Pruned-ST2E 
sorts the ensemble members in accordance with the number 
of selected variables in ascending order. With the sorted 
members integrated into the ensemble gradually, the selec-
tion frequency of truly important variables will increase 
quickly while that of the remaining ones will stay at a 
low level, since they are chosen just by chance. For some 
medium-sized value of U, the difference between the selec-
tion frequencies of important and unimportant groups (i.e., 
gap value) will reach a maximum. After this point, because 
the noise variables are chosen by more members, the gap 
value will decline gradually as more individuals are included 
into the ensemble. To judge which variables are important 
based on the ranked list, note that it is critical to choose an 
appropriate threshold to divide the candidate variables into 
two groups. By changing the aggregation order of individu-
als and stopping the fusion early, the gap between the two 
sets of variables are enlarged. Therefore, it is beneficial to 
inject an additional selective learning step before the fusion 
is implemented.

Based on the output of Algor ithm  1 (i .e. , 
R(j), j = 1, 2,… , p ), the p variables can be ranked according 
to their importance to the response. In order to attain final 
selection results, a thresholding rule such as the mean rule 
or searching for the largest gap on the scree plot [26] can be 
further executed. The former means selecting the variables 
which satisfy R(j) > (1∕p)

∑p

k=1
R(k) . In contrast, the latter 

can be implemented as follows: sort R(1),R(2),… ,R(p) in 
descending order; search for the largest gap between any 
consecutive entries; and select the variables which are 
located above the gap. Similar to Xin and Zhu [28], the 
former scheme will be adopted in later experiments unless 
otherwise specified.

Ideally, the number of members (i.e., U) to reserve should 
be automatically determined to maximize selection accuracy. 
Unfortunately, however, selection accuracy cannot be com-
puted as in the prediction case, since the truly important 
variables are unknown in practice. The easiest method is to 

prescribe a desired number. According to our experiments 
(refer to Sect. 4) as well as the evidence in the study of PEs 
[15, 16], it seems to be reasonable to keep 1/3 to 2/3 members 
which are on top of the ranked list. In comparison with ST2E, 
Pruned-ST2E simply includes an additional sorting phase 
before fusion. Therefore, Pruned-ST2E is easy to implement 
and its time complexity is roughly equal to that of ST2E.

3  Analysis of accuracy‑diversity trade‑off

In ensemble learning field, it is commonly believed that we can 
gain more insights for the working mechanism of an ensemble 
through analyzing the trade-off between the accuracy (also 
known as strength) and diversity of ensemble members. Due 
to significant differences between PEs and VSEs, the strategies 
to investigate the accuracy-diversity pattern in PEs [13] can-
not be directly employed in the context of VSEs. Zhu and Fan 
[35] offered a method to estimate the strength and diversity 
of a VSE and related these measures to its variable-selection 
performance. Later on, Xin and Zhu [28] proposed to use the 
strength-diversity tradeoff to specify an appropriate tuning 
parameter of ST2E. Here, we would like to provide a new 
approach to evaluate strength and diversity of a VSE, and then 
utilize them to analyze the working mechanism of ST2E and 
Pruned-ST2E.

According to the formula (2), it can be observed that the 
output of each ensemble member, say, E(b, ⋅) (b = 1, 2,… ,B) , 
is a binary vector with each entry being 1 or 0. Suppose the 
true importance vector to be �∗ which takes value 1 on the 
positions corresponding to truly important variables and 0 
otherwise. The accuracy of the bth member can be assessed as

in which �(⋅) stands for an indicator function taking value 1 if 
its condition holds and 0 otherwise. Accordingly, the overall 
accuracy of the VSE is

Following the practice of Xin and Zhu [28], the diversity of 
a VSE can be estimated as

(4)Accb =
1

p

p∑
j=1

�[�(b, j) = �∗(j)], b = 1, 2… , p,

(5)Acc =
1

B

B∑
b=1

Accb =
1

pB

B∑
b=1

p∑
j=1

�[�(b, j) = �∗(j)].

(6)

Div =
1

p

p∑
j=1

v(j), with v(j) =
1

B − 1

B∑
b=1

[
�(b, j)

−
1

B

B∑
b=1

�(b, j)

]2

.



221International Journal of Machine Learning and Cybernetics (2020) 11:217–230 

1 3

Actually, the quantity Div is a measure of the average within-
ensemble variation. In general, a good VSE is expected to 
achieve Acc as high as possible. Since Div measures how 
much each member deviates from the central tendency esti-
mated by the VSE, it will become small when its constituent 
members become more accurate. It is noteworthy that our 
defined Acc directly evaluate the selection accuracy of the 
considered VSE. In contrast, Xin and Zhu [28] made use 
of the improvement of AIC to implicitly evaluate the mean 
strength of a VSE. Because our final purpose is variable 
selection, it can be deemed that Acc defined in (5) is more 
proper to analyze VSEs.

