
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561
https://doi.org/10.1007/s13042-018-0833-6

ORIGINAL ARTICLE

Metaheuristic‑based extreme learning machines: a review of design
formulations and applications

Mohammed Eshtay1 · Hossam Faris1  · Nadim Obeid1,2

Received: 17 November 2017 / Accepted: 29 May 2018 / Published online: 8 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Extreme learning machine (ELM) is a novel and recent machine learning algorithm which was first proposed by Huang
et al. (Proceedings of 2004 IEEE international joint conference on, pp 985–990, 2004). Over the last decade, ELM has
gained a remarkable research interest with tremendous audiences from different domains in a short period of time due to
its impressive characteristics over other single hidden-layer feedforward neural networks. Although ELM enjoys powerful
advantages, it still has some potential weaknesses like performance sensitivity to the initial condition of the input weights,
number of hidden neurons, and the selection of activation functions. In order to overcome the limitations of classical ELM,
many metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, memetic and trajectory algorithms
have been proposed for optimizing the different components of ELM by researchers aiming to improve the generalization
performance of ELM networks for different types of complex problems and applications. Therefore our review paper intent
to conduct a deep study of the important aspects of applying metaheuristic algorithms for optimizing ELM networks. Three
main streams of research lines are identified: the optimization of input weights and hidden biases, selection of hidden
neurons, and optimization of activation functions. Furthermore, this paper will discuss a wide spectrum of applications of
metaheuristic-based ELM models. We will highlight the strengths of these models and the improvements that are suggested
in the literature to overcome their weaknesses. We touch upon several interesting and challenging open issues in optimizing
ELM using metaheuristics.

Keywords  Extreme learning machine · ELM · Metaheuristic · Artificial Neural networks · ANN · Evolutionary Algorithm

1  Introduction

Artificial neural networks (ANNs) are information process-
ing and mathematical models which are inspired by the
biological neural systems. They have many advantages that
make them widely applied by different classification and
regression problems, such as high prediction power, ability

to model dynamic and complex systems, ease of implemen-
tation, and their parallel nature [7].

ANNs consist of a number of processing elements called
“neurons” that are distributed over a number of layers (i.e.
input layer, output layer and zero or more hidden layers).
In feedforward neural networks (FFNN), neurons are fully
connected with the neurons in the proceeding layer. Sin-
gle-hidden-layer feedforward neural networks (SLFN) are
considered to be one of the most popular neural networks
topologies. It was shown in the literature that SLFN are
universal approximators which are able to approximate any
continuous function [16, 40]. SLFNs are typically trained
by gradient descent methods such as Backpropagation (BP)
[82, 83]. In spite of their popularity, gradient descent based
training algorithms such as BP, suffer major drawbacks such
as high dependency of the initial weights of the network,
high probability of being trapped in local minima and slow
convergence [18, 25, 26, 30, 31, 56].

 *	 Hossam Faris
	 hossam.faris@ju.edu.jo

	 Mohammed Eshtay
	 m.eshtay@fgs.ju.edu.jo

	 Nadim Obeid
	 nadim@ju.edu.jo

1	 King Abdullah II School for Information Technology, The
University of Jordan, Amman, Jordan

2	 Department of Computer Science, King Hussein School
of Computing Sciences, Princess Sumaya University
for Technology, Amman, Jordan

http://orcid.org/0000-0003-4261-8127
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-018-0833-6&domain=pdf

1544	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

To overcome the problems of classical feedforward neural
networks with gradient descent training methods, ELM were
first proposed by Huang et al. [48]. In ELM, the weights that
connect the input layer with the hidden layer along with the
hidden biases are randomly initialized, then the connection
weights between the hidden layer and the output layer are
analytically determined by finding a least-square solution
using a simple method like the Moore–Penrose (MP) gen-
eralized inverse.

