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Abstract
In modern automotive engines, air–fuel ratio (AFR) strongly affects exhaust emissions, power, and brake-specific consump-
tion. AFR control is therefore essential to engine performance. Most existing engine built-in AFR controllers, however, are 
lacking adaptive capability and cannot guarantee long-term control performance. Other popular AFR control approaches, 
like adaptive PID control or sliding mode control, are sensitive to noise or needs prior expert knowledge (such as the engine 
model of AFR). To address these issues, an initial-training-free online sequential extreme learning machine (ITF-OSELM) 
is proposed for the design of AFR controller, and hence a new adaptive AFR controller is developed. The core idea is to use 
ITF-OSELM for identifying the AFR dynamics in an online sequential manner based on the real-time engine data, and then 
use the ITF-OSELM model to calculate the necessary control signal, so that the AFR can be regulated. The contribution of 
the proposed approach is the integration of the initial-training-free online system identification algorithm in the controller 
design. Moreover, to guarantee the stability of the closed-loop control system, a stability analysis is also conducted. To verify 
the feasibility and evaluate the performance of the proposed AFR control approach, simulations on virtual engine and experi-
ments on real engine have been carried out. Both results show that the proposed approach is effective for AFR regulation.
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Abbreviations
ai  Input weight of the ith hidden node
bi  Bias of the ith hidden node
ek+1  Error between system output and reference
êk+1  Error between system output and model 

prediction
g
(
xk

)
  Part of system to be identified

ĝ(xk, �g)  Approximating function for function g
(
xk

)
G(ai, bi, xk)  Mapping function of the ith hidden node
Hg  Hidden layer output for function g
H�  Hidden layer output for function �
I  Identity matrix

P0  Initial updating term for ITF-OSELM
Pk+1  Updated term by using the (k + 1) th arriving 

training data
t  Time
uk  Control signal of the kth step
vt  Time varying factor
xk  System state at the kth step
yk+1  System output for control signal uk
ŷk+1  Model prediction for control signal uk
yr(k+1)  Tracking reference of the (k + 1)th step
�0  Initial output weights
�(k+1)  Updated output weights by using the 

(k + 1) th arriving training data
�g  Output weights of approximating function ĝ
��  Output weights of approximating function �̂�
�  Regularization factor
�(t)  Measured lambda value at time t
�d(t)  Desired lambda value at time t
�  Forgetting factor
�(xk)  Part of system to be identified
�̂�(xk, �𝜑)  Approximating function for function �(xk)
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1 Introduction

In automotive engineering area, air–fuel ratio (AFR) is 
defined as the ratio of the amount of air to the amount of 
fuel consumed by an engine for combustion. As the engine 
combustion process is very sensitive to AFR, slight varia-
tions of AFR can already alter the engine behavior among 
highest power, lowest emissions and best fuel economy. For 
example, as shown in Fig. 1 [1], the amount of engine emis-
sions for gasoline is minimum when AFR is at 14.7, which 
is the stoichiometric ratio of gasoline indicating that correct 
amount of air and fuel are supplied to produce a complete 
combustion; while peak torque usually occurs at AFR val-
ues around 12.5 (i.e., 85% of the stoichiometric ratio). The 
conversion efficiency of the three-way catalytic converter for 
emission reduction also maximizes at stoichiometric AFR. 
In order to achieve different engine performance objec-
tives, such as more engine power and lower engine emis-
sions, different AFRs should be targeted. Precise control of 
AFR is therefore essential for maintaining the best engine 
performance at various operating conditions and driving 
requirements.

Practically, AFR control is achieved by using closed-loop 
feedback controllers. The feedback of AFR usually comes 
from the lambda sensors (also known as oxygen sensors) 
installed on the vehicle tailpipe. It is worth noting that lambda 
is a normalized AFR value of which the stoichiometry is 
always 1 regardless the fuel types. As shown in Fig. 2, com-
monly two lambda sensors are used on a vehicle, one before 
and one after the three-way catalytic converter, to ensure 
that the three-way catalytic converter of the vehicle works 
properly. For AFR control, only the lambda signal from the 
upstream lambda sensor is acquired as it is closer to the engine 
combustion chamber. In the closed-loop AFR control system 
as illustrated in Fig. 2, the lambda signal is firstly sent to the 
electronic control unit (ECU) of the engine and compared 
with the target AFR preset in the ECU. Then, the error is 
received by the built-in controller in the ECU to calculate for 
the necessary amount of fuel. Finally, the control signal of 
the fuel injection is sent to the fuel injector to adjust the AFR.

