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Abstract
How to reduce the complexity of lattice construction is an important research topic in formal concept analysis. Based on 
granularity tree, the relationship between the extent and the intent of the attribute (object)-oriented concept before and 
after granularity transformation are investigated. Then, zoom algorithms for attribute (object)-oriented concept lattices are 
proposed. Specifically, zoom-in algorithm is applied to change the attribute granularity from coarse-granularity to fine-
granularity, and zoom-out algorithm achieves changing the attribute granularity from fine-granularity to coarse-granularity. 
Zoom algorithms deal with the problems of fast construction of the attribute (object)-oriented multi-granularity concept 
lattices. By using zoom algorithms, the attribute (object)-oriented concept lattice based on different attribute granularity 
can be directly generated through the existing attribute (object)-oriented concept lattice. The proposed algorithms not only 
reduce the computational complexity of concept lattice construction, but also facilitate further data mining and knowledge 
discovery in formal contexts. Furthermore, the transformation algorithms among three kinds of concept lattice are proposed.

Keywords  Attribute (object)-oriented concept lattice · Attribute granularity · Granular computing · Zoom-in algorithm · 
Zoom-out algorithm

1  Introduction

In 1982, Wille first put forward the theory of formal concept 
analysis (FCA) which is also called concept lattice theory 
[12, 46] to discover, sort and display formal concepts [extent 
(collection of objects), intent (collection of attributes)]. Con-
cept lattice, a model of knowledge representation, is the core 
data structure in FCA. Based on the dependence or causality 
of knowledge in the extent and intent, the concept lattice is 

constructed. It reflects the generalization and specialization 
between concepts vividly and succinctly [2, 5, 45]. FCA 
is a powerful formal tool for data analysis and knowledge 
processing, which has been successfully applied in fields 
such as data mining, software engineering and many other 
disciplines [7, 31, 36, 43]. At present, the research on FCA is 
mainly divided into the following aspects: basic theoretical 
research, concept lattice construction algorithm composed of 
incremental algorithm [14, 21, 30]and batch algorithm [44, 
60], reduction of concept lattices [62], the relations between 
FCA and rough sets [32], concept lattice theory under fuzzy 
conditions [4, 6] and so on.

The theory of rough sets (RS)[32] is an extension of the 
classical set theory. FCA and RS can learn from each other 
and integrate with each other, and realize mutual improve-
ment [16, 20]. In recent years, many researchers have com-
bined the two theories and conduct deeper knowledge dis-
covery. For instance, based on the modal-style operators, 
Duntsch and Gediga proposed the attribute-oriented concept 
lattice [10, 13]. Yao further developed the object-oriented 
concept lattice which enrich the research on FCA [54, 55].

The notion of granular computing (GrC) originated in 
the context of fuzzy sets presented by Zadeh [57]. Zadeh 
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proposed the basic framework of GrC and emphasized the 
importance of granularity in reasoning. GrC is an approach 
for knowledge representation and data mining [28, 33]. GrC 
emphasizes multi-perspective and multi-level understand-
ing and description of real-world problems. Its basic idea 
is to use the information on different granularity to divide 
the complex problem into a series of more easily handled, 
smaller sub-problems. Thereby, its computational cost is 
reduced. In recent years, GrC has been widely used in many 
fields such as data mining, pattern recognition, intelligent 
control and complex problems solving [8, 24, 26, 27, 29, 34, 
37, 38, 41, 42, 58, 59].

GrC has been an emerging research focus in recent years. 
For example, Yao discussed the comprehensive level of 
granularity and the theory of GrC in [52, 53]. As one of the 
effective model of GrC, RS theory [56] describes the target 
concept, the attribute reduction, rules extraction and prob-
lem decision-making through the set of attributes [61]. In 
order to deal with the complex real-world problems such as 
multi-source information systems, Qian et al. [35] proposed 
a multi-granularity rough set model based on multi-granu-
larity structures. Wu et al. [47] further studied the theory and 
application of granular blocks in multi-granularity decision 
information system. In addition, Dick et al. [9] established a 
new type of granular neural network. On the other hand, the 
selection of optimal granularity in multi-granularity labe-
ling information systems is studied in [17, 22, 23, 40, 48]. 
Xu et al. further proposed the transformation of information 
granules for the human cognitive system [49] and studied the 
information fusion in multi-source database [51]. What’s 
more, She et al. [39] studied the acquisition of rules in the 
context of multi-granularity decision making.

With the development of GrC and FCA, the combination 
of the two theories has drawn the attention of researchers. 
Du et al. [11] studied the relevance between concept lattice 
and granularity division, concept description and concept 
hierarchy. Based on concept library, Kang [18] analyzed the 
granularity of concept lattice and proposed the upper and 
lower bounds when dealing with attribute granularity. The 
attribute reduction in concep lattice was studied in [25, 63]. 
Gong and Shao [15] discussed the approximation operators 
in the concept granular system. In [64], Zou et al. proposed 
a “expanding algorithm” to rapidly increase the granularity 
of formal concept lattices. Xu et al. [50] proposed a novel 
GrC method of machine learning by using formal concept 
description of information granules. Kang and Miao [19] 
discussed the relation between granularity and the algebraic 
structure in complex information systems. In [1, 3], based 
on attribute granularity tree, Belohlavek et al. proposed the 
transformation method of the attribute granularity level and 
applied zoom algorithms to control the number of concepts 
in the classic concept lattice.

