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Abstract
In this paper, an efficient wavelet transform-based weighted �-twin support vector regression (WTWTSVR) is proposed, 
inspired by twin support vector regression (TSVR) and �-twin support vector machine-based regression. TSVR and its 
improved models work faster than support vector regression because they solve a pair of smaller-sized quadratic program-
ming problems. However, they give the same emphasis to the training samples, i.e., all of the training samples share the same 
weights, and prior information is not used, which leads to the degradation of performance. Motivated by this, samples in 
different positions in the proposed WTWTSVR model are given different penalty weights determined by the wavelet trans-
form. The weights are applied to both the quadratic empirical risk term and the first-degree empirical risk term to reduce the 
influence of outliers. The final regressor can avoid the overfitting problem to a certain extent and yield great generalization 
ability. Numerical experiments on artificial datasets and benchmark datasets demonstrate the feasibility and validity of our 
proposed algorithm.

Keywords  Machine learning · Support vector regression · Twin support vector regression · Wavelet transform

1  Introduction

Artificial intelligence is the development of traditional con-
trol methods or learning methods. In recent years, artificial 
intelligence methods have been extensively studied and 
applied [1–6]. The support vector machine (SVM) is pro-
posed based on the principle of statistical learning theory 
and Vapnik–Chervonenkis (VC) dimensional theory, which 
is a promising machine learning approach that has been 
adopted in classification and regression [7, 8]. The adop-
tion of the kernel trick can extend the algorithm for use in 
nonlinear cases. The basic idea of the SVM is to construct 
a hyperplane that can partition the samples from different 

classes with minimum generalization error by maximizing 
the margin. Compared with other supervised learning meth-
ods, it has many strong points, such as being with sparse 
solution constructed by ‘support vectors’, having generali-
zation error minimization, and needing only a small-scale 
dataset. It has become one of the most powerful tools for 
pattern classification and regression [9].

To improve the performance of the standard SVM, 
many modified methods were proposed. Jayadeva et al. 
[10] proposed a twin SVM (TSVM) by seeking two non-
parallel bound functions, and each one is close to one 
class of samples and as far as possible from the other. The 
TSVM can increase the computational speed by solving 
two small-size quadratic programming problems (QPPs) 
rather than a large one as in the standard SVM. Later, 
Peng [11] extended this strategy to regression applications, 
resulting in the twin support vector regression (TSVR); 
the target of the regression problem is to get the relation-
ship between inputs and their corresponding outputs. Solv-
ing the SVM is based on QPP problems subject to linear 
inequality constraints, which is with heavy computational 
costs. Suyken et al. [12, 13] proposed the least squares 
SVM (LS-SVM) for large-scale dataset problems. It fol-
lows a similar spirit as that of the SVM except for the 
constraints being linear equalities, which can reduce the 
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computational complexity significantly. The �-support vec-
tor regression ( �-SVR) [14] extends the standard SVR via 
enforcing a fraction of the data samples to lie inside an � 
tube, and minimizing the width of the tube by introduc-
ing a parameter � . Inspired by the � -SVR and combined 
with the concept of pinball loss [15–18]. Xu [19] pro-
posed asymmetric �-twin support vector regression (Asy-�
-TSVR), which is a kind of twin SVR suitable for dealing 
with asymmetric noise. However, these methods only take 
into account the empirical risk minimization rather than 
the structural risk minimization, which will produce the 
overfitting problem. To overcome the overfitting problem, 
Shao et al. [20] introduced regularization terms into the 
objective functions of TSVR. Recently, Rastogi et al. pro-
posed a �-twin support vector machine-based regression 
method ( �-TWSVR) [21]: the regularization terms and the 
insensitive bound values � in the method were all added 
into the objective functions to minimize the risks, which 
can adjust the values of � automatically. However, in the 
methods mentioned above, such as TSVR and �-TWSVR, 
all of the training samples are considered as having the 
same status and are given the same penalties, which may 
degrade the performance due to the influence of noise. 
Therefore, it is useful to give the training samples different 
weights depending on their importance. Xu et al. [22] pro-
posed the K-nearest neighbor (KNN)-based weighted twin 
support vector regression, in which the local information 
of data was used for improving the prediction accuracy. 
KNN-based methods are suitable for regression situations 
with clustered samples but not for time series due to the 
nature of the KNN.

In this paper, a novel TSVR-based regression model 
termed WTWTSVR is proposed. Some of the features of 
the proposed WTWTSVR are as follows.

1.	 The prior information of the training samples is incor-
porated into the proposed algorithm. A weight matrix is 
introduced into the quadratic empirical risks term, and a 
weight vector is introduced into the first-degree empiri-
cal risks term to reduce the influence of outliers.

2.	 Wavelet transform theory is adopted to calculate the 
weight matrix, which is a new angle for preprocessing 
samples. Wavelet transform is a kind of time-frequency 
representation for signals, and the proposed method 
based on the wavelet theory is suitable for dealing with 
time series samples due to the character of the wavelet 
transform.

3.	 The proposed model also takes into account the regu-
larization terms and the insensitive bound values � as 
penalty terms. The effectiveness of our WTWTSVR is 
demonstrated by experiments on artificial datasets and 
benchmark datasets. The numerical results show that the 

proposed algorithm has better generalization ability than 
traditional ones.

This paper is organized as follows: Sect. 2 briefly describes 
TSVR and �-TWSVR. Section 3 proposes our WTWTSVR. 
Experimental results are described in Sect. 4 to investigate 
the validity of our proposed algorithm, and Sect. 5 ends the 
paper with concluding remarks.

2 � Brief introduction to TSVR and �‑TWSVR

In this section, the linear TSVR and �-TWSVR algo-
rithms are described brief ly. Nonlinear cases can 
be solved by Kernel methods. Given a training set 
T = {(x1, y1), (x2, y2),… , (xm, ym)} , where xi ∈ ℜn and 
yi ∈ ℜ , i = 1, 2,… ,m . Then the output vector of the train-
ing data can be denoted as Y = (y1, y2,… , ym)

T ∈ ℜm and 
the input matrix as A = (A1,A2,… ,Am)

T ∈ ℜm×n , and the 
ith row Ai = (xi1, xi2,… , xin)

T is the ith training sample. We 
let e and I be a ones vector and an identity matrix of appro-
priate dimensions, respectively.

2.1 � Twin support vector regression (TSVR)

TSVR proposed by Peng [11] is an efficient regression 
method with low computational costs compared with SVR 
[23, 24]. TSVR has two �-insensitive bounds: the down-
bound is denoted as f1(x) = wT

1
x + b1 , the up-bound is 

denoted as f2(x) = wT
2
x + b2 , and the regressor f(x) can be 

obtained by taking the mean of the two bound functions, i.e.

The two �-insensitive bound functions can be obtained by 
solving the following pair of QPPs:

and

where �1, �2 ≥ 0 are insensitive parameters, which are intro-
duced to construct the �-insensitive zone, ‘ � tube’. �1 and �2 
are slack vectors to measure the errors of samples outside the 
‘ � tube’. C1,C2 > 0 are parameters used to make the trade-
off between the fitting errors and the slack errors. After 

(1)
f (x) =

1

2
(f1(x) + f2(x))

=
1

2
(w1 + w2)

Tx +
1

2
(b1 + b2).