In most existing engines, proportional-integral-derivative 
(PID) controllers are adopted for this closed-loop AFR con-
trol. However, it is well-known that tuning for the param-
eters of the PID controller is a tedious process and is engine 
dependent. Moreover, even if the PID controller is well-tuned 
for an engine, it still cannot guarantee long-term AFR control 
performance due to its use of fixed gains and the presence of 
uncertainty with engine aging. Therefore, various intelligent 
techniques have been developed in the past decade for AFR 
control [2, 3]. An adaptive PID controller [4] and a param-
eter-varying filtered PID strategy for AFR control [5] were 
respectively proposed to adjust the controller gains, so that 
the controller characteristics could be varied in accordance 
with the engine conditions. However, noise disturbance and 
the highly nonlinear nature of AFR dynamics still limit the 
performance of such linear-based PID controllers. To deal 
with this problem, sliding-mode control (SMC) was widely 
studied [6–9]. An observer-based fuel injection control 
algorithm based on SMC strategy was proposed [6] and the 
results showed that it was better than engine factory control-
ler. Later, an adaptive SMC strategy for AFR control [7] was 
proposed, in which an adaptive update law was derived for 
the fuel parameters. More recently, a SMC for AFR control of 
a dual-fuel engine [8], a second-order SMC strategy for AFR 
control of lean-burn engines [9], and a fuzzy sliding-mode Fig. 1  Engine performance against air–fuel ratio for gasoline [1]

Fig. 2  Closed-loop AFR control
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strategy for AFR control of lean-burn spark ignition engines 
[10], were also developed, which assume that the engine 
model (a simplified engine model) is known. All these stud-
ies showed promising control result of SMC-based controller. 
Nevertheless, one major limitation for all these SMC-based 
AFR control approaches is that prior expert knowledge of the 
engine is required for development of the controller. When 
there is no prior knowledge available for the target engine or 
the available knowledge is not sufficient, it is almost impos-
sible to construct a reliable controller for practical use. The 
automotive engine is a complicated system. So far, there is 
no exact engine model available yet. Without exact engine 
model, reliable prior information of the target engine is dif-
ficult to know. In addition, the ECU that controls the engine 
has limited memory size and computation capability, which 
also make the other complicated control approaches, e.g., 
composite learning from adaptive dynamic surface control 
[11] and adaptive fuzzy back-stepping control [12], hard to 
be applied to real engine control.

In order to address the above issues, the initial-training-
free online extreme learning machine (ITF-OELM) devel-
oped by the authors in 2016 [13] for general purpose is 
considered. ITF-OELM is a variant of extreme learning 
machine (ELM). One advantageous feature of ITF-OELM 
is that it can train and update the model anytime when neces-
sary without the need of any pre-acquired data. Due to the 
advantage of initial training free, ITF-OELM is simpler and 
easier to be implemented, and more suitable for learning 
problems in which it is difficult to collect sufficient amount 
of training data in advance. This advantage indicates that 
ITF-OELM can easily be implemented in real automotive 
ECUs. Since the ITF-OELM can identify the relationship 
of an unknown system based on its input–output data, it 
can be used to identify the AFR dynamics online adaptively 
based on real-time engine data. However, the ITF-OELM 
used in this paper does not need a mechanism for change 
detection which is different from the original ITF-OELM. 
It is because the threshold of the change detection mecha-
nism in [13] is difficult to determine. Moreover, the change 
detection mechanism will result in frequently retraining of 
engine AFR model. The simulation results in [13] show that 
the controller needs some time steps to settle every time 
when the model retraining is required. AFR is very sensitive 
to engine performance, a small change of AFR may cause 
engine stall [1]. To avoid the risk of engine stall before set-
tle down, the change detection mechanism in ITF-OELM 
is ignored in this work. To distinguish the ITF-OELM in 
this paper from the author’s previous work, the ITF-OELM 
in this paper is called initial-training-free online sequential 
extreme learning machine (ITF-OSELM).

With the adaptively updated ITF-OSELM model instead 
of frequently retrained ITF-OELM model, the necessary 
control signal in each combustion iteration can be properly 

calculated, and the AFR can eventually be regulated. Unlike 
the ELM-based direct adaptive controllers proposed in [14, 
15] that the controller parameters are directly updated from 
an adaption error, the proposed controller is an indirect 
adaptive neural controller, in which the adaption of the 
controller parameters is done in two stages: (1) online esti-
mation of the plant and online computation of the controller 
parameters based on the current estimated plant model; (2) 
ITF-OSELM is used for identifying the AFR dynamics in 
an online sequential manner based on the real-time engine 
data, and then the ITF-OSELM model is used to calculate 
the necessary control signal in order to adjust the engine 
AFR to the desired level accurately. The proposed approach 
also differs from the ELM-based indirect adaptive control-
ler developed in [16], in which a sliding mode controller is 
combined but the plant model is known.