4  Simulation studies

This section devotes to examining Pruned-ST2E as well as 
some other procedures with simulated data. First, the effect 
of modifying the aggregation order of ST2E is first studied. 
Then, the performance of the novel method Pruned-ST2E is 
examined and compared with ST2E [28] and some other popu-
lar techniques including PGA [34], lasso [25], adaptive lasso 
[36], SCAD [7], random forest [11] and SCCE [3]. Regarding 
the variable selection criterion, we utilized AIC in later experi-
ments. There is evidence [19, 34] showing that AIC tends to 
select more variables than necessary whereas BIC tends to 
select fewer variables. Notice that the main principle of VSEs 
is to filter out noise variables through executing a base learner 
multiple times. If a truly informative variable is missed very 
often, it will be considered as unimportant by the VSE. In view 
of this fact, AIC is more suitable than BIC to act as the selec-
tion criterion in a VSE. In addition, the following experiments 
were all conducted in Matlab with version 8.1.

For all the experiments conducted in this section, every 
simulation was repeated 100 times. The ensemble size B was 
taken to be 300. The parameters � and � in ST2E were chosen 
to be identical to those adopted by Xin and Zhu [28]. For the 
examples they didn’t considered, � and � were set to be 0.5 
and exp(1.5) , respectively. For Pruned-ST2E, one third of the 
sorted members were kept. As for the parameter N involved 
in PGA, i.e., the number of generations for each SGA (single-
path genetic algorithm) to evolve, the strategy proposed by 
Zhu and Chipman [34] were employed to determine it. Regard-
ing lasso, a fivefold cross-validation was adopted to select its 
optimal regularization parameter. As far as adaptive lasso is 
concerned, the adaptive weights were first calculated using 
ordinary least squares estimates and � = 1 . Subsequently, lasso 
was applied on the scaled data. In SCAD, we took a = 3.7 and 
generalized cross-validation to estimate its tuning parameter. 
For random forest, the variables were first sorted by the per-
mutation importance measures and then were selected from 

the top 1/3 variables so that the smallest OOB (out-of-bag) 
error was achieved. Moreover, the parameter � in SCCE was 
set to be 0.5.

4.1  Simulated data

The data used in the following examples were generated by

where � is an error term distributed as a normal distribution 
with mean zero and variance �2.

Example 1 There are p = 20 variables and n = 40 observa-
tions [34] in this example. Particularly, only variables 5, 10 
and 15 have actual influence on the response � and their true 
coefficients are 1, 2, 3, respectively. The rest of the variables 
are uninformative and their coefficients are all zero. We set 
� = 1 for scenarios 1-3 and � = 2 for scenario 4. For the 
exploratory variables, the following 4 different scenarios 
were considered, i.e.,

Scenario 1: �1, �2,… , �20 ∼ N(�, �);
Scenario 2: �1, �2,… , �19 ∼ N(�, �) , �20 = �10 + 0.25� , 

� ∼ N(�, �);
Scenario 3: �1, �2,… , �19 ∼ N(�, �) , �20 = �15 + 0.25� , 

� ∼ N(�, �);
Scenario 4: �j = � + �j, j = 1, 2,… , 20 , �j ∼ N(�, �) , 

� ∼ N(�, �).

Example 2 This is an experiment [28] specifically designed 
to examine the capability of a method to correctly detect 
weak signal ( �1 ), strong signal ( �2, �3 ) and noise variables 
( �j, j = 4,… , p ). In this example, there are p = 20 variables 
with each generated from the standard normal distribution 
N(0, 1). The true coefficient vector is � = (�, 2, 3, 0,… , 0)T , 
where � takes the values starting from 0.1 to 1.5 with an 
increment 0.1. The three variables to generate � are cor-
related, with corr(�i, �j) = 0.7 for i, j ∈ {1, 2, 3} and i ≠ j . 
The other variables �4,… , �20 and the noise term � are inde-
pendent of each other. Here, we considered the situation of 
n = 100, � = 3.

Example 3 The data in this example are modified from a 
widely used benchmark data set [25, 27, 28]. To increase the 
problem complexity, we suppose that there are p = 50 varia-
bles with each generated from N(0, 1). The pairwise correla-
tion between any two variables is corr(�i, �j) = 0.5|i−j| for all 
i ≠ j . The true coefficient vector is � = (3, 1.5, 0, 0, 2, �p−5)

T 
and �p−5 indicates a (p − 5)-dimensional zero vector.

(7)
� =�1�1 + �2�2 +⋯ + �p�p + �

=�� + �, � ∼ N(�, �2�),
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Example 4 Finally, we considered a high dimensional but 
small sample size (large p, small n) problem which contains 
p = 120 variables and n = 100 observations [27, 28]. The 
first 60 variables are truly important and their true coef-
ficients are drawn from a normal distribution N(3, 0.5), 
and their values are then fixed for all simulation runs. The 
exploratory variables are created from a multivariate normal 
distribution with zero mean and covariance matrix as

where Σ0 is a 30 × 30 matrix with unit diagonal elements and 
off-diagonal elements taking a value 0.7, and J is a 30 × 30 
matrix with all unit elements. The noise level for � was taken 
as � = 50 similarly to that used by Wang et al. [27], Xin and 
Zhu [28].