(2)
min

w1,b1,�1

1

2
‖‖Y − e�1 − (Aw1 + eb1)

‖‖
2
+ C1e

T
�1

s.t. Y − (Aw1 + eb1) ≥ e�1 − �1, �1 ≥ 0,

(3)
min

w2,b2,�2

1

2
‖‖Y + e�2 − (Aw2 + eb2)

‖‖
2
+ C2e

T
�2

s.t. (Aw2 + eb2) − Y ≥ e�2 − �2, �2 ≥ 0,
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introducing the Lagrangian functions of (2) and (3), and 
considering the corresponding Karush–Kuhn–Tucker (KKT) 
optimality conditions, the dual QPPs can be obtained as

and

where G = [A e], f1 = Y − e�1 , f2 = Y + e�2 , and �, � ∈ ℜm 
are Lagrangian multiplies vectors.

After solving the dual QPPs (4) and (5), we can get 
solutions � and � , and then the regression parameters 
can be obtained as 

[
wT
1
, b1

]T
= (GTG)−1GT (f1 − �) and [

wT
2
, b2

]T
= (GTG)−1GT (f2 + �).

2.2 � �‑Twin support vector regression ( �‑TWSVR)

Rastogi proposed a modification of TSVR. Similar to the 
TSVR model, �-TWSVR also solves a pair of optimization 
problems (6) and (7):

and

where v1, v2, c1, c2, c3, c4 > 0 are user-specified parameters, 
and �1, �2, �1 , and �2 are the same as in TSVR. Different from 
the TSVR model, the insensitive parameters �1 and �2 are 
not given parameters but are optimized. After introducing 
the Lagrangian functions of (6) and (7), and considering the 
KKT conditions, the dual QPPs can be obtained as

 and

(4)
min
�

1

2
�
TG(GTG)−1GT

� − f T
1
G
(
GTG

)−1
GT

� + f T
1
�

s.t. 0e ≤ � ≤ C1e,

(5)
min
�

1

2
�
TG(GTG)−1GT

� + f T
2
G(GTG)−1GT

� − f T
2
�

s.t. 0e ≤ � ≤ C2e,

(6)

min
w1,b1,�1,�1

1

2
‖‖Y − (Aw1 + eb1)

‖‖
2
+

1

2
c1(w

T
1
w1 + b2

1
)

+ c2

(
v1�1 +

1

m
eT�1

)

s.t.
Y − (Aw1 + eb1) ≥ −�1e − �1

�1 ≥ 0e, �1 ≥ 0,

(7)

min
w2,b2,�2,�2

1

2
‖‖Y − (Aw2 + eb2)

‖‖
2
+

1

2
c3(w

T
2
w2 + b2

2
)

+ c4

(
v2�2 +

1

m
eT�2

)

s.t.
(Aw2 + eb2) − Y ≥ −�2e − �2

�2 ≥ 0e, �2 ≥ 0,

(8)

min
�

1

2
�
TG(GTG + c1I)

−1GT
� − YTG(GTG + c1I)

−1GT
� + YT

�

s.t.
0e ≤ � ≤

c2

m
e,

eT� ≤ c2v1,

 where G = [A e] and �, � ∈ ℜm are Lagrangian multiplies 
vectors.

After solving the dual QPPs (8) and (9), we can get 
solutions � and � , and then the regression parameters 
can be obtained as 

[
wT
1
, b1

]T
= (c1I + GTG)−1GT (Y − �) , [

wT
2
, b2

]T
= (c3I + GTG)−1GT (Y + �) . Then, the regressor f(x) 

can be obtained by taking the mean of the two bound func-
tions: f (x) = 1

2
(f1(x) + f2(x)) =

1

2
(w1 + w2)

Tx +
1

2
(b1 + b2).

3 � Wavelet transform‑based weighted �‑twin 
support vector regression

In this section, a novel wavelet transform-based weighted 
�-TSVR is presented. Similar to the �-TWSVR model, the 
WTWTSVR is constructed by two nonparallel hyperplanes, 
down-bound f1(x) , and up-bound f2(x) ; each hyperplane 
determines the �-insensitive bound regressor, and the end 
regressor is f (x) = 1

2
(f1(x) + f2(x)).

3.1 � Linear wavelet transform‑based weighted �
‑TSVR

Linear WTWTSVR also solves a pair of optimization prob-
lems, which are described as follows:

where v1, v2, c1, c2, c3, c4 > 0 are parameters chosen a pri-
ori by the user, �1 and �2 are insensitive parameters, �1 and 
�2 are slack vectors to measure the errors of samples out-
side the ‘ � tube’, and m is the number of training points. 
d ∈ ℜm is a weighting vector, and the diagonal matrix 
D = diag(d) ∈ ℜm×m is a weighting matrix, which will be 
discussed later. Note that when D = I and d = e , the pro-
posed WTWTSVR will be degraded to �-TWSVR, and thus 
the WTWTSVR is the extension of �-TWSVR.

The first term in the objective function of (10) is the sum 
of weighted squared distances from training points to the 

(9)

min
�

1

2
�
TG(GTG + c3I)

−1GT
� + YTG(GTG + c3I)

−1GT
� − YT

�

s.t.
0e ≤ � ≤

c4

m
e,

eT� ≤ c4v2,

(10)

min
w1,b1,�1,�1

1

2
(Y − (Aw1 + eb1))

TD(Y − (Aw1 + eb1))

+
1

2
c1(w

T
1
w1 + b2

1
) + c2

(
v1�1 +

1

m
dT�1

)

s.t. Y − (Aw1 + eb1) ≥ −�1e − �1 �1 ≥ 0e �1 ≥ 0 ,

(11)

min
w2,b2,�2,�2

1

2
(Y − (Aw2 + eb2))

TD(Y − (Aw2 + eb2))

+
1

2
c3(w

T
2
w2 + b2

2
) + c4

(
v2�2 +

1

m
dT�2

)

s.t. (Aw2 + eb2) − Y ≥ −�2e − �2 �2 ≥ 0e �2 ≥ 0 ,
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down-bound function. The second term is a regularization 
term, which can make f1(x) as smooth as possible. The third 
term aims to make the � tube as narrow as possible and 
minimize the sum of errors of the points to lower than the 
down-bound f1(x) , which brings the possibility of overfitting 
the training points. The ratio of three penalty terms in the 
objective function of (10) can be adjusted by the choice of 
c1, c2, v1 . For the optimization problem (11), we have similar 
illustrations.

To solve the optimization problems (10) and (11), their 
dual problems must be derived. Now the Lagrangian func-
tion for the problem (10) is introduced as follows:

where � = (�1, �2,… , �m)
T , � = (�1, �2,… , �m)

T , and � are 
nonnegative Lagrangian multipliers. The KTT optimality 
conditions are given by

It follows from (15), (16), and (20) that the following is true:

Defining G = [ A e ] and u1 = [wT
1
b1 ]

T  , and combining 
(13) and (14) would result in the equation

(12)

L
(
w1, b1, �1, �1, �, �, �

)

=
1

2
(Y − (Aw1 + eb1))

TD(Y − (Aw1 + eb1))

+
1

2
c1(w

T
1
w1 + b2

1
) + c2

(
v1�1 +

1

m
dT�1

)

− �
T (Y − (Aw1 + eb1) + �1e + �1)

− �
T
�1 − ��1,

(13)
�L

�w1

= −ATD(Y − (Aw1 + eb1)) + c1w1 + AT
� = 0,

(14)
�L

�b1
= −eTD(Y − (Aw1 + eb1)) + c1b1 + eT� = 0,

(15)
�L

��1

=
c2

m
d − � − � = 0,

(16)
�L

��1

= c2v1 − eT� − � = 0,

(17)Y − (Aw1 + eb1) ≥ −�1e − �1, �1 ≥ 0, �1 ≥ 0,

(18)�
T(Y − (Aw1 + eb1) + �1e + �1) = 0,

(19)�
T
�1 = 0, ��1 = 0 ,

(20)� ≥ 0e, � ≥ 0e, � ≥ 0.

