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Abstract
In this paper, the basic ideas underlying fuzzy logic are introduced into the study of three-way formal concept analysis. This 
leads naturally to the notion of L-fuzzy three-way concepts. The L-fuzzy three-way operators and their inverse are defined 
and their properties are given. Based on these operators, two types of L-fuzzy three-way concepts are defined and the cor-
responding three-way concept lattices are constructed. A possibility theory reading of L-fuzzy three-way concepts is also 
provided. Moreover, the corresponding fuzzy inference method is studied. Two coherent fuzzy inference methods, the lower 
approximate fuzzy inference and the upper approximate fuzzy inference, are proposed, respectively.

Keywords Three-way decisions · Concept lattice · L-fuzzy three-way concept · Fuzzy inference

1 Introduction

The theory of formal concept analysis [11] was proposed by 
Wille in 1982. It exploits the duality between objects and 
attributes in a Boolean data table, and leads to an original 
and practical view of the notion of a formal concept with 
application to data mining [1, 16, 26]. In classical formal 
concept analysis, a concept is a pair made of a set of objects 
and a set of attributes possessed by all the objects, that 
are in mutual correspondence, through an antitone Galois 
connection.

It is important to note that in formal concept analysis, 
each element in the extension possesses all elements in the 
intension and each element in the intension is shared by all 
elements in the extension. This is a type of two-way deci-
sion. However, a difficulty with two-way decisions in for-
mal concept analysis is that one is only concerned with the 
commonly-shared attributes of a concept. This represents a 
type of positive information. It seems more reasonable to 
consider simultaneously both positive and negative infor-
mation. Such a consideration divides a whole into three 
parts and helps us to gain a thorough understanding of for-
mal concepts. Indeed, similar principles and methods are 
commonly used in everyday life. So far, there still does not 
exist a unified formal description of three-way decisions. 
For this reason, a theory of three-way decisions (3WD) has 
been proposed by Yang and Yao [38] as an effective way of 
problem solving, which turns complexity into simplicity in 
many situations. Since its introduction, there has been a fast 
growing interest, resulting in extensive research that extends 
and applies three-way decisions. Explorations of three-way 
decisions have been made in relation to several other theo-
ries, including, for example, rough sets [17–19, 38, 40, 41], 
interval sets [42], [45], three-way approximations of fuzzy 
sets [9], shadowed sets [27], orthopairs (i.e., a pair of dis-
joint sets) [7], and squares of oppositions [44]. The theory of 
three-way decisions embraces ideas from these theories and 
introduces its own notions, concepts, methods, and tools.
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Research in the framework of formal concept analysis 
also progresses rapidly. In [8], a possibility-theoretic view 
of formal concept analysis has been introduced. In [20], Li 
et al. considered the issues of approximate concept construc-
tion, rule acquisition and knowledge reduction in incomplete 
decision contexts. Moreover, they also focused on clarify-
ing the relationship among the existing reduction methods 
in formal decision contexts [21]. In [28], a novel concept 
formation and novel concept lattices were developed by Qi 
et al. with respect to a Boolean data table to support three-
way decisions. Precisely, the given concept not only describe 
those objects (attributes) shared by all elements in the inten-
sion (the extension), but also those objects (attributes) not 
possessed by all elements in the intension (the extension). 
In subsequent studies, three-way concept analysis has been 
investigated from various view of points. In [29], Qi et al. 
systematically analysed the connections between object 
(attribute) induced three-way concept lattices and classical 
concept lattices. In [14, 22–24], Li et al. mainly focused 
on three-way concept learning via multi-granularity from 
the viewpoint of information fusion and cognition, respec-
tively. In [15], Hu et al. generalized measurement on deci-
sion conclusion in three-way decision spaces from fuzzy 
lattices to partially ordered sets. In [25], Li and Wang 
focused on two issues: approximate concept construction 
with three-way decisions and attribute reduction in incom-
plete contexts. In [32], formal concept analysis based on 
bidirectional associative memory was extended to three-way 
formal concept analysis (3WFCA). Qian et al. [30] focused 
on approaches to construct the three-way concept lattices of 
a given formal context. In [33, 34], the authors considered 
the issue of three-way fuzzy concept lattice representation 
using neutrosophic set. In [35, 36], the authors proposed an 
algorithm for generating the bipolar fuzzy formal concepts 
and two methods based on the properties of next neighbors 
and Euclidean distance for knowledge extraction. In [42, 
43], Yao presented a common conceptual framework of the 
notions of interval sets and incomplete formal contexts for 
representing partially-known concepts.

Classical concept lattice has also been studied from 
the viewpoint of fuzzy logic. For instance, Burusco and 
Fuentes-Gonzales [2] studied concept lattices in fuzzy for-
mal contexts, B ̌elohlávek [3–6] introduced fuzzy concepts 
in fuzzy formal contexts by employing a residuated lattice. 
Georgescu and Popescu [12] introduced and studied fuzzy 
conjugated pairs, with their underlying closure operators 
and hierarchical structure. Shao et al. [31] studied rough 
set approximations within formal concept analysis in fuzzy 
environment. Fan et al. [10] introduced a fuzzy inference 
method based on the notion of fuzzy concept lattice.

The present study is undertaken to introduce fuzzy logic 
into three-way concept analysis, and a type of L-fuzzy three-
way concept analysis is thus provided. The rest of this paper 

is structured as follows. In Sect.  2, we recall some basic 
notions on residuated lattices and three-way concept lat-
tices. In Sect.  3, based on the formal context (U, V, I), two 
types of three-way Galois connections are introduced, and 
the collection of its fixed points is shown to be a complete 
lattice. Then in Sect.  4, a fuzzy inference method based on 
the notion of L-fuzzy three-way concept lattices is studied. 
Some concluding remarks are presented in Sect. 5.

2  Preliminaries

In this section, we briefly recall some basic notions that will 
be used in this paper.

2.1  Residuated lattices

Definition 2.1 [37] A tuple (L,∧,∨,⊗,→, 0, 1) is called a 
complete residuated lattice, if

(1) (L,∧,∨, 0, 1) is a complete lattice with the least element 
0 and the greatest element 1;

(2) (L,⊗, 1) is a commutative monoid;
(3) (⊗,→)  i s  a n  a d j o i n t  p a i r  i n  L ,  i . e . 

a⊗ b ≤ c ⇔ a ≤ b → c, a, b, c ∈ L.

In a residuated lattice (L,∧,∨,⊗,→, 0, 1) , the negation oper-
ator ¬ is defined by ¬a = a → 0, a ∈ L . A residuated lattice 
(L,∧,∨,⊗,→, 0, 1) is said to be involutive if it satisfies the 
condition ∀a ∈ L, a = ¬¬a.
Proposition 2.1 [37] The notions of residuated lattices 
obey the following properties:

 (i) a → b = 1 ⇔ a ≤ b,

 (ii) 1 → a = a,

 (iii) a ≤ b → c ⇔ b ≤ a → c,

 (iv) a⊗ (
⋁

i∈I ai) =
⋁

i∈I (a⊗ a
i
), a⊗ (

⋀

i∈I ai) ≤
⋀

i∈I (a⊗ a
i
),

 (v) (
⋁

i∈I ai) → a =
⋀

i∈I(ai → a),

 (vi) a → (
⋀

i∈I ai) =
⋀

i∈I(a → ai),

 (vii) a → (b → c) = b → (a → c),

 (viii) → is antitone in the first argument and isotone in the 
second argument,

 (ix) ⊗ is isotone in both arguments,
 (x) a⊗ b ≤ a, a⊗ b ≤ b,

 (xi) a → b ≤ ¬b → ¬a,

 (xii) a → ¬b = b → ¬a,

 (xiii) a⊗ b → c = a → (b → c), a, ai(i ∈ I), b, c ∈ L.

