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Abstract
This paper is devoted to an entropy-independent measure of knowledge in the context of intuitionistic fuzzy sets (IFSs). We 
point out and justify that there are at least two facets of knowledge associated with an IFS, namely the information content 
and the information clarity. Having this in mind, we put forward a novel axiomatic definition of knowledge measure for 
IFSs. More specifically, a set of new axioms is presented with which knowledge measure should comply in the context of 
IFSs. A parametric model following these axioms is then developed to realize this measure. Both facets mentioned above 
are simultaneously taken into account in the axioms and the model so as to better capture the unique features of an IFS. In 
particular, we suggest the concept of the amount of potential knowledge related to the hesitancy or non-specificity of an 
IFS. This allows us to introduce the idea of an attitudinal-based knowledge measure for IFSs. We believe that the knowledge 
measure provided in this manner could truly reflect the nature of IFSs, and what people really want with different attitudes 
towards the unknown. Finally, a practical application of the developed technique to decision making under uncertainty is 
illustrated. As such, the developed measure could be considered as a safe and effective alternative to help tackle some special 
problems that are difficult to handle by using entropy alone, especially when dealing with the complex situation in which 
different attitudes of users have to be considered.

Keywords Intuitionistic fuzzy sets · Amount of knowledge · Knowledge measure · Knowledge personalization · 
Uncertainty modeling

1 Introduction

Atanassov [1–4] introduced the concept of intuitionistic 
fuzzy sets (IFSs), in which each element is characterized 
by a membership degree and a non-membership degree, 
thus generalizing Zadeh’s [34] fuzzy sets (FSs) that only 
assign to each element a membership degree. Motivated 
by interval-valued fuzzy sets (IVFSs) conceived by Zadeh 
[36], Atanassov and Gargov [5] further extended IFSs to 
interval-valued intuitionistic fuzzy sets (IVIFSs), in which 
the membership degree and the non-membership degree of 
each element are expressed as intervals rather than real num-
bers. For its excellent flexibility and agility in coping with 
vagueness or uncertainty, the theory of FSs/IFSs/ IVIFSs has 
been widely investigated and applied to a variety of fields 

[12, 15, 24–27, 29, 31–33, 36]. As an active research topic, 
the investigation of fuzzy entropy has been receiving much 
attention from researchers since it was first mentioned by 
Zadeh [35]. In the current study, the non-probabilistic-type 
entropy has become a popular research trend, and a detailed 
overview can be found in [6, 13, 18]. The fact is, this type 
of entropy, derived directly from the context of FSs, may not 
be totally reasonable in the context of IFSs and therefore it 
could suffer from some limitations in real-world applica-
tions [13, 40]. In this paper, we are interested only in the 
seeming dual problem of this type of entropy and dedicated 
to a measure of knowledge in the context of IFSs, with the 
aim of tackling some complex problems that are difficult to 
handle by using entropy alone. With this motivation, in what 
follows we focus our attention on the axiom and modeling 
of an entropy-independent, flexible knowledge measure in 
the context of IFSs and shall not go into further details of 
fuzzy entropy.

Knowledge is related to the information considered useful 
in a particular context and it would play an important role in 
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many areas such as information theory and decision making 
under uncertainty. It is generally believed that a measure of 
knowledge can be viewed as a dual measure of entropy in a 
fuzzy system. Guo [8] pointed out that this simply couldn’t 
reflect the reality in the context of IFSs as there is no natural 
logic between these two kinds of measures with the intro-
duction of hesitancy. Nor in the context of IVIFSs [17, 20, 
28, 29, 39], for that matter. The fact is, an entropy meas-
ure answers the question about the fuzziness but does not 
consider any peculiarities of how the fuzziness is distrib-
uted [22]. Consider, for instance, such a collection of IFSs 
whose membership degrees are equal to the corresponding 
non-membership degrees. According to the existing models 
[15, 16, 21, 23, 37, 38], these IFSs are all characterized by 
the maximal entropy equal to one, thus leading to the mini-
mal amount of knowledge (equal to zero) associated with 
them. This is obviously counter-intuitive because there are 
many different possibilities for a membership degree equal 
to a non-membership degree and thus these IFSs may dif-
fer significantly from each other from a practical point of 
view. Thus it is necessary and seen as significant work to 
develop an independent technique with robust properties 
to take measurements of the amount of knowledge in the 
context of IFSs/IVIFSs to distinguish between them. The 
pioneering work by Szmidt, Kacprzyk and Bujnowski [22] 
on this topic has generated considerable interest. Nguyen 
[19] developed a knowledge measure with full considera-
tion of the information content conveyed by the membership 
and non-membership functions of an IFS, but not giving 
enough attention to the inherent fuzziness of an IFS. Thus 
the measure may suffer from great limitations for practical 
use. Nguyen [18] further extended this measure into the con-
text of IVIFSs. Das, Dutta, and Guha [6] also extended the 
work of [22] into the context of IVIFSs and proposed a set of 
entropy-based axioms of knowledge measure for IFSs, which 
is obviously a non-independent axiomatic system and diffi-
cult to achieve the goal fully and accurately. Recently, Guo 
[8] presented, by using the normalized Hamming distance 
in combination with some related axiom of fuzzy entropy, 
an axiomatic definition of knowledge measure in the context 
of IFSs, including a set of axioms and a concrete model fol-
lowing these axioms. It seems as if he put more emphasis 
on the inherent fuzziness of an IFS during the process of 
developing that kind of measure.

Given the nature of an IFS, it can be understood that 
there are at least two facets of knowledge associated with 
an IFS, one of which is the information content conveyed 
by the membership and non-membership functions, while 
the other is related to the inherent fuzziness of specificity 
with which we introduce the notion of the information clar-
ity. Intuitively, the more information content and the greater 
information clarity an IFS has, the larger amount of knowl-
edge it will carry. This work is devoted to the introduction, 

based on the belief above, of a novel axiomatic definition 
of knowledge measure in the context of IFSs, and focused 
on the problem of how close an IFS is to a crisp set from 
the perspective of certainty. In order to do that, we propose 
a set of new axioms with which knowledge measure should 
comply in the context of IFSs, and then develop a parametric 
model to realize the measure under this axiomatic frame-
work. Both facets mentioned above are simultaneously taken 
into account in the axioms and the model. With such a para-
metric model, we provide an available solution to deal with 
the amount of potential knowledge related to the hesitancy 
or non-specificity of an IFS and thus introduce the idea of 
an attitudinal-based knowledge measure for IFSs. We further 
show that the concrete model presented in former work [8] 
is just an instance of our parametric model with a particu-
lar attitude. This is a remarkable coincidence, because what 
we previously did differs significantly from this research 
and we don’t really expect at all that would happen during 
the process of the modeling in this paper. It can also be 
regarded as a convincing evidence to show the generality of 
the developed technique in this work. Our aim is to provide 
an entropy-independent, effective, and flexible technique for 
measuring the amount of knowledge associated with an IFS, 
with which to help tackle some special problems that are 
difficult to handle by using entropy alone, especially in the 
complex situation in which different attitudes of users have 
to be considered. These are our motivation and target, too.

The rest of the paper is organized as follows: Sect. 2 
briefly recalls some basic notions of IFSs. In Sect. 3, a novel 
axiomatic definition of knowledge measure for IFSs is intro-
duced, including a set of new axioms with which knowl-
edge measure should comply in the context of IFSs, and a 
parametric model following these axioms. Concrete models 
guided by different attitudes are also discussed in detail. Sec-
tion 4 shows some properties and features of the developed 
technique, including the connection between knowledge 
measure and fuzzy entropy under a unified framework. Sec-
tion 5 provides a series of examples to examine the perfor-
mance of the developed technique, and Sect. 6 illustrates the 
application of the developed measure to decision making 
under uncertainty, followed by conclusions in Sect. 7.

