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Abstract
Credit scoring represents a two-classification problem. Moreover, the data imbalance of the credit data sets, where one 
class contains a small number of data samples and the other contains a large number of data samples, is an often problem. 
Therefore, if only a traditional classifier is used to classify the data, the final classification effect will be affected. To improve 
the classification of the credit data sets, a Gaussian mixture model based combined resampling algorithm is proposed. This 
resampling approach first determines the number of samples of the majority class and the minority class using a sampling 
factor. Then, the Gaussian mixture clustering is used for undersampling of the majority of samples, and the synthetic minority 
oversampling technique is used for the rest of the samples, so an eventual imbalance problem is eliminated. Here we compare 
several resampling methods commonly used in the analysis of imbalanced credit data sets. The obtained experimental results 
demonstrate that the proposed method consistently improves classification performances such as F-measure, AUC, G-mean, 
and so on. In addition, the method has strong robustness for credit data sets.

Keywords Credit scoring · Imbalanced data · Combined resampling · Gaussian mixture model

1 Introduction

With the rapid development of world economy, the loan has 
become an indispensable part of modern society, but high 
profit is often accompanied by high risk. One of the major 
risks comes from the difficulty to distinguish the credit-
worthy applicants from those who will probably default on 
repayments [49]. In this context, credit scoring has been 
identified as a crucial tool to reduce the possible risks and 
make managerial decisions [60], and one of the most popu-
lar application fields for both data mining and operational 
research [5].

Many techniques have been proposed for credit scoring, 
from the statistical models to the artificial intelligence meth-
ods [23]. Presently, the calculation of early default loan is 
mainly based on a subjective judgment method. Some of 
the qualitative criteria of borrowers such as the classic 5C 

standard have the disadvantages of large subjectivity and 
randomness [60]. With the wide application of computer 
and network technology in the banking industry, the artificial 
approval loans have become unable to meet the needs of the 
society. The statistical models, data mining, and other meth-
ods have been applied to credit scoring [27]. Most classical 
credit scoring methods are based on the parametric statis-
tical models, such as discriminant analysis [4, 17, 52, 64, 
67] and logistic regression [3, 4, 17, 57, 64, 65]. Moreover, 
recent researches have also implemented the non-parametric 
methods and computational intelligence technologies such 
as decision tree [3, 4, 64, 67], neural network [2–4, 17, 64, 
67], support vector machine [4, 66] and others.

Most of the traditional statistical models have definite 
mathematical forms and uncomplicated characteristics. 
Besides, it is hard to imagine that the complex real world 
can be described by a limited mathematical formula. An 
intelligent method represents a kind of data learning algo-
rithm which does not rely on the rule design, its prediction 
effect is quite good, and the cross-validation results are eas-
ily understood by the practical workers.

According to many comparative studies [4, 30, 62], it 
is not possible to claim the superiority of any method over 
the other competing algorithms regardless considering the 
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data characteristics. For instance, the noisy samples, missing 
values, and skewed class distribution may significantly affect 
the success of most prediction models.

This paper focuses on one of the data characteristics that 
may have the most influence on the performance of classi-
fication techniques: the imbalance in class distribution [12, 
25, 33]. While some complexities have been widely studied 
in the credit scoring literature (e.g., attribute relevance), the 
class imbalance problem has received relatively little atten-
tion so far. Nevertheless, an imbalanced class distribution 
naturally happens in the credit scoring where, in general, 
the number of observations in the class of defaulters is much 
smaller than the number of cases belonging to the class of 
non-defaulters [54].

In real life, the credit scoring denotes an imbalanced clas-
sification problem due to the relatively scarce information 
on overdue users. According to the statistics, in 2014, the 
default ratio of China’s banking financial institutions reached 
1.64%, while in 2013, the default ratio of banking financial 
institutions was 1.49%. For the commercial banks, at the end 
of 2013, the default rate was 0.97%. Besides, the default rate 
of the commercial bank increased by 0.16 percentage reach-
ing 1.13% in 2014, indicating a potential credit risk. There-
fore, credit scoring is essential to classify loan applicants 
into two classes, i.e., normal users (i.e., those who are likely 
to keep up with their repayments), and overdue users (i.e., 
those who are likely to default on their loans) [8]. Because of 
the imbalanced data distribution, it is often difficult to obtain 
a good performance at most cases by using only the tradi-
tional classifiers wherein a balanced distribution of classes 
is assumed, and an equal misclassification cost is assigned 
to each class. As a result, the traditional classifiers tend to be 
overwhelmed by the majority classes ignoring the minority 
ones, which is not acceptable in many real applications [22].