Let (L,∧,∨,⊗,→, 0, 1) be a residuated lattice. An L-fuzzy 
set [13] in a universe set U is a function X ∶ U → L and 
the collection of L-fuzzy sets on U is denoted by LU . For 
x ∈ U and X ∈ LU , the value X(x) is called the membership 
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degree of x in X and it is interpreted as the truth value of 
“x is element of X”. Similarly, an L-fuzzy relation between 
U and V is a function I ∶ U × V → L. The set of L-fuzzy 
relations between U and V is denoted by LU×V .

Given two fuzzy sets X1,X2 ∈ LU , the famous subset-
hood degree [12] was defined as follows:

It expresses the truth value of “each element of X1 is an ele-
ment of X2”.

Definition 2.2 [3, 5] An L-fuzzy Galois connection 
between the sets U and V is a pair (↑, ↓) of mapping 
↑∶ LU → LV , ↓∶ LV → LU , satisfying

 (i) S(X1,X2) ≤ S(X
↑

2
,X

↑

1
),

 (ii) S(B1,B2) ≤ S(B
↓

2
,B

↓

1
),

 (iii) X ⊆ X↑↓,

 (iv) B ⊆ B↓↑,

for all X1,X2,X ∈ LU ,B1,B2,B ∈ LV.
Theorem 2.1 [3, 5]  A pair (↑, ↓) forms an L-fuzzy Galois 
connection between the sets U and V if and only if

For a relat ion I ,  a  pair  of  operators  (↑I , ↓I) 
( ↑I∶ LU → LV , ↓I∶ LV → LU ) is given in the following 
manner:

Proposition 2.2 [3, 5]  Let (↑I , ↓I) be the pair of operators 
defined as above, then we have

 (i) S(X, Y↓I ) = S(Y ,X↑I ),

 (ii) (
⋁

i∈I Xi)
↑I =

⋀

i∈I X
↑I

i
, (
⋁

i∈I Yi)
↓I =

⋀

i∈I Y
↓I

i
.

   Given two fuzzy sets (Y+
1
, Y−

1
), (Y+

2
, Y−

2
) ∈ LV × LV

, we define 

(1)S
(

X1,X2

)

=
⋀

x∈U

(

X1(x) → X2(x)
)

.

S(X,B↓) = S(B,X↑).

X↑I (y) =
⋀

x∈U

(X(x) → I(x, y)),X ∈ LU , y ∈ V ,

Y↓I (x) =
⋀

y∈V

(Y(y) → I(x, y)), Y ∈ LV , x ∈ U.

S
∗
((

Y
+
1

, Y
−
1

)

,

(

Y
+
2

, Y
−
2

))

=
⋀

y∈V

(

Y
+
1

(y) → Y
+
2

(y)
)

∧

⋀

y∈V

(

Y
−
1

(y) → Y
−
2

(y)
)

.

   Clearly ,  fo r  (Y+
1
, Y−

1
), (Y+

2
, Y−

2
) ∈ LV × LV  , 

S∗((Y+
1
, Y−

1
), (Y+

2
, Y−

2
)) = S(Y+

1
, Y+

2
) ∧ S(Y−

1
, Y−

2
).

Proposition 2.3 [3, 5] Let (↑, ↓) be an L-fuzzy Galois con-
nection between U and V. Then there exists an L-fuzzy rela-
tion I ∈ LU×V such that for the induced mappings ↑I and ↓I 
it holds that (↑, ↓) = (↑I , ↓I).

2.2  Three‑way concept analysis

In three-way concept analysis, the three-way operators and 
their inverse are defined and their properties were given. 
Based on these operators, two types of three-way concepts 
were defined and the corresponding three-way concept lattices 
were constructed.

In a formal context (U,  V,  I), for X ⊆ U , Y ⊆ V  and 
I ⊆ U × V , a pair of operators, ∗∶ 2U → 2V and ∗∶ 2V → 2U , 
are defined by

This pair of operators is called derivation operators in formal 
concept analysis [11]. Sometimes, to stress the underlying 
binary relation, we write (∗, ∗) as (∗I , ∗I).

For X ⊆ U and Y ⊆ V , a pair of three-way operators (∗T , ∗T ) 
are defined as follows: ∗T∶ 2U → 2V × 2V , ∗T∶ 2V × 2V → 2U 
as follows:

X∗T = (Y+, Y−) , where Y+ = {y ∈ V ∣ ∀x ∈ X, (x, y) ∈ I}, 
Y− = {y ∈ V ∣ ∀x ∈ X, (x, y) ∈ Ic}.

(Y+
,Y

−)∗T = {x ∈ U ∣ ∀y ∈ Y
+
, (x, y) ∈ I} ∩ {x ∈ U ∣

∈ Y
−
, (x, y) ∈ I

c}.

Indeed, a trivial verification shows that X∗T = (X∗I ,X∗Ic ) 
and (Y+, Y−)∗T = (Y+)∗I ∩ (Y−)∗Ic . We can thus conclude 
that the proposed three-way concept analysis is obtained by 
combining derivation operators in classical formal concept 
analysis.

For X ∈ 2U and (Y+, Y−) ∈ 2V × 2V , if X∗T = (Y+, Y−) and 
(Y+, Y−)∗T = X , then the pair (X, (Y+, Y−)) is called a three-
way concept.

Define a binary relation ≤ on the collection of three-way 
concepts by

then it has been shown in [28] that ≤ is a partial order, and 
the collection of three-way concepts forms a complete lattice 
with respect to ≤ . The infimum and supremum are given by

X∗ ={y ∈ V ∣ ∀x ∈ X, (x, y) ∈ I},

Y∗ ={x ∈ U ∣ ∀y ∈ Y , (x, y) ∈ I}.

(X1, (Y
+
1
, Y−

1
)) ≤ (X2, (Y

+
2
, Y−

2
)) ⇔ X1 ⊆ X2 ⇔ (Y+

2
, Y−

2
) ⊆ (Y+

1
, Y−

1
),
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3  L‑fuzzy concept lattices based 
on three‑way decisions

In this section, we aim to introduce the basic ideas underly-
ing fuzzy logic into the study of three-way formal concept 
analysis. This leads naturally to the notion of L-fuzzy three-
way concepts. As will be shown below, the collection of 
L-fuzzy three-way concepts forms a lattice under the usual 
partial order. The properties of L-fuzzy three-way concept 
lattices are also investigated in detail.