4.2  Evaluation metrics

Because our focus on variable selection is to obtain a parsi-
monious model for interpretability, selection accuracy is the 
most natural choice to evaluate an algorithm. Nevertheless, 
it is infeasible since we have no means to know the ground 
truth except for simulated data. For this reason, a large vari-
ety of metrics have been developed and utilized in the related 
literature [27, 28, 32, 34, 36] to assess a variable selection 
method from different perspectives. To extensively study 
the behavior of each compared method, we adopt several 
evaluation metrics defined as below.

Let � = (�1, �2,… , �p)
T  stand for the true coefficient 

vector and T = {j ∶ �j ≠ 0} indicate the true model. Let 
IV and UIV represent the index sets for the truly important 
and unimportant variables, respectively. The symbol |IV| 
indicates the number of variables in IV and |UIV| is defined 
accordingly. Given an algorithm, note that each metric is 
estimated by 100 replications of the simulation. In the tth 
replication, denote r̂t = (r̂1,t, r̂2,t,… , r̂p,t)

T by the importance 
measures assigned to each variable, �̂ t = (𝛽1,t, 𝛽2,t,… , 𝛽p,t)

T 
by the estimated coefficients, and Ŝt = {j ∶ 𝛽j,t ≠ 0} by the 
identified model. In what follows, �(⋅) represents an indicator 
function. Then, we define

(8)

⎡⎢⎢⎢⎣

Σ0 0 0 0

0 Σ0 0.2J 0

0 0.2J Σ0 0

0 0 0 Σ0

⎤⎥⎥⎥⎦
.

(9)

⎧⎪⎪⎨⎪⎪⎩

soft metric =
1

100

100�
t=1

�

�
min
j∈IV

r̂j,t ≥ max
j∈UIV

r̂j,t

�
,

hard metric =
1

100

100�
t=1

�
�
Ŝt = T

�
,

Let

In (9), soft metric evaluates the ranking performance of 
an algorithm, i.e., how well it works to rank variables in 
line with their importance. On the other hand, hard metric 
assesses how well an algorithm performs to detect the true 
model (i.e., accurately categorizing all variables into impor-
tant and unimportant ones). The percentage (%) of correct 
and incorrect zeros defined in (10) are actually equivalent 
to specificity and false negative rate. In nature, these two 
metrics provide one way to evaluate the overall capacity of 
one method to correctly identify IV and UIV. The purpose 
to compute the selection frequencies [27–29] for IV and UIV 
as defined in (11) is to closely check the selection behavior 
achieved by an approach. In particular, we recorded the min-
imum, median and maximum number of times out of 100 
simulations among IV and UIV are selected, respectively. 
Moreover, the model size (MS) defined in (12) denotes the 
estimated sparsity. Since variable selection and prediction 
are closely related, a good selection approach is also usu-
ally expected to exhibit good prediction performance. To 
evaluate the prediction ability of a method, we utilized the 
relative prediction error (RPE) [36] as defined in (13). To 
estimate this RPE term corresponding to an algorithm, a 
linear regression model was first built by using the selected 
variables. Then, RPE was estimated using a test set com-
posed of 10,000 instances.

(10)

⎧⎪⎪⎨⎪⎪⎩

% of correct zeros =
1

�UIV�

�
1

100

100�
t=1

�
j∈UIV

�
�
𝛽j,t = 0

��
× 100%,

% of incorrect zeros =
1

�IV�

�
1

100

100�
t=1

�
j∈IV

�
�
𝛽j,t = 0

��
× 100%.

Tj =

100∑
t=1

�
(
𝛽j,t ≠ 0

)
,

(11)

⎧
⎪⎨⎪⎩

sel. freq. of IV =

�
min
j∈IV

Tj, median
j∈IV

Tj, max
j∈IV

Tj

�
,

sel. freq. of UIV =

�
min
j∈UIV

Tj, median
j∈UIV

Tj, max
j∈UIV

Tj

�
,

(12)model size =
1

100

p∑
j=1

Tj =
1

100

p∑
j=1

100∑
t=1

�
(
𝛽j,t ≠ 0

)
,

(13)

RPE =
1

𝜎2
E[(ŷ − �T�)2] =

1

𝜎2
(�̂ − �)TE(��T )(�̂ − �).
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4.3  Effect of rearranging aggregation order

First, Example 1 was used to investigate how the perfor-
mance of ST2E varies if the aggregation order of its constit-
uent members is rearranged. Both the hard and soft metrics 
were employed to evaluate a VSE. When calculating the 
hard metric, searching for the largest gap [26] was applied to 
the ranked list. For the ST2E ensembles, the members were 
aggregated gradually in the same random order as they were 

generated by ST2E. But for pruned ST2E ensembles, the 
members were first sorted by Algorithm 1 and then fused. 
We also assessed the performance of the subensembles that 
were constructed by sorting the ensembles in the optimal 
order. Since we know that �5, �10 and �15 are truly important 
variables, a member was searched for each ensemble size so 
that the difference between the mean importance measure of 
the signal variable group and that of the noise variable group 
was maximized. Fig. 1 depicts the computed hard and soft 
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Fig. 1  For scenarios 1-4 in Example  1, the performance of ST2E, 
Pruned-ST2E and optimal subensembles in terms of hard and soft 
metrics (i.e., the first two columns) as a function of ensemble size. 