Unlike other training algorithms, ELM enjoys many
advantages which makes it distinctive among its counterpart,
for instance, ELM has a simple architecture which is easy to
implement and apply. In addition to that, the learning speed
of ELM is very fast compared to other learning algorithms
such as BP; as training can be accomplished in seconds or
minutes, which is significantly less than many other con-
ventional learning methods. In general, ELM enjoys a high
generalization performance, and it is possible to use a dif-
ferent activation functions [23]. Moreover, ELM can avoid
many problems of traditional gradient bases algorithms such
as learning rate and local minima. [20, 46, 49, 93, 98].

Despite its pros, ELM suffers from certain drawbacks:
ELM performance is sensitive towards the initialization
of the structure of the network. The initial settings of the
weights and biases, and the number of neurons affect the
performance of ELM. In addition, ELM needs more hidden
neurons than the traditional tuning-based methods in many
cases [15, 32].

Different approaches were proposed in the literature
to solve these problems and to improve the performance
of ELM networks. One type of these approaches that has
gained a wide interest is the metaheuristic-based approach.
Metaheuristic algorithms are efficient methods that are
designed to provide acceptable or near optimal solutions for
hard optimization problems. They actually guide the search
process to efficiently explore the search space trying to ful-
fill this goal. Many of these algorithms are derived from
biological or physical systems [11]. Some of the advantages
of these algorithms are: problem independent, can stochasti-
cally guide the search process in order to find near optimal
solutions, and can be used to solve problems ranging from
simple search to complex problems [11, 12]. One year after
the release of ELM, metaheuristic algorithms started to be
intensively investigated and applied in designing and opti-
mizing ELM network. Metaheuristic algorithms have shown
significant improvement in the performance of ELM net-
works at both theoretical and empirical levels.

In literature, there are few published papers that sur-
veyed ELM. Some of these papers concentrated on ELM
variants, while other papers discussed ELM in general and
targeted their applications. For example, one of the earli-
est surveys was conducted by Huang et al. [46], where
they surveyed ELM and its theories, and discussed the

variants of ELM. Another work was conducted by Ding
et al. [19] in which they reviewed ELM variants and dis-
cussed various applications that were handled using ELM
in the literature. In the aforementioned paper, the authors
listed Evolutionary ELM among the ELM variants but
without a detailed analysis. In another paper, Ding et al.
[20] surveyed the latest research of ELM theory, algo-
rithms and applications. They introduced three examples
of Evolutionary ELMs. Huang et al. [41] gave some exam-
ples about the research that used Evolutionary ELM in
other variants of ELMs. The paper reviewed ELM and
its theories for classification and regression. Cao and Lin
[13] surveyed ELM for high dimensional and large data
applications. However, Evolutionary ELMs were not taken
into consideration. Another review was presented in [1] in
which the authors reviewed the advances of ELM and its
applications without taking into consideration the Evolu-
tionary ELM too. Interestingly, the analysis of the exiting
surveys in the literature showed that either they briefly
referred to the Evolutionary ELM or they do not refer to
them at all. This finding was one of the main motivations
for this study. Unlike the previous surveys and reviews of
ELMs, the objective of this paper is to conduct a compre-
hensive review of the important aspects and design issues
of metaheuristic-based ELM networks. Moreover, we iden-
tify the main research lines for this specific type of ELMs
and their applications.

In this paper, the review refers to all of the previous
research that have discussed the metaheuristic-based ELM
models by referring to the prestigious publishers such as
Elsevier, Springer, IEEE, and others. To show the expansion
of the metaheuristic-based ELM models in the literature,
Fig. 1 depicts the correspondence between the year and the
number of publications that combine ELM with metaheuris-
tics. We can observe that the number of publications per year
was constant with only one publication for the first 6 years
and then the number remarkably increased to reach its peak
in 2013. Furthermore, the research has been very active in
this field in the last 3 years. From another point of view,
Fig. 2 lists the number of publications for each metaheuristic
algorithm that has been used to optimize ELM. As it can be
noticed, the most used algorithms are differential evolution
(DE), particle swarm algorithm (PSO) and genetic algorithm
(GA).