Definition 3.1 Define a pair of operators (↑T , ↓T ) between 
LU and LV × LV ( ↑T∶ LU → LV × LV , ↓T∶ LV × LV → LU ) as 
follows: ∀X ∈ LU , (Y+, Y−) ∈ LV × LV , x ∈ U, y ∈ V ,

(

X
1

,

(

Y
+
1

, Y
−
1

))

∨
(

X
2

,

(

Y
+
2

, Y
−
2

))

=
((

X
1

∪ X
2

)∗
T
∗
T

,

(

Y
+
1

, Y
−
1

)

∩
(

Y
+
2

, Y
−
2

))

,

(

X
1

,

(

Y
+
1

, Y
−
1

))

∧
(

X
2

,

(

Y
+
2

, Y
−
2

))

=
(

X
1

∩ X
2

,

((

Y
+
1

, Y
−
1

)

∪
(

Y
+
2

, Y
−
2

))∗
T
∗
T
)

.

(2)

X
↑
T (y) =

(

Z
+(y), Z−(y)

)

,

(

Y
+
, Y

−
)↓

T (x)

=
⋀

y∈V

(

Y
+(y) → I(x, y)

)

∧
⋀

y∈V

(Y−(y) → ¬I(x, y)),

w h e r e  Z
+(y) =

⋀

x∈U(X(x) → I(x, y)),Z−(y) =
⋀

x∈U

→ ¬I(x, y)), (Z+
,Z

−) ∈ L
V × L

V
.

A trivial verification shows that for each X ∈ LU , 
X↑T = (X↑I ,X↑¬I ), that is, ↑T is obtained by considering both 
↑I and ↑¬I simultaneously.

In the case of L = {0, 1} , it can be easily checked that 
Y
+ = {y ∈ V ∣ ∀x ∈ X, (x, y) ∈ I},Y− = {y ∈ V ∣ ∀x ∈ X,

(x, y) ∈ I
c}. Similarly, we have (Y+

,Y
−)↓T = {x ∈ U ∣

∀y
1

∈ Y
+
, (x, y

1

) ∈ I,∀y
2

∈ Y
−
, (x, y

2

) ∈ I
c}.  T h a t  i s , 

(↑T , ↓T ) = (∗T , ∗T ) . And thus, the proposed L-fuzzy three-
way concept analysis is a natural generalization of three-way 
concept analysis in [20].

The pair of operators (↑T , ↓T ) forms a type of L-fuzzy 
Galois connection, as will be shown below.

Proposition 3.1 Let (↑T , ↓T ) be the pair of operators defined 
by formula (2), then for any X ∈ LU , (Y+, Y−) ∈ LV × LV , we 
have

Proof According to formula (1), we have

(3)S(X, (Y+, Y−)↓T ) = S∗((Y+, Y−),X↑T ).

S(X, (Y+, Y−)↓T ) =
⋀

x∈U

(

X(x) → (Y+, Y−)↓T (x)
)

=
⋀

x∈U

(

X(x) →
⋀

y∈V
((Y+(y) → I(x, y)) ∧ (Y−(y) → ¬I(x, y)))

)

=
⋀

x∈U

(

X(x) →
⋀

y∈V
(Y+(y) → I(x, y)) ∧

⋀

y∈V
(Y−(y) → ¬I(x, y))

)

=
⋀

x∈U

(

(X(x) →
⋀

y∈V
(Y+(y)

→ I(x, y))) ∧
(

X(x) →
⋀

y∈V
(Y−(y) → ¬I(x, y)))

)

=
⋀

x∈U

(

(X(x) → (Y+)↓I (x)) ∧ (X(x) → (Y−)↓¬I (x))
)

=
⋀

x∈U

(

X(x) → (Y+)↓I (x)) ∧
⋀

x∈U
(X(x) → (Y−)↓¬I (x)

)

=S(X, (Y+)↓I ) ∧ S(X, (Y−)↓¬I )

=S(Y+,X↑I ) ∧ S(Y−,X↑¬I )

=S∗((Y+, Y−), (X↑I ,X↑¬I ))

=S∗((Y+, Y−),X↑T ).
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Thus, the proposition is proved.   □

Contrary to the fact that for any L-fuzzy Galois 
connection (↑, ↓) , there exists an L-fuzzy relation I 
such that (↑, ↓) = (↑I , ↓I) , the converse of Proposi-
tion 3.1 is not necessarily true, that is, for (↑T , ↓T ) sat-
isfying formula (3), it does not necessarily enjoy the 
form of formula (2). Indeed, for any two L-fuzzy rela-
tions I1 and I2, we define operators ↑T∶ LU → LV × LV 
a n d  ↓T∶ LV × LV → LU  b y  X↑T = (Y1, Y2)  a n d 
(Y+

, Y
−)↓T (x) =

⋀

y∈V (Y
+(y) → I

1

(x, y)) ∧
⋀

y∈V (Y
−(y) →

I
2

(x, y)) , where Y1(y) =
⋀

x∈U(X(x) → I1(x, y)), y ∈ V  and 
Y2(y) =

⋀

x∈U(X(x) → I2(x, y)), y ∈ V . An easy verification 
shows that (↑T , ↓T ) also satisfies the formula (3).

The pair of operators (↑T , ↓T ) defined by formula (2) 
satisfies the following properties.

Proposition 3.2 For X,X
1

,X
2

∈ L
U
, (Y+

, Y
−), (Y+

1

, Y
−
1

),

(Y+
2

, Y
−
2

) ∈ L
V × L

V
,

 (i) X1 ⊆ X2 implies that X↑T

2
⊆ X

↑T

1
,

 (ii) (Y+
1
, Y−

1
) ⊆ (Y+

2
, Y−

2
)  i m p l i e s  t h a t 

(Y+
2
, Y−

2
)↓T ⊆ (Y+

1
, Y−

1
)↓T ,

 (iii) X ⊆ X↑T↓T ,

 (iv) X↑T = X↑T↓T↑T , (Y+, Y−)↓T = (Y+, Y−)↓T↑T↓T ,

 (v) (Y+, Y−) ⊆ (Y+, Y−)↓T↑T ,

 (vi) (
⋁

i∈I Xi)
↑T =

⋀

i∈I X
↑T

i
,

 (vii) (
⋁

i∈I(Y
+
i
, Y−

i
))↓T =

⋀

i∈I(Y
+
i
, Y−

i
)↓T .

We use L3
o
 to denote the collection of fixed points of 

(↑T , ↓T ) , that is,

For any (X, (Y+, Y−)) ∈ L3
o
, since a pair of L-fuzzy sets 

(Y+, Y−) on V (the set of attributes) is associated with an 
L-fuzzy set X on U (the set of objects), we therefore call 
(X, (Y+, Y−)) an object-induced L-fuzzy three-way concept. 
Define a binary relation ≤o on L3

o
 as follows:

(X1, (Y
+
1
, Y−

1
)) ≤o (X2, (Y

+
2
, Y−

2
)) ⇔ X1 ⊆ X2 , or equiva-

lently, (Y+
2
, Y−

2
) ⊆ (Y+

1
, Y−

1
).

It can be shown that ≤o satisfies the reflexivity condition, 
anti-symmetry condition and the transitivity condition, and 
thus, ≤o is a partial order on L3

o
 . We are now in a position to 

show whether L3
o
 forms a lattice under the partial order ≤o 

L3
o
= {(X, (Y+, Y−)) ∣ X↑T = (Y+, Y−), (Y+, Y−)↓T = X}.

or not. The corresponding result is summarized in the fol-
lowing proposition.