The subplots shown in the 3rd column illustrate the accuracy-diver-
sity patterns of the full ST2E ensemble and a pruned subensemble
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metrics for ST2E, Pruned-ST2E and optimal subensembles 
as a function of ensemble size.

By adopting the accuracy and diversity defined in (5) 
and (6), respectively, we tried to figure out the difference 
between ST2E and Pruned-ST2E. In each simulation, we 
computed the Acc and Div of ST2E by taking into account 
all its members. Here, �∗ was a 20-dimensional binary col-
umn vector with its 5th, 10th and 15th entry being 1 and 
others being 0. Regarding Pruned-ST2E, the members in 
ST2E were first sorted with Algorithm 1 and only one third 
of the top-ranked members was kept to fuse into a VSE. In 
other words, the Acc and Div of Pruned-ST2E were esti-
mated with the reserved members. The subplots shown in 
the third column of Fig. 1 illustrate the accuracy-diversity 
pattern of ST2E and Pruned-ST2E. Note that each point of 
ST2E (Pruned-ST2E) in these subplots corresponds to the 
result obtained in one simulation.

Figure 1 shows that the accuracy of ST2E evaluated with 
both hard and soft metrics sharply increases to a nearly opti-
mal value as the ensemble incorporates more individuals. 
Then, further improvement resulting from additional mem-
bers remains small. In terms of hard metric, however, the 
pruned ensembles have accuracy curves that exhibit a maxi-
mum for intermediate numbers of individuals. Regarding the 
ranking accuracy curve of Pruned-ST2E, it has similar shape 
with that of ST2E. After the individuals of ST2E are sorted 
by Algorithm 1, they can be roughly categorized into three 
types. For the members entering the fusion early, they often 
identify only some rather than all truly important variables. 
With respect to those lying in the middle of the ranked list, 
all signal variables can be deemed by them as important. 
Regarding the members ranked on the bottom, they often 
include more noise variables besides all important ones. 
Therefore, all signal variables can thus be correctly ranked 
ahead of the noise ones quickly as the sorted members grad-
ually enter the fusion process. But due to the enlarged gap 
between two groups, the selection accuracy benefits more 
from this process. Additionally, the subplots in the 3rd col-
umn of Fig. 1 illustrate that the pruning phase improves the 
selection accuracy of ST2E to a large degree. In comparison 
with the full ST2E ensemble, some less accurate members 
are filtered out and are thus not fused into pruned subensem-
bles. It is therefore reasonable that Pruned-ST2E has smaller 
diversity since its members become more concentrated on 
the true importance vector.

Moreover, it can be observed in Fig. 1 that the selection 
accuracy of all but very small subensembles lies above that 
of the full ensemble consisting of all the 300 individuals (i.e, 
referring to the rightmost point in each subplot). This makes 
it easy to select a subensemble that outperforms the origi-
nal ensemble constructed by ST2E. In addition, the plots 
shown here illustrate that simply keeping the first 1/3 to 2/3 
of the sorted individuals to compose a VSE is reasonable. 

Although the accuracy of the optimal subensembles is much 
higher than that of ST2E and Pruned-ST2E, it is only an 
ideal case since we cannot know which variables are truly 
important in practice.

4.4  Effect of � and �

In ST2E, there are two tuning parameters � and � involved in 
its base learner ST2 (see, e.g., Algorithm 1). In the process 
to generate a collection of accurate and diverse members, 
these two parameters (especially � ) play a key role. Because 
� controls how many variables are added (deleted) in one 
forward (backward) step, its impact is relatively small. As 
suggested by Xin and Zhu [28], we can simply set � = 0.5 . 
With respect to � , it needs to be set more carefully because 
it directly affect whether the created members are diverse or 
not. The larger � is, the less models are evaluated in each 
searching step. This reduces the strength of each member on 
one hand, which is also harmful to encourage the diversity 
in ST2E on the other hand. But the computational cost of 
ST2E will be very high if � is taken to be too small. Due to 
this fact, we speculate that � and � may influence the per-
formance of Pruned-ST2E. In order to clarify this issue, we 
did the following experiments.

First, we fixed � = 0.5 and varied � from exp(0.5) to 
exp(3.0) with increment exp(0.2) . With each value of � , we 
estimated the accuracy of ST2E and Pruned-ST2E with hard 
and soft metrics through 100 simulations. Aiming at study-
ing the influence of � , � was set to exp(1.5) and � was made 
to vary from 0.10 to 0.95 with increment 0.05. Figure 2 
depicts the representative results obtained on scenarios 2 
and 4 in Example 1.