Therefore, to improve the accuracy of the minority class 
is an important and meaningful issue. Nowadays, learning 
the imbalanced data is an important research direction of 
machine learning because in the real world, the imbalanced 
data exist in many applications, such as fault diagnosis [44], 
medical diagnosis [50], intrusion detection [14, 59], text 
classification [42, 68], financial fraud detection [53], data 
stream classification [24], natural disasters [48], and so on. 
In these applications, there are often one or more minor-
ity classes possessing very few samples compared with the 
other classes. Most of the time, the minority classes are more 
important than the majority classes.

Recently, a variety of methods have been proposed to 
solve this problem, and they can be divided into four cat-
egories: algorithmic-level methods, data-level methods, 
cost-sensitive methods, and ensembles of classifiers [6, 7, 
9, 10, 13, 15, 19, 25]. The cost-sensitive learning methods 
are mainly considered in the classification. These methods 
assign different costs to different types of errors, minimizing 

the number of high-cost errors in the classification and the 
cost of the error classification [11, 18, 20, 31, 39, 47, 51, 
58]. The cost matrix is usually determined by expert opin-
ions. However, this method has not been widely used by 
scholars because it is very difficult to set up the cost matrix. 
The integrated learning solves the same machine learning 
problem by combining multiple learners. Compared with the 
traditional single learning, the integrated learning has better 
learning effect and stronger generalization ability. According 
to the generation method of an individual learner, the current 
integrated learning methods can be roughly divided into two 
categories: serially generated serialization methods (such 
as Boosting) and parallel generated serialization methods 
(such as Bagging) [22]. The selection of a proper type of 
combination method and a base learner is still a challenge. 
The other category is the algorithmic level method which 
adapts a supervised classifier to strengthen the accuracy 
towards the minority class. Therefore, this approach creates 
new classifiers or modify existing ones to tackle the class 
imbalance problem. Also, this method greatly relies on the 
classifier nature and most of the works on this method are 
focused on solving a specific issue. Moreover, it is difficult to 
develop new algorithms or modify the existing ones [41, 45, 
46, 55]. Based on that, the data-level methods that focus on 
the preprocessing of imbalanced datasets before construct-
ing the classifiers are widely considered in the literature. 
This is because the data-level approach is more flexible, and 
data preprocessing and classifier training can be performed 
independently. In addition, according to Albisua et al. [1] 
and Galar et al. [22], where a comparative study of numer-
ous well-known method was presented, the combinations 
of data preprocessing methods with ensembles of classifiers 
perform better than other methods; besides, focus on data 
angle is easier to understand and implement.

Data preprocessing methods are based on the resampling 
of imbalanced training data set before model training. To 
create the balance, the original imbalanced data set can be 
resampled by oversampling the minority class [10, 13, 15, 
19, 21, 22, 28, 29] or undersampling the majority class [32, 
34–38, 40]. Especially, among these two resampling strate-
gies, the undersampling has been shown to be a better choice 
[22]. However, both of them have drawbacks; namely, over-
sampling increases the amount of unnecessary information, 
and undersampling causes the deletion of some information. 
As a result, more and more scholars study the combination 
of these two methods. Lin et al. [43] put forward a resam-
pling algorithm combining random undersampling (RUS) 
and synthetic minority oversampling technique (SMOTE), 
and good results in the extreme risk early warning in the 
financial market field were achieved. In addition, Tomek’s 
modification of a condensed nearest neighbor [61] has often 
been combined with the SMOTE and used as a sampling 
strategy in experiments. It is worth noting that in order to 
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achieve a relative balance of two kinds of data, it is inevi-
table to delete a large number of majority class samples. 
However, the undersampling part of these two combination 
methods does not take into account the distribution charac-
teristics of data, which affects the results.