Proposition 3.3 (L3
o
,≤o) forms a complete lattice, where 

for {(Xi, (Y
+
i
, Y−

i
))}

i∈I
⊆ L3

o
,

Proof  We  have  f rom P ropos i t i on  3 .2  t ha t 
(
⋁

i∈I Xi)
↑T↓T = (

⋀

i∈I X
↑T

i
)↓T = (

⋀

i∈I(Y
+
i
, Y−

i
))↓T  a n d 

(
⋁

i∈I Xi)
↑T↓T↑T = (

⋁

i∈I Xi)
↑T =

⋀

i∈I(Y
+
i
, Y−

i
),  w h i c h 

shows that ((
⋁

i∈I Xi)
↑T↓T ,

⋀

i∈I(Y
+
i
, Y−

i
)) is an L-fuzzy 

three-way concept. Similarly, we can also show that 
(
⋀

i∈I Xi, (
⋁

i∈I(Y
+
i
, Y−

i
))↓T↑T ) is an L-fuzzy three-way con-

cept. Moreover, observe from the partial order defined on 
L3
o
 that ∀i ∈ I, (Xi, (Y

+
i
, Y−

i
)) ≤o ((

⋁

i∈I Xi)
↑T↓T ,

⋀

i∈I(Y
+
i
, Y−

i
)) , 

that is, ((
⋁

i∈I Xi)
↑T↓T ,

⋀

i∈I(Y
+
i
, Y−

i
)) is a upper bound of 

{(Xi, (Y
+
i
, Y−

i
)) ∣ i ∈ I} . For any concept (C, (D+,D−)) sat-

isfying (Xi, (Y
+
i
, Y−

i
)) ≤o (C, (D

+,D−)), i ∈ I  ,  we have 
((
⋁

i∈I Xi)
↑T↓T ,

⋀

i∈I(Y
+
i
, Y−

i
)) ≤o (C, (D

+,D−)) ,  t ha t  i s , 
((
⋁

i∈I Xi)
↑T↓T ,

⋀

i∈I(Y
+
i
, Y−

i
)) is the least L-fuzzy three-way concept 

larger than or equal to {(Xi, (Y
+
i
, Y−

i
))}

i∈I
 , that is, it is the 

supremum of {(Xi, (Y
+
i
, Y−

i
))}

i∈I
 . The other equality can be 

shown similarly.   □

Example 3.1 Let L = [0, 1] and (U, V, I) be an L-fuzzy for-
mal context with U = {o1, o2, o3}, V = {a, b, c, d} , the binary 
relation I is depicted in Table 1. Take → as the R0 implication 
operator, which is given by

Take X =
0.1

o1
+

0.1

o2
+

0.1

o3
, then by computing, we have that 

X↑T = (
1.0

a
+

0.9

b
+

1.0

c
+

1.0

d
,
0.9

a
+

1.0

b
+

1.0

c
+

1.0

d
) . Similarly, 

let  (Y+, Y−) = (
1.0

a
+

0.9

b
+

1.0

c
+

1.0

d
,
0.9

a
+

1.0

b
+

1.0

c
+

1.0

d
) , 

t h e n  we  h ave  f r o m  D e f i n i t i o n   3 . 1  t h a t 
(Y+, Y−)↓T =

0.1

o1
+

0.1

o2
+

0.1

o3
. That is, X↑T = (Y+, Y−) and 

(Y+, Y−)↓T = X , then according to Definition  3.1, we con-
clude that (X, (Y+, Y−)) is an object-induced L-fuzzy three-
way concept.

Using an analogous manner, we can also obtain that 
(
0.8

o1
+

0.7

o2
+

0.6

o3
, (

0.5

a
+

0.3

b
+

0.4

c
+

0.2

d
,
0.2

a
+

0.7

b
+

0.3

c
+

1.0

d
))  

is also an object-induced L-fuzzy three-way concept.

⋁

{(Xi, (Y
+
i
, Y−

i
))}

i∈I
=

(

(
⋁

i∈I

Xi)
↑T↓T ,

⋀

i∈I

(Y+
i
, Y−

i
)

)

,

⋀

{(Xi, (Y
+
i
, Y−

i
))}

i∈I
=

(

⋀

i∈I

Xi, (
⋁

i∈I

(Y+
i
, Y−

i
))↓T↑T

)

.

x → y =

{

1, x ≤ y,

(1 − x) ∨ y, x > y.
x, y ∈ [0, 1]

Table 1  A fuzzy formal context a b c d

o
1

1.0 0.3 0.7 0.1
o
2

0.5 0.0 0.4 0.2
o
3

0.7 0.1 0.2 0.2
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So far we have mainly focused on the notions of object-
induced L-fuzzy three-way concept lattices. By using a 
similar method, one can also construct attribute-induced 
L-fuzzy three-way concept lattices, as specified below.

Definition 3.2 Define a pair of operators (↑T , ↓T ) between 
LU × LU and LV ( ↑T∶ LU × LU → LV , ↓T∶ LV → LU × LU)as 
follows: ∀Y ∈ LV , (X+,X−) ∈ LU × LU ,

where Z
+(x) =

⋀

y∈V (Y(y) → I(x, y)),Z−(x) =
⋀

y∈V (Y(y)

→ ¬I(x, y)), x ∈ U, (Z+
,Z

−) ∈ L
U × L

U
.

The pair of operators (↑T , ↓T ) satisfies a type of L-Galois 
connection, as will be shown below.

Proposition 3.4 Let (↑T , ↓T ) be the pair of operators given 
in Definition  3.2, then for any (X+,X−) ∈ LU × LU and 
Y ∈ LV , we have S∗((X+,X−), Y↓T ) = S(Y , (X+,X−)↑T ).

Proposition 3.5 For (X+
,X

−), (X+
1

,X
−
1

), (X+
2

,X
−
2

) ∈ L
U

×LU , Y , Y
1

, Y
2

∈ L
V
,

 (i) (X+
1
,X−

1
) ⊆ (X+

2
,X−

2
)  i m p l i e s  t h a t 

(X+
2
,X−

2
)↑T ⊆ (X+

1
,X−

1
)↑T ,

 (ii) Y1 ⊆ Y2 implies that Y↓T

2
⊆ Y

↓T

1
,

 (iii) (X+,X−) ⊆ (X+,X−)↑T↓T ,

 (iv) (X+,X−)↑T = X↑T↓T↑T , Y↓T = Y↓T↑T↓T ,

 (v) Y ⊆ Y↓T↑T ,

 (vi) (
⋁

i∈I(X
+
i
,X−

i
))↑T =

⋀

i∈I(X
+
i
,X−

i
)↑T ,

 (vii) (
⋁

i∈I Yi)
↓T =

⋀

i∈I Y
↓T

i
.