The top two subplots of Fig. 2 indicate that Pruned-ST2E 
generally improves ST2E when � ≤ exp(2) . Note that the 
smaller � , the more accurate each individual is. Thus, it is 
justifiable that changing the aggregation order is helpful in 
this situation. Checking the bottom two subplots of Fig. 2, 
i.e., how the selection frequency of ST2E and Pruned-
ST2E depends on � , one can observe that both ST2E and 
Pruned-ST2E perform well as long as � is not too small (i.e., 
� ≥ 0.4 ). The behavior of ST2E and Pruned-ST2E, however, 
deteriorates if � is too large, which means that adding or 
deleting too many variables in a single step of ST2 algorithm 
is unhelpful. This is consistent with the proposal provided 
by Xin and Zhu [28]. Based on these observations, � and � 
were respectively taken as � = 0.5 and � = exp(1.5) in most 
experiments.

4.5  Performance comparison

Example 2 was utilized to examine the ability of each algo-
rithm to identify three different types of variables. The sub-
plots (a–c) displayed in Fig. 3 demonstrate how the average 
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frequencies that each type of variables is detected to be 
important change as � varies. In subplots (d, e), we plotted 
the accuracy of each method assessed by the hard and soft 
metrics as a function of � . In the meantime, the subplot (f) 
illustrates the CPU time cost by each method to complete 
one simulation. The computing environment is a personal 
computer configured with Intel Core i7-6600 CPU @2.60 
GHz, 16.0 GB RAM.

Figure 3a demonstrates that SCCE performs best to 
identify the weak signal variable �1 . However, this is 
achieved by losing its ability to exclude noise variables 
(see Fig. 3c). The subplot (d) also manifests that it can-
not accurately discern the right signal variable group even 
though its ranking performance is excellent. Meanwhile, 
ST2E and Pruned-ST2E perform equally well to correctly 
detect �1 , and they significantly outperform the other meth-
ods in this situation, especially when the value of � is 
small. In terms of catching the strong signal variables �2 

and �3 , all the algorithms but SCAD do a good job. As 
for guarding against the noise variables ( �j for j > 3 ), the 
compared methods can be ranked from the best to worst as 
random forest, Pruned-ST2E, ST2E, PGA, adaptive lasso, 
lasso, SCCE and SCAD. At the same time, Pruned-ST2E 
is observed to considerably surpass its rivals except for 
lasso in terms of selection accuracy as revealed in subplot 
(d). Although the subplot (e) shows that random forest and 
SCCE achieve better ranking accuracy than Pruned-ST2E, 
Pruned-ST2E defeats them in the aspect of excluding noise 
variables and correctly identifying the signal group, as 
shown in the subplots (c) and (d).

As far as the time complexity is concerned, Fig. 3f indi-
cates that random forest is most time-consuming. Since 
the strategy proposed by Genuer et al. [11] was executed, 
all variables need to be first sorted by permutation impor-
tance measures. Based on the 1/3 variables ranked ahead, it 
selected the subset which achieves the smallest OOB error. 

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

log(κ)

Se
le

ct
io

n 
ac

cu
ra

cy

Scenario 2

ST2E hard
Pruned−ST2E hard
ST2E soft
Pruned−ST2E soft

0.5 1 1.5 2 2.5 3
0.1

0.3

0.5

0.7

0.9

log(κ)

Se
le

ct
io

n 
ac

cu
ra

cy

Scenario 4

ST2E hard
Pruned−ST2E hard
ST2E soft
Pruned−ST2E soft

κ with λ = 0.5.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ

Se
le

ct
io

n 
ac

cu
ra

cy

Scenario 2

ST2E hard
Pruned−ST2E hard
ST2E soft
Pruned−ST2E soft

0.2 0.4 0.6 0.8 1
0.1

0.3

0.5

0.7

0.9

λ

Se
le

ct
io

n 
ac

cu
ra

cy

Scenario 4

ST2E hard
Pruned−ST2E hard
ST2E soft
Pruned−ST2E soft

(a) The effect of

(b) The effect of λ with κ = exp(1.5).

Fig. 2  On scenarios 2 and 4 in Example 1, how the selection frequency of ST2E and Pruned-ST2E changes with � and �
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In the rest of algorithms, PGA and SCCE cost slightly more 
time. When compared with ST2E, Pruned-ST2E is a little 
faster since it only fuses 1/3 top-ranked members to get aver-
age importance measures for each variable.

With regard to Example 3, two sets of experiments were 
conducted. First, we evaluated the performance of all algo-
rithms in handling a relatively easy problem (i.e., only three 
important variables) and Table 1 reports the obtained results. 
We can observe that Pruned-ST2E behaves best in almost 
all cases except that it may sometimes miss some impor-
tant variables when the noisy level is high. Under this cir-
cumstance, PGA, lasso, adaptive lasso and SCCE seem to 
achieve slightly better performance than ST2E and Pruned-
ST2E at catching signal variables. However, they lose their 
advantage when it comes to exclude noise variables.

Besides the important variables �1, �2, �5 , another 
five important variables having small coefficients (i.e., 
�6,… , �10 ∼ N(�, 0.52�) ) were inserted into Example  3 
for the second set of experiments. Table 2 summarizes 
the results of each algorithm in this more difficult prob-
lem. Due to the existence of some weak imponrtant vari-
ables (i.e., those having small non-zero coefficients), 

the performance of each algorithm decreases somewhat, 
especially in terms of identifying important variables. 
Nevertheless, Pruned-ST2E still maintains its superiority 
over the other ones in excluding noise variables.