2  Preliminaries

Zadeh [34] defined the concept of FSs as follows.

Definition 1 [34] A FS A′ in a finite set X is an object hav-
ing the following form:

where �A� ∶ X → [0, 1] is the membership function of A′ , 
denoting the degree of membership of x ∈ A�.

A� =
�⟨x,�A� (x)⟩�x ∈ X

�
,
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Atanassov [1–4] generalized Zadeh’s [34] concept of FSs 
and defined the notion of IFSs below.

Definition 2 [1] An IFS A in a finite set X is an object hav-
ing the following form:

where �A ∶ X → [0, 1] and �A ∶ X → [0, 1] such that 
�A(x) + �A(x) ≤ 1 for ∀x ∈ X , and they denote the degree of 
x satisfying and dissatisfying the property A , respectively.

Another parameter of an IFS is �A(x) = 1 − �A(x) − �A(x) , 
known as intuitionistic fuzzy index (or hesitation margin) 
of x ∈ A , which expresses a lack of knowledge of whether x 
belongs to A or not. It is clear that for ∀x ∈ X , 0 ≤ �A(x) ≤ 1 . 
Obviously, when �A(x) = 1 − �A(x) for all elements of 
the universe of discourse, the concept of ordinary FSs is 
recovered.

For any two IFSs A , B in X , the following relations and 
operations can be defined [30]:

1.  A ⊆ B iff �A(x) ≤ �B(x) and �A(x) ≥ �B(x) for ∀x ∈ X;
2.  A = B iff A ⊆ B and A ⊇ B;
3. The complement set Ac =

�⟨x, �A(x),�A(x)⟩�x ∈ X
�
;

4. The triplet 
(
�A(x), �A(x),�A(x)

)
 is called an intuitionistic 

fuzzy value (IFV) .

3  Axioms and parametric model

3.1  Axioms

Let X =
{
xi|i = 1, 2,… , n

}
 be a universe of discourse. 

Denote by FS(X) the family of all FSs in X , and by IFS(X) 
the family of all IFSs in X . Let Ai = ⟨xi,�A(xi), �A(xi)⟩ be 
the i-th element from an IFS A ∈ IFS(X) . Inspired in part by 
the spirit in [8], we describe some intrinsic properties that 
a knowledge measure should have for a separate element Ai 
as follows.

1. It is a non-negative function, and symmetric between 
any Ai and its complement.

2. The amount of knowledge associated with Ai should 
reach the maximum equal to one if and only if Ai is a 
crisp element (i.e., we know everything for sure).

3. The amount of knowledge associated with Ai should 
reach the minimum equal to zero if and only if 
�A(xi) = �A(xi) = 0 (i.e., we know absolutely nothing).

4. In the case of �A(xi) = �A(xi) ≠ 0 (i.e., we have a number 
of arguments in favor but an equally number of argu-
ments in disapproval), our rule is that the less value of 
�A(xi) the element Ai has, the more information content 
it contains, and thus the greater amount of knowledge 

A =
�⟨x,�A(x), �A(x)⟩�x ∈ X

�
,

it conveys. In particular, when �A(xi) = �A(xi) = 0.5 we 
take the value equal to 0.5 since it has both the greatest 
information content and the least information clarity, in 
other words, we seriously have no particular preference 
here between the information content and the informa-
tion clarity. In fact, we can also take other values in the 
interval (0,1) to reflect the different preferences between 
the information content and the information clarity. 
However, that will lead to a rather complex situation 
involving an additional parameter � , which is planned 
to be separately discussed in another paper.

5. For a fixed value of hesitation margin, our rule is that 
the more the element Ai differs from its complement, 
the greater information clarity it has, and thus the larger 
amount of knowledge it conveys.

Given the arguments above, especially the last two prop-
erties, we strongly believe that there are at least two facets 
of knowledge associated with an IFS, one of which is the 
information content conveyed by the membership and non-
membership functions while the other is related to the infor-
mation clarity of specificity. With this understanding, we 
formally present below an axiomatic definition of knowledge 
measure for IFSs, with the aim of ensuring the effectiveness 
of the measure.

Definition 3 Let A,B ∈ IFS(X) . A mapping K ∶ IFS(X) →

[0, 1] is called a knowledge measure on IFS(X) , if K has the 
following properties:

(KPIFS1 ) K(A) = 1 iff A is a crisp set;
(KPIFS2 ) K(A) = 0 iff �A(xi) = 1 for ∀xi ∈ X;
(KPIFS3 ) K(A) ≥ K(B) if A contains more information 

content with greater information clarity in comparison with 
B , i.e.,

�A(xi) + �A(xi) ≥ �B(xi) + �B(xi) and ||�A
(x

i
) − �

A
(x

i
)|| ≥||�B

(x
i
) − �

B
(x

i
)|| , for ∀xi ∈ X;

Note that this notion only defines a standard partial order 
between IFSs in the measurement of knowledge, which con-
tains two facets of knowledge associated with an IFS, i.e., 
the information content and the information clarity, denoted 
respectively by �A(xi) + �A(xi) and ||�A(xi) − �A(xi)

|| . It can be 
easily understood that there is no need to consider the role 
of �A(xi) in formalizing the facet of the information clarity 
because it just hides inside the formulation for the informa-
tion content given that �A(xi) + �A(xi) = 1 − �A(xi) . So we 
can see that to be an effective knowledge measure, these two 
facets should always work together in the context of IFSs. 
Let’s look at the relationship between the two facets. It is 
clear that 0 ≤ ||�A(xi) − �A(xi)

|| ≤ �A(xi) + �A(xi) ≤ 1 . Note 
that when �A(xi) ≥ �A(xi) we get �A(xi) ∈ [�A(xi), 1 − �A(xi)] 
and �A(xi) ∈ [0, 0.5] ;  when 𝜇A(xi) < 𝜈A(xi) we get 

(
KPIFS4

)
K(Ac) = K(A).
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�A(xi) ∈ [0, 0.5] and �A(xi) ∈ [�A(xi), 1 − �A(xi)] . This means 
for any virtual values of ||�A(xi) − �A(xi)

|| and �A(xi) + �A(xi) , 
there always exists Ai ∈ A ∈ IFS(X) , i = 1, 2,… , n . Thus we 
may say for sure that there is no other numerical connec-
tion between ||�A(xi) − �A(xi)

|| and �A(xi) + �A(xi) except for 
0 ≤ ||�A(xi) − �A(xi)

|| ≤ �A(xi) + �A(xi) ≤ 1 . It is clear from 
the axiom of KPIFS3 that the measure K should be mono-
tonically non-decreasing with respect to ||�A(xi) − �A(xi)

|| and 
�A(xi) + �A(xi) , respectively.

3.2  Parametric model

Given the roles of ||�A(xi) − �A(xi)
|| and �A(xi) + �A(xi) that 

would play in the measurement of knowledge as shown in 
Definition 3, the following parametric model is presented 
for measuring the amount of knowledge associated with a 
separate element Ai ∈ A ∈ IFS(X)(i = 1, 2,… , n):

where �, �, � ∈ R are undetermined coefficients. Let’s see 
what relationship actually exists between these coefficients 
according to the properties discussed above. On one hand, 
when Ai is a crisp element, we get � + � + � = 1 . On the 
other hand, when �A(xi) = �A(xi) = 0.5 , then � = 0.5 . Thus 
Eq. (1) can be rewritten as

As for the range of values chosen for � , we have the fol-
lowing theorem.