We use L3
a
 to denote the collection of fixed points of 

(↑T , ↓T ) given in Definition 3.2, that is,

For any ((X+,X−), Y) ∈ L3
a
, since a pair of L-fuzzy sets 

(X+,X−) on U (the set of objects) is associated with an 
L-fuzzy set Y on V (the set of attributes), we therefore call 
((X+,X−), Y) an attribute-induced L-fuzzy three-way con-
cept. Define a binary relation ≤a on L3

a
 as follows:

Proposition 3.6 (L3
a
,≤a) forms a complete lattice, where 

for {((X+
i
,X−

i
), Yi)}i∈I ⊆ L3

a
,

Y
↓
T = (Z+

, Z
−), (X+

,X
−)↑T (y) =

⋀

x∈U

(X+(x) → I(x, y))∧

⋀

x∈U

(X−(x) → ¬I(x, y)),

L3
a
= {((X+,X−), Y) ∣ (X+,X−)↑T = Y , Y↓T = (X+,X−)}.

(4)
((X+

1
,X−

1
), Y1) ≤a

((X+
2
,X−

2
), Y2) ⇔ (X+

1
,X−

1
) ⊆ (X+

2
,X−

2
),

or equivalently Y2 ⊆ Y1.

The proof concerning the above results can be shown in 
a similar way to that in object-induced L-fuzzy three-way 
concept lattices, and so we omit the details here.

Example 3.2 Let L = [0, 1] and (U, V, I) be an L-fuzzy for-
mal context with U = {o1, o2, o3}, V = {a, b, c, d} , the binary 
relation I is depicted in Table 1. Take → as the R0 implication 
operator, which is given by

Take (X+,X−) = (
0.1

o1
+

0.1

o2
+

0.1

o3
,
0.0

o1
+

0.5

o2
+

0.3

o3
), then by 

computing, we have that (X+,X−)↑T =
1.0

a
+

0.9

b
+

1.0

c
+

1.0

d
 . 

Similarly, let Y =
1.0

a
+

0.9

b
+

1.0

c
+

1.0

d
 , then we have from 

Definition  3.2 that Y↓T = (
0.1

o1
+

0.1

o2
+

0.1

o3
,
0.0

o1
+

0.5

o2
+

0.3

o3
). 

That is, (X+,X−)↑T = Y  and Y↓T = (X+,X−) , then according 
to Definition  3.2, we conclude that ((X+,X−), Y) is an attrib-
ute-induced L-fuzzy three-way concept.

Take Y =
0.5

a
+

0.2

b
+

0.3

c
+

0.1

d
 , then by computing, we 

obtain that Y↓T = (
1.0

o1
+

0.8

o2
+

0.7

o3
,
0.5

o1
+

1.0

o2
+

0.5

o3
). Let 

(X+,X−) = (
1.0

o1
+

0.8

o2
+

0.7

o3
,
0.5

o1
+

1.0

o2
+

0.5

o3
), then we have 

from Definition 3.2 that (X+,X−)↑T =
0.5

a
+

0.2

b
+

0.3

c
+

0.1

d
 . 

That is, (X+,X−)↑T = Y  and Y↓T = (X+,X−) , then according 
to Definition  3.2, we conclude that ((X+,X−), Y) is an attrib-
ute-induced L-fuzzy three-way concept.

It should be noted that there exists similar research works 
along this research line. For instance, in [15], Hu et al. gen-
eralized measurement on decision conclusion in three-way 
decision spaces from fuzzy lattices to partially ordered sets. 
In [23], Li et al. focused on three-way concept learning via 
multi-granularity from the viewpoint of cognition. In [33, 
34], Prem Kumar Singh analyzed the uncertainty and incom-
pleteness in the given fuzzy attribute set characterized by 
truth-membership, indeterminacy-membership, and falsity 
membership functions of a defined single-valued neutro-
sophic set. In [35, 36], they also proposed an algorithm for 
generating the bipolar fuzzy formal concepts and two meth-
ods based on the properties of next neighbors and Euclidean 
distance for knowledge extraction. In [42, 43], Yao presented 
a common conceptual framework of the notions of interval 
sets and incomplete formal contexts for representing par-
tially-known concepts.

A comparative study is performed as follows:

�

{
��

X+
i
,X−

i

�

, Yi
�

}
i∈I

=

⎛

⎜

⎜

⎝

�

i∈I

�

X+
i
,X−

i

�

,

�

�

i∈I

Yi

�↓T↑T

,

⎞

⎟

⎟

⎠

,

�

{
��

X+
i
,X−

i

�

, Yi
�

}
i∈I

=

⎛

⎜

⎜

⎝

�

�

i∈I

�

X+
i
,X−

i

�

�↑T↓T

,
�

i∈I

Yi

⎞

⎟

⎟

⎠

.

x → y =

{

1, x ≤ y,

(1 − x) ∨ y, x > y.
x, y ∈ [0, 1]
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(1) Comparison with Hu’s research work [15]: Firstly, 
these two research works are conducted from different 
viewpoints. Concretely, Hu’s research work is mainly 
conducted from the axiomatic viewpoint, they attempt 
to generalize measurement on decision conclusion in 
three-way decision spaces from fuzzy lattices to par-
tially ordered sets due to the fact that the family of 
hesitant fuzzy sets are partially ordered sets but not 
necessarily fuzzy lattices. Secondly, the hesitant fuzzy 
set considered in [15] takes a subset of [0,1] as its truth 
value, while in our approach, the membership degree 
of each L-fuzzy sets takes exactly one value.

(2) Comparison with Li’s research work [23]: Both studies 
focus on combination of three-way decision and formal 
concept analysis. However, there exist visible differ-
ences between them. In [23], the authors put forward 
an axiomatic approach to describe three-way concepts 
while in the present paper, we mainly employ the con-
structive approach. Furthermore, three-way cognitive 
operators in [23] were defined in the crisp setting while 
the concept-forming operators in our paper are pre-
sented in L-fuzzy environment.

(3) Comparison with Prem Kumar Singh’s research work: 
In [33, 34], a neutrosophic set of attributes (resp. 
objects) is characterized by a truth-membership func-
tion, a indeterminacy-membership function and a fal-
sity-membership function independently. Contrarily, 
in our research work, both the extents and intents of a 
fuzzy concept are represented by L-fuzzy sets with L 
being a residuated lattice. For an L-fuzzy set X on the 
set of objects U and an object o ∈ U (resp. an attrib-
ute a ∈ A ), X(o) denotes the membership degree of o 
with respect to X, according to the algebraic semantics 
of a residuated lattice, ¬X(o) means the non-member-
ship degree of o with respect to X. That is, we only 
consider the truth-membership degree and the non-
membership degree. We don’t consider the indetermi-
nacy-membership degree. Moreover, in Prem Kumar 
Singh’s research work, the neutrosophic set N satisfies 
the condition 0+ ≤ TN(x) + IN(x) + FN(x) ≤ 3+ while in 
our approach, even in case L = [0, 1], such a condition 
does not necessarily hold. Lastly, both the approaches 
to generating formal concepts are based on different 
principle. Concretely, in [33, 34], the formal fuzzy con-
cept can be interpreted as neutrosophic set of objects 
having maximal truth membership value, minimum 
indeterminacy and minimum falsity membership value 
with respect to integrating the information from the 
common set of fuzzy attributes in a defined three-way 
space [0, 1]3 using component-wise Godel residuated 
lattice, while in our approach, extents and intents have 
the same relationship as in the crisp case, they are just 
the fuzzy generalization of classical three-way con-

cepts. In Prem Kumar Singh’s research work [35, 36], 
they proposed an algorithm for generating the bipolar 
fuzzy formal concepts and the corresponding lattice 
structure. The proposed approach and our approach 
both embody the idea of three-way decision. However, 
results in [35, 36] are obtained based on the bipolar for-
mal context while our results are derived from an uni-
polar context. Furthermore, the construction methods 
for bipolar concepts and L-fuzzy three-way concepts 
are fundamentally different.