In summary, existing PID-based engine AFR controllers 
are lack of adaptive capability, and other adaptive approaches 
generally require a dynamic model of the engine. However, 
since the automotive engine is a complicated system, no 
exact engine dynamic model is available in the literature yet. 
That means the parameters of the existing controllers need 
to be updated periodically to ensure the AFR controller per-
formance. So the main motivation of this paper is to develop 
an automotive engine AFR controller that can adaptively 
adjust its parameters to maintain the AFR performance when 
the engine condition changes due to various uncertainties. 
The main contributions of this paper include: (1) an online 
identification strategy for the automotive engine AFR system 
using ITF-OSELM is designed; (2) an adaptive AFR control 
strategy based on the identified AFR system is proposed; (3) 
the proposed adaptive controller is applied to AFR control 
for a real automotive engine, while many existing studies are 
simulation work only.

The organization of this paper is as follows. The proposed 
ITF-OSELM based adaptive engine air–fuel ratio regula-
tion is derived in Sect. 2. To verify the feasibility of the 
proposed approach, both simulations on virtual engine and 
experiments on real engine are carried out. Evaluation of the 
control performance is also conducted by comparing with 
the built-in PID controller in the ECU. The simulation and 
experiment studies are presented respectively in Sects. 3 and 
4. The conclusions are given in Sect. 5.

2  Adaptive AFR control using ITF‑OSELM

2.1  Problem formulation

Theoretically, the dynamics of engine AFR can be described 
by the following approximated discrete system, in which the 
control appears linearly [17]:
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 where y is the system output (i.e., lambda), u is the control 
input (i.e., fuel injection), g(⋅) and �(⋅) are unknown nonlin-
ear functions with unknown parameters, k is the time step, 
and xk =

[
yk,… , yk−n+1, uk−1,… , uk−n+1

]
 with n being the 

system order.
The following assumptions are made in accordance with 

the AFR dynamics:

1. The system is observable. This is valid as the lambda is 
measurable.

2. �(⋅) is bounded away from zero. This means that change 
in fuel injection can always influence the AFR.

3. The system is bounded-input bounded-output stable. 
This is valid as for any input within the known stable 
bound, the corresponding engine response is always 
bounded and stable.

4. For a known bounded desired reference output, yr , there 
exists a bounded control input that can drive the system 
output to follow the reference output.

5. There exist exact parameters such that both g(⋅) and �(⋅) 
can be approximated with zero error.

Under these assumptions, if both g(⋅) and �(⋅) can be 
exactly approximated using ĝ(⋅) and �̂�(⋅) , then the following 
control law can be used to exactly track the desired refer-
ence yr:

such that,

 when ĝ(⋅) ≅ g(⋅) and �̂�(⋅) ≅ 𝜑(⋅) . Therefore, the core idea of 
the proposed control strategy is to adaptively learn the two 
unknown functions online by ITF-OSELM.

2.2  Identifying engine AFR system using ITF‑OSELM

In the control law of Eq. (2), two functions ĝ(xk) and �̂�(xk) 
should be known to calculate the fuel injection time (i.e. 
control signal) uk , so that the system output yk+1 can track 
the desired reference yr(k+1) . Therefore, the system identi-
fication of the two functions is the key to implement the 
adaptive control.

Since both g
(
xk

)
 and �(xk) in Eq. (1) are unknown, gen-

erally two networks ĝ(xk, �g) and �̂�(xk, �𝜑) are necessary to 
approximate these two functions based on the system inputs 
and outputs. However, there is only one single output yk+1 

(1)yk+1 = g
(
xk

)
+ �(xk)uk

(2)uk =
yr(k+1) − ĝ(xk)

�̂�(xk)
,

(3)yk+1 = g(xk) + 𝜑(xk)
yr(k+1) − ĝ

(
xk

)

�̂�
(
xk

) ≅ yr(k+1),

that can be observed each time from the system, so it is 
practically difficult to explicitly derive the approximation 
errors of the two functions (i.e., |ĝ(⋅) − g(⋅)| and |�̂�(⋅) − 𝜑(⋅)| ) 
for the system of interest. Fortunately, by considering the 
approximate system output given as:

it is feasible to use only one single network with special 
structure design to estimate the two functions simultane-
ously. This special network structure is provided in Fig. 3.