To overcome this shortcoming, we propose a new algo-
rithm for dealing with the credit data sets, which combines 
oversampling and undersampling. The main contributions 
are two-fold.

First, we improve the algorithm by replacing the tech-
nique whose core is a clustering algorithm with a Gauss 
mixed model (GMM). The aim of clustering analysis is to 
group similar objects (i.e., data samples) into the same clus-
ter; thus, the objects in different clusters are different regard-
ing their feature representations. Therefore, the original 
data in the same groups are replaced by the cluster centers, 
thereby reducing the size of the majority class. The GMM 
determines the probability that each data point is assigned 
to each cluster. Usage of such a probability has many advan-
tages because the amount of information is more than the 
direct result of clustering.

Second, there are a lot of imbalanced data in the financial 
field, but some of them are applied to the credit scoring. We 
propose a new algorithm for dealing with the credit datasets, 
which combines oversampling and undersampling. The pro-
posed approach is applied to three different credit datasets 
containing the real business data to tests the performance of 
the method from three viewpoints.

The numerical results show that the algorithm we propose 
here is more effective than the existing algorithms. In this 
paper, we demonstrate that this type of resampling strategy 
can reduce the risk of removing useful data from the major-
ity class and overfitting risk of the oversampling enabling 
the constructed classifiers (including both single classifiers 
and classifier ensembles) to outperform classifiers developed 
using some other resampling strategy.

The rest of the paper is organized as follows. A brief 
explanation of resampling techniques to be used in the anal-
ysis of the data sets is given in Sect. 2. The experimental 
data and the criteria used for comparing the classification 
performance are described in Sect. 3. Experimental results 
are presented and discussed in Sect. 4. Lastly, conclusions 
and recommendations for further research work are outlined 
in Sect. 5.

2  Resampling ensemble algorithm 
for classification of imbalanced data

At the data level, most popular strategies apply different 
resampling forms to change the class distribution of the 
data. This can be done either by oversampling the minority 
class or undersampling the majority class until both classes 

become approximately equally represented. Both of these 
data-level solutions have certain drawbacks because they 
change the original class distribution artificially. Namely, 
undersampling may result in discarding potentially useful 
information on most categories, and oversampling may 
increase the computational burden of some learning algo-
rithms and produce noise that may result in performance 
degradation. Hence, this study focuses on the use of the resa-
mpling strategies to solve this problem.

2.1  Gaussian mixtures model

In order to make the samples generated by a sampling algo-
rithm more consistent with the true data distribution, the 
proposed sampling algorithm is based on the Gaussian mix-
ture model (GMM) probability distribution.

The Gaussian mixed model refers to the linear combina-
tion of multiple Gaussian functions. The GMM can be con-
sidered as a mixture of L Gaussian distributions in a certain 
proportion. Each Gauss component is determined by mean 
μ and covariance matrices δ:

Since the GMM represents a real distribution of simula-
tion data and a semiparametric approximation expression 
model can approximate it to arbitrary data distribution, the 
Gaussian distribution assumption of two kinds of samples 
mixed with some data conforms to parameters obtained by 
the GMM according to the distributions of two types of 
parameter estimation. The common method for parameter 
estimation using the GMM is the Expectation Maximization 
(EM) algorithm [16].

2.2  Silhouette coefficient

The Silhouette coefficient is a measure of cluster validity. 
Namely, it is a kind of evaluation measure for clustering 
effect, and it was originally proposed by Rousseeuw [56]. 
The Silhouette coefficient combines cohesion and resolution 
of two factors. Therefore, it can be used to evaluate differ-
ent algorithms based on the same original data or the effect 
of different operation modes on the clustering results. The 
Silhouette coefficient is defined by:

where a(i) is an average dissimilarity between object i and 
any other object of the cluster to which i belongs, and b(i) 
is the lowest average distance from i to any point in any 
other cluster that i does not belong to. The cluster with this 
lowest average dissimilarity is labeled as the “neighbouring 
cluster” of i because it is the next best fit cluster for point 

(1)p(x) =

L∑

i=1

p(l)p(x|l) =
L∑

l=1

�lN(�l, �l),

L∑

l=1

�l = 1.