0e ≤ � ≤
c2

m
d,

eT� ≤ c2v1.

from which the following can be determined:

After substituting the value of u1 into (12), and using the 
above KTT optimality conditions, the dual problem of the 
proposed method can obtained as follows:

Note that D = DT and the terms that are not related to � 
[such as the term 1

2
YTDY  in (21)] are omitted; this does not 

affect the maximization process. The dual problem of (12) 
can be expressed as

Similarly, the dual problem of (11) is deduced as

−GTDY + (GTDG + c1I)u1 + GT
� = 0,

u1 = (GTDG + c1I)
−1GT (DY − �).

(21)

max
�

L =max
�

1

2
(Y − Gu1)

TD(Y − Gu1)

+
1

2
c1u

T
1
u1 + c2v1�1 +

c2

m
dT�1

− �
T
(
Y − Gu1 + �1e + �

)
− �

T
�1 − ��1

=max
�

1

2
(YTD − uT

1
GTD)(Y − Gu1)

+
1

2
c1u

T
1
u1 − �

TY + �
TGu1

=max
�

1

2
YTDY −

1

2
uT
1
GTDY −

1

2
YTDGu1

+
1

2
uT
1
(GTDG + c1I)u1 + �

TGu1 − �
TY

=max
�

1

2
YTDY −

1

2
uT
1
GTDY −

1

2
YTDGu1

+
1

2
uT
1
GTDY −

1

2
uT
1
GT

� − �
TY + �

TGu1

=max
�

(
−
1

2
YTDG +

1

2
�
TG

)
u1 − �

TY

=max
�

(
−
1

2
YTDG +

1

2
�
TG

)

× (GTDG + c1I)
−1GT (DY − �) − �

TY

(22)

min
1

2
�
TG(GTDG + c1I)

−1GT
� − YT

DG(GTDG + c1I)
−1GT

� + YT
�

s.t.0e ≤ � ≤
c2

m
d,

eT� ≤ c2v1.

(23)

min
1

2
�
TG(GTDG + c3I)

−1GT
� + YT

DG(GTDG + c3I)
−1GT

� − YT
�

s.t.0e ≤ � ≤
c4

m
d,

eT� ≤ c4v2,
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and

Thus, the down-bound f1(x) = wT
1
x + b1 and the up-bound 

f2(x) = wT
2
x + b2 are obtained to calculate the regressor 

f (x) =
1

2
(f1(x) + f2(x)).

3.2 � Nonlinear wavelet transform‑based weighted �
‑TSVR

The SVR can be used to solve linear regression problems. 
A line/plane/hyperplane can be adopted to regress the rela-
tionship between inputs and outputs by training samples. 
Unfortunately, the line/plane/hyperplane is only suitable for 
linear problems. The adoption of kernel mapping can extend 
the algorithm to nonlinear cases, which are the majority of 
cases in the real world based on Vapnik’s theory [7]. The 
kernel trick is adopted to map the input into a higher-dimen-
sional feature space. The following kernel-generated func-
tions are considered: down-bound f1(x) = K(xT ,AT )w1 + b1 
and up-bound f2(x) = K(xT ,AT )w2 +b2 , where K is an 
appropriately chosen kernel. Therefore, the end regressor 
is f (x) = 1

2
(f1(x) + f2(x)) . The corresponding optimization 

problems can be described as follows:

 We define the Lagrangian function for the QPP problem 
(24) as

where � = (�1, �2,… , �m)
T , � = (�1, �2,… , �m)

T , and � are 
nonnegative Lagrangian multipliers. The KTT optimality 
conditions are given by

u2 = [wT
2
b2]

T = (GTDG + c3I)
−1GT (DY + �).

(24)

min
w1,b1,�1,�1

1

2
(Y − (K(A,AT )w1 + eb1))

TD(Y − (K(A,AT )w1 + eb1))

+
1

2
c1(w

T
1
w1 + b2

1
) + c2(v1�1 +

1

m
dT�1)

s.t. Y − (K(A,AT )w1 + eb1) ≥ −�1e − �1 �1 ≥ 0e �1 ≥ 0 ,

(25)

min
w2,b2,�2,�2

1

2
(Y − (K(A,AT )w2 + eb2))

TD(Y − (K(A,AT )w2 + eb2))

+
1

2
c3(w

T
2
w2 + b2

2
) + c4(v2�2 +

1

m
dT�2)

s.t. (K(A,AT )w2 + eb2) − Y ≥ −�2e − �2 �2 ≥ 0e �2 ≥ 0 .

(26)

L
(
w1, b1, �1, �1, �, �, �

)

=
1

2
(Y − (K(A,AT )w1 + eb1))

T

× D(Y − (K(A,AT )w1 + eb1))

+
1

2
c1(w

T
1
w1 + b2

1
) + c2

(
v1�1 +

1

m
dT�1

)

− �
T (Y − (K(A,AT )w1 + eb1) + �1e + �1)

− �
T
�1 − ��1,

Defining H = [K(A,AT ) e ] and u1 = [wT
1
b1 ]

T , and then 
combining (27) and (28) would result in the following 
equation:

Thus, we have

By replacing w1 and b1 in (26) by (35), and applying the 
above KTT optimality conditions, the dual problem can be 
obtained as follows:

Similarly, the dual problem of (25) can be expressed by

(27)
�L

�w1

= −K(A,AT )TD(Y − (K(A,AT )w1 + eb1))

+ c1w1 + K(A,AT )T� = 0,

(28)
�L

�b1
= −eTD(Y − (K(A,AT )w1 + eb1))

+ c1b1 + eT� = 0,

(29)
�L

��1

=
c2

m
d − � − � = 0,

(30)
�L

��1

= c2v1 − eT� − � = 0,

(31)Y − (K(A,AT )w1 + eb1) ≥ −�1e − �1, �1 ≥ 0, �1 ≥ 0,

(32)�
T(Y − (K(A,AT )w1 + eb1) + �1e + �1) = 0,

(33)�
T
�1 = 0, ��1 = 0 ,

(34)� ≥ 0e, � ≥ 0e, � ≥ 0.

−HTDY + (HTDH + c1I)u1 + HT
� = 0.

(35)u1 = (HTDH + c1I)
−1GT (DY − �).

(36)

min
1

2
�
TH(HTDH + c1I)

−1HT
�

− YTDH(HTDH + c1I)
−1HT

� + YT
�

s.t.0e ≤ � ≤
c2

m
d,

eT� ≤ c2v1.