Comparing with the studies on classical concept lattices, 
there are few researches on the attribute (object)-oriented 
multi-granularity concept lattices. Our concern in this paper 
is the fast construction of attribute (object)-oriented multi-
granularity concept lattices. We construct the attribute 
granularity tree according to the experience of experts. If 
the attribute granularity is too fine, redundant concepts may 
be generated. That is, users can not extract useful knowl-
edge easily compared with a relatively coarser granularity. 
According to the given attribute granularity trees, differ-
ent information can be extracted from the concept lattice 
by dynamically changing the attribute granularity. In a 
multi-granularity information system, the construction of 
the attribute (object)-oriented concept lattices are as follows: 
first, for a given level of granularity, the all attribute (object)-
oriented concepts are generated; then, apply the operators to 
the attribute (object)-oriented concepts to obtain the concept 
lattice.

The remainder of this paper is organized as follows: in 
order to make the paper self-contained, basic notions of for-
mal context, approximation operators, attribute (object)-ori-
ented concept and attribute granularity are briefly reviewed 
in Sect. 2. In Sect. 3, the zoom algorithms of attribute 
(object)-oriented concept lattice are provided. The trans-
formation algorithms among three types of concept lattice 
are proposed in Sect. 4. In Sect. 5, it is concluded with a 
summary and the prospects for further research. In the end, 
the examples are used to demonstrate the zoom algorithms.

2 � Preliminaries

In this section, the notions and properties related to attribute 
(object)-oriented concept lattice (see [13, 54]) are briefly 
reviewed. Besides, the definition of attribute granularity and 
its basic properties are introduced (for details, please refer 
to [3]).

Definition 1  [54] A triplet K = (G,M, I) is called a formal 
context if, G (the collection of objects) and M (the collec-
tion of attributes) are two finite nonempty sets and I (subset 
of cartesian product G ×M ) represents the binary relation 
between G and M, where 1 denotes that object has attribute 
and 0 denotes that object does not have the attribute.

Example 1  A formal context K = (G,M, I) is presented in 
Table 1, where G = {x1, x2, x3, x4, x5, x6} , M = {a, b, c, d, e}.

Let K = (G,M, I) be a formal context. If x ∈ G , b ∈ M 
and (x, b) ∈ I , it can be written as xIb. It means that object x 
possesses attribute b or attribute b is possessed by object x.
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In addition, xIb can be replaced by its equivalence b ∈ xI 
or x ∈ Ib . xI and Ib are described by

where xI represents the collection of attribute b which is 
possessed by object x, and Ib represents the collection of 
object x which has attribute b. The above relations can be 
extended to the subsets of X ⊆ G and B ⊆ M respectively as

Definition 2  [13, 54] Let K = (G,M, I) be a formal context, 
X ⊆ G and B ⊆ M . Operators ↑ and ↓ are defined as follows:

(1)   ↑ , ↓ , 2G → 2M:

(2)   ↑ , ↓ , 2M → 2G:

Let K = (G,M, I) be a formal context, X1 ⊆ G and X2 ⊆ G . 
Operators ↑ and ↓ satisfy the following properties:

(1)	 X1 ⊆ X2 ⇒ X
↑

1
⊆ X

↑

2
,X

↓

1
⊆ X

↓

2
;

(2)	 X
↓↑

1
⊆X1 ⊆ X

↑↓

1
;

(3)	 X
↓↑↓

1
= X

↓

1
;

(4)	 X
↑↓↑

1
= X

↑

1
;

(5)	 (X1 ∩ X2)
↓ = X

↓

1
∩ X

↓

2
;

(6)	 (X1 ∪ X2)
↑ = X

↑

1
∪ X

↓

2
.

Definition 3  [13, 54] Let K = (G,M, I) be a formal context. 
A pair (X, B) ( X ⊆ G , B ⊆ M ) is called an attribute-oriented 
concept if X = B↓ and B = X↑ . Similarly, (X, B) is called 
object-oriented concept if X = B↑ and B = X↓ . X and B are 
called the extent and intent of the attribute(object)-oriented 
concept respectively.

xI = {b ∈ M|xIb}, Ib = {x ∈ G|xIb},

XI =
⋃

x∈X

xI, IB =
⋃

b∈B

Ib.

(1)
X↑ = XI = {b ∈ M| ∃x ∈ G, (xIb ∧ (x ∈ X))},

X↓ = {b ∈ M| ∀x ∈ G, (xIb ⇒ (x ∈ X))}.

(2)
B↑ = IB = {x ∈ G| ∃b ∈ M, (xIb ∧ (b ∈ B))},

B↓ = {x ∈ G| ∀b ∈ M, (xIb ⇒ (b ∈ B))}.

Let (X1,B1) and (X2,B2) be the attribute(object)-oriented 
concepts. The partial order ≤ among them is defined by

Let K = (G,M, I) be a formal context. The complete set of 
attribute-oriented concepts form a complete lattice denoted 
by LA(G,M, I) with the meet ∧ and join ∨ between the con-
cepts given by

The Hasse diagram of LA(G,M, I) derived from Table 1 is 
shown by Fig. 1

Similarly, the complete set of object-oriented concepts 
forms a complete lattice denoted by LO(G,M, I) with the 
meet ∧ and join ∨ between the concepts given by

Hasse diagram of object-oriented lattice LO(G,M, I) derived 
from Table 2 is shown by Fig. 2.

In some real-life problems, granularity refers to the 
degree of refinement or comprehensiveness of the stored 
data. Its main application is to achieve the optimal granular-
ity among different granularity levels, which enable the users 
to obtain interesting knowledge. The finer the attribute gran-
ularity is, the more detailed the description of the object is. 
For example, the attribute “Grade” ([0–100] points) can be 
subdivided into other level of attribute granularity: {“Fail” 
([0–60) points), “Pass” ([60–100] points)}.