In the structure of Fig. 3, the hidden nodes of the network 
are separated into two groups, one of which is for ĝ(.) and the 
other is for �̂�(⋅) . For simplicity purpose, in this paper, each 
group contains L hidden nodes, so there are totally 2L hidden 
nodes in the hidden layer. The hidden layer output matrixes 
for these two groups are denoted as Hg and H� respectively. 
It has to be noted that Hg is different from H� because at the 
k th step, each i th hidden node output in Hg is the result of 
feature mapping (ai, bi, xk) , while that in H� is the product 
of the feature mapping G(ai, bi, xk) and the control input uk 
(i.e., G(aj, bj, xk) ⋅ uk ). The mapping function G(ai, bi, xk) is 
sigmoid, where xk is the input instance, ai is the input weight 
and bi is the bias of the ith hidden node. The parameters ai 
and bi are generated randomly. Since at each time step, there 
is only one sample available, so the resulting hidden layer 
matrix can be denoted as: H = [Hg,H�] = [G(a1, b1, xk),… ,

G(a
L
, b

L
, x

k
),G(a

L+1, bL+1, xk) ⋅ uk,… ,G(a
L+L, bL+L, xk) ⋅ uk].

The objective of ITF-OSELM is to adjust the weights of 
this single network by minimizing the approximate error 
between the exact system output yk+1 and the approximated 
output ŷk+1 , i.e.:

The procedure for online system identification using ITF-
OSELM involves on two phases: (1) initialization phase 

(4)ŷk+1 = ĝ(xk, �g) + �̂�(xk, �𝜑)uk,

(5)

Minimize: ŷk+1 − yk+1 =
‖‖H� − yk+1

‖‖ =

‖‖‖‖‖
[
Hg,H𝜑

][ �g

�𝜑

]
− yk+1

‖‖‖‖‖
.

Fig. 3  Network structure for simultaneous approximation of g(⋅) and 
�(⋅)
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and (2), online learning phase, which are summarized in 
the following:

Initialization phase:
Assign random values for input weights, and set the out-

put weights �0 =

[
�0

g
, �0

�

]
= 0 and the updating term 

P0 = (�I)−1.

Online learning phase:
For the (k + 1) th arriving training data,

1. Calculate the hidden layer output matrix Hk+1 = [Hg(k+1),

H�(k+1)];
2. Update the output weights �(k+1) using the following 

equations.
 

ITF-OSELM is simpler than the original online sequen-
tial extreme learning machine (OS-ELM) [18] and its 
improved version regularized OS-ELM (ReOS-ELM) [19], 
and thus it is easier to use. Furthermore, like weighted OS-
ELM (WOS-ELM) [20], a forgetting factor can also be intro-
duced for some applications, so that the old learnt data are 
gradually ignored. It follows the same initialization phase in 
ITF-OSELM, but in the second phase, the updating rule of 
Eq. (7) is revised as follows:

(6)� (k+1) = � (k) + Pk+1H
T

k+1

(
yk+1 −Hk+1�

(k)
)

(7)Pk+1 = Pk − PkH
T

k+1
(I +Hk+1Pk

H
T

k+1
)−1Hk+1Pk.

 where 0 < 𝜌 ≤ 1 is the forgetting factor. This factor can 
give the more recent arriving data higher contribution to the 
adjustment of output weights. It should be noted that when 
� = 1 , the weight updating algorithm is the same as that of 
original ITF-OSELM. The above procedure is summarized 
in a flowchart as shown in Fig. 4.

2.3  Design of ITF‑OSELM‑based AFR controller

A block diagram is provided in Fig. 5 showing how the 
AFR is controlled with ITF-OSELM. It should be noted 
that, the error ê used for model update is the prediction 
error between the real value of the system output and the 
prediction value of the ITF-OSELM model. This prediction 
error is also called model error, which can be reduced when 
more data of the system are available for model update. 
During the online learning process, more input–output 
dynamic data of the engine system are acquired to update 
the ITF-OSELM model, and hence the model error, and 
so as the tracking error, will gradually converge to zero as 
proved in Eq. (3).

2.4  Stability analysis

To verify the control strategy, the stability analysis from 
[21] can be referred, in which the error between the system 
output and the reference (i.e., tracking error) is defined as:

Then, introducing two approximated system outputs into 
Eq. (9) yields:

Finally, substituting the control law Eq. (2) into Eq. (11), 
the resulting tracking error becomes:

(8)

Pk+1 =
1

�

(
Pk − PkH

T
k+1

(
�INk+1

+Hk+1PkH
T
k+1

)−1

Hk+1Pk

)

(9)ek+1 = yk+1 − yr(k+1).