Theorem 1 A necessary condition for the parametric model 
given by Eq. (2) to be an effective knowledge measure for Ai 
is that 0 ≤ � ≤ 1.

Proof For simplicity,  let  x = ||�A(xi) − �A(xi)
|| and 

y = �A(xi) + �A(xi) where 0 ≤ x ≤ y ≤ 1 . Equation (2) can 
then be rewritten as

To ensure the effectiveness of the model KIFS given by 
Eq.  (3), we should at least make it follow the axiom of 
KPIFS3 in Definition 3. Given the monotone non-decreas-
ing property of KIFS with respect to x and y , respectively, it 
should be ensured that

(1)

K
IFS

(A
i
;�, �, �) = �||�A

(x
i
) − �

A
(x

i
)|| + �

(
�
A
(x

i
) + �

A
(x

i
)
)

+ �||�A
(x

i
) − �

A
(x

i
)||
(
�
A
(x

i
) + �

A
(x

i
)
)
,

(2)

K
IFS

(A
i
;�) = �||�A

(x
i
) − �

A
(x

i
)|| + 1

2

(
�
A
(x

i
) + �

A
(x

i
)
)

+

(
1

2
− �

)||�A
(x

i
) − �

A
(x

i
)||
(
�
A
(x

i
) + �

A
(x

i
)
)
.

(3)

KIFS(x, y;�) = �x +
1

2
y +

(
1

2
− �

)
xy, 0 ≤ x ≤ y ≤ 1.

Let’s explore the conditions that would make Inequalities 
(4), (5) simultaneously hold. On one hand, for Inequality (4), 
we further have

which means in order to maintain Inequality (4), the range 
of values chosen for � is � ≥ 0.

On the other hand, for Inequality (5), we have

which means in order to maintain Inequality (5), the range 
of values chosen for � is � ≤ 1.

Clearly, the condition that would make Inequalities (4), 
(5) simultaneously hold is 0 ≤ � ≤ 1 , which is clearly a nec-
essary condition for the parametric model given by Eq. (2) 
to be an effective knowledge measure for Ai . □

With this result, Eq. (2) can further be rewritten as

It can be shown that KIFS(Ai;�) ∈ [0, 1](0 ≤ � ≤ 1

;i = 1, 2,… , n).

3.3  Attitudinal‑based knowledge measure for IFSs

Let’s see what we can derive from the structure of Eq. (6). 
Obviously, this model includes two treatments, one of which 
is for the basic knowledge only from the specificity of Ai , 
while the other is for the potential knowledge only from the 
hesitancy or non-specificity of Ai . We regard here the result 
of �A(xi)||�A(xi) − �A(xi)

|| as an amount of potential knowl-
edge associated with Ai , which is obviously related to the 
degree of the information clarity of specificity. This is in 
line with such a basic fact that the more clarity on the speci-
ficity of Ai , the greater possibility of potential knowledge 
related to the non-specificity of Ai , if any. In other words, 
the familiarity with the current status is considered here for 
the expectation of the unknown. Suppose, for example, that 
you are responsible for supervising two students doing their 
research. Another student may now be more likely to be sent 
to your team. You are surely well aware of the academic 
performance of the current two students, but don’t know the 
educational background of the upcoming guy. What then 
is your attitude towards his coming? Naturally, if both of 

(4)
�KIFS

�x
= � + (

1

2
− �)y ≥ 0,

(5)
�KIFS

�y
=

1

2
+ (

1

2
− �)x ≥ 0.

� + (0.5 − �)y = �(1 − y) + 0.5y ≥ �(1 − y) ≥ 0 if � ≥ 0,

0.5 + (0.5 − �)x ≥ 0.5x + (0.5 − �)x = (1 − �)x ≥ 0 if � ≤ 1,

(6)

K
IFS

(A
i
;�) = ��

A
(x

i
)||�A

(x
i
) − �

A
(x

i
)|| + 1

2

(
�
A
(x

i
) + �

A
(x

i
)
)

(
1 + ||�A

(x
i
) − �

A
(x

i
)||
)
, 0 ≤ � ≤ 1.
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your current students are brilliant and doing well, you may 
have positive expectations of this new guy, actually based 
on the excellent performance your current students achieve. 
On the other hand, if both of your students are mediocrities 
and performing very poorly, you may likely have negative 

hand, when taking the value of � ∈ (0.5, 1] , more than a 
half of the potential knowledge is accepted; thus, relatively 
less uncertainty abandoned. This is progressive behavior 
and clearly an optimistic attitude. When � = 1 (extremely 
optimistic), then

Obviously, in addition to the basic knowledge, all the 
potential knowledge is accepted. This result fully keeps in 
line with the optimistic attitude and progressive spirit. Note 
that this model is exactly the same as the one for Ai in for-
mer work [8]. Thus what we previously explored is just an 
instance of our parametric model with a particular attitude. 
Finally, when taking � = 0.5 (completely neutral), then

This is a quite simple form, but in most cases it may not 
work effectively owing largely to its insensitivity to slight 
variations of Ai . For further details of attitudinal charac-
ter, quantifiers, and BUM functions, please refer to Refs [7, 
9–12, 14, 32, 33].

One special case of Eq. (6) is �A(xi) = �A(xi) . In this case, 
Eq. (6) reduces to

Thus we find an effective way, from the viewpoint of the 
amount of knowledge, to make a difference between such 
special IFSs whose membership degrees are equal to the 
corresponding non-membership degrees.

Let’s consider another case of Eq.  (6) in which 
�A(xi) = 0 . This implies �A(xi) = 1 − �A(xi) , thus the single 
element Ai reduces to an ordinary fuzzy one, denoted by 
A�
i
= ⟨xi,�A� (xi)⟩ , which is from a FS A� ∈ FS(X) . In this 

case, the model KIFS given by Eq. (6) reduces to

This is quite similar to the formula given by Eq. (9) but 
the essential difference between them is that the assignment 
to the specificity is complete and there does not exist any 
non-specificity in the context of FSs. This makes a lot of 
sense for the above formulation despite its simplicity.

Equation (6) describes a parametric model for a single 
element belonging to an IFS. For∀A ∈ IFS(X),

(8)KIFS(Ai;� = 1) = �A(xi)
||�A(xi) − �A(xi)

|| + 1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)

= 1 −
1

2

(
1 − ||�A(xi) − �A(xi)

||
)(
1 + �A(xi)

)
.

(9)

K
IFS

(A
i
;� = 0.5) =

1

2

(
�
A
(x

i
) + �

A
(x

i
) + ||�A

(x
i
) − �

A
(x

i
)||
)

= max
{
�
A
(x

i
), �

A
(x

i
)
}
.

KIFS(Ai) = �A(xi), 0 ≤ �A(xi) ≤ 0.5.

KFS(A
�
i
) =

1

2
+
||||�A� (xi) −

1

2

|||| = max
{
�A� (xi), 1 − �A� (xi)

}
.

expectations of the new guy due mainly to the poor aca-
demic performance of your current students. Another special 
case is that one of your students performs well while the 
other does poorly. Under the circumstances, you may have 
to admit that there is no reasonable expectation of the new 
guy allowing for the fuzziness about the current situation. 
The fact is, the expectation of the unknown may depend on 
many factors. Given the discussion above, one of them, we 
believe, is the familiarity with the current status. We use it 
here as an entry point for measuring the amount of potential 
knowledge.