(37)

min
1

2
�
TH(HTDH + c3I)

−1HT
�

+ YTDH(HTDH + c3I)
−1GT

� − YT
�

s.t.0e ≤ � ≤
c4

m
d,

eT� ≤ c4v2,
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and we can have

3.3 � Determination of weighting parameters 
by wavelet transform

The parameters mentioned in the first subsection, d ∈ ℜm and 
D ∈ ℜm×m (D = diag(d)) , are the weighting vector and matrix, 
respectively. They should be determined beforehand according 
to the importance of training data. By direct observation of 
the objective functions of TSVR and �-TWSVR, it is easy to 
see that all of the samples have the same penalties, which may 
reduce the performance of the regressors due to the impact 
of data with too much noise. Instinctively, different training 
samples should be given different weights; a larger given 
weight means that the sample is more important. Motivated 
by this idea and noting that the Gaussian function can reflect 
this trend, the weighting parameter d

(
= [d1, d2,… , dm]

T
)
 is 

determined by the Gaussian function described as follows:

where E is the amplitude, � represents the standard devia-
tion, and the selection of E and � is determined by the statis-
tical characteristics of training data and is usually adjusted 
by experiments. The inappropriate selection of E and � 
makes (39) unable to reflect the statistical characteristics 
of training data and reduces the regression performance. 
Ŷ(= [ŷ1, ŷ2,… , ŷm]

T ) is the estimation value vector of out-
put Y(= [y1, ym,… , ym]

T ) . Any time series filter can be used 
to calculate Ŷ  , but the wavelet filter is applicable to short-
term signal processing, which is characteristic of most actual 
time series signals. Wavelet transform is a transform analysis 
method. It inherits and develops the idea of short-time Fou-
rier transform localization, and overcomes the shortcomings 
of window size not changing with frequency. It can provide 
a time-frequency window that changes with frequency. It is 
a relatively ideal tool for time-frequency analysis and pro-
cessing signals. Therefore, wavelet filtering is adopted to 
calculate Ŷ  by three stages, as described below.

(38)u2 = [wT
2
b2 ]

T = (HTDH + c3I)
−1GT (DY + �).

(39)d = E exp

(
−
|||Y − Ŷ

|||
2

∕𝜎2

)
,

1.	 Wavelet transform may be considered a form of time-fre-
quency representation for signals, and thus are related to 
harmonic analysis. Discrete wavelet transforms (DWT) 
use discrete-time filter banks. The DWT of a signal in 
the l-th decomposition step xa

l
(n) is calculated by a series 

of filters. The samples are passed through a low-pass 
filter with impulse response �(t) resulting in the approxi-
mation coefficients xa

l+1
 , and through a high-pass filter 

with impulse response �(t) resulting in the detail coef-
ficients xd

l+1
 . 

 The approximation coefficients xa
l+1

 can be decomposed 
further to get xa

l+2
 and xd

l+2
 . This process of decompo-

sition is represented as a binary tree, as illustrated in 
Fig. 1a.

2.	 The obtained l groups of decomposed sequence 
( xd

1
, xd

2
,… , xd

l
, xa

l
 ) after l steps of decomposition are 

processed by an appropriate algorithm to remove noise. 
In this paper, the high frequency part of the frequency 
domain signal is directly zeroed as denoising algorithm. 
Then the denoised sequence ( xd�

1
, xd�

2
,… , xd�

l
, xa�

l
 ) is 

obtained.
3.	 In this stage, the estimation value of output ŷ is recon-

structed by the denoised sequence ( xd�
1
, xd�

2
,… , xd�

l
, xa�

l
 ). 

 This process of reconstruction is carried on further, and 
after l steps of reconstruction the estimation value of 
output Ŷ can be obtained, i.e., Ŷ = xa�

0
 . We next substitute 

Ŷ  into (39), and then the weighting vector d and matrix 
D can be calculated. The process of signal decomposi-
tion and reconstruction is illustrated in Fig. 1.

(40)xa
l+1

(n) =
∑

k

�(k − 2n)xa
l
(k)

(41)xd
l+1

(n) =
∑

k

�(k − 2n)xa
l
(k)

(42)

xa�
l−1

(n) =
∑

k

�(n − 2k)xa�
l
(k) +

∑

k

�(n − 2k)xd�
l
(k)

Fig. 1   Wavelet transform-based signal processing. a Decomposition process, and b reconstruction process



101International Journal of Machine Learning and Cybernetics (2020) 11:95–110	

1 3

The wavelet decomposition layers l can affect the per-
formance of denoising. Usually, too many decomposition 
layers will result in serious loss of signal information. After 
denoising, the signal-to-noise ratio may decrease and the 
computational complexity will increase. If the number of 
decomposition layers is too small, the denoising effect is not 
ideal and the signal-to-noise ratio is not improved much. The 
general decomposition layers are determined by empirical 
methods.

3.4 � Algorithm summary and discussion

In this subsection, we illustrate the proposed WTWTSVR 
algorithm.

Algorithm 1: Wavelet transform-based weighted �-twin 
support vector regression.

Input: Training data input matrix A; training data output 
vector Y; the appropriate parameters c1, c2, c3, c4 , �1 and �2 , 
in (24) and (25); Gaussian function parameters E, �2 in (39).

Output: The regression function f(x).
Process:

1.	 Preprocess Y by the wavelet transform method described 
in subsection (3.3) and get Ŷ  . Calculate d by (39).

2.	 By calculating the QPP problems in Eqs. (36) and (37), 
we can get � and � , respectively.

3.	 Calculate u1 and u2 by (35) and (38), respectively.
4.	 Compute f (x) = 1

2
(w1 + w2)

Tx +
1

2
(b1 + b2).

The computation complexity of the proposed algorithm is 
mainly determined by the computations of a pair of QPPs 
and a pair of inverse matrices. If the number of training sam-
ples is l, then the training complexity of dual QPPs of the 
proposed algorithm is about O(2l3 ) while the training com-
plexity of the traditional SVR is about O(8l3 ), which implies 
that the training speed of SVR is about four times slower 
than that of the proposed algorithm. Furthermore, a pair of 
inverse matrices with the size (l + 1)(l + 1) in QPPs have the 
same computational cost O(l3 ). During the training process, 
it is good to cache the inverse matrices with some memory 
cost in order to avoid repeated computations. In addition, the 
proposed algorithm contains the wavelet transform weighted 
matrix, and a Db-3 wavelet with a length of 6 is used in this 
paper; then, the complexity of the wavelet transform is less 
than 12l. By comparing with the computations of QPPs and 
the inverse matrix, the complexity of computing the wavelet 
matrix can be ignored. Therefore, the computation complex-
ity of the proposed algorithm is about O(3l3).

We mention that weights are inserted into both quad-
ratic and first-degree terms in the proposed method, which 
is significantly different from previous works [22, 25]. The 
weights adopted in [22, 25] are only inserted into the quad-
ratic term. Intuitively, the WTWTSVR can make full use 

of the prior information of training samples. The weight 
matrix and weight vector, which represent the distance of 
noised samples and its ‘real position,’ can reflect the prior 
information of the training samples. The larger weight is 
given to samples with smaller noise and the smaller weight 
is given to samples with larger noise. The adding of the 
weight matrix and weight vector to the objective function 
can reduce the impact of noise and outliers.

The weight calculation method given in [22] is also used 
to make use of the prior information of training data. One 
of the differences between the WTWTSVR and the method 
proposed in [22] lies in the calculation method of weights. 
In [22], the K-nearest neighbor (KNN) algorithm is adopted. 
In the algorithm, the KNN is adopted to calculate the penalty 
weights of samples. The idea of the KNN is that a sample 
point x is important if it has a larger number of K-nearest 
neighbors, whereas it is not important if it is an outlier that 
has a small number of K-nearest neighbors. We can see 
that the KNN algorithm is suitable for dealing with clus-
tered samples but not time series. The wavelet transform 
theory adopted in our proposed algorithm is a new angle 
for preprocessing samples. Wavelet transform is a kind of 
time-frequency representation for signals, and the proposed 
method based on the wavelet theory is suitable for dealing 
with time series samples.