This paper is structured as follows: Sect. 2 gives a brief
description of FFNN. Section 3 describes the classical ELM
model. Section 4 reviews the metaheuristic algorithms and
their classification. In Sect. 5, we identify and review the
main approaches in the literature that utilize metaheuristic
algorithms to optimize ELM networks. Section 6 lists most
of the applications of metaheuristic-based ELMs. Finally,
Sect. 7 concludes the paper and suggests some possible
future research directions.

1545International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

2 � Feedforward neural networks

Artificial neural network (ANN) is an information process-
ing system inspired by the biological neural network system
in a human brain. The architecture of ANN consists of a set
of neurons, weights, and layers. The simplest model of neu-
ral networks is the single layer perceptron (SLP) [81] which
consists of input and output layers. SLP is a neural network
that does not have any hidden layer, which makes it unable
to approximate nonlinear continuous functions. In order to
solve this problem, multilayer perceptron (MLP) [99] was pro-
posed. In MLP, one layer of hidden neurons or more are added
between input and output layers. MLP with single hidden layer
and finite number of hidden neurons with any sigmiodal non-
linear activation function is capable of approximating any
measurable function to any desirable degree of accuracy [40].

Feedforwad neural networks (FFNN) consist of a set of
layers, each of which contains a number of neurons (nodes).
The first layer receives the input and the last one produces the
output. Each neuron in the layer is connected to all neurons of
the next layer by a weight (forward link) as shown in Fig. 3.
The neurons in the hidden and output layers are used to process
the incoming information from the weighted links. The output
of the neurons yi can be calculated as given in the following
equation:

where n is the number of features or number of input links,
zi are the inputs of the ith sample, wi is the weight, bi is the
bias and �i is the activation function of the neuron i.

(1)yi = �i

(
n∑

k=1

wi
k
× zi

k
+ bi

)
,

Fig. 1   Number of publications
per year

0

1

2

3

4

5

6

7

8

9

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
um

be
r o

f p
ub

lic
at

io
ns

0

2

4

6

8

10

12

14

Genetic
Algorithm

(GA)

Particle
Swarm

Algorithm
(PSO)

Differential
Evolution

(DE)

Bacterial
Foraging

(BF)

Group
Search

Optimizer
(GSO)

Fuzzy Fish
Swarms
(FFS)

Simulated
Annealing

(SA)

Improved
Cuckoo
Search
(ICS)

Ameliorated
Teaching
Learning
Based

Optimization
(ATLBO)

Modified
Artificial Bee

Colony
(MABC)

Dragonfly
Algorithm

(DA)

Dolphin
Swarm (DS)

N
um

be
r o

f p
ub

lic
at

io
ns

Fig. 2   Number of publications per each metaheuristic algorithm used in optimizing ELM networks

1546	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

The goal of using FFNN is to solve non-linear and com-
plex problems. In order to perform this task at its best, we
need to optimize the connection weights in the network using
a training algorithm. FFNN is trained using a training dataset
consists of input-output pairs (x,y) where x = [x1, x2,… , xN]
and y = [y1, y2,… , yN] . The input vector xi = (xi1, xi2,… , xin)
has the target output yi = (yi1, yi2,… , yim) , after training, the
output of FFNN is ŷi = (ŷi1, ŷi2,… , ŷim).

The performance of the trained FFNN is measured by find-
ing the distance between the predicted output ŷi and the target
output yi . The aim is to minimize this value which can be
expressed by the following mean squared error equation:

where N is the number of samples.
FNN can be used to solve regression and classification

problems using supervised learning methods. In literature,
there are many other forms of neural networks that can be
applied for different purposes [5, 38, 58]. However in this
paper, we only consider FFNN which is used by ELM (Fig. 4).

3 � Extreme learning machine

3.1 � Classical ELM

Extreme learning machine is a successful successor of train-
ing neural network using backpropagation (BP) algorithm.
The main characteristic of ELM is its ability to overcome
the drawbacks of training SLFNs using BP such as the local

(2)E =
1

N

N∑
i=1

m∑
j=1

(
yij − ŷij

)2
,

minima and time constraints [14]. ELM learning phase is
composed of two stages: (1) assigning random weights for
the connections between input layer and hidden layer and
the biases, and then produce the hidden layer output matrix
H. (2) finding the output weight using the least square algo-
rithm [49]. In fact, ELM turned the learning process into a
problem of solving linear system which gives this method
low computational complexity. To simply train SLFN, we
need to find the least squares solution 𝛽 of the linear system
H� = T .