(2)Sil = (b(i) − a(i))∕max(b(i), a(i))
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i. The Silhouette coefficient is in the range (− 1, + 1) where 
higher values indicate that the object matches well with its 
own cluster but is not well matched with the adjacent cluster. 
If most objects have a high-value Silhouette coefficient, the 
clustering configuration is appropriate. On the other hand, 
if many points have a low or negative Silhouette coefficient, 
the clustering configuration has too many or too few clusters, 
respectively. The Silhouette coefficient can be calculated 
using any distance metric, such as Euclidean distance or 
Manhattan distance [56].

2.3  SMOTE algorithm

A common practice in the classification of an imbalanced 
data source is to oversample the minority classes. The syn-
thetic minority oversampling technique is one of the most 
commonly used approaches to address data imbalance prob-
lem. The SMOTE is an oversampling approach based on 
creating the synthetic training examples for interpolation 
with the minority classes.

The basic assumption of SMOTE is that there exists a 
virtual positive sample between two real positive samples 
that are near to each other. Therefore, the SMOTE algorithm 
tries to artificially create a new positive sample between two 
real positive samples that are near to each other. Suppose the 
number of positive samples after oversampling is (m + 1) 
times greater than the original number of positive samples. 
For each positive sample xPos

i
(i ∈ [1, 2,… , SPos]) , the 

SMOTE algorithm needs to find m nearest positive samples, 
xPos
ik

(k = 1, 2,… ,m) . Then, m new positive samples can be 
artificially created around the original positive sample xPos

i
 

according to (3). Finally, the number of artificially-created 
positive samples is m × SPos.

In (3), rand(0,1) is the function that produces a random 
value between zero and one. Both the newly created posi-
tive samples and the original positive samples are used in 
training. The number of artificially created positive samples 
varies with m, which leads to different degrees of balance 
between positive class and negative class in the final training 

(3)
x
Pos−new
ik

= x
Pos

i
+ rand(0, 1) × (xPos

ik
− x

Pos

i
)

(i ∈ [1, 2,… , S
Pos

], k ∈ [1, 2,… ,m]).

data set. Besides a successful application in the handwritten 
character recognition problems, the SMOTE has received 
considerable interest in the pattern recognition field. In 
recent years, many scholars have improved the SMOTE. 
This paper chooses the Borderline-SMOTE algorithm [26].

2.4  Gaussian mixture model based combined 
resampling algorithm

In this work, we solve the problem of an imbalanced dataset 
by using the resampling ensemble method.

In the proposed framework, the undersampling is used 
for majority classes, and the SMOTE oversampling is used 
for minority classes. Moreover, several different machine 
learning methods are employed to construct the ensemble. 
Both undersampling and oversampling can improve the 
imbalance of the data set. On the other hand, undersam-
pling of big classes could enhance the diversity of the base 
learners, which is a crucial factor affecting the classification 
performance [63]. Besides, we try to avoid losing too much 
information, and we pay attention to the balance between 
different classes. Therefore, determination of the final size 
of the processed classes is of great importance. The detailed 
empirical analysis is given in Sect. 4. The framework of the 
proposed resampling ensemble algorithm is shown in Fig. 1.

The flowchart of the Gaussian mixture model based com-
bined resampling algorithm (GSRA) is presented in Fig. 1. 
The processes are as follows. In a given two-class imbal-
anced dataset D composed of a majority class and a minority 
class, the majority and minority classes contain M and N 
data samples, respectively. The first step of the GSRA is to 
divide the imbalanced dataset into training and testing sets 
based on the k-fold cross-validation method. The second 
step is to divide the training set into a majority class subset 
and a minority class subset. Next, the GMM undersampling 
method is employed to reduce the number of data samples 
in the majority class. The minority class uses the SMOTE 
algorithm to perform the oversampling. The reduced major-
ity class subset is then combined with the increased minority 
class subset resulting in a balanced training set. Finally, the 
classifier is trained and tested by using the balanced training 
and testing sets, respectively.
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Fig. 1  The flowchart of the 
Gaussian mixture model based 
combined resampling algorithm Imbalanced dataset

Determine the sampling 
coefficient R

Training dataset Testing dataset

Calculating the Silhouette 
coefficient

Majority class 
(M)