The question now arises: by what ratio should we make 
use of the potential knowledge? Some people may take it all 
while others do the opposite. It depends actually on attitudes 
of users. Yager [32] defined the concept of attitudinal char-
acter that is associated directly with a Regular Increasing 
Monotone (RIM) quantifier Q , i.e.,

where �Q ∈ [0, 1] , and Q ∶ [0, 1] → [0, 1] is denoted by a 
basic unit-interval monotonic (BUM) function with the prop-
erties: (1) Q(0) = 0 , (2) Q(1) = 1 , (3) Q(x) ≥ Q(y) if x ≥ y . 
In this sense, our parameter � ∈ [0, 1] shown in Eq. (6) can 
just be regarded as an adjustable attitudinal character. Let’s 
see how it works. When taking the value of � ∈ [0, 0.5) , less 
than a half of the potential knowledge is accepted; thus, there 
is relatively more uncertainty abandoned. This is conserva-
tive behavior and clearly a pessimistic attitude. When � = 0 
(extremely pessimistic), then

which means the total knowledge is derived only from the 
specificity of Ai and all the potential knowledge is dumped. 
In other words, only the basic knowledge is desired through-
out the process. This result well keeps in line with the pessi-
mistic attitude and conservative characteristic. On the other 

�Q = ∫
1

0

Q(x)dx,

(7)

KIFS(Ai;� = 0) =
1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)
,
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Theorem 2 Let A ∈ IFS(X). A real parametric function 
KIFS(A;�) ∈ [0, 1](0 ≤ � ≤ 1) defined by Eq. (10) is a knowl-
edge measure for IFSs.

Proof As a meaningful knowledge measure of IFSs, the 
model defined by Eq. (10) should strictly comply with the 
axioms of KPIFS1 ∼ 4 in Definition 3.

(KPIFS1 ): Let A be a crisp set. This implies �A(xi) = 1 
or �A(xi) = 1 for ∀xi ∈ X  , thus KIFS(A;�) = 1 . Now let 
KIFS(A;�) = 1 . Given that KIFS(Ai;�) ∈ [0, 1](i = 1, 2,… , n ), 
then

It is certain that

while

To make Eq. (11) hold, we have to let ||�A(xi) − �A(xi)
|| = 1 , 

i.e., �A(xi) = 1 or �A(xi) = 1 for ∀xi ∈ X , which implies that 
A is a crisp set.

(KPIFS2 ): Let �A(xi) = 1 for ∀xi ∈ X  . This implies 
�A(xi) = �A(xi) = 0 for ∀xi ∈ X , thus KIFS(A;�) = 0 . Now let 
KIFS(A;�) = 0 . Given that KIFS(Ai;�) ∈ [0, 1](i = 1, 2,… , n ), 
then

(10)
KIFS(A;�) =

1

n

n∑
i=1

KIFS(Ai;�)

=
1

n

n∑
i=1

[
��A(xi)

||�A(xi) − �A(xi)
|| + 1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)]

0 ≤ � ≤ 1.

(11)

KIFS(A;�) = 1 ⇔ KIFS(Ai;�) = 1, Ai ∈ A,

⇔ ��A(xi)
||�A(xi) − �A(xi)

|| + 1

2

(
�A(xi) + �A(xi)

)
(
1 + ||�A(xi) − �A(xi)

||
)
= 1, �A(xi) + �A(xi) ≠ 0

⇔ �
[
1 −

(
�A(xi) + �A(xi)

)]||�A(xi) − �A(xi)
||

+
1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)

= 1 −
(
�A(xi) + �A(xi)

)
+
(
�A(xi) + �A(xi)

)
,

�A(xi) + �A(xi) ≠ 0,

⇔

[
1 −

(
�A(xi) + �A(xi)

)](
�||�A(xi) − �A(xi)

|| − 1
)

=
1

2

(
�A(xi) + �A(xi)

)(
1 − ||�A(xi) − �A(xi)

||
)
,

�A(xi) + �A(xi) ≠ 0.

[
1 −

(
�A(xi) + �A(xi)

)](
�||�A(xi) − �A(xi)

|| − 1
) ≤ 0,

(
�A(xi) + �A(xi)

)(
1 − ||�A(xi) − �A(xi)

||
) ≥ 0.

(KPIFS3 ): Let A,B ∈ IFS(X) where Ai ∈ A , Bi ∈ B , 
i = 1, 2,… , n . The proof of Theorem 1 shows that this axiom 
is definitely fulfilled for Ai and Bi with 0 ≤ � ≤ 1 , given the 
monotone non-decreasing property of KIFS with respect 
to �A(xi) + �A(xi) and ||�A(xi) − �A(xi)

|| , respectively. It can 
then be deduced from Eq. (10) that KIFS(A;�) ≥ KIFS(B;�)

(0 ≤ � ≤ 1 ) with the same conditions.
(KPIFS4 ): Trivial from the definition of Ac . □

4  Properties and features

It is clear from Definition 3 that we present here an entropy-
independent axiomatic framework for knowledge measure 
in the context of IFSs. Both facets of knowledge associated 
with an IFS, i.e., the information content and the information 
clarity, are taken into account in the framework, along with 
the treatment of hesitancy or non-specificity of an IFS. This 
may actually help to capture the intrinsic features of IFSs. 
We also believe that any model complying with the axioms 
in Definition 3 can be regarded as an instance of implemen-
tation of this framework.

Before discussing the connection between knowledge 
measure and fuzzy entropy under this framework, let’s recall a 
classic axiomatic definition of fuzzy entropy first [21], which 
has been widely used in [6, 8, 13, 15, 16, 19, 22, 23, 37, 38].

Definition 4 [21]: Let A,B ∈ IFS(X) . A real function 
E ∶ IFS(X) → [0, 1] is called an entropy on IFS(X) , if E has 
the following properties:

KIFS(A;�) = 0 ⇔ KIFS(Ai;�) = 0, Ai ∈ A,

⇔ ��A(xi)
||�A(xi) − �A(xi)

||
+

1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)
= 0,

⇔ ��A(xi)
||�A(xi) − �A(xi)

|| = 0,

1

2

(
�A(xi) + �A(xi)

)(
1 + ||�A(xi) − �A(xi)

||
)
= 0,

⇔ �A(xi) = �A(xi) = 0, �A(xi) = 1

for ∀xi ∈ X.
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(EPIFS1 ) E(A) = 0 iff A is a crisp set;
(EPIFS2 ) E(A) = 1 iff �A(xi) = �A(xi) for ∀xi ∈ X;
(EPIFS3 ) E(A) ≤ E(B) if A is less fuzzy than B , i.e.,
A ⊆ B for 𝜇B(xi) ≤ 𝜈B(xi), ∀xi ∈ X,

or
A ⊇ B for �B(xi) ≥ �B(xi) , ∀xi ∈ X;

Comparison of Definition 3 with Definition 4 seems to 
show that these two kinds of measures differ significantly 
from each other. Still, there are some subtle connections 
between them. Note that there are two optional conditions 
in EPIFS3 , one of which, A ⊆ B for �B(xi) ≤ �B(xi) , implies

while the other, A ⊇ B for �B(xi) ≥ �B(xi) , implies

In either case, it can easily be deduced that ||�A
(x

i
)−

�
A
(x

i
)|| ≥ ||�B

(x
i
) − �

B
(x

i
)|| , thus we get one condition of 

KPIFS3 shown in Definition 3. Going on this premise, 
if another condition of KPIFS3 is taken into account, i.e., 
�A(xi) + �A(xi) ≥ �B(xi) + �B(xi) , then the two core axioms, 
EPIFS3 and KPIFS3 , are both followed. This makes it possible 
to establish a direct connection between these two kinds of 
measures under a unified framework in an axiomatic manner. 
Consider two single-element IFSs, A1 = {⟨x, 0.1, 0.5⟩} and 
A2 = {⟨x, 0.2, 0.3⟩} , for example. It is clear that

According to EPIFS3 , we surely have Entropy(A1) ≤
Entropy(A2) even without need for a specific calculation. 
We also notice that

According to KPIFS3 and Theorem 2, there is no doubt 
that KIFS(A1;�) ≥ KIFS(A2;�)(0 ≤ � ≤ 1 ). Thus we can say 
for sure that for two IFSs, the one with less entropy may 
always carry the greater amount of knowledge provided 
ONLY that both KPIFS3 and EPIFS3 are strictly followed.