(10)ek+1 = yk+1 − ŷk+1 + ŷk+1 − yr(k+1),

(11)
ek+1 = [g(⋅) + 𝜑(⋅)uk − ĝ(⋅) − �̂�(⋅)uk] + [ĝ(⋅) + �̂�(⋅)uk − yr(k+1)].

Fig. 4  Flowchart of ITF-OSELM Fig. 5  Control block diagram
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If the assumptions in Sect. 2.1 are valid and the control 
signal is bounded, then the tracking error is equal to the predic-
tion error as shown in Eq. (13). Since the control signal is fuel 
injection time, the control signal is bounded by the fuel injector 
hardware. With more training data in the online learning phase, 
the prediction error converges to zero. If the approximation 
errors of the two functions converge to zero, the tracking error 
also becomes zero. Therefore, the bound-input bound-output 
stability can be guaranteed. Since the weight updating algo-
rithm in ITF-OSELM has the same form as recursive least 
squares (RLS), the convergence is guaranteed, and hence the 
stability of the controller can also be guaranteed.

3  Simulation verification

To verify the effectiveness of the proposed ITF-OSELM 
based adaptive controller before applying to complicated 
real engine applications, simulations on simulated engines 
were carried out for different kinds of evaluations.

The objective of Simulation I is to test the identifying 
capability of ITF-OSELM. Therefore, in this simulation, 
ITF-OSELM is employed to approximate the whole simu-
lated engine, which is not time-varying.

The objective of Simulation II is to test the adaptive capa-
bility of ITF-OSELM based AFR controller. Therefore, in 
this simulation ITF-OSELM is used to identify the whole 
simulated engine with a time-varying factor.

Furthermore, to demonstrate the effectiveness of ITF-
OSELM, the stochastic gradient back-propagation (SGBP) 
in [22] was implemented for the adaptive air–fuel ratio 
controller for comparison. Among the three existing online 
learning algorithms: OS-ELM, ReOS-ELM and SGBP, OS-
ELM and ReOS-ELM need a base model to begin online 
learning, so only the similar initial-training-free online algo-
rithm SGBP was selected for comparison. In addition, all 
the simulations in the following sections were implemented 
in MATLAB and executed on a PC with Intel Core i7 CPU 
and 4 GB RAM onboard.

3.1  Simulation I for time‑invariant system

To simplify the problem, a simulated engine model of 465Q 
gasoline engine at speed of 3500 rpm and manifold pressure 
of 85 kPa [23], is used, given as:

(12)
ek+1 = [g(⋅) + 𝜑(⋅)uk − ĝ(⋅) − �̂�(⋅)uk] + [yr(k+1) − yr(k+1)],

(13)ek+1 = g(⋅) − ĝ(⋅) + [𝜑(⋅) − �̂�(⋅)]uk = yk+1 − ŷk+1.

(14)yk+1 =
0.2 sin yk + 3.5

(
9 − uk

)
14.7

,

 where the output yk+1 is lambda. AFR is measured by 
lambda sensor in real applications. Therefore, the AFR is 
also called lambda, which is the ratio of actual AFR to stoi-
chiometry for a given mixture.

Lambda is 1.0 at stoichiometry; lambda less than 1.0 
indicates a rich mixture and lambda bigger than 1.0 indi-
cates a lean mixture. For pure gasoline, the AFRstoich is 
approximately 14.7. In this simulation, the whole system is 
assumed unknown, and ITF-OSELM is to identify the whole 
unknown system of Eq. (14) in online manner.

In this simulation, the step response of the controller was 
tested. The desired lambda yr was set to drop from 1.00 to 
0.95 at some point and then jump to 1.05 afterward, and 
finally return back to 1.00. The formulation of the reference 
output in this case is:

Based on this reference, the results of simulations using 
SGBP and ITF-OSELM with different number of hidden 
nodes are provided in Figs. 6, 7, and 8, respectively. From 
Figs. 6 and 8, it can be seen that for both approaches, the 
actual lambda can quickly track the reference after the first 
several steps. Both SGBP and ITF-OSELM cannot approxi-
mate the AFR system well in the first several steps, because 
only a few of data can be available. When the reference 
change abruptly at the 50th, 150th and the 250th steps, the 
actual output of ITF-OSELM can track the desired reference 
well. However, the SGBP based approach spends several 

(15)lambda =
AFR

AFRstoich

.