4 � Experimental results

In this section, some experiments are made to examine the 
performance of our proposed WTWTSVR. WTWTSVR is 
compared with TSVR [11], �-TWSVR [21], Asy-�-TSVR 
[19], KNNUPWTSVR [26], and WL-�-TSVR [25] using 
three artificial datasets and eight benchmark datasets. The 
computer simulations are implemented in a Matlab R2014a 
environment on a PC with an Intel Core i5 processor (3.3 
GHz) with 8 GB RAM. In this paper, the Gaussian nonlinear 
kernel is adopted for all of the datasets, that is

where e determines the width of the Gaussian function. The 
choice of parameters is essential for the performance of algo-
rithms. In this paper, parameter values are chosen by the grid 
search method from the set of values {10i|i = −4,−3,… , 5} . 
In order to degrade the computational complexity of param-
eter selection, let C1 = C2 = C and �1 = �2 = � in TSVR; 
C1 = C2 = C and �1 = �2 = � in Asy- �-TSVR; and c1 = c3 , 
c2 = c4 , and �1 = �2 = � in �−TWSVR and the proposed 
WTWTSVR.

(43)K(aT , bT ) = exp

�
−
‖a − b‖2

e

�
,
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The performance of our proposed WTWTSVR and the 
three other methods are evaluated by selected criteria. The 
number of testing samples is denoted by l, yi denotes the real 
value of a testing sample point xi , ȳ =

∑
i
1

l
yi is the mean 

value of y1, y2,… , yl , and ŷi denotes the predicted value of 
xi . The criteria are specified as follows. 

SSE:	� Sum squared error of testing samples, defined as SSE 
= 
∑l

i=1
(yi − ŷi)

2.
SST:	� Sum squared deviation of testing samples, defined 

as SST = 
∑l

i=1
(yi − ȳi)

2.
SSR:	� Sum squared deviation that can be explained by the 

estimator, defined as SSR = 
∑l

i=1
(ŷi − ȳi)

2.

SSE represents the fitting precision, but too small of an 
SSE value may mean overfitting of the regressor due to the 
fitting of noise. SST represents the variance of the testing 
samples, and SSR reflects the explanation ability of the 
regressor. 

SSE/SST:	� Ratio between sum squared error and sum 
squared deviation of testing samples, defined 
as SSE/SST=

∑l

i=1
(yi − ŷi)

2∕(yi − ȳi)
2.

SSR/SST:	� Ratio between interpretable sum squared 
deviation and real sum squared devia-
tion of testing samples, defined as SSR/
SST=

∑l

i=1
(ŷi − ȳi)

2∕
∑l

i=1
(yi − ȳi)

2.

In most cases, a small SSE/SST represents good agree-
ment between estimations and real values; however, too 
small of an SSE/SST also probably means overfitting of the 
regressor. SSR/SST is the variance ratio of estimated data 
over sample data; if SSR/SST = 1, the estimated data share 
the same variance as training samples.

4.1 � Experiments on artificial datasets

To demonstrate the performance of the proposed algorithm 
on artificial datasets, consider three noised functions for 
approximation denoted as y = f (x) + n , where the noise 
n∼N(0, �2) is Gaussian additive noise with mean zero, and 
variance �2 is 0.12 and 0.22 , respectively. Set the number 
of training points to be 300. The Db-3 wavelet used in 
WTWTSVR is selected to denoise the training data and the 
number of decomposition layers is 5. Five algorithms (TSVR 
[11] , �-TWSVR [21], Asy-�-TSVR [19], KNNUPWTSVR 
[26], and WL-�-TSVR [25]) are adopted for performance 
comparisons with the proposed WTWTSVR.

Figure 2 shows the one-run approximation functions 
obtained by the six algorithms.

The selection of parameters can be seen in Table 1. The 
adopted functions for regression are defined as follows.

Function 1:	� f (x) = sin x

x
.

Function 2:	� f (x) = x2∕3.
Function 3:	� f (x) = 4

|x|+2 + cos(2x) + sin(3x).

To avoid biased comparisons, for each case, ten independ-
ent groups of noised samples are generated randomly, and 
the number of training points and testing points are all set 
to 300. Testing data is selected randomly under a uniform 
distribution and is assumed to be noise-free. Other settings 
can be seen in Table 1.

The average results are summarized in Table 2. In the 
numerical value columns, the first column shows the mean 
value of ten testing results, and the second column repre-
sents the plus or minus the standard deviation. Obviously, 
the proposed WTWTSVR obtains the lowest testing errors 
compared with TSVR, Asy-�-TSVR, �-TWSVR, KNNUP-
WTSVR, and WL-�-TSVR, and it gets the smallest SSE 
and SSE/SST values. Although the SSR/SST value of 
WTWTSVR is not the largest, it is close to that obtained 
by other algorithms. From the comparisons of the six algo-
rithms, we can see that the proposed WTWTSVR has better 
performance in most criteria.

Figure 3 shows the impact of variance �2 in (39) on the 
performance index SSE. The x coordinate is �2 , and the y 
coordinate is the SSE value. The function for approximation 
is Function 1, and the Gaussian additive noise is with mean 
zero, and variance �2 = 0.12 or 0.22 . The result is averaged 
by 500 independent tests. We can see that the variance �2 
of the Gaussian function for weighting has a great influence 
on the regression performance of WTWTSVR. The curve 
is convex, and for fixed noise, optimal �2 can be obtained. 
The parameter �2 determines the width of the Gaussian 
function. A large �2 leads to a fat Gaussian curve and simi-
lar weights for samples, while a small �2 leads to a narrow 
Gaussian curve and largely different weights for samples. 
Therefore, the value of �2 determines the impact of differ-
ent samples, and the curve in Fig. 3 decreases sharply and 
increases slowly.

The selection of the kernel function is important for the 
performance of regression algorithms. In order to test the 
effect of kernel functions, we study the performance of six 
kernel functions for artificial datasets. Function 1 includes 
the Gaussian kernel adopted in the proposed method. The 
function expressions and performance are listed in Table 3. 
It is easy to see that the Gaussian kernel achieves the best 
results.

To test the effect of weighting parameter D, experiments 
on the SSE value of regression of artificial functions are 
conducted. Table 4 shows the results of tests for noise vari-
ances �2 of 0.12 and 0.22 . The first row in the table repre-
sents the performance of the proposed WTWTSVR (with 
D), and the second row shows that of the same algorithm 
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except when setting D as an identity matrix ( D = � ). The 
selected parameters can be seen in Table 1. It is seen that 
the SSE values of WTWTSVR are low when introducing the 
weighting parameter D calculated by the wavelet transform 
method; this verifies the effectiveness of adding the weight-
ing parameter D.

To test the sensitivity of parameter selection on 
WTWTSVR regression performance, we study the influence 
of parameters c1, c2, �,E,and �2 on SSE for artificial data-
sets with Function 1 with noise variance �2 = 0.12 . From 

Figure 4 we can see that the SSE curves show convexity, 
i.e., with the increase in a parameter, performance value first 
decrease and then increase, which ensures that the optimal 
value can be found. However, the sensitivities to the change 
in parameter values are different. The performance is sensi-
tive to c1,E , and �2 , but not to c2 and �.

To test the robustness of the proposed algorithm to outli-
ers, we verified the performance of the proposed method on 
Function 1 with Gaussian additive noise, and with mean zero 
and variance �2 = 0.12 . Figure 5 shows that the prediction 
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Fig. 2   Performance of WTWTSVR on a Function 1 with noise � = 0.1 , b Function 1 with noise � = 0.2 , c Function 2 with noise � = 0.1 , d 
Function 2 with noise � = 0.2 , e Function 3 with noise � = 0.1 , and f Function 3 with noise � = 0.2
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performance of the proposed method is satisfying (see the 
blue line); SSE, SSE/SST, and SSR/SST values were 0.1678, 
0.0058, and 0.9601, respectively. By comparing with the 
results in Table 2, it can be concluded that the performance 
of the proposed method with outliers is still better than that 
of the competitive algorithms with no outliers.