On the other hand, if the above conditions fail to be ful-
filled, then the notion of the aforementioned connection 
between fuzzy entropy and knowledge measure goes beyond 
the scope of our defined axioms. Under the circumstances, 
we cannot derive directly from the designated axioms the 
numerical relationship between these two kinds of meas-
ures. It actually depends on the specific calculations on the 
given IFSs by concrete measures or models. In this sense, 
our developed measure can provide a total order that extends 
the usual partial order between IFSs in the measurement of 
knowledge as shown in Definition 3. By this means, we can 

(
EPIFS4

)
E(A) = E(Ac).

�A(xi) ≤ �B(xi) ≤ �B(xi) ≤ �A(xi),

�A(xi) ≥ �B(xi) ≥ �B(xi) ≥ �A(xi).

A1 ⊆ A2, 𝜇A2
(x) ≤ 𝜈A2

(x).

|||�A1
(x) − �

A1
(x)

||| ≥ |||�A2
(x) − �

A2
(x)

|||,
�
A1
(x) + �

A1
(x) ≥ �

A2
(x) + �

A2
(x).

find some special cases in which some IFSs with less entropy 
may also carry less amount of knowledge. Take another two 
single-element IFSs for example, i.e., B1 = {⟨x, 0.1, 0.3⟩} 
and B2 = {⟨x, 0.2, 0.3⟩} . It is clear that

According to EPIFS3 , we surely have Entropy(B1) ≤
Entropy(B2) . But note that

Obviously, the two IFSs fail to satisfy the conditions of 
KPIFS3 , thus we cannot make a direct comparison between 
KIFS(B1;�) and KIFS(B2;�) only from Definition 3. In this 
case, there is really a need for specific calculations with 
concrete measuring models. Using the two different models 
presented respectively by Nguyen [19], and Szmidt, Kacpr-
zyk, and Bujnowski [22], we get

Indeed, the IFS B1 with less entropy also carries less 
amount of knowledge. Please note B1 has a greater amount 
of potential knowledge than B2—0.12 vs. 0.05, to be exact. 
Thus how to deal with that part of potential knowledge asso-
ciated respectively with B1 and B2 will depend on attitudes 
of users. In fact, by using our developed measure KIFS given 
by Eq. (10), we get

and

Clearly, when 0 ≤ 𝛼 < 0.5 (a pessimistic attitude, 
the potential knowledge will be either dumped all or 
accepted in small part), then KIFS(B1;𝛼) < KIFS(B2;𝛼) ; 
when 0.5 < 𝛼 ≤ 1 (an optimistic attitude, the potential 
knowledge will be accepted in large part or even all), then 
KIFS(B1;𝛼) > KIFS(B2;𝛼) ; when � = 0.5 (a completely neu-
tral attitude, the potential knowledge will be accepted just 
by half), then KIFS(B1;�) = KIFS(B2;�) . We believe that the 
knowledge measure provided in this manner could truly 
reflect the nature of IFSs, and what people really desire 
with different attitudes towards the unknown. With the help 
of these analyses, we can safely draw a conclusion that in 
the context of IFSs, there is generally NO fixed numerical 
relationship between fuzzy entropy and knowledge meas-
ure UNLESS the designated axioms and conditions are 
followed. These arguments are entirely consistent with our 
earlier research [8].

Let’s look now at some special IFSs. Consider four sin-
gle-element ones Ci(i = 1, 2, 3, 4):

B1 ⊆ B2, 𝜇B2
(x) ≤ 𝜈B2

(x).

|||𝜇B1
(x) − 𝜈

B1
(x)

||| ≥ |||𝜇B2
(x) − 𝜈

B2
(x)

|||,
𝜇
B1
(x) + 𝜈

B1
(x) < 𝜇

B2
(x) + 𝜈

B2
(x).

K
n
(B1) = 0.361 < 0.436 = K

n
(B2),

K
skb
(B1) = 0.311 < 0.313 = K

skb
(B2).

KIFS(B1;�) = 0.12� + 0.24, KIFS(B2;�) = 0.05� + 0.275,

KIFS(B1;�) − KIFS(B2;�) = 0.07� − 0.035, 0 ≤ � ≤ 1.
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According to some existing entropy models in the context 
of IFSs [15, 16, 21, 23, 37, 38], these IFSs would consist-
ently, indeed without exception, have the maximal entropy 
of one. Thus a dual measure of entropy leads to the minimal 
amount of knowledge (equal to zero) associated with each 
one of them. However, in view of the different combinations 
of � = � with the increasing values of � from C1 to C4 , we 
have good reason to believe that these IFSs differ consider-
ably from each other just from the perspective of the amount 
of knowledge. Since using fuzzy entropy alone is difficult to 
make the difference between them, we employ our developed 
measure KIFS given by Eq. (10) to tackle this issue. Note that |||�Ci

(x) − �Ci
(x)

||| = 0(i = 1, 2, 3, 4 ), which means for each Ci , 

there is no available potential knowledge for users. Then,

These results are clearer and more intuitive, and can 
surely be useful to distinguish between these IFSs in terms 
of the amount of knowledge associated with them, just as 
we would expect. This actually helps find a way to deal with 
such special cases in which there are a large number of argu-
ments in favor but an equally large number of arguments in 
disapproval at the same time.

5  Experimental study

This section aims at examining, by three groups of IFSs 
with respective features, the performance of the developed 
measure KIFS through a comparative analysis of other meas-
uring models.

Example 1 The first group of IFSs: characterized by the 
fixed values of the information content (equal to 0.9) and 

C1 = {⟨x, 0.5, 0.5⟩}, C2 = {⟨x, 0.3, 0.3⟩},
C3 = {⟨x, 0.2, 0.2⟩}, C4 = {⟨x, 0, 0⟩}.

KIFS(C1) = 0.5, KIFS(C2) = 0.3, KIFS(C3) = 0.2, KIFS(C4) = 0.

the decreasing degrees of the information clarity. For sim-
plicity, all these single-element IFSs are expressed as IFVs, 
denoted by Ai(i = 1, 2,… , 10 ). The comparative results are 
given in Table 1.

It is clear from Table 1 that with the fixed values of the 
hesitancy and the decreasing degrees of the information clar-
ity from A1 to A10 , the entropies of these IFSs gradually 
increase to the maximum, as shown by the entropy model 
Esk . While the amount of knowledge associated with these 
IFSs follows a decreasing trend from A1 to A10 , as shown by 
the other three measuring models. Note that the model Kn 
produces some much larger values, especially of A6~A10 , 
compared with those by Kskb and KIFS . This is because the 
model Kn only considers the information content of an IFS 
but neglects the information clarity. It must be emphasized 
that both facets of knowledge associated with an IFS, i.e., the 
information content and the information clarity, are equally 
important and should be simultaneously taken into account 
in measuring models. By contrast, our developed model KIFS 
performs quite well given the changing trend of the infor-
mation clarity from A1 to A10 . Moreover, with the help of 
� ∈ [0, 1] , an adjustable parameter for attitudinal character, 
the model KIFS can provide an available treatment for the 
potential knowledge in accordance with different attitudes 
of users. Obviously, for a fixed IFS, the more optimistic atti-
tude (the greater value of � ), the more potential knowledge 
accepted, if any, and thus the greater amount of knowledge 
associated with this IFS. This actually offers us a more flex-
ible approach in real-world applications involving IFSs.