The results for the problem in Example 4, in which p 
is large and n is small, are reported in Table 3. Similar to 
the strategy used by Xin and Zhu [28], we inserted an SIS 
(sure independence screening [8]) pre-selecting step when 
generating each ensemble member of ST2E, PGA and 
SCCE. The value of q (i.e., number of variables to pre-
pick) in SIS was taken as 50. For the lasso-type methods 
and random forest, they were directly applied. It can be 
observed from Table 3 that ST2E and Pruned-ST2E per-
form much better than their counterparts. Here, Pruned-
ST2E exhibits stronger ability to exclude noise variables 
but has a higher false negative rate. Notice that there are 
60 important variables in this example, and small coef-
ficients for some variables cause ST2E to reserve more 
members to attain better performance. In the meantime, 
this example reveals that the advantage of Pruned-ST2E 
over ST2E is more significant when the true model is 
sparse.
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Fig. 3  The experimental results of each method in Example  2. The 
subplots a, b and c show the average frequencies for the three types 
of variables (i.e.,) being selected, respectively. The subplots d and e 

plot the selection accuracies in terms of hard and soft metrics when � 
takes different values. And the subplot f compares the time complex-
ity of all the methods
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5  Analysis of real data

5.1  Diabetes data

We first analyzed diabetes data composed of n = 442 dia-
betes patients and p = 10 variables. The task was to inter-
pret how some variables (such as age, sex, body mass index 
and etc.) affect the progression of diabetes disease. In this 
example, the LARS algorithm [6] was taken as a baseline to 
compare the different methods. The parameters involved in 
each algorithm were set up in a way similar to that used in 
the simulation studies. Table 4 reports the order in which the 
variables are ranked by each method. Obviously, all methods 
but SCCE deem that the variables “bmi”, “ltg” and “map” 
are the most important ones while “age” is the least impor-
tant one. For the intermediate variables, they hold different 
views. As for the different order of “tc” and “sex” produced 
by ST2E and Pruned-ST2E, it may be explained that Pruned-
ST2E retains more members which puts more emphasis on 
the estimated coefficient than prediction accuracy. Notice 
that “tc” has a relatively larger coefficient as shown in the 

solution path of LARS [28]. The situation for “ldl” and “hdl” 
can be similarly interpreted.

5.2  Some classification data

Here, we studied the behavior of the compared methods in 
some classification problems by extending them to logistic 
regression models. Specifically, the regression coefficients 
were estimated by maximum likelihood estimation (MLE) 
method and AIC was computed as AIC = 2k − 2l(�̂;�) where 
k indicates the model size and l(�̂;�) is the estimated log-
likelihood for the considered model. Moreover, we consid-
ered mRMR [21] instead of SCCE [3] since the the former 
targets to implement feature selection in classification tasks.

In Table 5, the main characteristics of five UCI [14] 
binary classification data sets (i.e., sample size of training 
and test sets, input dimensionality) were first summarized. 
Given a data set, each method was applied to the training 
set to detect important variables and a logistic regression 
model was built using the selected variables. We then esti-
mated its prediction error on the test set. The whole process 

Table 1  The performance on 
the widely used benchmark data 
set with p = 50 and 3 important 
variables in Example 3

Method % of zero coef. Selection frequency Size RPE

Correct 0s Incorrect 0s �j ∈ UIV �j ∈ IV

n = 100, � = 1

   ST2E 96.32 0.00 (0, 4, 9) (100, 100, 100) 4.73 0.189
   Pruned-ST2E 97.81 0.00 (0, 2, 8) (100, 100, 100) 4.03 0.115
   PGA 95.64 0.00 (1, 4, 10) (100, 100, 100) 5.05 0.041
   Lasso 85.15 0.00 (7, 15, 32) (100, 100, 100) 9.58 0.234
   Adaptive lasso 86.00 0.00 (8, 14, 22) (100, 100, 100) 9.98 0.279
   SCAD 56.85 0.00 (35, 43, 53) (100, 100, 100) 23.28 0.771
   Random forest 98.38 0.00 (0, 0, 33) (100, 100, 100) 3.76 0.138
   SCCE 73.15 0.00 (13, 21, 100) (100, 100, 100) 15.62 0.208

n = 100, � = 3

   ST2E 96.66 1.67 (0, 3, 11) (95, 100, 100) 4.52 0.127
   Pruned-ST2E 98.13 9.00 (0, 2, 7) (93, 100, 100) 3.81 0.089
   PGA 94.79 0.67 (1, 5, 15) (95, 100, 100) 5.43 0.075
   Lasso 85.06 0.00 (7, 15, 32) (100, 100, 100) 10.02 0.237
   Adaptive lasso 81.68 2.00 (9, 19, 27) (94, 100, 100) 11.55 0.317
   SCAD 92.11 30.33 (3, 8, 13) (52, 58, 99) 5.80 0.461
   Random forest 96.26 1.00 (0, 2, 39) (98, 99, 100) 4.73 0.102
   SCCE 73.13 0.00 (14, 22, 99) (100, 100, 100) 15.63 0.239