(4) Comparison with Yao’s research work [42]: Yao’s work 
was conducted in the context of an incomplete formal 
context, which can be interpreted as a family of com-
plete formal contexts, and any one in the family may 
possibly be the actual formal context when the informa-
tion or knowledge becomes complete. Contrarily, in our 
approach, for each object o and each attribute a, I(0, a) 
has a definite value, in this sense, the present study is 
conducted in the context of a complete formal context; 
Moreover, the formal context in [42] is a binary one 
while that in our paper is an L-fuzzy one, whose value 
is taken from a complete residuated lattice.

4  Fuzzy inference based on L‑fuzzy 
three‑way concept lattice

In this section, we will study the fuzzy inference based on the 
proposed L-fuzzy three-way concept lattices. We mainly focus 
on such a problem: when the L-fuzzy relation I is unknown, 
how to calculate new fuzzy three-way concepts from the given 
ones.

More precisely,

are n L-fuzzy three-way concepts,

where Xi,X ∈ LU , (Y+
i
, Y−

i
), (Y+, Y−) ∈ LV × LV .

Our idea is to introduce two types of fuzzy inference 
rules, by which we can calculate new L-fuzzy three-way 
concepts. A natural requirement for such fuzzy inference 
methods is that it should “agree” with the original data, i.e. 
if the input set is a extent (or intent) of a known fuzzy con-
cept, the output set should be the corresponding intent (or 
extent). In the following, if a fuzzy inference method exactly 
“agree” with the original data, the fuzzy inference method 
is said to be coherent.

suppose that (X1, (Y
+
1
, Y−

1
))

(X2, (Y
+
2
, Y−

2
))

⋯⋯⋯⋯⋯⋯

(Xn, (Y
+
n
, Y−

n
))

and given X

⋯⋯⋯⋯⋯⋯

calculate (Y+, Y−),
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Definition 4.1 Let (L,∧,∨,⊗,→, 0, 1) be a complete resid-
uated lattice, and (Xi, (Y

+
i
, Y−

i
)) ∈ L3

o
(U,V ,R)(i = 1,⋯ , n) . 

Given X ∈ LU , we define the lower approximation, denoted 
by (Y+, Y−) , of X↑T as follows:

Given (Y+, Y−) ∈ LU , we define the lower approximation, 
denoted by X, of (Y+, Y−)↓T as follows:

To show the coherence of the above fuzzy inference, we 
need the following lemma.

Lemma 4.1 Let (U, V, I) be an L-fuzzy formal context and 
(L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice, then for 
all X1,X2 ∈ LU , (Y+

1
, Y+

2
) ∈ LV ∶

Proof Note first that in [10], it is shown that 
S(X1,X2) ≤ S(X

↑

2
,X

↑

1
)  a n d  S(Y1, Y2) ≤ S(Y

↓

2
, Y

↓

1
)  fo r 

each X1,X2 ∈ LU  and Y1, Y2 ∈ LV , which implies that 
S(X1,X2) ≤ S(X

↑I

2
,X

↑I

1
)  a n d  S(X1,X2) ≤ S(X

↑¬I

2
,X

↑¬I

1
)  . 

Consequently,

Similarly, we have

as desired.   □

Proposition 4.1 The fuzzy inference rules defined by Defi-
nition 4.1 are coherent.

Y+(y) =
⋁n

i=1
(Y+

i
(y)⊗ S(X,Xi)), y ∈ V , Y+ ∈ LV ,

Y−(y) =
⋁n

i=1
(Y−

i
(y)⊗ S(X,Xi)), y ∈ V , Y− ∈ LV .

X(x) =
⋁n

i=1
(Xi(y)⊗ S∗((Y+, Y−), (Y+

i
, Y−

i
))), x ∈ U.

S(X
1

,X
2

) ≤ S
∗(X

↑
T

2

,X
↑
T

1

), S∗((Y+
2

, Y
−
2

), (Y+
1

, Y
−
1

))

≤ S((Y+
1

, Y
−
1

)↓T , (Y+
2

, Y
−
2

)↓T ).

S∗
(

X
↑T

2
,X

↑T

1

)

= S∗
((

X
↑I

2
,X

↑¬I

2

)

,
(

X
↑I

1
,X

↑¬I

1

))

= S
((

X
↑I

2

)

,
(

X
↑I

1

))

∧ S
((

X
↑¬I

2

)

,
(

X
↑¬I

1

))

≥ S
(

X1,X2

)

∧ S
(

X1,X2

)

= S
(

X1,X2

)

.

S
(

(

Y+
1
, Y−

1

)↓T ,
(

Y+
2
, Y−

2

)↓T
)

= S
(

(

Y+
1

)↓I ∧
(

Y−
1

)↓¬I ,
(

Y+
2

)↓I ∧
(

Y−
2

)↓¬I
)

≥ S
(

(

Y+
1

)↓I ,
(

Y+
2

)↓I
)

∧ S
(

(

Y−
1

)↓I ,
(

Y−
2

)↓I
)

≥ S
(

Y+
2
, Y+

1

)

∧ S
(

Y−
2
, Y−

1

)

= S∗
((

Y+
2
, Y−

2

)

,
(

Y+
1
, Y−

1

))

,

Proof ( i )  We wil l  f i rs t ly  show that  for  a l l 
(Xi, (Y

+
i
, Y−

i
))(1 ≤ i ≤ n) , X = Xj implies (Y+, Y−) = (Y+

j
, Y−

j
)

.
Indeed, we have from Lemma 4.1 that for any i satisfying 

1 ≤ i ≤ n and i ≠ j , S(X
j
,X

i
) ≤ S(Y+

i
, Y

+
j
) =

⋀

y∈V (Y
+
i
(y) →

Y
+

j
(y)) ≤ Y

+

i
(y) → Y

+

j
(y). Then we have from the adjoint 

property of (⊗,→) that S(Xj,Xi)⊗ Y+
i
(y) ≤ Y+

j
(y).

Hence,  Y+(y) =
⋁n

i=1
(Y+

i
(y)⊗ S(X,X

i
)) =

⋁n

i=1
(Y+

i
(y)

⊗S(X
j
,X

i
)) = Y

+

j
(y)⊗ S(X

j
,X

j
) = Y

+

j
(y)⊗ 1 = Y

+

j
(y).

Similarly, since S(X
j
,X

i
) ≤ S(Y−

i
, Y

−
j
) =

⋀

y∈V (Y
−
i
(y)

→ Y
−
j
(y)) ≤ Y

−
i
(y) → Y

−
j
(y). Then we have from the adjoint 

property of (⊗,→) that S(Xj,Xi)⊗ Y−
i
(y) ≤ Y−

j
(y).