4.2 � Experiments on benchmark datasets

To further evaluate the performance of the proposed 
algorithm, experiments on benchmark datasets from the 
UCI machine learning repository [27] are conducted. 
The selected datasets are all time series. For all of the 
real-word examples considered in this paper, the original 
data is normalized as s̃i = (si − smin)∕(smax − smin) , where 
si is the input value of the ith sample, s̃i is its correspond-
ing normalized value, and smin and smax denote the mini-
mum and maximum values, respectively. The selection 
of parameters can be seen in Table 5. Table 6 show the 
performance of the six algorithms for the following bench-
mark datasets.

Energy: Energy use prediction of appliances. This data-
set studies the energy use of appliances in a low-energy 
building based on 29 attributes, such as temperature and 
humidity conditions, averaged for 10-min periods. The 
number of instances is 19,735. We choose 1000 instances, 
including 500 training samples and 500 test samples with 
22 attributes (dimensions of input) for regression and test-
ing, respectively.

PM2.5: Beijing PM2.5 data. This dataset aims to predict 
the hourly PM2.5 concentration data at the US embassy in 
Beijing. 43,824 instances and 13 attributes, such as dew 
point, temperature, and wind speed, are included; and 1000 
instances and four attributes are adopted in our experiments.

AirQuality: Air quality. The dataset contains hourly aver-
aged responses from an array of five metal oxide chemical 
sensors. 822 instances and nine attributes are adopted.

DowJones: Dow Jones index. This dataset predicts the 
Dow Jones index value; 720 instances and four attributes 
are adopted in our experiments.

Istanbul1/2/4/8 is dataset of the Istanbul stock exchange; 
536 samples with one, two, four, and eight attributes (input 
dimensions) are adopted independently.

Odd-numbered samples are selected as training data, 
while even-numbered samples are selected as test data; thus 
the number of the training data and test data are the same. 
The number (m) and dimension (n) of samples are listed in 
Table 6. In order to not destroy the time series characteristic 
of the data, one-shot experiments but not cross-validation 
experiments are conducted. From Table 6 we can see that 
our proposed WTWTSVR outperforms the other five algo-
rithms. On most datasets, the WTWTSVR obtains the small-
est SSE and SSE/SST values. Only on Istanbul1 does our 
WTWTSVR have the second smallest value. For SSR/SST 
criteria, WTWTSVR achieves the second or the third values 
close to 1 on Energy to DowJones , and achieves the clos-
est value to 1 on Istanbul1 to  Istanbul8. We can also see 
from Table 6 that the SSE value decreases with increasing 
input dimension, i.e., more input information leads to more 
accurate estimation. Based on the above analysis, it can be 

Table 1   Parameter selection for the six algorithms on artificial data-
sets with different variance of Gaussian noises

Datasets Regressors Parameters Parameter values

Function 1 WTWTSVR c1, c2, �,E, �
2 1,0.1,0.1,0.1,0.01

N(0, 0.12) TSVR C, � 0.1, 0.1
�-TWSVR c1, c2, � 1, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 0.1, 0.1
WL-�-TSVR c1∕c2, �1∕�2 0.1, 1

Function 1 WTWTSVR c1, c2, �,E, �
2 1, 0.1, 0.1, 0.1, 0.1

N(0, 0.22) TSVR C, � 0.1, 0.1
�-TWSVR c1, c2, � 1, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 0.1, 0.1
WL-�-TSVR c1∕c2, �1∕�2 0.1, 1

Function 2 WTWTSVR c1, c2, �,E, �
2 0.001, 0.1, 0.1, 10, 

0.01
N(0, 0.12) TSVR C, � 1, 0.01

�-TWSVR c1, c2, � 0.001, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 0.1, 0.01
WL-�-TSVR c1∕c2, �1∕�2 0.1, 0.001

Function 2 WTWTSVR c1, c2, �,E, �
2 0.001, 0.1,0.1, 10, 0.1

N(0, 0.22) TSVR C, � 0.1, 0.1
�-TWSVR c1, c2, � 0.001, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 0.1, 0.01
WL-�-TSVR c1∕c2, �1∕�2 0.1, 0.001

Function 3 WTWTSVR c1, c2, �,E, �
2 0.001, 0.1, 0.1, 10, 

0.01
N(0, 0.12) TSVR C, � 1, 0.01

�-TWSVR c1, c2, � 0.001, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 10, 0.01
WL-�-TSVR c1∕c2, �1∕�2 10, 0.001

Function 3 WTWTSVR c1, c2, �,E, �
2 0.001, 0.1, 0.1, 10, 0.1

N(0, 0.22) TSVR C, � 0.1, 0.1
�-TWSVR c1, c2, � 0.001, 0.1, 0.1
Asy-�-TSVR C, �, p 0.1, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 10, 0.01
WL-�-TSVR c1∕c2, �1∕�2 10, 0.001
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concluded that the performance of algorithms depends not 
only on the algorithm itself and the statistical characteris-
tics of the data but also on the choice of parameters. The 
experimental results verify the effectiveness of training data 
preprocessing by the wavelet transform method, which can 
utilize the prior information of samples. The experimental 
results also show that the introduction of weighting parame-
ters into both quadratic and first-degree empirical risk terms 
can improve the performance of the model.

4.3 � Statistical analysis of experimental results

Nonparametric statistical tests are carried out to validate 
the experimental performance results of the proposed algo-
rithm. The Friedman test [28] ranks the algorithms over six 
artificial datasets and eight real datasets. The Friedman test 
uses alpha = 0.05, and is distributed according to chi-square 
with 5 degrees of freedom. The Friedman statistic is 42.04 
and 43.01 with p values of 5.7845e−8 and 3.6806e−8 for 
SSE and SSE/SST, respectively. The average ranks obtained 
by the six algorithms for SSE and SSE/SST are shown in 
Table 7. We can see that the average SSE and SSE/SST ranks 
of the WTWTSVR are lower than those of other algorithms. 

Table 2   Performance 
comparison of algorithms on 
artificial datasets with different 
variance of Gaussian noises

Datasets Regressors SSE SSE/SST SSR/SST

Function 1 WTWTSVR 0.1642 ± 0.0472 0.0056 ± 0.0016 0.9616 ± 0.0339
N(0, 0.12) TSVR 0.2345 ± 0.0803 0.0080 ± 0.0028 1.0100 ± 0.0358

�-TWSVR 0.1727 ± 0.0628 0.0059 ± 0.0022 1.0074 ± 0.0357
Asy-�-TSVR 0.2247 ± 0.0755 0.0077 ± 0.0026 1.0095 ± 0.0363
KNNUPWTSVR 0.1850 ± 0.0705 0.0063 ± 0.0024 1.0079 ± 0.0353
WL-�-TSVR 0.1727 ± 0.0628 0.0059 ± 0.0022 1.0074 ± 0.0357

Function 1 WTWTSVR 0.6246 ± 0.2103 0.0217 ± 0.0073 0.9801 ± 0.0443
N(0, 0.22) TSVR 1.0411 ± 0.4150 0.0362 ± 0.0144 1.0297 ± 0.0396