Suppose we want to train SLFNs using N distinct samples
(xi, ti) , K neurons hidden layer and activation function g(x).
xi = [xi1, xi2,… , xin]

T is the n dimensional input vector of the
ith sample, ti = [ti1, ti2,… , til]

T is the output vector. In such
a network, we will have WK×n input weights (weights that
connect the input neurons to the hidden neurons), bK×1 the
bias of hidden layer, and the output weights �l×K.

The output function of ELM can be formed as given in
Eq. (3).

where �j is the weight vector that connects the hidden neuron
j to the output neurons(≥ 1 ). � = [�1, �2,… , �K] is the weight
vector that connects the hidden layer to the output layer with
number of neurons ≥ 1 , and h(x) = [h1(x), h2(x),… , hK(x)] is
the output of the hidden layer. (hx)for a particular applica-
tion, can be expressed as:

where G is a non-linear piecewise continuous function.
Many activation functions can be used in the hidden neurons
of the hidden layer. Among the most commonly used func-
tions are sigmoid, hardlimit and sine. (wj, bj) are the param-
eters of the jth hidden neuron and x represents an instance of
the training samples as shown in Fig. 5.

(3)fK(x) =

K∑
j=1

�jhj(x) = h(x)�,

(4)hj(x) = G(wj, bj, x),wi, x ∈ Rd, bi ∈ R,

Fig. 3   Multilayer perceptron

Fig. 4   MLP neuron

1547International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

Formula 3 can be rewritten as H� = T , where HN×K is the
output matrix of the hidden layer

where Wi = [Wi1,Wi2,… ,Win]
T is the weight vector

that connects the input neurons to the ith hidden neuron,
xi = [xi1,… , xin] is the ith sample of training set, bi is the
bias value of the ith hidden neuron, � is the output weight
matrix, and T is the target output.

ELM not only tries to reach the smallest value of the train-
ing error, but also it tries to get the smallest norm of the output
weights which is likely to increase the generalization perfor-
mance of feedforward neural network according to Bartletts
theory [8]

Figure 5 shows SLFN prepared by ELM where the weights
and biases that connect the input neurons and hidden neu-
rons are randomly initialized, and the weights between hid-
den neurons and the output layer are analytically determined
using the least square solution of the system: 𝛽 = H†T  ,
where H† is the MP generalized inverse of the matrix H.

(5)

H =

⎡
⎢⎢⎣

h(x1)

⋮

h(xN)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

h1(x1) … hK(x1))

⋮ ⋮

h1(xN) … hK(xN))

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

G(w1, b1, x1) … G(wK , bK , x1)

⋮ ⋮

G(w1, b1, xN) … G(wK , bK , xN)

⎤
⎥⎥⎦N×K

(6)minimize ∶ ‖H� − T‖2, ‖�‖.

Algorithm 1: ELM algorithm for training SLFN.
Input : D =

{(xi, ti) | xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · ·N}
//Training dataset D, which contains a set
of training instances and their associated
class labels.
g(x): activation function.
K: Number of hidden neurons

Output: Output weight β
Steps:
step 1: Initialize weights wi and biases bi randomly,
i = 1, 2, · · · ,K. wiis the vector of weights that
connect the hidden neuron i to all input neurons.
step 2: Calculate the hidden output layer matrix H
step 3: Find output weights β
β = H†T

 There are various methods to determine the MP generalized
inverse such as singular value decomposition method (SVD)
or orthogonal projection method. In the case of orthogonal
projection method which is common and efficient solution
of ELM , the value of H† is (HTH)−1HT if (HTH) is non-
singular or HT (HHT)−1 if (HHT) is non-singular. Another
way to stabilize the performance of ELM and to increase its
generalization performance is to apply the ridge regression
theory [36] by adding positive integer to the diagonal of the
matrix (HTH) or (HHT) when calculating � . Accordingly the
ELM output weights can be determined using the following
equation depending on the size of the training datasets:

The simple learning algorithm of ELM can be described as
given in Algorithm 1.