(16)yr(k) =

⎧
⎪⎨⎪⎩

0.95 50 ≤ k < 150

1.05 150 ≤ k < 250

1 otherwise

.

50 100 150 200 250 300
0.9

0.95

1

1.05

1.1

k (step)

 L
am

bd
a

Reference Actual

50 100 150 200 250 300
4

4.5

5

5.5

6

k (step)

 u

uk

Fig. 6  Control performance of SGBP in Simulation I
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steps to catch the reference. This simulation results show 
the powerful capability of both SGBP and ITF-OSELM for 
online system identification and thus the adaptive control. 
However, the effectiveness of ITF-OSELM is better than 
SGBP based approach for the tracking performance.

In this simulation, the regularization factor is 0.001, 
and the activation function is sigmoid for hidden nodes. 
In Fig. 7, 50 hidden nodes are used. However, the tracking 
performance is not good. Therefore, to enhance the approx-
imating capability of ITF-OSELM, 100 hidden nodes are 
employed to approximate the whole system. With 100 hid-
den nodes, the good tracking performance can be achieved 
easily as shown in Fig. 8. For fair comparison, the hidden 
node number for SGBP is also 100, but the learning rate 
is 0.002 in order to achieve the best tracking performance.

3.2  Simulation II for time‑varying system

In order to further test the performance of the proposed 
approach, a time-varying system based on the engine model 
of Simulation I is also conducted. In this simulated engine, 
a time-varying factor vt is introduced.

The time varying factor vt is set as 0.95, then the engine 
system will vary slightly at each step. The same reference 
and parameters in Simulation I are used, so that the results 
of the two simulations can be compared easily.

The results of Simulation II are given in Fig. 9 for 
SGBP, Fig. 10 for ITF-OSELM without forgetting factor 

(17)yk+1 =
0.2 sin yk + vt × 3.5

(
9 − uk

)
14.7

.

0 50 100 150 200 250 300 350

0.9

0.95

1

1.05

k (step)

 L
am

bd
a

Reference Actual

0 50 100 150 200 250 300 350
4

4.5

5

5.5

6

k (step)

u

u
k

Fig. 7  Control performance of ITF-OSELM with 50 hidden nodes in 
Simulation I
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Fig. 8  Control performance of ITF-OSELM with 100 hidden nodes 
in Simulation I
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Fig. 9  Control performance of SGBP in Simulation II
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Fig. 10  Control performance of ITF-OSELM without forgetting fac-
tor in Simulation II
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respectively. It can be seen that, the actual lambda for both 
approaches can also track the reference after the first sev-
eral steps, even the varying factor is introduced. Compar-
ing Figs. 6 and 8, the time varying system spends almost 
the same number of steps when the reference is changed 
at the first several steps. That means for time varying sys-
tem, both SGBP and ITF-OSELM have powerful adaptive 
capability, but the ITF-OSELM based approach has better 
tracking performance.

For more evaluation, a forgetting factor (0.98) is intro-
duced into ITF-OSELM, and the simulation results are 
given in Fig. 11. It can be seen that the tracking perfor-
mance of ITF-OSELM with forgetting factor is better than 
that without forgetting factor.

In these two simulations, ITF-OSELM demonstrates its 
powerful online learning capability, so that the unknown 
system can be approximated just using several steps, and 
the ITF-OSELM based AFR controller has good tracking 
performance as well.

4  Experimental study on a real engine

The results of above simulations show the powerful online 
learning capability of ITF-OSELM and better adaptive 
control performance. However, the engine model is still 
simple and out of sensor noise and signal delay. To further 
verify the proposed ITF-OSELM based adaptive control 
for AFR regulation. A system identification and experi-
ment on a real engine were also conducted. Different from 
the above simulations, the experiment on the real engine 
is more complicated and the environmental condition will 
change as the engine is operating. Moreover, the lambda 

sensor for providing the feedback lambda signal, y, has a 
noticeable delay. Two experiments were carried out. One 
is to test the online system identification of ITF-OSELM 
and the tracking performance of the proposed controller. 
The other experiment is to test the adaptive capability 
when the engine operating condition is changed. Further-
more, the engine built-in controller (i.e., look-up table and 
PID) is also applied for comparison.

4.1  Experimental setup

A Honda Integra DC5 sport car with a high performance 
electronic controlled, water-cooled, 4-cylinder gasoline 
engine is employed as shown in Fig. 12. The specification 
of the test engine is provided in Table 1. A MoTeC M400 
programmable ECU, as shown in Fig. 13, is used as the base 
controller to maintain the basic engine operation.