(X1,B1) ≤ (X2,B2) iff X1 ⊆ X2 ( iff B1 ⊆ B2).

(3)

(X1,B1) ∧ (X2,B2) = (X1 ∩ X2, (X1 ∩ X2)
↑)

= (X1 ∩ X2, (B1 ∩ B2)
↓↑);

(X1,B1) ∨ (X2,B2) = ((B1 ∪ B2)
↓,B1 ∪ B2)

= ((X1 ∪ X2)
↑↓,B1 ∪ B2).

(4)

(X1,B1) ∧ (X2,B2) = ((B1 ∩ B2)
↑,B1 ∩ B2)

= ((X1 ∩ X2)
↓↑,B1 ∩ B2);

(X1,B1) ∨ (X2,B2) = (X1 ∪ X2, (X1 ∪ X2)
↓)

= (X1 ∪ X2, (B1 ∪ B2)
↑↓).

Table 1   A formal context 
(G, M, I) with  
G = {x1, x2, x3, x4, x5, x6}, and 
M = {a, b, c, d, e}

I a b c d e

x1 1 0 1 1 1
x2 1 0 1 0 0
x3 0 1 0 0 1
x4 0 1 0 0 1
x5 1 0 0 0 0
x6 1 1 0 0 1

Fig. 1   The attribute-oriented concept lattice L
A
(G,M, I)
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Definition 4  [3] A g-tree (granularity tree) for attribute b is 
a rooted tree with the following properties:

(1)	 each node of the tree is labeled by a unique attribute 
name, and the root is labeled by b which is at the big-
gest granularity ;

(2)	 to each label z of a node, z∗ represents the objects to 
which attribute z applies;

(3)	 if the nodes labeled by z1,… , zi,… , zj,… , zn are the 
complete successors of the node labeled by z, then 
{z∗

1
,… , z∗

i
,… , z∗

j
,… , z∗

n
} is a partition of z∗ satisfying 

z∗
1
∪⋯ ∪ z∗

i
∪⋯ ∪ z∗

j
∪⋯ ∪ z∗

n
= z∗  ,  z∗

i
≠ �  a n d 

z∗
i
∩ z∗

j
= �.

The set of nodes {z1,…,zi,…,zj,…,zn} which are at the 
same level is called a cut of the g-tree if it satisfies the fol-
lowing conditions:

where G is the complete set of objects.

Example 2  There are three cuts of the g-tree for attrib-
ute “Grade”: {{Grade}, {Pass, Fail}, {Worse, Bad, Good, 
Excellent}} (Fig. 3).

We denote the set of the cut of each attribute in M  by

where |M| represents the number of attributes in 
K = (G,M, I) and ci represents the cut of the g-tree for the 
ith-attribute.

z∗
i
≠ � and zi ∩ zj = � and z∗

1
∪⋯ ∪ z∗

i
∪⋯ ∪ z∗

j
∪⋯ ∪ z∗

n
= G

U =

|M|⋃

i=1

ci,

Suppose  U1 =
⋃�M�

i=1
c1
i
 and U2 =

⋃�M�
i=1

c2
i
 , we denote the 

partial order ≤ between different granularity combinations 
by U2 ≤ U1iff ∀i ∈ {1,… , |M|}, c2∗

i
⊂ c1∗

i
. Different formal 

contexts can be obtained based on different combinations of 
each attribute cut.

Fo r  exa mp l e ,  s u p p o s e  U1 = {{L}, {R}, {G}} , 
U2 = {{L}, {R}, {lG, dG}} .  T h e  fo r m a l  c o n t ex t s 
KU1

= (G,MU1
, IU1

) and KU2
= (G,MU2

, IU2
) based on U1 and 

U2 are represented by Table 2 respectively.

3 � Construction algorithms 
of attribute‑oriented multi‑granularity 
concept lattices

Let KU1
= (G,MU1

, IU1
) and KU2

= (G,MU2
, IU2

) be two 
formal contexts derived from K = (G,M, I) . Two attrib-
ute-oriented concept lattices derived from KU1

 and KU2
 are 

denoted by L1
A
 and L2

A
 , where KU1

 and KU2
 are abbreviations 

of KU1
= (G,MU1

, IU1
) and KU2

= (G,MU2
, IU2

) . The change 
from L1

A
 to L2

A
 and vice versa are called attribute granularity 

refinement and coarsening of attribute-oriented concept lat-
tices respectively.

It is necessary to add attribute columns with the changed 
granularity and delete the attribute columns with the original 
granularity at the same time for the selected attribute. After 
the change of the attribute granularity, the concepts in the 
induced concept lattice have certain relations with those in 
the original concept lattice.

Let KU1
= (G,MU1

, IU1
) and KU2

= (G,MU2
, IU2

) be 
two formal contexts derived from K = (G,M, I) and 
U2 = (U1⧵{p}) ∪ P . p, belonging to U1 , is the selected 
attribute the granularity of which needs to be refined. 
P, belonging to U2 , is the complete set of the fine-
granularity attributes corresponding to p satisfying 
p∗ = p1

∗ ∪ p2
∗ ∪⋯ ∪ pi

∗ ∪⋯ ∪ pn
∗ = P∗ , pi (i = 1… n) rep-

resents the fine-granularity attribute, and Ps represents the 
subset of P. We denote the resulted attribute-oriented con-
cept lattice by L′

A
 , the set of the attribute-oriented concepts 

Fig. 2   The object-oriented lattice L
O
(G,M, I)

Fig. 3   A g-tree for attribute “Grade”
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by CS(L) (where L represents the lattice). The concept-gen-
erating operators of attribute-oriented concepts based on 
KU1

 and KU2
 are denoted by (↓1 ,↑1 ) and (↓2 ,↑2 ) . Besides, the 

objects possessing the selected attribute can be obtained by 
operator ∗.