Example 2 The second group of IFSs: characterized by 
the fixed degrees of the information clarity (equal only to 
0.1) and the increasing values of the information content. 
All these single-element IFSs are also expressed as IFVs, 
denoted by Bi(i = 1, 2,… , 10 ). The comparative results are 
given in Table 2.

Table 1  Comparative results by 
different measuring models for 
the 1st group of IFSs

IFSs Esk [21] Kskb [22] Kn [19] KIFS,
α = 0

KIFS,
α = 0.25

KIFS,
α = 0.5

KIFS,
α = 0.75

KIFS,
α = 1 [8]

A1 = (0.90,0.00,0.1) 0.100 0.900 0.900 0.855 0.878 0.900 0.922 0.945
A2 = (0.85,0.05,0.1) 0.158 0.871 0.876 0.810 0.830 0.850 0.870 0.890
A3 = (0.80,0.10,0.1) 0.222 0.839 0.854 0.765 0.783 0.800 0.818 0.835
A4 = (0.75,0.15,0.1) 0.294 0.803 0.835 0.720 0.735 0.750 0.765 0.780
A5 = (0.70,0.20,0.1) 0.375 0.762 0.819 0.675 0.687 0.700 0.712 0.725
A6 = (0.65,0.25,0.1) 0.467 0.717 0.805 0.630 0.640 0.650 0.660 0.670
A7 = (0.60,0.30,0.1) 0.571 0.664 0.794 0.585 0.592 0.600 0.607 0.615
A8 = (0.55,0.35,0.1) 0.692 0.604 0.786 0.540 0.545 0.550 0.555 0.560
A9 = (0.50,0.40,0.1) 0.833 0.533 0.781 0.495 0.497 0.500 0.502 0.505
A10 = (0.45,0.45,0.1) 1.000 0.450 0.779 0.450 0.450 0.450 0.450 0.450
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We can clearly see from Table 2 that with the fixed 
degrees of the information clarity and the decreasing values 
of the hesitancy from B1 to B10 , the entropies of these IFSs 
gradually decrease, too, as shown by the entropy model Esk . 
The reason for a small decrease in the amount of entropy is 
due to the less information clarity of these IFSs throughout 
the process. Along this line of reasoning, an increase in the 
amount of knowledge associated with these IFSs should also 
be limited, just as shown by the models Kskb and KIFS . Note 
that the model Kn produces, again, some much larger values, 
especially of B6~B10 , compared with those by the other two 
knowledge measures. Given the high degree of fuzziness of 
Bj( j = 6, 7,… , 10 ), it is hard to accept these larger values 
as the actual amount of knowledge associated respectively 
with these IFSs.

Example 3 The third group of IFSs: characterized by the reg-
ular variations in the membership/ non-membership degree. 
All these single-element IFSs are still expressed as IFVs, 
denoted by Ci ( i = 1, 2,… , 11 ). Note that among these IFSs, 
any two neighbors just fulfill the conditions of EPIFS3 in 
Definition 4, but not all of these pairs fulfill simultaneously 

the conditions of KPIFS3 in Definition 3. The comparative 
results are given in Table 3.

From Table 3 we clearly see that with the decreasing 
degrees of the information clarity from C1 to C11 , the entro-
pies of these IFSs gradually increase from the minimum to 
the maximum, as shown by the entropy model Esk . How-
ever, the amount of knowledge associated with these IFSs 
does not follow such a simple trend, as shown by Kskb , Kn , 
and KIFS . Note that the entropy results here are merely used 
for reference, which does not mean we agree only with the 
results following monotonically entropy. According to the 
patterns of variations in the membership/ non-membership 
degree, these IFSs can be divided into two groups: Group 
One including C1~C6 , and Group Two including C7~C11 . 
In what follows, we discuss the actual changing trends of 
the amount of knowledge in each of the groups separately. 
Let’s look first at the results from Group One. This is obvi-
ously a simple case as both the information content and the 
information clarity are decreasing from C1 to C6 . In fact, all 
the results from this group by Kskb , Kn , and KIFS , show a 
decreasing trend with great consistency, just as we would 

Table 2  Comparative results by different measuring models for the 2nd group of IFSs

IFSs Esk [21] Kskb [22] Kn [19] KIFS, α = 0 KIFS, α = 0.25 KIFS, α = 0.5 KIFS, α = 0.75 KIFS, α = 1 [8]

B1 = (0.10,0.00,0.9) 0.900 0.100 0.100 0.055 0.077 0.100 0.123 0.145
B2 = (0.15,0.05,0.8) 0.895 0.153 0.180 0.110 0.130 0.150 0.170 0.190
B3 = (0.20,0.10,0.7) 0.889 0.206 0.265 0.165 0.183 0.200 0.218 0.235
B4 = (0.25,0.15,0.6) 0.882 0.259 0.350 0.220 0.235 0.250 0.265 0.280
B5 = (0.30,0.20,0.5) 0.875 0.312 0.436 0.275 0.287 0.300 0.312 0.325
B6 = (0.35,0.25,0.4) 0.867 0.367 0.522 0.330 0.340 0.350 0.360 0.370
B7 = (0.40,0.30,0.3) 0.857 0.421 0.608 0.385 0.393 0.400 0.407 0.415
B8 = (0.45,0.35,0.2) 0.846 0.477 0.695 0.440 0.445 0.450 0.455 0.460
B9 = (0.50,0.40,0.1) 0.833 0.533 0.781 0.495 0.497 0.500 0.502 0.505
B10 = (0.55,0.45,0.0) 0.818 0.591 0.867 0.550 0.550 0.550 0.550 0.550

Table 3  Comparative results by different measuring models for the 3rd group of IFSs

IFSs Esk [21] Kskb [22] Kn [19] KIFS, α = 0 KIFS, α = 0.25 KIFS, α = 0.5 KIFS, α = 0.75 KIFS, α = 1 [8]

C1 = (0.0,1.0,0.0) 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
C2 = (0.0,0.9,0.1) 0.100 0.900 0.900 0.855 0.878 0.900 0.922 0.945
C3 = (0.0,0.8,0.2) 0.200 0.800 0.800 0.720 0.760 0.800 0.840 0.880
C4 = (0.0,0.7,0.3) 0.300 0.700 0.700 0.595 0.647 0.700 0.752 0.805
C5 = (0.0,0.6,0.4) 0.400 0.600 0.600 0.480 0.540 0.600 0.660 0.720
C6 = (0.0,0.5,0.5) 0.500 0.500 0.500 0.375 0.438 0.500 0.562 0.625
C7 = (0.1,0.5,0.4) 0.556 0.522 0.557 0.420 0.460 0.500 0.540 0.580
C8 = (0.2,0.5,0.3) 0.625 0.537 0.624 0.455 0.477 0.500 0.522 0.545
C9 = (0.3,0.5,0.2) 0.714 0.543 0.700 0.480 0.490 0.500 0.510 0.520
C10 = (0.4,0.5,0.1) 0.833 0.533 0.781 0.495 0.497 0.500 0.502 0.505
C11 = (0.5,0.5,0.0) 1.000 0.500 0.866 0.500 0.500 0.500 0.500 0.500
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expect. Let’s look now at the results from Group Two. This 
is a relatively complex case although the involved IFSs vary 
quite regularly. More specifically, with the increasing values 
of the information content towards one (the maximum) from 
C7 to C11 , the degrees of the information clarity of these IFSs 
are going down towards zero (the minimum). Facing this 
challenge, the model Kskb performs poorly as no regularity 
can be reflected from its results. The model Kn produces a set 
of results following a steady trend upwards. Note that these 
results are much larger values, especially of C9~C11 . Given 
the high degree of fuzziness of Cj( j = 7, 8,… , 11 ), it is hard 
to accept these larger values as the actual amount of knowl-
edge associated respectively with these IFSs. Now turn to the 
results by KIFS . It is clear that this model produces a set of 
values following a steady trend upwards when 0 ≤ 𝛼 < 0.5 , 
and a steady trend downwards when 0.5 < 𝛼 ≤ 1 . In order to 
understand how this happens, let’s show some intermediate 
results from these IFSs in Table 4.