3.2 � Universal approximation and classification
capabilities of ELM

The universal approximation capability was proven for
generalized SLFN (eg. [39, 61]) taking into consideration
that the tuning of hidden neurons parameters are performed
through the training phase, and the activation functions
used in the hidden neurons are continuous and differenti-
able. Huang et al. [43] proved that SLFN with maximum
N hidden neurons and activation function such as sigmoid,
ramp or radial basis is able to learn N distinct data samples
with zero error. On the other hand, ELM uses random hidden
neurons which mean that all the parameters of the hidden
neurons (input weights and hidden biases in case of additive
hidden nodes or centers, and impact factors in case of RBF
networks) are set randomly without the need to tune them

(7)𝛽 =

⎧⎪⎨⎪⎩

HT
�

I

C
+ HHT

�−1

T , whenN ≤ K�
I

C
+ HTH

�−1

HTT whenN > K

Fig. 5   Architecture of the Single hidden layer—feedforward neural
network

1548	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

using training sets. Remarkably, Huang et al. [45] proved
that even with this random generation of parameters, ELM
is still a universal approximator. It has been shown that ELM
can use any nonlinear piecewise continuous random hidden
neurons, and at the same time preserve the universal approx-
imation property. Moreover Huang et al. [47] showed that
ELM with different types of random hidden neuron networks
is able to identify different disjoint regions (classification
capability). ELM with quite enough number of hidden neu-
rons and non-constant piecewise continuous activation func-
tion is able to approximate any complex decision boundaries
in classification.

3.3 � Multilayer ELM

As mentioned previously, classical ELM and its variants
have very attractive properties such as good generaliza-
tion performance and fast learning speed. These properties
have played a great role in increasing the significance of
ELM as a machine learning research topic. Following that,
ELM and its variants have been applied for different clas-
sification tasks, and performed well in various applications.
Nevertheless, ELM still faces some issues when used for
practical applications such as voice recognition. In many
applications, we need some feature learning before clas-
sification which introduces the need for multilayer option.
Derived from this need, Kasun et al. [55] proposed a mul-
tilayer learning algorithm based on ELM called multilayer
extreme learning machine (ML-ELM). The basic block of
this learning algorithm is the autoencoder. Autoencoder is
used as a feature extractor and can be employed in train-
ing multilayer networks. Tang et al. [95] extended ELM to
propose hierarchal ELM (H-ELM) to deal with multilayer
as depicted in Fig. 6. H-ELM tries to utilize the advantages
of ELM theories presented in [45] that were omitted in [55].
H-ELM does not only preserve the efficiency of training, but
also enhances the performance of ELM. The learning proce-
dure of H-ELM consists of two stages: (1) feature encoding
and (2) feature classification. In the first stage, H-ELM uses
N-Layer of unsupervised learning for feature extraction. The

output of this stage is a set of sparse features. Each layer of
this stage can be treated as an independent module, and once
the features of each hidden layer are extracted, they are fixed
and never been tuned. The second stage uses the output of
the last layer in unsupervised learning stage which (i.e. high
level extracted features of the input data) as an input for
the classification stage. The output is randomly perturbed
(random projections of the extracted features) and taken as
inputs to ELM to produce the output of the whole network.

3.4 � Local receptive fields based ELM

The original ELM introduces fully connected neural net-
work in which all the input neurons are connected to the hid-
den neurons. This ELM architecture has been considerably
researched and been applied to many fields and applications.
However, there are some fields such as image processing and
speech recognition where we can benefit from strong local
connections. Huang et al. [44] studied the ability of ELM to
support local receptive fields and proposed local receptive
fields based extreme learning machine (ELM-LRF). They
showed that ELM theories are naturally valid for local recep-
tive fields and it can work with any type of random hidden
neurons if they are randomly generated using continuous
probability distribution. An example of local receptive fields
that can be employed by ELM are the random convolutional
hidden neurons. ELM-LRF preserved the properties of ELM
by generating the hidden neurons randomly and determining
the output weights analytically.