3.1 � The knowledge related to zoom‑in algorithm 
for attribute‑oriented concept lattice

In order to find the rules of the concept changing with the 
granularity of attributes, different concept types are defined 
according to the relations between the intent of concept and 
the selected attribute granularity.

For simplicity, the intent and extent of concept C are 
abbreviated as int(C) and ext(C) respectively.

Definition 5  Let KU1
= (G,MU1

, IU1
) be a formal context, and 

CU1
= (XU1

,BU1
) be an attribute-oriented concept belong-

ing to CS(L1
A
) . If p ∉ int(CU1

) , then CU1
 is referred to as a 

reserved attribute-oriented concept.

The set of the reserved attribute-oriented concepts is 
denoted by RS(L1

A
).

Definition 6  Let KU1
= (G,MU1

, IU1
) be a formal context, and 

CU1
= (XU1

,BU1
) be an attribute-oriented concept belonging 

to CS(L1
A
) . If p ∈ int(CU1

) , then CU1
 is referred to as a modi-

fied attribute-oriented concept.

The set of the modified attribute-oriented concepts is 
denoted by MS(L1

A
).

By Definitions 5 and 6, it is easy to see that

Theorem 1  Let KU1
= (G,MU1

, IU1
) be a formal context, and 

CU1
= (XU1

,BU1
) be an attribute-oriented concept belonging 

to CS(L1
A
) . If CU1

∈ RS(L1
A
) , then CU1

∈ CS(L2
A
).

Proof  By Definition 5, we then have p ∉ int(CU1
) in the case 

of CU1
∈ RS(L1

A
) . Thus, there exists BU1

⊆ MU2
 . Since

(5)CS(L1
A
) = RS(L1

A
) +MS(L1

A
).

XU1
= BU1

↓1 = BU1

↓2 and BU1
= XU1

↑2 ,

therefore, we conclude that

	�  ◻

Theorem 2  Let KU1
= (G,MU1

, IU1
) be a formal context, and 

CU1
= (XU1

,BU1
) be an attribute-oriented concept belonging 

to CS(L1
A
) . If CU1

∈ MS(L1
A
) , then ∃ CU2

∈ CS(L2
A
) such that

Proof  By Definition 6, we have p ∈ int(CU1
) in the case of 

CU1
∈ MS(L1

A
) . Since p∗ = {p1

∗ ∪ p2
∗ ∪… ∪ pn

∗} (each pi 
represents a fine-granularity attribute), therefore the case 
that the extent of CU1

 remains unchanged when p is replaced 
with Ps ( Ps = (p∗ ∩ ext(CU1

))↑2 ∩ P ) holds. Hence, we con-
clude that

	�  ◻

3.2 � The description of zoom‑in algorithm 
for attribute‑oriented concept lattices

The main idea of the zoom-in algorithm for attribute-ori-
ented concept lattice is as follows: firstly, starting from the 
maximal concept of the lattice, the type of the concept is 
judged from top to bottom. Then, the corresponding con-
cept generation, update, deletion and edge adjustment are 
performed.

The process of the algorithm is as follows: first, input L1
A
 , 

coarse-granularity attribute p and the corresponding fine-
granularity attribute set P. Then, calculate the concept in 
top-down order. If p ∉ int(CU1

) , then CU1
 is reserved. Oth-

erwise, modify the intent of CU1
 as

CU1
= (XU1

,BU1
) ∈ CS(L2

A
).

ext(CU
2
) = ext(CU

1
) and int(CU

2
)

= (int(CU
1
)⧵{p}) ∪ ((p∗ ∩ ext(CU

1
))↑2 ∩ P).

∃CU2
= (ext(CU1

), (int(CU1
)⧵{p})

∪ ((p∗ ∩ ext(CU1
))↑2 ∩ P)) ∈ CS(L2

A
).

int(CU1
) = (int(CU1

)⧵{p}) ∪ ((p∗ ∩ ext(CU1
))↑2 ∩ P).

Table 2   Formal context
I
U1

L R G I
U2

L R lG dG

x1 1 0 1 x1 1 0 1 0
x2 1 0 1 x2 1 0 1 0
x3 1 0 1 x3 1 0 0 1
x4 0 0 1 x4 0 0 1 0
x5 0 1 0 x5 0 1 0 0
x6 1 1 1 x6 1 1 1 0
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Meanwhile, one can judge and generate the new concept by

Modify the edges between the concepts at the same time. 
Finally, adjust edges among concepts from bottom to top and 
obtain fine-granularity lattice L′

A
 . The detailed algorithm is 

shown in Algorithm 1. 

Cnew = (((int(CU1
)⧵{p}) ∪ (P⧵Ps))

↓2 , (int(CU1
)⧵{p}) ∪ (P⧵Ps)).

Proposition 1  The attribute-oriented concepts in L′

A
 are in 

L2
A
.