Obviously, the magnitude of changes on the information 
content and on the information clarity is quite similar. Given 
the structure of Eq. (7), it is almost certainly the case that 
the variations in the information content have more signifi-
cant effects than those in the information clarity. Thus there 
is no doubt that our model KIFS produces a set of results 
following a steady trend upwards when � = 0 , as shown 
in Table 3. In fact, a slight increase in the value of �(usu-
ally 0 ≤ 𝛼 < 0.5 ) may still lead to the same trend because a 
tiny amount of potential knowledge added extra should not 
make much difference to the previous trend. However, as the 
value of � dramatically increases, more and more amount 
of potential knowledge, if any, is added to the amount of 
basic knowledge. During this procedure, the model KIFS 
gradually shifts the emphasis away from the amount of the 
basic knowledge pertaining to specificity, towards that of the 
potential knowledge pertaining to non-specificity. Note that 
Table 4 shows a downward trend of the amount of potential 
knowledge associated with Cj( j = 7, 8,… , 11 ). Thus when 
the value of � is big enough (usually 0.5 < 𝛼 ≤ 1 ), KIFS can 
produce a set of results following a steady trend downwards 
rather than upwards in the case of 0 ≤ 𝛼 < 0.5 , just as shown 
in Table 3. A special case of � = 0.5 is also worth noting. 

Given the intrinsic insensitivity of Eq. (9), there are few 
surprises for so many values equal to 0.5 shown in Table 3. 
Obviously, the model under this attitude cannot reflect the 
slight variations of an IFS, and therefore it fails to capture 
some detailed features of IFSs. By this example, we further 
provide some strong arguments for the connection between 
knowledge measure and fuzzy entropy as mentioned before.

In summary, the model Esk performs quite well during the 
above process despite the fact that it never tells the differ-
ence between such special IFSs whose membership degrees 
are equal to the corresponding non-membership degrees. 
While the model Kskb is basically passable but not stable 
under complex situation given its unsatisfactory results in 
Table 3. Note that the results by Kn are always depressing, 
owing largely to its negligence on the part of the inherent 
fuzziness of an IFS. By contrast, our model KIFS works effec-
tively and flexibly throughout the process, and shows some 
measure of stability with the testing results that can be well 
explained according to different attitudinal characters. This 
actually provides us with a feasible analytical tool for practi-
cal applications in more complex situation in which different 
attitudes of users have to be considered.

6  Illustrative example

It is well known that the concept of entropy can be used 
in multi-attribute decision making (MADM) for the attrib-
ute weight in terms of the information content of criterion, 
so called the entropy weight on attribute. In fact, it can be 
replaced by knowledge measure in the context of IFSs, espe-
cially when different personality traits have to be considered. 
We may call this the knowledge weight on attribute. In this 
case, the more the amount of knowledge of an attribute, the 
greater its associated importance weight. In what follows, a 
real-life example (adapted from Xu and Yager [31]) is pro-
vided for an in-depth discussion on an application of the 
developed technique in decision making under uncertainty.

Located in Central China and the middle reaches of the 
Changjiang (Yangtze) River, Hubei Province is distributed in 
a transitional belt where physical conditions and landscapes 
are on the transition from north to south and from east to 
west. Thus, Hubei Province is well known as “a land of 
rice and fish” since the region enjoys some of the favorable 
physical conditions, with a diversity of natural resources and 
the suitability for growing various crops. At the same time, 
however, there are also some restrictive factors for develop-
ing agriculture such as a tight man–land relation between 
a constant degradation of natural resources and a growing 
population pressure on land resource reserve. Despite cher-
ishing a burning desire to promote their standard of living, 
people living in the area are frustrated because they have 
no ability to enhance their power to accelerate economic 

Table 4  Some intermediate results from the IFSs in Group Two

IFSs from group two The informa-
tion content
µCj + νCj

The informa-
tion clarity
|µCj − νCj|

The amount 
of potential 
knowledge
πCj|µCj − νCj|

C7 = (0.1,0.5,0.4) 0.6 0.4 0.16
C8 = (0.2,0.5,0.3) 0.7 0.3 0.09
C9 = (0.3,0.5,0.2) 0.8 0.2 0.04
C10 = (0.4,0.5,0.1) 0.9 0.1 0.01
C11 = (0.5,0.5,0.0) 1.0 0.0 0.00
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development because of a dramatic decline in quantity and 
quality of natural resources and a deteriorating environment. 
Based on the distinctness and differences in environment and 
natural resources, Hubei Province can be roughly divided 
into seven agro-ecological regions:

• a1—Wuhan–Ezhou–Huanggang; a2—Northeast of Hubei; 
a3—Southeast of Hubei;

• a4—Jianghan region; a5—North of Hubei; a6—Northwest 
of Hubei; a7—Southwest of Hubei.

In order to prioritize the alternatives ai(i = 1, 2,… , 7 ) 
in terms of their comprehensive functions, a committee 
comprised of three experts dk(k = 1, 2, 3 ) has been formed 
with a weighting vector � = (�1, �2, �3)

T = (0.3, 0.3, 0.4)T 
where the value of �k represents the importance weight of 
dk . Assume that each dk has his/her own attitude, denoted 
by a vector, � = (�1, �2, �3)

T = (0.10, 0.80, 0.45)T , where the 
value of �k expresses the attitudinal character of dk , repre-
senting a pessimistic, optimistic, and nearly neutral attitude, 
respectively. The attributes which are considered here in the 
assessment of ai(i = 1, 2,… , 7 ) are:

Suppose that the importance of each attribute is completely 
unknown. The individual opinion of dk on ai with respect to cj 

c1 − ecological benefit; c2 − economic benefit;

c3 − social benefit.

is expressed as an individual decision matrix R(k) =

(
r
(k)

ij

)
7×3

 

where r(k)
ij

=

(
�
(k)

ij
, �

(k)

ij
,�

(k)

ij

)
 ( i = 1, 2,… , 7; j, k = 1, 2, 3 ) are 

IFVs, i.e.,

R(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(0.8, 0.1, 0.1) (0.9, 0.1, 0.0) (0.7, 0.2, 0.1)

(0.7, 0.3, 0.0) (0.6, 0.2, 0.2) (0.6, 0.1, 0.3)

(0.5, 0.4, 0.1) (0.7, 0.3, 0.0) (0.6, 0.1, 0.3)

(0.9, 0.1, 0.0) (0.7, 0.1, 0.2) (0.8, 0.2, 0.0)

(0.6, 0.1, 0.3) (0.8, 0.2, 0.0) (0.5, 0.1, 0.4)

(0.3, 0.6, 0.1) (0.5, 0.4, 0.1) (0.4, 0.5, 0.1)

(0.5, 0.2, 0.3) (0.4, 0.6, 0.0) (0.5, 0.5, 0.0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

We now use the developed measure given by Eq. (10) to 
derive the attribute weighting vector w , with which to aggre-
gate all these opinions above to form an overall evaluation 
for each alternative.