n = 100, � = 6

   ST2E 97.55 28.00 (0, 4, 10) (43, 74, 99) 4.31 0.210
   Pruned-ST2E 97.15 31.67 (0, 2, 8) (36, 70, 99) 3.39 0.175
   PGA 92.11 18.00 (2, 7, 15) (61, 86, 99) 6.17 0.149
   Lasso 86.09 8.00 (7, 14, 30) (82, 95, 99) 9.30 0.231
   Adaptive lasso 78.81 15.67 (11, 22, 32) (66, 88, 99) 12.49 0.363
   SCAD 78.83 27.33 (14, 21, 29) (59, 61, 98) 12.13 0.400
   Random forest 88.45 7.67 (4, 10, 47) (82, 47, 100) 8.20 0.170
   SCCE 73.17 0.67 (13, 24, 99) (98, 100, 100) 15.59 0.267
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was repeated 10 times and Table 5 reports the mean and 
standard deviation of test errors, and the average number of 
selected variables for each method. The model including all 
the variables was also considered. For each set, the result 
typed in boldface indicates the approach which achieves the 
best prediction.

Table 5 reveals that the prediction ability of Pruned-
ST2E is satisfactory. Across all the used sets, it has lower 

prediction error than ST2E and PGA. In comparison with 
other methods that are prediction-oriented, it can also out-
perform them in some cases. Moreover, the number of 
selected variables are much lower than the original dimen-
sionality, which facilitates the interpretation. Therefore, 
Pruned-ST2E also has great potential to cope with variable 
selection tasks in classification problems.

Table 2  The performance on 
the widely used benchmark 
data set with p = 50 and 
eight important variables in 
Example 3

Method % of zero coef. Selection frequency Size RPE

Correct 0s Incorrect 0s �j ∈ UIV �j ∈ IV

n = 100, � = 1

   ST2E 94.43 13.75 (2, 6, 12) (53, 94, 100) 9.24 0.329
   Pruned-ST2E 95.57 15.13 (1, 4, 10) (53, 93, 100) 8.65 0.303
   PGA 97.40 38.87 (0, 2, 7) (4, 64, 100) 5.98 1.029
   Lasso 71.60 11.00 (21, 28, 36) (46, 98.5, 100) 19.05 0.458
   Adaptive lasso 75.33 6.12 (14, 25, 33) (77, 98, 100) 17.87 0.547
   SCAD 70.02 14.75 (23, 29.5, 37) (59, 90, 100) 19.41 0.584
   Random forest 98.45 61.25 (0, 0, 41) (0, 3.5, 100) 3.75 1.259
   SCCE 69.33 22.88 (16, 27, 100) (32, 75.5, 100) 19.05 0.627

n = 100, � = 3

   ST2E 93.90 50.75 (0, 6, 14) (8, 28.5, 100) 6.50 0.234
   Pruned-ST2E 96.07 52.75 (1, 4, 9) (7, 26, 100) 5.43 0.206
   PGA 95.24 52.75 (0, 5, 13) (5, 26, 100) 5.78 0.229
   Lasso 82.12 36.13 (11, 18, 28) (15, 65.5, 100) 12.62 0.311
   Adaptive lasso 76.90 34.75 (15, 23, 31) (29, 55.5, 100) 14.92 0.478
   SCAD 93.81 68.87 (2, 6, 10) (7, 11.5, 99) 5.09 0.553
   Random forest 95.43 56.63 (0, 3, 43) (3, 15.5, 100) 5.39 0.224
   SCCE 73.38 29.25 (14, 23, 99) (34, 63, 100) 16.84 0.315

n = 100, � = 6

   ST2E 96.29 69.25 (1, 4, 8) (2, 15, 96) 4.02 0.266
   Pruned-ST2E 97.67 70.50 (0, 2, 7) (0, 13, 97) 3.34 0.218
   PGA 92.81 62.50 (2, 7, 15) (6, 20, 100) 5.96 0.197
   Lasso 86.17 52.12 (7, 14, 26) (15, 31.5, 99) 9.64 0.245
   Adaptive lasso 77.14 50.62 (15, 23, 32) (23, 36.5, 99) 13.55 0.446
   SCAD 78.31 58.37 (15, 22, 26) (15, 28.5, 98) 12.44 0.377
   Random forest 88.57 56.50 (2, 10, 47) (8, 16.5, 100) 8.28 0.181
   SCCE 74.62 39.50 (13, 22, 94) (18, 48.5, 100) 15.50 0.293