Minority class 
(N)

Calculating the 
number of samples for each 

category

GMM-based 
Undersampling SMOTE sampling

Balanced training 
set

Classifier
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Algorithm: A Gaussian Mixture Model based combined resampling algorithm

Input:    Training Data Set ={(x1,y1),(x2,y2),...,(xm,ym)

Process:  Calculate the quan�ty difference between two classes 

Get the quan�ty difference D between two classes

Determine the sampling coefficient R (R is an arbitrary value between 0 and 1), 

The majority class of samples that should be changed _ = * (1 − )

The minority class of samples that should be changed _ = * .

For minority classes: perform oversampling (SMOTE algorithm)

For i=1,2,...,N_over

Randomly select a sample in class N,(xj, yj)

Compute k nearest neighbors of the sample

Generate a new sample of class l, by averaging k nearest neighbors with random 

weighs

Add a new sample in popula�on 

End For 

For majority classes: undersampling (GMM)

Use the Silhoue�e coefficient to determine the best clustering parameters

According to the sample size of each category a�er the Gaussian mixture clustering 

and the total amount of needed undersampling, the number of undersampling 

cycles for each subclass is determined propor�onally.

For each subclass of most classes, a sample close to the cluster center is deleted (it 

is necessary to reduce the number of redundant samples on the premise that 

the spa�al structure informa�on of a subclass is not destroyed, so that each 

subclass is denser than the other regions in the central area of each subclass, so 

it should have a higher probability of falling sampling, preserving the 

representa�ve samples at the same �me during the compression of most 

classes.)

End For

Output: Generate resampling data set 

The performance of the GSRA can be explained better 
using the distributions presented in Fig. 2. The original data 
distribution D is shown in Fig. 2a, where triangles are a few 
classes and circles are most classes. The data distribution 
after the SMOTE sampling is presented in Fig. 2b, where 
a rectangle denotes a newly synthesized few samples. As it 
can be seen in Fig. 2, the SMOTE algorithm based on the 
sample connection interpolation does not consider the distri-
bution of the majority of the data and generates a lot of noise 
data. In Fig. 2c, for most classes of the GMM modeling and 
decomposition results, some of the redundant data of the 
majority of the class will be deleted. In Fig. 2, the result of 
the GSRA sampling is presented, where it can be seen that 
the GSRA combines the advantages of the above two kinds 
of sampling.

3  Data set and evaluation metrics

3.1  Data sets

In this work, three experimental data sets were used 
(Table 1). The first data set was based on two small-scale 
data sets, the Australian and German Credit data sets that 
are publicly available at the UCI repository. The imbalance 
ratios of these data sets are between 1.24 and 2.3, respec-
tively, with the numbers of collected data samples ranging 
from 690 to 1000. Both of them are two-class classification 
data sets. In addition, we adjusted the proportion of these 
two data sets by reducing the number of samples, and gen-
erated several new datasets, as shown in Table 2. Then, we 
divided the German data set into a certain number of data 
according to the noise ratio, as shown in Table 3, which will 
be described further in Sect. 4.  

In the second data set, the real data sets from the finan-
cial company (It’s a consumer financial service provider in 
China. Its main business is a car loan service for individuals. 
The average monthly application of customers is about three 
thousand, and the default rate is about 1.6%.) were used. The 
enterprise data were obtained from one of the major finan-
cial institutions from July 2015 to January 2016, and they 
are shown in Table 4. In mentioned data sets, a bad customer 
was defined as someone who had missed three consecutive 
monthly payments.

To perform classifier training and testing, all of the data 
sets were divided such that 80% of data were used for train-
ing and the rest 20% for testing through the fivefold cross-
validation approach.

3.2  Evaluation metrics

We used six metrics to evaluate our model: accuracy, 
F1-measure, precision, recall, G-mean, and AUC (area under 
the ROC curve). Each of them is commonly used in clas-
sification problem in data mining. In this work, we consider 
a credit risk prediction as a binary imbalance classification 
problem. For imbalanced classification problems, the accu-
racy (or error rate) is not a sufficient evaluation criterion. On 
the other hand, F-measure and G-mean are two commonly 
used measures to evaluate the performance of imbalanced 
data classification.