�-TWSVR 0.7481 ± 0.2856 0.0260 ± 0.0099 1.0163 ± 0.0352
Asy-�-TSVR 1.0071 ± 0.4116 0.0350 ± 0.0143 1.0288 ± 0.0381
KNNUPWTSVR 0.8716 ± 0.3149 0.0303 ± 0.0109 1.0345 ± 0.0373
WL-�-TSVR 0.7482 ± 0.2857 0.0260 ± 0.0099 1.0163 ± 0.0352

Function 2 WTWTSVR 0.6162 ± 0.0449 0.0123 ± 0.0009 0.9813 ± 0.0290
N(0, 0.12) TSVR 0.8159 ± 0.0437 0.0162 ± 0.0009 0.9828 ± 0.0406

�-TWSVR 0.7391 ± 0.0340 0.0147 ± 0.0007 0.9816 ± 0.0296
Asy-�-TSVR 0.8657 ± 0.0402 0.0172 ± 0.0008 0.9763 ± 0.0302
KNNUPWTSVR 0.7684 ± 0.0367 0.0153 ± 0.0007 0.9782 ± 0.0288
WL-�-TSVR 0.7280 ± 0.0351 0.0145 ± 0.0007 0.9828 ± 0.0286

Function 2 WTWTSVR 0.8768 ± 0.1467 0.0177 ± 0.0030 1.0060 ± 0.0575
N(0, 0.22) TSVR 1.1546 ± 0.1349 0.0233 ± 0.0027 0.9867 ± 0.0628

�-TWSVR 1.0295 ± 0.1273 0.0208 ± 0.0026 0.9876 ± 0.0610
Asy-�-TSVR 1.1790 ± 0.1365 0.0238 ± 0.0028 0.9864 ± 0.0615
KNNUPWTSVR 1.0555 ± 0.1446 0.0213 ± 0.0029 1.0005 ± 0.0572
WL-�-TSVR 1.0219 ± 0.1353 0.0206 ± 0.0027 0.9904 ± 0.0583

Function 3 WTWTSVR 0.4689 ± 0.1060 0.0014 ± 0.0003 1.0011 ± 0.0126
N(0, 0.12) TSVR 1.0964 ± 0.1080 0.0034 ± 0.0003 0.9776 ± 0.0145

�-TWSVR 0.5674 ± 0.0689 0.0018 ± 0.0002 0.9942 ± 0.0127
Asy-�-TSVR 2.0892 ± 0.1227 0.0065 ± 0.0004 0.9464 ± 0.0118
KNNUPWTSVR 0.5352 ± 0.0819 0.0017 ± 0.0003 1.0022 ± 0.0153
WL-�-TSVR 0.4915 ± 0.0843 0.0015 ± 0.0003 1.0043 ± 0.0171

Function 3 WTWTSVR 1.0662 ± 0.3388 0.0030 ± 0.0009 1.0036 ± 0.0184
N(0, 0.22) TSVR 2.2686 ± 0.3427 0.0063 ± 0.0010 0.9612 ± 0.0190

�-TWSVR 1.2184 ± 0.2494 0.0034 ± 0.0007 0.9965 ± 0.0191
Asy-�-TSVR 2.5237 ± 0.3242 0.0070 ± 0.0009 0.9544 ± 0.0185
KNNUPWTSVR 1.2444 ± 0.3051 0.0035 ± 0.0008 1.0002 ± 0.0224
WL-�-TSVR 1.5722 ± 0.3142 0.0044 ± 0.0009 1.0051 ± 0.0236
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Fig. 3   SSE value over �2 of Gaussian function. a � = 0.1 , and b � = 0.2

Table 3   Comparisons of 
WTWTSVR on Function 1 
using different kernel functions

Kernel name Function definition SSE SSE/SST SSR/SST

Gaussian exp (− ‖‖x − xi
‖‖
2
∕e) 0.1401 ± 0.0522 0.0041 ± 0.0015 0.9616 ± 0.0329

Linear xxT
i

27.4681 ± 0.3409 1.0204 ± 0.0127 0.0197 ± 0.0126
Polynomial (axxT

i
+ c)d 21.7358 ± 0.2398 0.6806 ± 0.0075 0.3595 ± 0.0492

Sigmoid tanh(axxT
i
+ c) 0.7425 ± 0.1419 0.0251 ± 0.0048 0.8683 ± 0.0304

Multiquadric (‖‖x−xi‖‖
2
+ �

2)0.5 0.3674 ± 0.1121 0.0110 ± 0.0034 0.8985 ± 0.0496

Log − log (1 + ‖‖x−xi‖‖
�) 0.2407 ± 0.1098 0.0062 ± 0.0028 0.9578 ± 0.0419

Table 4   SSE value of regression 
of artificial functions

SSE Function 1 Function 2 Function 3

�
2 = 0.12 �

2 = 0.22 �
2 = 0.12 �

2 = 0.22 �
2 = 0.12 �

2 = 0.22

With D 0.0980 0.4068 2.3739 2.1193 0.5291 1.1793
D = � 0.1095 0.4106 3.7936 3.5630 0.7454 1.2818
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Fig. 4   The influence of parameters c1, c2, �,E , and �2 on SSE for artificial datasets with Function 1 with noise variance �2
= 0.12
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This shows the superiority of the proposed algorithm, which 
achieves better performance. In order to check the significant 
differences between the algorithms, the p-value is calculated 
through the Bonferroni–Dunn nonparametric test by com-
puting multiple pairwise comparisons. The test assumes that 
the performances of two algorithms are significantly differ-
ent if their average ranks differ by at least some critical value 
[28]. Table 8 lists the p values of the Bonferroni–Dunn test 
for the SSE criteria and SSE/SST ranking results obtained 
by the Friedman procedure. The null hypothesis of these 
tests is that there is no difference between the result distri-
butions. From Table 8 we can see that the p values are very 
small, which means that the WTWTSVR is quite different 
from other methods, and therefore confirms the superiority 
of our method.

From the above analysis, we can conclude that the pro-
posed WTWTSVR can actually improve the performance. 
The introduction of the weighting parameters into both 
quadratic and first-degree empirical risk terms are feasible 
and effective, and the preprocessing of training data by the 
wavelet transform method can utilize the prior information 
of samples. It should be noticed that wavelet theory is a 
powerful denoising tool for a time series signal. Therefore, 
the proposed method is suitable for dealing with time series 
datasets. If we deal with non-series samples by the proposed 
WTWTSVR, performance may be decreased. Additionally, 
the proposed model is suitable for small sample size data-
sets, and a large number of training samples will bring about 
tremendous computational cost.

5 � Conclusions

In this paper, a novel wavelet transform-based weighted �
-twin support vector regression (WTWTSVR) is proposed. 
Unlike the cases in TSVR and � -TWSVR, samples in differ-
ent positions in the proposed WTWTSVR model are given 
by different weights according to the distance between sam-
ples, and results are preprocessed by the wavelet transform. 
Computational comparisons between WTWTSVR and other 
existing methods are performed on artificial and benchmark 
datasets to show the better performance of the WTWTSVR, 
which demonstrates the effectiveness of the proposed 
method. Furthermore, since one of the theoretical bases of 
the proposed method is wavelet theory, which is a powerful 
denoising tool for time series signals, the proposed method 
is suitable for dealing with time series datasets. If we deal 
with non-series samples using the proposed WTWTSVR, 
performance may be decreased. Additionally, SVR is suit-
able for small sample size datasets, and a large number of 
training samples will bring about tremendous computational 
cost. Furthermore, one can notice that the precision of pre-
processing and the selection of variance �2 of the Gaussian 
function can affect the performance of WTWTSVR. There-
fore, for future work, study of parameter selection and the 
method of preprocessing should be carried out.