To implement the proposed ITF-OSELM based adaptive 
AFR controller, three national instrument (NI) devices were 
used. A NI 9215 module was used to measure analog signal, 
a NI 9263 module was used to send analog signal, and a NI 
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Fig. 11  Control performance of ITF-OSELM with forgetting factor 
(0.98) in Simulation II

Fig. 12  Honda K20A test engine

Table 1  Engine specification

Engine Honda K20A—Type R

Type Water-cooled, four-stroke, DOHC 
i-VTEC

Cylinder arrangement Inline four-cylinder, transverse
Bore and stroke 86 × 86 mm
Displacement 1998 cc
Compression ratio 11.5:1
Valve train Chain drive, 16 valves
Maximum power 160 kW at 8000 rpm
Maximum torque 196 N m at 7000 rpm
Type of fuel injection system Port injection
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cDAQ-9178 chassis was employed as signal transmission 
between the NI module and computer. These NI devices 
were assembled and connected with the ECU as shown in 
Fig. 14.

A LabVIEW 2012 software is installed on a computer, 
which was a graphical programming platform for the user 
to control the NI devices. In other words, the NI devices 
serve as the interface between the engine signal and the 
computer, and LabVIEW program serves as the interface 
between the computer and users. In LabVIEW, a MAT-
LAB plugin is available such that the MATLAB script can 
be embedded directly. A “MATLAB Script Node” module 
was used to embed the ITFO-ELM based controller in the 
LabVIEW program. The diagram of experiment setup is 
shown in Fig. 15 and the interface between LabVIEW and 
NI devices is given in Fig. 16. For controlling the fuel 
injection, instead of sending control signal directly to the 

engine fuel injectors, the control signal from the LabVIEW 
is sent to the programmable ECU and the ECU then con-
verts the given control signal into the control signal of the 
fuel injectors.

With this program and the NI devices, the designed 
controller was successfully implemented on the engine. 
Then, the effectiveness of the controller could be tested 
and evaluated through this hardware and software system. 
In the implementation of ITF-OSELM based adaptive con-
trol, the hidden node number is 100, the regularization fac-
tor is 0.001, the forgetting factor is 0.98 and the activation 
function is sigmoid function, because they can lead to good 
tracking performances in Simulations I and II.

4.2  Experimental procedure

In the experiment, the control input from LabVIEW is fuel 
injection time and the engine output is lambda. At each 
control step, the fuel injection time and the lambda of last 
step is collected as the input of the ELM model as shown 
in Fig. 3 and the lambda of the current step is collected 
as the target value for training the ELM model. Then the 
updated ELM model is used to calculate the control input 
for the next step using Eq. (2). With the continual updating 
of ELM model with the online data, it can rapidly capture 
the dynamic behaviors of the engine AFR system and thus 
precisely control the actual lambda to the desired lambda.

Two different tests are performed to evaluate the effec-
tiveness of the proposed approach.

Test I is designed to evaluate the tracking ability of the 
adaptive controller for the change of reference target, in 
which the operating condition is not changed. That means 
the dynamic system does not vary or changes slightly.

Fig. 13  MoTeC M400 ECU for engine basic control

Fig. 14  NI devices for controller implementation

Fig. 15  Schematic diagram of experimental setup
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Test II is designed to evaluate the tracking ability of the 
adaptive controller for the change of engine operating condi-
tion. It means the operating condition will change and thus 
the dynamic system also changes.

4.3  Experimental results of Test I

In Test I, the engine is started and warmed up until steady 
state is reached, which is indicated by the intake air tempera-
ture and engine temperature. Test I refers to an idle speed test, 

so the throttle position is fixed at 0%. In the beginning, the 
desired lambda value stays at a common value of 1.00 (maxi-
mum conversion efficiency of the three-way catalytic con-
verter) for a period of time. Then the desired lambda value 
is changed to 1.05 (for best brake specific fuel consumption) 
for about 30 s and finally changed back to 1.00 so that the 
tracking performance could be reasonably evaluated.

The results of this test are given in Figs. 17 and 18 respec-
tively for both the ITF-OSELM based approach and the 
engine built-in controller. The tracking performance in the 
real engine cannot achieve a perfect tracking performance 
as compared to the simulation because of the complexity of 
real engine and existence of sensor noise and signal delay. 
However, the proposed controller can still immediately 
adjust the fuel injection time to track the desired lambda 
with a minor fluctuation, when the desired lambda value 
is changed either from 1.00 to 1.05 or from 1.05 to 1.00. 
Anyway, the proposed approach can achieve an acceptable 
performance level.