Proof  Note that L′

A
 is constructed by applying zoom-in algo-

rithm to L1
A
 . To prove Proposition 1, we need to prove that the 

concepts derived from L1
A
 are in L2

A
 , which is equal to proving 

the concepts in L′

A
 are in L2

A
 . Suppose CU1

= (XU1
,BU1

) ∈ L1
A
 . 

The following three cases will be discussed:
(1)   p ∉ BU1

 . By Definition 5, we have CU1
∈ RS(L1

A
) . 

It can be easily observed that CU1
∈ L

�

A
 . From Theorem 1, 

we obtain CU1
∈ L2

A
 . Hence, if CU1

∈ L
�

A
 and p ∉ BU1

 , then 
CU1

∈ L2
A
 holds.

(2)   p ∈ BU1
 . By Definition 6, we have CU1

∈ MS(L1
A
) . 

Besides, It can be easily verified that CU1
∈ L

�

A
 . Followed by 

Theorem 2, we deduce that ext(CU1
) remains unchanged and

int(CU1
) = (int(CU1

)⧵{p}) ∪ ((p∗ ∩ ext(CU1
))↑2 ∩ P) ∈ MU2

after zoom-in algorithm. Therefore, if the modified con-
cepts derived from the CU1

∈ MS(L1
A
) belong to L′

A
 , then 

they belong to L2
A
.

(3)   The new concepts generated from the division of the 
concept whose intent includes p. It is easy to see that the new 
generated concepts belong to L′

A
 . Since

we deduce that Cnew belongs to L2
A
 . That is, Cnew ∈ L2

A
.

For the three cases above, we conclude that the concepts 
in L′

A
 belong to L2

A
 . 	�  ◻

int(Cnew) = (int(CU
1
)⧵{p}) ∪ (P⧵Ps) ∈ MU

2

and ext(Cnew) = {int(Cnew)}
↓
2 ,
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Proposition 2  The attribute-oriented concepts in L2
A
 are in 

L
′

A
.

Proof  Suppose CU2
= (XU2

,BU2
) ∈ L2

A
 . According to the 

relations between the selected fine-granularity attributes and 
concept intent, the following three cases will be discussed:

(1)       P ∩ BU2
= ∅ .  I t  i s  easy to  see that 

BU2
⊆ MU1

 under this situation. Therefore, we have 
CU2

= (XU2
,BU2

) = (BU2

↓1 ,BU2
) , that is, CU2

∈ L1
A
 . It fol-

lows from Definition 5 that CU2
 belongs to RS(L1

A
) . Then, 

by Theorem 1, we know that CU2
 remains unchanged in L′

A
.

(2)   Ps ⊆ BU2
 and P∗

s
= p∗ . This implies p ∈ XU2

↑1 . One 
can check that CU2

 corresponds to the MS(L1
A
) . In other 

words, CU2
 is derived from modifying the intent of the con-

cept in L1
A
 as replacing p with Ps . Hence, we obtain CU2

∈ L
�

A
.

(3)   Ps ⊆ BU2
 and P∗

s
≠ p∗ . In this case, it can be eas-

ily checked that CU2
 is obtained by the division of the con-

cept whose intent includes p in L1
A
 . Therefore, we have 

CU2
∈ L

�

A
.

For the three cases above, we conclude that the concepts 
in L2

A
 belong to L′

A
 . 	�  ◻

Proposition 3  The edges in L2
A
 are in L′

A
.

Proof  Suppose C1 and C2 belong to L2
A
 , and C2 is the upper 

neighbor of C1 . By Proposition 2, we know that both C1 and 
C2 are in L′

A
 . The following three cases will be considered:

(1)   C1 belongs to L1
A
 . In this condition, C2 is an upper 

neighbor of C1 in L1
A
 , or C2 is a modified concept corre-

sponding to a concept in L1
A
 , or C2 is a new concept added 

to L2
A
 . For the first one, C1 and C2 are not processed by the 

algorithm, which means the edge between C1 and C2 is 
unchanged. For the second one, by Theorem 2, it is easy 
to see that int(C1) ⊆ int(C2) and ext(C1) ⊆ ext(C2) still 
hold. Ii can easily be verified that there is no new concept 
Cnew s.t. C1 ≤ Cnew ≤ C2 . For the last one, the Upper(C2) 
is Upper(Upper(C1)) , where Upper( ) represents the upper 
neighbor of the concept. Therefore, Upper(C2) is also a mini-
mal concept satisfying C1 ≤ C2 . Therefore, under this condi-
tion, the edge between C1 and C2 in L2

A
 is also in L′

A
.

(2)   C1 is a modified concept corresponding to a concept 
in L1

A
 , and C2 is a modified concept corresponding to a con-

cept in L1
A
 . It is easy to see that the partial order between 

C1 and C2 is unchanged. And there is no new concept Cnew 
s.t. C1 ≤ Cnew ≤ C2 . Hence, the edge between them remains 
unchanged.

(3)      C1 is added to L2
A
 as a new concept with 

int(C1) = (int(CU1
)�{p}) ∪ (P�Ps) and ext(C1) = int(C1)

↓2 
corresponding to a concept in L1

A
 . The only upper neighbors 

of C1 are concepts in L1
A
 with the intent changed (replace p 

with Ps ) or the new concept generated by the division of 
the Upper(Upper(C1)) . It can easily be observed that C2 is 

the minimal concept satisfying C1 ≤ C2 . Hence, the edge 
between C1 and C2 is in L′

A
.

We conclude by the three cases above that edges in L2
A
 

are in L′

A
.

Proposition 4  The edges in L′

A
 are in L2

A
.