Table 3  The performance for 
the large p small n problem in 
Example 4

Method % of zero coef. Selection frequency Size RPE

correct 0s Incorrect 0s �j ∈ UIV �j ∈ IV

ST2E 75.87 0.57 (4, 25.5, 52) (98, 100, 100) 74.14 3.275
Pruned-ST2E 81.42 17.03 (2, 16, 40) (74, 84, 95) 60.93 1.594
PGA 83.28 48.75 (4, 16, 30) (40, 51, 65) 40.68 0.961
Lasso 91.88 60.17 (2, 8, 17) (26, 40, 52) 28.77 0.400
Adaptive lasso 81.12 68.78 (7, 19, 30) (21, 31, 39) 30.06 1.340
SCAD 70.13 68.15 (21, 29, 41) (24, 33, 43) 37.03 2.058
Random forest 100.00 62.08 (0, 0, 0) (29, 37, 48) 22.75 0.441
SCCE 100.00 23.67 (0, 0, 0) (65, 76.5, 91) 45.80 0.861
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6  Conclusions and future work

In this paper, we proposed a novel method Pruned-ST2E to 
construct a more effective VSE by using an ensemble prun-
ing strategy. In Pruned-ST2E, the ensemble members are 
first sorted and only some members which are ranked ahead 
are included into the fusion process, to produce a subensem-
ble. Based on the average importance measure, the variables 
are then ranked and further selected by a thresholding rule. 
Although the idea of Pruned-ST2E is simple, a large batch of 
experiments conducted with both simulated and real-world 
data demonstrates its better or competitive performance in 
comparison with several other counterparts. By the aid of 
accuracy–diversity analysis of ST2E and Pruned-ST2E, we 
found that the inserted pruning step excludes less accurate 
members and makes the remaining members become more 
concentrated on the true importance vector.

In essence, the pruning technique used in Pruned-ST2E 
can be easily extended to some other techniques (such 
as PGA, stability selection) to build VSEs. It would be 
interesting to study how the corresponding subensembles 
will perform when coping with different variable selec-
tion tasks. On the other hand, Pruned-ST2E retains a pre-
scribed number of ensemble members to integrate into a 
VSE. The ideal situation is to automatically determine how 
many members should be kept so that selection accuracy 
can reach as high as possible. Because the ground-truth 
information cannot be known in practice and the selection 
performance of a VSE depends on many factors, this is a 
very difficult and challenging problem deserved to be stud-
ied further. In recent years, data-driven feature selection 
techniques [2, 4] has received increasing attention due to 
their good performance and versatile applications. Thus, 
it is also deserved to explore whether selective ensemble 
learning can further enhance their performance.

Table 4  Ranking of variables in 
diabetes data set

Method Ranking of variables (top → bottom)

LARS bmi ltg map hdl sex glu tc tch ldl age
ST2E bmi ltg map sex tc ldl hdl glu tch age
Pruned-ST2E bmi ltg map tc sex hdl ldl glu tch age
PGA bmi ltg map hdl sex tc ldl glu tch age
Adaptive lasso bmi ltg map hdl sex tc ldl tch glu age
SCAD bmi ltg map hdl sex tc ldl glu tch age
Random forest bmi ltg map tch hdl ldl glu tc sex age
SCCE bmi ltg map hdl tch glu sex ldl age tc

Table 5  The test error rates and 
number of selected variables 
for each method on some 
classification data sets

Bold indicates the best results

Method Ionosphere German Sonar Wdbc Wpbc
Tr./Test/# Var. 251/100/34 700/300/24 108/100/60 469/100/30 144/50/32

No selection 12.30 ± 3.37 23.20 ± 1.47 31.90 ± 4.01 5.60 ± 2.01 28.98 ± 4.79
13.90 ± 2.64 23.63 ± 1.60 34.10 ± 4.82 4.70 ± 2.54 25.31 ± 2.19

PGA (14.80) (14.60) (31.90) (16.50) (15.60)
14.20 ± 2.66 23.67 ± 1.47 32.80 ± 5.51 5.10 ± 2.18 24.90 ± 3.44

ST2E (15.20) (14.20) (30.40) (17.90) (15.40)
��.�� ± �.�� ��.�� ± �.�� 31.70 ± 3.83 4.80 ± 2.35 ��.�� ± �.��

Pruned-ST2E (16.80) (14.60) (30.40) (16.90) (16.20)
14.10 ± 3.93 23.63 ± 1.67 ��.�� ± �.�� �.�� ± �.�� 24.49 ± 3.19

Lasso (17.40) (18.80) (18.40) (14.50) (3.70)
14.10 ± 3.63 23.50 ± 1.72 26.40 ± 4.43 7.90 ± 3.45 27.55 ± 6.25

Adaptive lasso (18.00) (15.90) (15.10) (10.10) (6.90)
16.00 ± 2.87 24.13 ± 1.52 30.40 ± 2.90 4.90 ± 2.69 26.94 ± 4.69

SCAD (15.40) (15.50) (20.40) (13.50) (8.10)
16.50 ± 3.92 24.83 ± 0.95 27.60 ± 3.86 5.20 ± 2.82 26.53 ± 3.73

Random forest (14.60) (11.00) (16.10) (17.30) (8.70)
14.20 ± 2.53 23.93 ± 1.95 32.60 ± 4.83 5.30 ± 2.00 24.69 ± 4.46

mRMR (16.10) (13.30) (33.10) (15.70) (17.50)
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