However unlike ELM which focuses only on the weights
between the input and hidden layers, ELM-LRF introduces
randomness in two parts: the first is the random connec-
tions (the density of connections between input neurons
and hidden neurons that is determined by different types
of application probability distributions). The second is the
weights between input neurons and hidden neurons that
are generated randomly [42]. In local connections we can
observe dense connections around some input neurons and
sparse elsewhere. As mentioned above the fully connected
ELM is extensively studied while ELM that employees local

Fig. 6   Framework of H-ELM

1549International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

connections is very promising research area and need more
investigations.

4 � Metaheuristics

The metaheuristics term is widely used to refer to a class
of stochastic search algorithms that incorporate randomiza-
tion and local search [103]. The main goal of metaheuristic
algorithms is to find the optimal solution of hard optimi-
zation problems in a reasonable time. Theoretically, if we
have unlimited time and all regions of the search space are
accessible, then we will be able to find the optimality [103].
In hard optimization problems we are actually looking for a
quality solution in a reasonable time taking into considera-
tion that the optimal solution may not be obtained [10].

As previously mentioned, metaheuristic algorithms com-
bine randomness and local search together. Dealing with
large search space when solving an optimization problems
makes it impossible to find every posiible solution. There-
fore adding some degree of randomness is necessary and
very helpful for exploring different regions and for increas-
ing the diversity of the solutions, thus finding an optimal or
near-optimal solution in an acceptable running time [103].

Metaheuristic algorithms must take into consideration
two processes to be able to give an acceptable results, the
first is the exploration (diversification) process, and the other
one is the exploitation (intensification) process. The role of
exploration is to explore the regions in the search space,
looking for optimal solutions. It can be helpful in generating
diverse solutions and is also useful in avoiding falling into
local optima. On the other hand, exploitation is essential
for concentrating the search on the promising area that pos-
sesses the good solutions.

Any metaheuristic algorithm must show a good balance
between these two components in order to achieve a good
performance. The main differences between metaheuristic
algorithms are recognized by the the way that they com-
bine exploration and exploitation [12]. Metaheuristic algo-
rithms are good for complex, nonlinear and non-differential
problems but usually they are suitable for a specific class of
problems. This is actually confirmed by No the Free Lunch
(NFL) [35, 100] theorem which states that if algorithm A
performs better than algorithm B in a specific class of prob-
lems it will face a degradation in the performance in other
classes of problems where B may perform better.

In the literature, metaheuristic algorithms are classified
in many ways. One of the classifications that is widely
used in the literature is to classify them into trajectory-
based metaheuristics and population-based metaheuris-
tics [12]. Trajectory-based algorithms use single solu-
tion and evolve to reach some satisfactory solution. They
tend to focus on the exploitation process. In contrast,

population-based algorithms start with a population of
solutions and they tend to perform more exploration. In
addition to these, another promising class of metaheuristic
algorithms is memetic algorithms, where they combine
trajectory and population based techniques together. Fig-
ure 7 shows the classification of metaheuristic algorithms
with some examples.

4.1 � Trajectory‑based metaheuristics

In this section, a trajectory-based metaheuristics, which
also called a single-solution metaheuristics are going to
be described. This type of algorithms starts with a sin-
gle solution and applies some heuristics that are inspired
by nature or adapted from some phenomena. The process
keeps improving the solution until a satisfactory solution is
obtained [75]. Examples of trajectory algorithms are simu-
lated annealing (SA) [57], tabu search (TS) [29], greedy
randomized adaptive search procedure (GRASP) [27], vari-
able neighborhood search (VNS) [70], guided local search
(GLS) [96] and iterated local search (ILS) [91]. SA and TS
are among the most commonly used and applied trajectory
algorithms in the literature.