Proof  Suppose C1 and C2 belong to L′

A
 , C2 is the upper neigh-

bor of C1 . The following two conditions will be considered:
(1)   The edge is added when L′

A
 is initialized. It is known 

that there is no new concept C′ s.t. C1 ≤ C
′

≤ C2 . Therefore, 
the edges in L′

A
 are in L2

A
 in this case.

(2)   The edge is added when a new concept is created 
and its upper neighbors are attached. This means that C2 is 
either a adjoint upper neighbor of C1 or a minimal concept 
in L1

A
 satisfying Upper(Upper(C1)) = Upper(C2) , which is 

achieved by adjusting edge in zoom-in algorithm. Hence, 
the edge between C1 and C2 is in L2

A
.

We conclude by the two cases above that edges in L′

A
 are 

in L2
A
 . 	�  ◻

Theorem 3  Zoom-in algorithm is correct.

Proof  It follows immediately from Propositions 1, 2, 3 and 
4. 	�  ◻

3.3 � The knowledge related to zoom‑out algorithm 
for attribute‑oriented concept lattice

Definition 7  Let KU2
= (G,MU2

, IU2
) be a formal context and 

CU2
= (XU2

,BU2
) be an attribute-oriented concept belonging 

to CS(L2
A
) . If ∀pi ∈ P , pi ∉ BU2

 , then CU2
 is referred to as a 

reserved attribute-oriented concept.

The set of reserved attribute-oriented concepts is denoted 
as RS(L2

A
).

Definition 8  Let KU2
= (G,MU2

, IU2
) be a formal context and 

CU2
= (XU2

,BU2
) be an attribute-oriented concept belonging 

to CS(L2
A
) . If Ps ⊆ BU2

 and P∗
s
= p∗ , then CU2

 is referred to as 
a modified attribute-oriented concept.

The set of modified attribute-oriented concepts is denoted 
as MS(L2

A
).

Definition 9  Let KU2
= (G,MU2

, IU2
) be a formal context and 

CU2
= (XU2

,BU2
) be an attribute-oriented concept belonging 

to CS(L2
A
) . If Ps ⊆ BU2

 and P∗
s
≠ p∗ , then CU2

 is referred to a 
deleted attribute-oriented concept.

The set of deleted attribute-oriented concepts is denoted 
as DS(L2

A
).

By Definitions 7, 8 and 9, it is easy to see that
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Theorem 4  Let KU2
= (G,MU2

, IU2
) be a formal context and 

CU2
= (XU2

,BU2
) be an attribute-oriented concept belonging 

to CS(L2
A
) . If CU2

∈ RS(L2
A
) , then CU2

∈ CS(L1
A
).

Proof  By Definition 7, we have pi ∉ BU2
 in the case of 

CU2
∈ RS(L2

A
) . Thus, we have BU2

⊆ MU2
 . On the other hand, 

we have

Hence, we conclude that

	�  ◻

Theorem  5  Let KU2
= (G,MU2

, IU2
) be a formal context 

and CU2
= (XU2

,BU2
) be an attribute-oriented concept 

belonging to CS(L2
A
) . If CU2

∈ MS(L2
A
) , then there exists 

C = (XU2
, (BU2

⧵Ps) ∪ {p}) ∈ CS(L1
A
).

Proof  By Definition 8, we have Ps
∗ = p∗ . Then, Ps can be 

replaced by p, that is,

(6)CS(L2
A
) = RS(L2

A
) +MS(L2

A
) + DS(L2

A
).

XU2
= BU2

↓2 = BU2

↓1 and BU2
= XU2

↑1 .

CU2
= (XU2

,BU2
) ∈ CS(L1

A
).

Hence, we conclude that

	�  ◻

3.4 � The description of zoom‑out algorithm 
for attribute‑oriented concept lattice

The main idea of the zoom-out algorithm for attribute-ori-
ented multi-granularity concept lattice is as follows: starting 
from the maximal concept of the lattice, judge the type of the 
node from top to bottom. Then, the corresponding concept 
update, deletion and edge adjustment are performed.

The process of this algorithm is as follows. Firstly, input 
L2
A
 , selected fine-granularity attribute set P and the corre-

sponding coarse-granularity attribute p. Secondly, for all 
concepts including pi , divide them into two classes accord-
ing to whether Ps

∗ is equal to p∗ or not. If equal, modify the 
intent of CU2

 as int(CU2
) = (int(CU2

)⧵Ps) ∪ {p} . Otherwise, 
delete CU2

 . Finally, we obtain coarse-granularity lattice L′

A
 . 

The detailed algorithm is shown in Algorithm 2. 

XU2
= B↓2 = ((B⧵Ps) ∪ {p})↓1 .

∃ C = (XU2
, (BU2

⧵Ps) ∪ {p}) ∈ CS(L1
A
).
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Proposition 5  The attribute-oriented concepts in L′

A
 are in 

L1
A
.

Proof  Note that L′

A
 is constructed by applying zoom-

out algorithm to L2
A
 . To prove Proposition 5, we need to 

prove that the concepts derived from L2
A
 are in L1

A
 , which 

is equal to proving the concepts in L′

A
 are in L1

A
 . Suppose 

CU2
= (XU2

,BU2
) ∈ L2

A
 , the following three cases will be 

discussed:
(1)   pi ∉ BU2

 . It is easy to see that CU2
∈ L

�

A
 . By Theo-

rem 4, we have

Therefore, under this condition, we conclude that CU2
∈ L1

A
.