In the classification process, after all the testing instances 
are classified, the confusion matrix of classification can be 
obtained. In the confusion matrix, the representative TP 
divides the samples that belong to the positive class into a 
positive class. Similarly, TN, FP, and FN are the number of 
true negatives, the number of false positives, and the num-
ber of false negatives, respectively. The confusion matrix is 
shown in Table 5. Generally, the minority class is called the 
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negative class. The accuracy, precision, recall, F-measure, 
and G-mean are defined by (4–8), respectively.

(4)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 2  Data distribution contrast diagram after sampling (i.e., the two-dimensional data set)

Table 1  Data set information

Data set No. of data 
samples

No. of features Imbalance ratio

Australian 690 14 1.24
German 1000 24 2.33

Table 2  Different proportions of data

Data set No. of data 
samples

No. of features Imbalance ratio

German 1000 24 2.33
German_250 950 24 2.8
German_200 900 24 3.5
German_150 850 24 4.6
German_100 800 24 7
Germann_50 750 24 14
Australian 690 14 1.24
Australian_250 640 14 1.56
Australian_200 590 14 1.95
Australian_150 540 14 2.6
Australian_100 490 14 3.9

Table 3  Data set information

Data set No. of data 
samples

No. of features Number of 
noise samples

Noise 
ratio 
(%)

5_German 1000 24 50 5
10_German 1000 24 100 10
20_German 1000 24 200 20
30_German 1000 24 300 30

Table 4  Enterprise data set information

Data set No. of data 
samples

No. of features Imbalance ratio

2015.7_2016.1 2660 25 17.3
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Namely, accuracy is a common performance index for 
classifiers to characterize the accuracy of classification; 
recall reflects the proportion of positive samples that are cor-
rectly judged by the classifier to the total positive samples; 
precision reflects the proportion of real negative samples 
in negative classes determined by the classifier; F-measure 
is the weighted harmonic mean of recall and precision; 
G-mean is another important indicator to measure unbal-
anced datasets, which balances the sensitivity and specific-
ity, where sensitivity and specificity are the accuracy of the 
positive and negative classes, respectively.

The other evaluation metric we used is the AUC proposed 
by Baesens et al. [4]. The AUC relates to the area under the 
receiver operating characteristic (ROC) curve. The receiver 
operating characteristic curve (ROC) is a two-dimensional 
graphical illustration of the trade-off between the true posi-
tive rate (sensitivity) and false positive rate (1-specificity). 
The ROC curve illustrates the behavior of a classifier with-
out consideration of a class distribution or a misclassifica-
tion cost. In order to compare the ROC curves of different 
classifiers, the area under the receiver operating character-
istic curve (AUC) should be computed [4].

As already mentioned, the indicators used here are all fre-
quently used indicators for the classification in the machine 
learning domain. These six evaluation indexes are com-
monly used to evaluate the performance index of classifiers, 
especially the latter three.

(5)Recall =
TP

TP + FN

(6)Precision =
TP

TP + FP

(7)F − measure =
2TP

2TP + FN + FP

(8)G − mean =

√
TP

TP + FN
×

TN

TN + FP
.

4  Results and discussion

In this section, the experimental results are presented from 
three aspects, samples distribution, classification perfor-
mance, and influence of parameters.

4.1  Sampling distribution contrast of resampling 
algorithm

The working principle of the GSRA sampling and its differ-
ence from the SMOTE sampling (high dimensional data are 
drawn by the t-Distributed Stochastic Neighbor Embedding 
dimension reduction) are presented in Fig. 3.

The original data distribution used in the experiments is 
shown in Fig. 3a, where black circles denote rare data, and 
white circles denote the data majority.

The sampled data distribution after the SMOTE is pre-
sented in Fig. 3b, where it can be seen that the SMOTE algo-
rithm did not consider data distribution in most classes. The 
result of the GMM modeling and decomposition for most 
classes is presented in Fig. 3c. As we can see from Fig. 3a, 
some of the data that most classes interact were deleted and 
the boundaries between the two classes are more obvious. 
Of course, we can deepen this effect by adjusting parameters 
The results of the combination of the methods presented in 
Fig. 3b, c are presented in Fig. 3d.