SA is inspired by the physical process of annealing, in
which, the material temperature is raised and then cooling
is done slowly until the material reaches low energy state.
The algorithm starts with initial solution and initial value of
parameter T. At each iteration, a new solution s′ is selected
randomly from the neighborhood of s. The acceptance of the
new solution is determined according to the objective func-
tion for s and s′ , and the current value of T. SA uses Monte
Carlo method to determine the acceptance probability of
the new solution.

Unlike SA which does not learn from the past and does
not use memory, TS explicitly uses memory by a mechanism
inspired by human memory to manage local search. The
idea of TS is to memorize recently visited areas of search
space and prevent returning to them, which is referred to
as cycling. TS maintains a tabu list that retains the recent
solutions or some attributes of them. If the list is short, the
search will exploit the area. On the contrary, if the list is
long, it forces the search to explore more areas in the search
space. These algorithms are called local search algorithms
because they start with a current solution and then they try
to modify it by changing some of its components.

4.2 � Population‑based metaheuristics

Population-based metaheuristics start with a collection of
solutions rather than a single solution as in the case of trajec-
tory metaheuristics. These algorithms are inspired by evo-
lution theory, animal behavior in nature, biology, or other

1550	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

natural phenomena. Population-based algorithms show more
exploration abilities when compared to trajectory-based.
They can be classified into two popular categories: evolu-
tionary algorithms and Swarm intelligence algorithms.

4.2.1 � Evolutionary algorithms

Evolutionary algorithms search the complex search space
for the best solution using a methodology derived from the
nature such as mutation, selection and reproduction. Exam-
ples of evolutionary algorithms are genetic algorithm (GA)
[37], evolution strategy (ES) [88], Differential evolution
(DE) [90] and genetic programming (GP) [59]. The basic
idea behind all existing variants of evolutionary algorithms
is almost similar. They all generate a set of solutions to form
a population, then they calculate the fitness of individuals
and apply a number of reproduction operators while keeping
the best individual.

In evolutionary algorithms, a set of candidate solutions at
a given iteration is called a generation. The solutions are also
called individuals and their quality as a solution is calculated
using a predefined fitness function. In each generation, solu-
tions with the best fitness values have higher probability to
be selected for reproduction to form the next generation.
Evolutionary algorithms usually apply a set of operators on
the individuals to reproduce new generations.

A typical example of evolutionary algorithms is GA
which was first proposed by John Holland in 1975. Since
then, it has been used in many applications to find the

optimal or near-optimal solutions [67]. Natural selection
from biological evolution is the base of genetic algorithm.

4.2.2 � Swarm intelligence

Swarm intelligence (SI) algorithms mimic the social behav-
ior of swarms or flocks (animals, insects, fish, ...). The most
popular example of this category is particle swarm optimiza-
tion (PSO) [22]. Some of other widely used SI algorithms
are Ant colony optimization (ACO) [21], bacterial foraging
optimization (BFO) [79], fish swarm algorithm (FSA) [64]
and artificial bee colony (ABC) [53]. The main idea of SI
algorithms is to start with a swarm (a set of solutions that
are randomly generated) and then modify these solutions
depending on a number of heuristics inspired by the behav-
ior of swarms in nature.

PSO [22] is inspired by the search techniques that are
used by flocks of birds to discover unknown places. It uses
a population (swarm) of solutions (particles) that are mod-
ified during the iterations. PSO has gained a huge popu-
larity because of its simplicity and efficiency [2]. Each
particle in PSO represents a solution. Basically, the search
process in PSO depends on two main factors: each parti-
cle retains its best experience which is called (pbest) and
the best among the whole swarm which is called (gbest)
[87]. The particles have position and velocity in the search
space where they will be changed using a predefined equa-
tions in order to find the global optimum.

ACO is another well-regarded metaheuristic algorithm
[21]. It simulates the way that ants follow to find the path

Fig. 7   Classification of metaheuristic algorithms with examples

1551International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

between the colony and the food. Ants in nature use phero-
mone as a chemical communication medium between each
other to find the shortest path to the source of food.