Fig. 5   Regression performance 
of WTWTSVR on noised Func-
tion 1 with outliers
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Table 5   Parameter selection 
for the six algorithms on 
benchmark datasets

EnergyDatasets Regressors Parameters Parameter values

Energy WTWTSVR c1, c2, �,E, �
2 0.01, 100, 0.01, 10, 0.1

TSVR C, � 0.01, 10
�-TWSVR c1, c2, � 0.01, 100, 0.01
Asy-�-TSVR C, �, p 0.01, 0.01, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 10, 0.01
WL-�-TSVR c1∕c2, �1∕�2 10, 0.01

PM2.5 WTWTSVR c1, c2, �,E, �
2 0.0001, 1, 0.1, 10, 1

TSVR C, � 0.01, 10
�-TWSVR c1, c2, � 0.0001, 1, 0.1
Asy-�-TSVR C, �, p 0.01, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 0.0001, 1
WL-�-TSVR c1∕c2, �1∕�2 1, 0.0001

AirQuality WTWTSVR c1, c2, �,E, �
2 0.001, 1, 0.1, 10, 0.1

TSVR C, � 0.001, 0.1
�-TWSVR c1, c2, � 0.001, 1, 0.1
Asy-�-TSVR C, �, p 0.001, 0.1, 0.4
KNNUPWTSVR c1∕c2, c3∕c4 1, 0.0001
WL-�-TSVR c1∕c2, �1∕�2 1,0.001

DowJones WTWTSVR c1, c2, �,E, �
2 0.001, 100, 0.01, 10, 0.1

TSVR C, � 0.1, 10
�-TWSVR c1, c2, � 0.001, 100, 0.01
Asy-�-TSVR C, �, p 0.1, 0.01, 0.4
KNNUPWTSVR c1∕c2, c3∕c4 10, 0.01
WL-�-TSVR c1∕c2, �1∕�2 100, 0.01

Istanbul1 WTWTSVR c1, c2, �,E, �
2 0.1, 100, 0.001, 10, 0.1

TSVR C, � 0.01,10
�-TWSVR c1, c2, � 0.1, 100, 0.001
Asy-�-TSVR C, �, p 0.01, 0.001, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 1000, 0.01
WL-�-TSVR c1∕c2, �1∕�2 100, 0.01

Istanbul2 WTWTSVR c1, c2, �,E, �
2 0.1, 10, 0.1, 10, 0.1

TSVR C, � 0.01, 10
�-TWSVR c1, c2, � 0.1, 10, 0.1
Asy-�-TSVR C, �, p 0.01, 0.1, 0.6
KNNUPWTSVR c1∕c2, c3∕c4 100, 0.01
WL-�-TSVR c1∕c2, �1∕�2 10, 0.1

Istanbul4 WTWTSVR c1, c2, �,E, �
2 0.1, 10, 0.1, 10, 0.1

TSVR C, � 0.01,10
�-TWSVR c1, c2, � 0.1, 10, 0.1
Asy-�-TSVR C, �, p 0.01, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 100, 0.01
WL-�-TSVR c1∕c2, �1∕�2 10, 0.1

Istanbul8 WTWTSVR c1, c2, �,E, �
2 0.1, 1000, 0.1, 1, 0.01

TSVR C, � 0.01, 10
�-TWSVR c1, c2, � 0.1, 1000, 0.1
Asy-�-TSVR C, �, p 0.01, 0.1, 0.5
KNNUPWTSVR c1∕c2, c3∕c4 100, 0.1
WL-�-TSVR c1∕c2, �1∕�2 100, 0.1
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Table 6   Performance comparison of the six algorithms on benchmark datasets

Datasets (m ∗ n) Regressors SSE SSE/SST SSR/SST

Energy (500*22) WTWTSVR 3.6822 0.4861 1.1418
TSVR 3.8750 0.5116 1.2348
�-TWSVR 3.7306 0.4925 1.1420
Asy-�-TSVR 3.8892 0.5134 1.2384
KNNUPWTSVR 3.7101 0.4898 1.0769
WL-�-TSVR 3.7077 0.4895 1.1190

PM2.5 (500*4) WTWTSVR 6.1543 0.5490 0.4149
TSVR 6.3487 0.5663 0.3706
�-TWSVR 6.1765 0.5509 0.3863
Asy-�-TSVR 6.3441 0.5659 0.3686
KNNUPWTSVR 6.2910 0.5612 0.4194
WL-�-TSVR 6.1935 0.5524 0.3898

AirQuality (411*9) WTWTSVR 1.0349 0.0643 0.8615
TSVR 1.0703 0.0665 0.8314
�-TWSVR 1.0708 0.0666 0.8316
Asy-�-TSVR 1.0708 0.0666 0.8312
KNNUPWTSVR 1.0626 0.0660 0.8819
WL-�-TSVR 1.0844 0.0674 0.8353

DowJones (360*4) WTWTSVR 0.0458 0.0031 0.9424
TSVR 0.0509 0.0034 0.9452
�-TWSVR 0.0488 0.0033 0.9423
Asy-�-TSVR 0.0490 0.0033 0.9421
KNNUPWTSVR 0.0492 0.0033 0.9377
WL-�-TSVR 0.0501 0.0033 0.9399

Istanbul1 (268*1) WTWTSVR 5.5722 1.3727 1.1145
TSVR 6.1766 1.5216 1.5286
�-TWSVR 5.5018 1.3554 1.1387
Asy-�-TSVR 6.1824 1.5230 1.5339
KNNUPWTSVR 5.7806 1.4240 1.3200
WL-�-TSVR 5.7984 1.4284 1.4017

Istanbul2 (268*2) WTWTSVR 5.2725 1.2989 1.2501
TSVR 5.4127 1.3334 1.4831
�-TWSVR 5.2832 1.3015 1.3316
Asy-�-TSVR 5.4100 1.3327 1.4841
KNNUPWTSVR 5.6069 1.3813 1.4223
WL-�-TSVR 5.2745 1.2994 1.3205

Istanbul4 (268*4) WTWTSVR 4.6502 1.1456 1.4230
TSVR 4.6725 1.1511 1.6666
�-TWSVR 4.7190 1.1625 1.5161
Asy-�-TSVR 4.6764 1.1520 1.6785
KNNUPWTSVR 5.1710 1.2739 1.6685
WL-�-TSVR 4.7152 1.1616 1.5043

Istanbul8 (268*8) WTWTSVR 3.8933 0.9591 1.2916
TSVR 4.0682 1.0022 2.0271
�-TWSVR 4.0270 0.9920 1.8629
Asy-�-TSVR 4.0387 0.9949 1.9973
KNNUPWTSVR 3.9942 0.9840 1.4690
WL-�-TSVR 4.3194 1.0641 1.8141
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Table 7   Algorithms’ average 
rankings for SSE and SSE/SST

Datasets WTWTSVR TSVR �-TSVR Asy-�-TSVR KNNUPWTSVR WL-�-TSVR

SSE 1.0714 4.9286 2.9286 4.9643 3.7143 3.3929
SSE/SST 1.0714 4.9286 3.0714 5.0000 3.6786 3.2500

Table 8   p value from Bonferroni–Dunn tests for SSE and SSE/SST, 
with comparisons to the proposed WTWTSVR

Algorithm SSE SSE/SST

TSVR 4.6033e−8 3.2269e−8

�-TSVR 8.4941e−3 4.1476e−3

Asy-�-TSVR 3.4562e−8 1.7913e−8

KNNUPWTSVR 1.8024e−4 1.8626e−4

WL-�-TSVR 1.0029e−3 1.7922e−3
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