4.2  Performance comparison of different 
resampling algorithms

The approach proposed in this work was validated by 
comparison with thirteen most commonly used state-of-
the-art approaches: ClusterCentroids, NearMiss, Neigh-
bourhoodCleaningRule (NCR), OneSidedSelection (OSS), 
TomekLinks, ADASYN, SMOTE, SMOTE + RUS, and 
SMOTE + Tomek. The listed approaches are typical repre-
sentatives of undersampling, oversampling, and combined 
sampling. In addition, because the Gaussian hybrid cluster-
ing is essentially a clustering algorithm, the Kmeans and 
Affinity Propagation clustering algorithms are compared 
with the undersampling results.

All of the algorithms were written in Python 2.7 lan-
guage. The computer used in the experiments had Intel Core 
i5 2.47 GHz CPU, 4G memory. The operating system was 
Windows 7.

In the first experiment, the logical regression classifier 
and the decision tree (DT) classifier were selected as the 
base classifiers because they are often used as the baseline 
classifiers in most related studies.

As can be seen in Tables 6 and 7, the GSRA had a good 
performance on the majority of data sets. For the LR clas-
sifier, there were 12 data sets in total, and 11 data sets were 

Table 5  Imbalanced confusion matrix of bi-classification problems

Predicted negative Predicted positive

Actual negative TN FP
Actual positive FN TP
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optimal. On the other hand, for the DT classifier, there were 
12 data sets in total, and 8 data sets were optimal.

By detailed analysis of Tables 6 and 7, it was found that 
performance of the combined sampling method was gener-
ally better than that of a single sampling method. Besides, 
the performance of the GSRA was relatively stable, and the 
GSRA algorithm had better classification performance than 
other tested algorithms.

4.3  The effect of sampling coefficient R 
on classification performance

The sampling coefficient R of GSRA determines the per-
formance of focused sampling affecting the classification 
accuracy. To observe the influence of sampling coefficient R 
on classification performance, the experiments with Austral-
ian data set and German data set were performed.

In Tables 8 and 9, it can be seen that sampling coefficient 
R directly affects the classification performance. Namely, 
when R was close to 0, the sampling mode tended to a sin-
gle undersampling, which might cause potential loss of the 
important data. On the other hand, when R was close to 1, 
the sampling mode tended to a single oversampling, and 
a large number of new samples were synthesized, which 
denotes the “overfitting” phenomenon. In Fig. 4, it can be 

seen that the peak values of Australian data set and German 
data set range from 0 to 1. Consequently, a mixed sampling 
mode can avoid the shortcoming of a single sampling mode. 
In Fig. 4, the focus in on three main indicators: F1-measure, 
G-mean, AUC.  

In Fig. 4, as the value of R increases, under-sampling 
deletes some information that is not conducive to classifi-
cation, so that the performance of the classifier gradually 
increases until the peak value is reached. Then, with the 
further increase of the oversampling ratio, the overfitting 
causes a decrease in classification performance, which con-
firms the above conclusion.

4.4  Algorithm robustness to noise data

Inevitably, there are many noise data in any data set. Noise 
data denote the wrong values of samples such as an error 
in category label. In this work, we used the sample noise 
containing the error class label as an example to study the 
robustness of the proposed algorithm. In order to systemati-
cally verify the algorithm robustness to noise data, we manu-
ally added the noise data in the experiment. We selected the 
German data and observed the algorithm robustness under 
given noise ratio.

Fig. 3  Data distribution after sampling of data sets (i.e., the German data set)
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Table 8  The results of the experiment with German data set under different sampling coefficient R 