Hence,  Y−(y) =
⋁n

i=1
(Y−

i
(y)⊗ S(X,X

i
)) =

⋁n

i=1
(Y−

i
(y)

⊗S(X
j
,X

i
)) = Y

−
j
(y)⊗ S(X

j
,X

j
) = Y

−
j
(y)⊗ 1 = Y

−
j
(y).

(ii) We will then show that for all (Xi, (Y
+
i
, Y−

i
))(1 ≤ i ≤ n) , 

if (Y+, Y−) = (Y+
j
, Y−

j
) , then X = Xj below.

Indeed,  for i ≠ j  ,  s ince S
∗((Y+

, Y
−), (Y+

i
, Y

−
i
)) =

S∗((Y+
j
, Y−

j
), (Y+

i
, Y−

i
)) ≤ S((Y+

i
, Y−

i
)↓T , (Y+

j
, Y−

j
)↓T ) =

S(X
i
,X

j
) =

⋀

x∈U(Xi
(x) → X

j
(x)) ≤ X

i
(x) → X

j
(x), then we 

have from the adjoint proper ty of (⊗,→) that 
S∗((Y+, Y−), (Y+

i
, Y−

i
))⊗ Xi(x) ≤ Xj(y).

C o n s e q u e n t l y ,  X(x) =
⋁n

i=1
(X

i
(y)⊗ S((Y+

, Y
−),

(Y+
i
, Y

−
i
))) =

⋁n

i=1
(X

i
(y)⊗ S((Y+

j
, Y

−
j
), (Y+

i
, Y

−
i
))) = X

j
(x)⊗

1 = X
j
(x), x ∈ U.   □

D e f i n i t i o n  4 . 2  L e t  (L,∧,∨,⊗,→, 0, 1)  b e  a 
complete  invo lu t ive  res idua ted  l a t t i ce ,  and 
(Xi, (Y

+
i
, Y−

i
)) ∈ L3

o
(U,V , I), (i = 1,⋯ , n) . Given X ∈ LU , 

we define the upper approximation, denoted by (Y+, Y−) , of 
X↑T as follows:

Y
+(y) =

⋀n

i=1
(¬Y+

i
(y) → T

¬(X
i
,X)),

Y
−(y) =

⋀n

i=1
(¬Y−

i
(y) → T

¬(X
i
,X)), where T¬(X

i
,X)

=
⋁

x∈U
(X

i
(x)⊗ ¬X(x)).
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Given (Y+, Y−) , we define the upper approximation, denoted 
by X, of (Y+, Y−)↓T as follows:

X(x) =
⋀n

i=1
(¬Xi(x) → T¬∗((Y+

i
, Y−

i
), (Y+, Y−))), where 

T
¬∗((Y+

i
, Y

−
i
), (Y+

, Y
−)) =

⋁

y∈U(Y
+
i
(x)⊗ ¬Y+(x)) ∨

⋁

y∈U

(Y−
i
(x)⊗ ¬Y−(x)).

To prove the coherence of the above inference method, 
we need the following lemma.

Lemma 4.2 Let (U, V, I) be an L-fuzzy formal context and 
(L,∧,∨,⊗,→, 0, 1) be a complete involutive residuated lat-
tice, then for X1,X2 ∈ LU , (Y+

1
, Y−

1
), (Y+

2
, Y−

2
) ∈ LV × LV ∶

Proof Note f irst that in [9], it  is proved that 
T¬(X1,X2) ≥ T¬(X

↑

2
,X

↑

1
) and T¬(Y1, Y2) ≥ T¬(Y

↑

2
, Y

↑

1
) for 

X1,X2 ∈ LU and Y1, Y2 ∈ LV , independent on the underly-
ing binary relation in the L-fuzzy context.

Then we have

Similarly,

  □

Proposition 4.2 The fuzzy inference rules defined by Defi-
nition 4.2 are coherent.

T¬
(

X1,X2

)

≥ T¬∗
(

X
↑T

2
,X

↑T

1

)

,

T¬∗
((

Y+
1
, Y−

1

)

,
(

Y+
2
, Y−

2

))

≥ T¬
(

(

Y+
2
, Y−

2

)↓T ,
(

Y+
1
, Y−

1

)↓T
)

.

T¬∗
(

X
↑T

2
,X

↑T

1

)

= T¬∗
((

X
↑I

2
,X

↑¬I

2

)

,
(

X
↑I

1
,X

↑¬I

1

))

= T¬
(

X
↑I

2
,X

↑I

1

)

∨ T¬
(

X
↑¬I

2
,X

↑¬I

1

)

≤ T¬
(

X1,X2

)

∨ T¬
(

X1,X2

)

= T¬
(

X1,X2

)

.

T
¬
(

(

Y
+
2

, Y
−
2

)↓
T

,

(

Y
+
1

, Y
−
1

)↓
T

)

= T
¬
(

Y
+↓

I

2

∧ Y
−↓¬I
2

, Y
+↓

I

1

∧ Y
−↓¬I
1

)

=
⋁

x∈U

((

Y
+↓

I

2

∧ Y
−↓¬I
2

)

(x)⊗ ¬

(

Y
+↓

I

1

∧ Y
−↓¬I
1

)

(x)

)

=
⋁

x∈U

((

Y
+↓

I

2

(x) ∧ Y
−↓¬I
2

(x)

)

⊗

(

¬Y
+↓

I

1

(x) ∨ ¬Y
−↓¬I
1

(x)

))

=
⋁

x∈U

((

Y
+↓

I

2

(x) ∧ Y
−↓¬I
2

(x)

)

⊗

(

¬Y
+↓

I

1

(x)

))

∨
⋁

x∈U

((

Y
+↓

I

2

(x) ∧ Y
−↓¬I
2

(x)

)

⊗

(

¬Y
−↓¬I
1

(x)

))

≤
⋁

x∈U

((

Y
+↓

I

2

)

(x)⊗

(

¬Y
+↓

I

1

(x)

))

∨
⋁

x∈U

((

Y
−↓¬I
2

)

(x)⊗

(

¬Y
−↓¬I
1

(x)

))

= T
¬
(

Y
+↓

I

2

, Y
+↓

I

1

)

∨ T
¬
(

Y
−↓

I

2

, Y
−↓

I

1

)

≤ T
¬
(

Y
+
1

, Y
+
2

)

∨ T
¬
(

Y
−
1

, Y
−
2

)

= T
¬∗
((

Y
+
1

, Y
−
1

)

,

(

Y
+
2

, Y
−
2

))

.