(2)   Ps ∈ BU2
 and P∗

s
= p∗ . Obviously, CU2

∈ L
�

A
 . Notice 

that CU2
 corresponds to the modified concepts in L1

A
 . Fol-

lowed by Theorem 5, after modifying CU2
 as

and

CU2
∈ L1

A
 holds.

(3)   Ps ∈ BU2
 and P∗

s
≠ p∗ . Then, we deduce that this kind 

of concepts are deleted concepts compared to the concepts in 
L1
A
 . Therefore, CU2

 is deleted after applying zoom-out algo-
rithm to L2

A
 , that is, CU2

 is not in L′

A
 and L1

A
.

For the above three cases, we conclude that the concepts 
in L′

A
 are in L1

A
 . 	�  ◻

Theorem 6  Zoom-out algorithm is correct.

Proof  It is similar to the proof of zoom-in algorithm. 	� ◻

The zoom-in and zoom-out algorithms for object-oriented 
multi-granularity concept lattices can be obtained in a simi-
lar way.

4 � Transformation algorithms among three 
kinds of concept lattice

Based on the same formal context, attribute-oriented con-
cept lattice, object-oriented concept lattice, and formal con-
cept lattice can be obtained by using different computation 
operators and operation methods. Three kinds of concept 
lattice reveal the knowledge contained in the formal context 
from different perspectives. In this section, the transforma-
tion algorithms among three kinds of concept lattice are 
proposed.

BU2
∈ MU1

and XU2
= BU2

↓2 = BU2

↓1 .

(int(CU2
)�Ps) ∪ {p} ⊆ MU1

ext(CU2
) = ((int(CU2

)�Ps) ∪ {p})↓1 ,

Let K = (G,M, I) be a formal context. LO(K) and LA(K) 
represent the object-oriented concept lattice and the attrib-
ute-oriented concept lattice derived from K = (G,M, I) . 
L(Kc) represents the formal concept lattice based on the 
K = (G,M, Ic) , where Ic represents the complement of the 
binary relation I.

4.1 � Transformation algorithm between L
A
(K) 

and L
O
(K)

By the properties of concept-generating operators, we 
know that attribute-oriented concept lattice is isomorphic 
to object-oriented concept lattice, that is, for each concept 
CO in LO(K) , there is only one concept CA in LA(K) corre-
sponding to CO.

Theorem  7  Let LO(K) and LA(K) be object-oriented 
concept lattice and attribute-oriented concept lattice 
derived from context K = (G,M, I) . If (X,B) ∈ LO(K) , 
then (Xc,Bc) ∈ LA(K).  Similarly, if (X,B) ∈ LA(K) , then 
(Xc,Bc) ∈ LO(K).

Proof  Since

therefore, we obtain

On the other hand,

therefore, we conclude that

If (X,B) ∈ LA(K) , it can be proven by the similar way. 	
� ◻

Theorem 8  Suppose LO(K) and LA(K) are object-oriented 
concept lattice and attribute-oriented concept lattice derived 
from context K = (G,M, I) . If

then,

Similarly, if (X1,B1), (X2,B2) ∈ LA(K) , then the equations 
still hold.

(X,B) ∈ LO(K),

(X,B) = (B↑,X↓).

(Xc,Bc) = (B↑c,X↓c) = (Bc↓,Xc↑),

(Xc,Bc) ∈ LA(K).

(X1,B1), (X2,B2) ∈ LO(K),

((X1,B1) ∧ (X2,B2))
c = (X1

c
,B1

c) ∨ (X2
c
,B2

c),

((X1,B1) ∨ (X2,B2))
c = (X1

c
,B1

c) ∧ (X2
c
,B2

c).
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Proof  Since

and

(X1,B1) ∧ (X2,B2) =((X1 ∩ X2)
↓↑,B1 ∩ B2),

(X1 ∩ X2)
↓↑c = (X1 ∩ X2)

↓c↓ =(X1 ∩ X2)
c↑↓ = (X1

c ∪ X2
c)↑↓,

(B1 ∩ B2)
c =B1

c ∪ B2
c

therefore, we have

Similarly,

If (X1,B1), (X2,B2) ∈ LA(K) , it can be proven by the similar 
way. 	�  ◻

(X1
c
,B1

c) ∨ (X2
c
,B2

c) = ((X1
c ∪ X2

c)↑↓,B1
c ∪ B2

c),

((X1,B1) ∧ (X2,B2))
c = (X1

c
,B1

c) ∨ (X2
c
,B2

c).

((X1,B1) ∨ (X2,B2))
c = (X1

c
,B1

c) ∧ (X2
c
,B2

c).

That is to say, the edges in LO(K) and LA(K) are corre-
sponding to each other.

The main idea of the transformation algorithm between 
LA(K) and LO(K) are as follows. The concept C = (X,B) in 
the concept lattice is modified as C = (Xc,Bc) from top to 
bottom, then modify the edges among concepts: the upper 
neighbor relations between the original concepts become the 
lower neighbor relations. The detailed algorithm is shown 
in Algorithm 3. 

Theorem 9  Algorithm 3 is correct.

Proof  It can be easily proven by Theorems 7 and 8. That is, 
based on the same context, all the concepts and the edges 
derived from the original concept lattice are also in the new 
generated concept lattice. 	� ◻

In addition, formal concept lattice L(Kc) derived from 
context K = (G,M, Ic) is isomorphic to LA(K) and LO(K)  
derived from context K = (G,M, I).