R = 0 R = 0.1 R = 0.2 R = 0.3 R = 0.4 R = 0.5 R = 0.6 R = 0.7 R = 0.8 R = 0.9 R = 1

German
 Accuracy 72.8571 74.4903 74.3548 74.2241 73.5185 74.5 75.2174 73.8095 72.8555 72.2059 74.2843
 Recall 0.7357 0.7561 0.7468 0.7466 0.7444 0.762 0.7609 0.7429 0.7307 0.7324 0.7567
 Precision 0.7258 0.7399 0.7421 0.7396 0.7309 0.7377 0.7475 0.7367 0.7267 0.7177 0.7385
 F1-measure 0.7303 0.7478 0.7439 0.7421 0.7369 0.7493 0.7533 0.7385 0.7268 0.7245 0.7462
 G-mean 0.7281 0.7447 0.7431 0.7414 0.7345 0.7445 0.7513 0.737 0.7267 0.7215 0.7415
 AUC 0.8088 0.8141 0.8138 0.8131 0.8017 0.8082 0.8121 0.805 0.8011 0.7888 0.8014

Table 9  The results of the experiment with Australian data set under different sampling coefficient R 

R = 0 R = 0.1 R = 0.2 R = 0.3 R = 0.4 R = 0.5 R = 0.6 R = 0.7 R = 0.8 R = 0.9 R = 1

Australian
 Accuracy 86.2953 86.5333 86.4235 85.8333 87.3843 86.3768 86.0558 85.7576 80.9495 86.8254 86.798
 Recall 0.8655 0.8987 0.8914 0.8889 0.9093 0.8928 0.8903 0.8879 0.8942 0.8921 0.8989
 Precision 0.8414 0.8425 0.8474 0.8398 0.8501 0.8425 0.8399 0.839 0.8527 0.854 0.8475
 F1-measure 0.8672 0.8695 0.8679 0.8623 0.8783 0.8679 0.8642 0.8616 0.8724 0.8716 0.8721
 G-mean 0.862 0.8646 0.8631 0.8571 0.8728 0.863 0.8599 0.8562 0.8688 0.8671 0.8672
 AUC 0.9254 0.9295 0.9312 0.9312 0.9332 0.9304 0.9339 0.9304 0.9291 0.9297 0.9315

Fig. 4  The value of AUC (a), G-mean (b), and F1-measure (c) under different sampling coefficient R 

Table 10  Algorithm robustness to noise data

No resample GSRA SMOTE + RUS SMOTE + Tomek

F1_measure G-mean AUC F1_measure G-mean AUC F1_measure G-mean AUC F1_measure G-mean AUC 

5_German 0.5455 0.6414 0.7762 0.7567 0.7539 0.8397 0.6818 0.6815 0.7582 0.6891 0.6892 0.7633
10_German 0.5019 0.6038 0.7176 0.6844 0.6836 0.7429 0.6786 0.6761 0.7345 0.6774 0.6761 0.7376
20_German 0.45 0.5522 0.6474 0.6141 0.6116 0.6665 0.6171 0.6182 0.6638 0.6143 0.6162 0.6623
30_German 0.4083 0.5034 0.5721 0.5737 0.572 0.6093 0.568 0.5665 0.5925 0.5681 0.5715 0.5974
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According to the results presented in Table 10, it can be 
concluded that GSRA is more robust to noise data than other 
algorithms, especially at high noise ratio. This is because 
GSRA considers the distribution of most classes, and can 
delete data according to the aggregation degree of data, 
thereby reducing the influence of noise data on sampling 
and classification learning.

5  Conclusions and recommendations 
for further work

Focused on the classification problem of imbalanced credit 
data sets, this paper proposes a Gaussian mixture model 
based combined resampling algorithm. In the proposed 
algorithm, the oversampling is used for the minority class, 
and undersampling is used for the majority class, and the 
sampling coefficient is determined according to the ratio 
of the number of minority classes and the number of the 
majority classes. We compared the proposed algorithm 
with other commonly used resampling methods and studied 
their performance on various credit data sets. The classi-
fication ability of all tested algorithm was assessed based 
on the following metrics: accuracy, F1-measure, precision, 
recall, G-mean, and AUC (area under the ROC curve). The 
obtained numerical results show that the GSRA is excellent 
on most credit data and robust to noise data. Also, it was 
found that with the adjustment of the sampling coefficient 
R, the classification result changed; thus, the selection of an 
appropriate sampling coefficient is very important.

In our future work, we will apply the GSRA to more data 
sets, and we also intend to study the time efficiency of the 
GSRA to improve its time performance. In addition, the 
problem of sampling ratio and multi-classification is also 
worth studying carefully.
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