Fig. 16  Interface between Lab-
VIEW and NI devices
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4.4  Experimental results of Test II

In Test II, the engine is warmed up until steady state. The 
manifold absolute pressure (MAP) is then changed by 
switching on/off V-TEC which means the valve timing and 
lift are suddenly changed. The changing of MAP is given in 
Fig. 19, in which the operating condition is changed at the 
20th and 65th seconds, and the dynamic system is altered 
accordingly. The control objective is to hold the actual out-
put to the desired reference 1.0.

The experimental results of this test are given in Fig. 20 
for both the proposed approach and the engine built-in con-
troller. For the abrupt change of MAP at the 20th second 
and the 65th second, the dynamics of AFR system alters a 
lot and it needs to take a short period of time for the pro-
posed controller to adapt to the changed system. It can been 
seen that even when the MAP varies from 85 to 30 kPa, the 
proposed controller can still successfully regulate the fuel 
injection time to achieve the desired lambda. Moreover, the 
response time and the tracking performance are within an 
acceptable range. It is noteworthy that the lambda obtained 
by the engine built-in controller around the 65th second is 
too lean that almost stalls the engine whilst the proposed 
approach does not have this problem. Besides, the proposed 
approach has less tracking error than the engine built-in 
controller, when MAP is changed abruptly.

To quantify the control performance of the controllers, 
the sum of absolute errors (SAE) of the control results are 
calculated using the following equation:

 where �(t) and �d(t) are the measured and desired lambda 
values at the time t.

The SAE of Test I for the proposed approach is 92.12, 
and 132.07 for the engine built-in controller. The SAE of 
Test II for the proposed approach is 333.47, and 465.41 
for the engine built-in controller. By averaging the errors 
of these two cases, the proposed approach outperforms 
the engine built-in controller by 29.3%. This significant 
result, especially for such tough control tasks, shows that 
the proposed approach controller is very useful and effec-
tive for AFR control.

4.5  Discussion

The proposed ITF-OSELM based adaptive controller for 
engine AFR regulation has good tracking performance for 
the system without varying or with slow varying. The exper-
imental results of Test I and Test II show the controller can 
successfully track the desired reference for this situation. It 
is noteworthy that the result in Test I is obtained without any 
prior training, whereas the result in Test II is obtained after 
taking the online training in Test I, so the tracking perfor-
mance of ITF-OSELM at abrupt change in Test II is better 
than that in Test I. Overall, the results of both tests verify 
that ITF-OSELM has powerful online learning capability 
to identify the nonlinear dynamic system. This shows that 
the proposed approach is feasible for time-varying systems.

5  Conclusions

In this paper, an ITF-OSELM based adaptive controller 
for AFR regulation is proposed. The unique feature of the 
proposed approach is that no engine AFR model and train-
ing data are required in advance. So far, there is no exact 
engine model available yet, and hence many model-based 
control approaches are practically very hard to be applied to 
engine control. In the proposed approach, ITF-OSELM is 
employed to identify the complicated engine AFR dynamics 
in an online manner. Therefore, no training data is required 
in advance. To avoid frequently retraining of engine AFR 
model, which may cause engine stall, the ITF-OSELM used 
in this paper does not need a mechanism for change detec-
tion which is also different from the original ITF-OELM 
in the author’s previous work. In addition, the proposed 

(18)SAE =

End of test∑
t=0

||�(t) − �d(t)
||.

(a) ITF-OSELM based controller 

(b) Engine built-in controller 
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Fig. 20  Tracking performance comparison between the proposed 
approach and engine built-in controller
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approach is relatively easy to be implemented as compared 
to other existing approaches.

In this research, single neural network online trained by 
ITF-OSELM is used to approximate two unknown functions, 
and then the learnt model by ITF-OSELM is used to calcu-
late the control signal, so that the system output can track 
the desired reference.

In order to verify the proposed approach, both simula-
tions on virtual engines and experiments on a real engine 
were conducted. The simulation results show that the ITF-
OSELM based adaptive controller could achieve excellent 
tracking performance. Therefore, the controller was confi-
dently implemented on a real test engine. Experiments were 
then set-up in which NI devices, LabVIEW, MATLAB and 
MoTeC programmable ECU were utilized. The experimental 
results demonstrate that the designed adaptive AFR control-
ler can successfully track the desired reference when the 
AFR system is fixed or varying slowly.

The system of Eq. (1) for ITF-OSELM to approximate to 
is a general system. That is to say, the proposed ITF-OSELM 
based adaptive control strategy can be applied to many other 
similar applications.
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