4.2 � Transformation algorithms of L(Kc)‑L
A
(K) 

and L(Kc)‑L
O
(K)

There are also mapping relations among concepts and edge 
relations between L(Kc) and LA(K) as well as the mapping 
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relations among edges. The relations between L(Kc) and 
LA(K) also hold between L(Kc) and LO(K) . In the follow-
ing, the transformation algorithms between LA(K) and L(Kc) , 
LO(K) and L(Kc) will be proposed.

Theorem  10  Let LA(K) and LO(K) be the attribute-ori-
ented concept lattice and object-oriented concept lattice 
based on K = (G,M, I) , L(Kc) be concept lattice based on 
K = (G,M, Ic) . If

(X,B) ∈ LA(K),

Theorem 11  The edges in LA(K)  are the same as those in 
L(Kc) . This rule also applies to that  between LO(K) to L(Kc).

Proof  It can be proven by the similar way of Theorem 8. 	
� ◻

The main idea of the transformation algorithm between 
LA(K) and L(Kc) are as follows: the concept C = (X,B) in 
the concept lattice is modified as C = (X,Bc) in top-down 
order, and the edges between concepts remain unchanged. 
The detailed algorithm is shown in Algorithm 4. 

then

Also, if (X,B) ∈ L(Kc) , then (X,Bc) ∈ LA(K).  If

then

And if (X,B) ∈ L(Kc) , (Xc,B) ∈ LO(K).

Proof  It can be proven by the similar way of Theorem 7. 	
� ◻

(X,Bc) ∈ L(Kc).

(X,B) ∈ LO(K),

(Xc,B) ∈ L(Kc).

Theorem 12  Algorithm 4 is correct.

Proof  It can be easily proven by Theorems 10 and 11. 	
� ◻

The main idea of the transformation algorithm between 
LO(K) and L(Kc) are as follows: the concept C = (X,B) in 
the concept lattice is modified as C = (Xc,B) in top-down 
order, and the edges between concepts remain unchanged. 
The detailed algorithm is shown in Algorithm 5. 
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Theorem 13  Algorithm 5 is correct.

Proof  It is similar to the proof of Theorem 12.

By using the transformation algorithm, we can get two 
other kinds of concept lattices from one kind of concept lat-
tice derived from a multi-granularity formal context.

5 � Conclusion

Attribute granularity has an important effect on extracting 
concepts and constructing the concept lattice from the data. 
Choosing the appropriate combination of attribute granular-
ity levels can effectively control the number of concepts in 
the lattice, which in turn helps users discover interesting 
knowledge. The relations among the extent, intent of attrib-
ute-oriented concepts and the changes of attribute granular-
ity are analysed separately. Based on the attribute-oriented 
concept lattice and the attribute granularity tree, a zoom-in 
algorithm is proposed to reconstruct a new concept lattice 
after the refinement of the attribute granularity. And the 
zoom-out algorithm is proposed to reconstruct a new con-
cept lattice after the coarsening of the attribute granularity. 
The proposed algorithms can realize the rapid construction 
of the attribute (object)-oriented concept lattice on the basis 
of the existing concept lattice and granularity tree. It avoids 
the heavy workload of reconstructing the concepts using the 
formal context. The object-oriented, attribute-oriented and 
classical concepts represent the knowledge behind the data 
from different aspects. The transforming approaches of the 
three kinds of concept lattices are proposed at the end of 
the paper. The fast construction method of multi-granularity 
generalized one-sided concept lattices should be an issue for 
further research.
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Appendix: the demonstrations 
of the zoom‑in and zoom‑out algorithms

The formal contexts are presented by Tables  3 and   4 
with the object set is {x1, x2, x3, x4, x5, x6} , attribute sets 
are {a, b, c, d, e} and {a, b, c1, c2, d, e} respectively. In the 
sequence of graphs, the green concept indicates the concept 
currently being processed and the red concept represents the 
processed concept.

Table 3   Formal context (coarse-
granularity)

I a b c d e

x1 1 0 1 1 1
x2 1 0 1 0 0
x3 0 1 0 0 1
x4 0 1 0 0 1
x5 1 0 0 0 0
x6 1 1 0 0 1

Table 4   Formal context (fine-
granularity)

I a b c1 c2 d e

x1 1 0 1 0 1 1
x2 1 0 0 1 0 0
x3 0 1 0 0 0 1
x4 0 1 0 0 0 1
x5 1 0 0 0 0 0
x6 1 1 0 0 0 1
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The first figure sequence (Figs. 4, 5, 6, 7, 8) is a zoom-
in algorithm presentation for the attribute-oriented concept 
lattice, that is, from the attribute-oriented concept lattice 
corresponding to Table 3 to the attribute-oriented concept 
lattice corresponding to Table 4.

Fig. 6   Attribute-oriented concept lattice

Fig. 7   Attribute-oriented concept lattice

Fig. 8   Attribute-oriented concept lattice

Fig. 9   Attribute-oriented concept lattice

Fig. 4   Attribute-oriented concept lattice

Fig. 5   Attribute-oriented concept lattice

The second figure sequence (Fig. 9, 10, 11, 12, 13, 14, 
15, 16) is a zoom-out algorithm presentation for attribute-
oriented concept lattice, that is, from the attribute-oriented 
concept lattice corresponding to Table 4 to the attribute-
oriented concept lattice corresponding to Table 3.
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Fig. 10   Attribute-oriented concept lattice

Fig. 11   Attribute-oriented concept lattice

Fig. 12   Attribute-oriented concept lattice

Fig. 13   Attribute-oriented concept lattice

Fig. 14   Attribute-oriented concept lattice

Fig. 15   Attribute-oriented concept lattice
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