Table 2  Given L-fuzzy three-way concepts

X
i (Y+

i
,Y

−
i
)

0.1

x
1

+
0.1

x
2

+
0.1

x
3

(
1.0

a
+

0.9

b
+

1.0

c
+

1.0

d
,

0.9

a
+

1.0

b
+

1.0

c
+

1.0

d
)

0.3

x
1

+
0.5

x
2

+
0.5

x
3

(
1.0

a
+

0.5

b
+

0.5

c
+

0.5

d
,

0.5

a
+

1.0

b
+

1.0

c
+

1.0

d
)

0.8

x
1

+
0.7

x
2

+
0.6

x
3

(
0.5

a
+

0.3

b
+

0.4

c
+

0.2

d
,

0.2

a
+

0.7

b
+

0.3

c
+

1.0

d
)

0.5

x
1

+
0.4

x
2

+
0.2

x
3

(
1.0

a
+

0.5

b
+

1.0

c
+

0.5

d
,

0.5

a
+

1.0

b
+

0.5

c
+

1.0

d
)

Proof 

 (1) We will prove that X = Xj(1 ≤ j ≤ n) implies 
(Y+, Y−) = (Y+

j
, Y−

j
) . To do this, we need show the fol-

lowing preliminary results:
 (i) F o r  a l l  1 ≤ i ≤ n  a n d  i ≠ j, 

Y+
j
(x) = ¬Y+

j
(x) → 0 = ¬Y+

j
(x) → T¬(Xj,Xj),

 (ii) Y+
j
(x) ≤ ¬Y+

i
(x) → T¬(Xi,Xj),

 (iii) F o r  a l l  1 ≤ i ≤ n  a n d  i ≠ j, 
Y−
j
(x) = ¬Y−

j
(x) → 0 = ¬Y−

j
(x) → T¬(Xj,Xj),

 (iv) Y−
j
(x) ≤ ¬Y−

i
(x) → T¬(Xi,Xj).

Indeed, since T¬(Xj,Xj) =
⋁

x∈U(Xj(x)⊗ ¬Xj(x)) = 0 , (i) 
clearly holds. For the latter one, due to the adjoint property 
of (⊗,→) , it is equivalent to show that Y+

j
(x)⊗ ¬Y+

i
(x)

≤ T¬(Xi,Xj) . Indeed, T¬(Xi,Xj) ≥ T¬(X
↑I

j
,X

↑I

i
) = T¬(Y+

j
, Y+

i
)

=
⋁

x∈U(Y
+
j
(x)⊗ ¬Y+

i
(x)) ≥ Y

+
j
(x)⊗ ¬Y+

i
(x), as desired.

Both (iii) and (iv) can be shown in a similar way.

 (2) We will then prove that (Y+, Y−) = (Y+
j
, Y−

j
)(1 ≤ j ≤ n) 

implies X = Xj . As before, we need show the follow-
ing preliminary results:

 (i) Xj = ¬Xj → 0 = ¬Xj → T¬∗((Y+
j
, Y−

j
), (Y+, Y−)),

 (ii) For i ≠ j,Xj ≤ ¬Xi(x) → T¬∗((Y+
i
, Y−

i
), (Y+

j
, Y−

j
)).

Indeed, since T¬∗((Y+
j
, Y

−
j
), (Y+

j
, Y

−
j
)) =

⋁

y∈U(Y
+
j
(x)⊗ ¬

Y
+
j
(x)) ∨

⋁

y∈U(Y
−
j
(x)⊗ ¬Y−

j
(x)) = 0, (i) clearly holds. For 

the latter one, we have from Lemma  4.2 that 
T¬∗((Y+

i
, Y−

i
), (Y+

j
, Y−

j
)) ≥ T¬((Y+

j
, Y−

j
)↓T , (Y+

i
, Y−

i
)↓T ) = T¬

(X
j
,X

i
) =

⋁

x∈U(Xj
(x)⊗ ¬X

i
(x)) ≥ X

j
(x)⊗ ¬X

i
(x) ,  which 

together with the adjoint property of (⊗,→) implies (ii).  
 □

P r o p o s i t i o n  4 . 3  L e t  L = (L,∧,∨,⊗,→, 0, 1) 
b e  a  c o m p l e te  i nvo l u t i ve  re s i d u a te d  l a t -
t i c e ,  f o r  a l l  X ∈ LU , (Y+, Y−) ∈ LV × LV  a n d 
{(Xi, (Y

+
i
, Y−

i
))} ⊆ L3

o
(U,V , I), we have
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 (i) (
⋁n

i=1
(Y+

i
(y)⊗ S(X,X

i
)),

⋁n

i=1
(Y−

i
(y)⊗ S(X,X

i
))) ≤

X
↑
T ≤ (

⋀n

i=1
(¬Y+

i
(y) → T

¬(X
i
,X),

⋀n

i=1
(¬Y−

i
(y) →

T
¬(X

i
,X)),

 (ii) 
⋁n

i=1
(X

i
(y)⊗ S

∗((Y+
, Y

−), (Y+
i
, Y

−
i
))) ≤ (Y+

, Y
−)↓T

≤
⋀n

i=1
(¬X

i
(x) → T

¬∗((Y+
i
, Y

−
i
), (Y+

, Y
−))).

Proof It follows immediately from the proof of both Proposi-
tions 4.1 and 4.2.   □

Example 4.1 Suppose A = {a, b, c, d} is a set of skills and 
U = {x1, x2, x3} is a set of problems, with which the skills in 
A should be tested.

Assume that the implication is the R0 operator

and the complete lattice L = {0.0, 0.1, 0.2,⋯ , 1} . It is 
easy to verify that L = (L,∧,∨,⊗,→, 0, 1) is a complete 
involutive residuated lattice. Given a set of L-fuzzy three-
way concepts (Xi, (Y

+
i
, Y−

i
))(i = 1,⋯ , 6) (Table 2), where 

Xi(⋅) is the corresponding degree of problem’s similar level 
and Y+

i
(⋅), Y−

i
(⋅) are the corresponding degree of skill level, 

then (1) Xi is the collection of all problems such that all the 
skills in Y+

i
 are necessary to solve any problem in Xi , and all 

the skills in Y−
i

 are unnecessary to solve any problem in Xi 
, (2) Y+

i
 is the collection of all skills that are necessary for 

all problems in Xi , Y−
i

 is the collection of all skills that are 
unnecessary for all problems in Xi.

In what follows, we list some inferred values depicted 
from the given L-fuzzy concepts above.

For a set of problems X = (0.5, 0.5, 0.4) , Y+ is the 
collection of all skills that are necessary for all prob-
lems in X. We calculate by Proposition 4.3 that 
(
0.5

a
+

0.5

b
+

0.5

c
+

0.5

d
,

0.5

a
+

0.5

b
+

0.5

c
+

1.0

d
) ≤ X

↑
T ≤ (

1

a
+

0.5

b

+
1

c
+

0.5

d
,

1.0

a
+

1.0

b
+

1.0

c
+

1.0

d
).

5  Concluding remarks

In this paper, a modest attempt has been made to introduce 
the tool of fuzzy logic into three-way formal concept analy-
sis, which leads to the theory of L-fuzzy three-way concept 
analysis. It is shown that the collection of L-fuzzy three-
way concepts form a lattice under the usual order. Moreover, 
a possibility-theoretic view of L-fuzzy three-way concept 
lattice is provided. It is shown that the basic operators in 
L-fuzzy three-way concept analysis can be understood in 
terms of one of four set-functions in possibility theory. 
Lastly, two types of fuzzy inference methods based on the 
notion of L-fuzzy three-way concepts are studied.

It is important to notice that the proposed fuzzy infer-
ence approach is based on some known L-fuzzy three-way 

x → y =

{

1, x ≤ y,

(1 − x) ∨ y, x > y.
x, y ∈ [0, 1]

concepts, another approach based on similarity relations in 
formal concept analysis [5] can also be expected, which will 
be reported in our forthcoming papers.
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