Step 1. Aggregate all of the individual opinions, 
R(k) =

(
r
(k)

ij

)
7×3

(k = 1, 2, 3 ), into a group one, R =
(
rij
)
7×3

 , 

by using the intuitionistic fuzzy weighted averaging (IFWA) 
operator [30], where

Thus the group opinion is shown as

Step 2. Determine the individual knowledge weights on 
attributes with R for each dk . Calculate first the amount of 
knowledge associated with cj for each dk on the basis of his/
her personality traits, i.e., �k , by using Eq. (10). After nor-
malization of these amounts of knowledge for each expert, 
the individual weighting vectors of attributes pertaining 
to R , denoted by w(k) = (w

(k)

1
,w

(k)

2
,w

(k)

3
)T(k = 1, 2, 3 ), are 

obtained and shown as

R(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(0.9, 0.1, 0.0) (0.8, 0.2, 0.0) (0.8, 0.1, 0.1)

(0.8, 0.2, 0.0) (0.5, 0.1, 0.4) (0.7, 0.2, 0.1)

(0.5, 0.5, 0.0) (0.7, 0.2, 0.1) (0.8, 0.2, 0.0)

(0.9, 0.1, 0.0) (0.9, 0.1, 0.0) (0.7, 0.3, 0.0)

(0.5, 0.2, 0.3) (0.6, 0.3, 0.1) (0.6, 0.2, 0.2)

(0.4, 0.6, 0.0) (0.3, 0.4, 0.3) (0.5, 0.5, 0.0)

(0.3, 0.5, 0.2) (0.5, 0.3, 0.2) (0.6, 0.4, 0.0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(0.7, 0.1, 0.2) (0.9, 0.1, 0.0) (0.9, 0.1, 0.0)

(0.9, 0.1, 0.0) (0.6, 0.2, 0.2) (0.6, 0.2, 0.2)

(0.4, 0.5, 0.1) (0.8, 0.1, 0.1) (0.7, 0.1, 0.2)

(0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.9, 0.1, 0.0)

(0.6, 0.3, 0.1) (0.8, 0.2, 0.0) (0.7, 0.2, 0.1)

(0.2, 0.7, 0.1) (0.5, 0.1, 0.4) (0.3, 0.1, 0.6)

(0.4, 0.6, 0.0) (0.4, 0.3, 0.0) (0.5, 0.5, 0.0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

rij = IFWA�

(
r
(1)

ij
, r

(2)

ij
, r

(3)

ij

)
=

(
1 −

3∏
k=1

(
1 − �

(k)

ij

)�k
,

3∏
k=1

(
�
(k)

ij

)�k
,

3∏
k=1

(
1 − �

(k)

ij

)�k
−

3∏
k=1

(
�
(k)

ij

)�k

)
.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(0.809, 0.100, 0.091) (0.877, 0.123, 0.000) (0.829, 0.123, 0.048)

(0.829, 0.171, 0.000) (0.572, 0.162, 0.265) (0.633, 0.162, 0.204)

(0.462, 0.468, 0.070) (0.745, 0.171, 0.084) (0.710, 0.123, 0.166)

(0.868, 0.100, 0.032) (0.784, 0.132, 0.084) (0.829, 0.171, 0.000)

(0.572, 0.191, 0.237) (0.754, 0.226, 0.020) (0.619, 0.162, 0.219)

(0.295, 0.638, 0.067) (0.447, 0.230, 0.323) (0.396, 0.263, 0.342)

(0.405, 0.409, 0.186) (0.432, 0.369, 0.199) (0.532, 0.468, 0.000)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

w
(1) = (0.337, 0.335, 0.328)T , w

(2) = (0.332, 0.336, 0.332)T ,

w
(3) = (0.335, 0.335, 0.330)T .
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It is clear from above that for the same decision matrix R , 
different attitudes may lead to different logic on the impor-
tance weight of attributes.

Step 3. Derive the global weights on attributes, 
w = (w1,w2,w3)

T  , from the composition of � with w(k)

(k = 1, 2, 3 ), that is,

Step 4. With w and R , make a group assessment ri on 
each alternative ai(i = 1, 2,… , 7 ) by using the IFWA opera-
tor again, where

Group assessments on the agro-ecological regions can 
then be shown as

Step 5. Evaluate the values of ri(i = 1, 2,… , 7 ) by using 
the following method [7]

where the larger the value of ZIFV (ri) ∈ [0, 1] , the better the 
IFV ri . We then have

Step 6. Finally, rank all agro-ecological regions with 
respect to the set of attributes in terms of the values of 
ZIFV

(
ri
)
(i = 1, 2,… , 7 ), i.e.,

This is exactly the same as the ranking list by Xu and 
Yager [31].

7  Conclusions

A measure of knowledge should not be viewed simply as 
a dual measure of entropy in the context of IFSs as there 
is no natural logic between them with the introduction of 

w =

⎡
⎢⎢⎣

w
(1)

1
w
(2)

1
w
(3)

1

w
(1)

2
w
(2)

2
w
(3)

2

w
(1)

3
w
(2)

3
w
(3)

3

⎤
⎥⎥⎦
◦

⎡
⎢⎢⎣

�1
�2
�3

⎤
⎥⎥⎦
= (0.335, 0.335, 0.330)T .

ri = IFWAw

(
ri1, ri2, ri3

)
=

(
1 −

3∏
j=1

(
1 − �ij

)wj ,

3∏
j=1

(
�ij
)wj ,

3∏
j=1

(
1 − �ij

)wj −

3∏
j=1

(
�ij
)wj

)
, i = 1, 2,… , 7.

r1 = (0.841, 0.115, 0.044), r2 = (0.701, 0.165, 0.134),

r3 = (0.659, 0.215, 0.126),

r4 = (0.830, 0.131, 0.039), r5 = (0.658, 0.192, 0.150),

r6 = (0.382, 0.338, 0.280), r7 = (0.459, 0.413, 0.128).

ZIFV (ri) =
(
1 −

1

2
�ri

)(
�ri

+
1

2
�ri

)
, i = 1, 2,… , 7,

ZIFV
(
r1
)
= 0.844, ZIFV

(
r2
)
= 0.716, ZIFV

(
r3
)
= 0.676,

ZIFV
(
r4
)
= 0.833,

ZIFV
(
r5
)
= 0.678, ZIFV

(
r6
)
= 0.449, ZIFV

(
r7
)
= 0.489.

a1 ≻ a4 ≻ a2 ≻ a5 ≻ a3 ≻ a7 ≻ a6.

hesitancy. We point out in this paper that there are at least 
two facets of knowledge associated with an IFS, one of 
which is the information content while the other is related to 
the information clarity. We further argue that the more infor-
mation content and the greater information clarity an IFS 
has, the larger amount of knowledge it will carry. With this 
understanding, we develop a novel axiomatic definition of 
knowledge measure for IFSs, and an attitudinal-based meas-
uring model in the context of IFSs. Experimental results 
show that the knowledge measure provided in this manner 
is characterized by the excellent robustness and high flex-
ibility, and can better capture the unique features of an IFS 
by comparison with other ones. This actually provides us 
with a feasible analytical tool for practical applications in 

more complex situation in which different attitudes of users 
have to be considered. At least, the developed measure could 
help us tackle some special problems that are really difficult 
to handle by using entropy alone in real-world applications 
with IFSs. In this sense, it could be extensively considered 
as a safe and effective alternative for fuzzy entropy in many 
fields such as soft computing, pattern recognition, informa-
tion theory, operations management, decision making under 
uncertainty, etc. Future research is required to consider the 
personal preference between the information content and the 
information clarity in the developed model.
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