4.3 � Memetic algorithms

Memetic algorithm (MA) is a class of metaheuristic algo-
rithms that combines population-based with trajectory-
based metaheuristic algorithms in order to incorporate
global optimization with local search techniques [72].
Evolutionary algorithms such as GA and DE perform well
on the side of exploration but they are poor when exploit-
ing the neighborhood. On the other hand, trajectory-based
algorithms such as SA and TS search exploit the neighbor-
hood of the solution very well but they may get trapped in
a local optima. MA is a promising and growing category
of metaheuristics that try to solve these problems by com-
bining global optimization techniques with local search
methods [34, 60].

5 � Metaheuristic formulation of the ELM
components

The performance of SLFNs is highly affected by two main
factors: the structure of the network and the learning algo-
rithm. One of the most interesting properties about FFNN
setup is that it can be seen as an optimization problem [105].
The goal is to find the best model that establishes the best
predictive relationship between the data and the output. In
this section, we discuss the models presented in the literature
to optimize the FFNN regarding specific learning algorithm
which is ELM.

ELM gains its popularity as a learning algorithm for
SLFN due to its good generalization and fast learning char-
acteristics, especially with large and complex datasets. The
number of neurons in the hidden layer, the initial values
of weights between layers, biases connected to the hidden
neurons and activation function, all form a high influence
on the performance of the ELM [69]. Metaheuristics were
applied in the literature to optimize the different components
of the network such as the structure, input weights, and the
activation functions.

In general, before applying any metaheuristic algorithm
for optimizing a given problem, there are two crucial design
issues that are very important to address:

•	 The design of the individual (also known as chromosome
or particle in GA and PSO, respectively) which represents
the solution of the given problem.

•	 The selection of the fitness function that is going to be used
to evaluate the quality of the generated solutions by the
algorithm.

Similarly, utilizing metaheuristics for optimizing ELM net-
works have to address the two aforementioned points. The
design of the solution in the metaheuristic algorithm depends
on the components of the ELM network that are intended to
be optimized. For instance, we can optimize only the weights
and biases of the network and keep its structure fixed, or we
can simultaneously optimize different components such as the
weights and biases, and the number of neurons.

After conducting a thorough review of what has been done
in the literature, we have identified three main approaches for
optimizing ELM networks based on metaheuristic algorithms.
The main stream and the most studied approach is to utilize a
metaheuristic algorithm for optimizing only the weights and
biases which represent the links that connect the input and the
hidden layers neurons. The second approach which gained less
interest in the literature is the simultaneous optimization of the
weights and biases in addition to the structure of the network
(i.e. number of neurons). The third approach is concerned with
optimizing the values that are produced by the hidden neurons.
We have noticed that the latter approach is so far the least
investigated among the other approaches.

After designing the individual encoding of the ELM
components that were pre-specified for optimization, any
metaheuristic can be utilized to optimize these components.
In the case of trajectory-based metaheuristics the algorithm
starts with one individual, while in the case of population-
based metaheuristics it starts with a set of individuals that
represents the first generation. In both cases, the quality of the
individual must be evaluated using a predefined fitness func-
tion. We noticed that the most popular fitness function used in
the reviewed papers is the root mean squared error (RMSE)
which can be measured as given in Eq. (8):

In the following three subsections, we thoroughly review the
main three approaches proposed in the literature for optimiz-
ing ELM networks using metaheuristic algorithms.

5.1 � Optimizing input weights and biases

Computing output weights in classical ELM based on ran-
dom input weights and hidden biases could lead to a non-
optimal performance and could result in ill-condition [33,
69, 74]. Moreover, random inputs weights and hidden biases
could lead to overfitting because the ELM will learn the
training data too well [89].

(8)
RMSE =

����∑N

j=1

���
∑K

i=1
�ig(wi.xj + bi) − ti

���
m × N

.

1552	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

Realizing these drawbacks, much previous research have
proposed the combination of metaheuristic algorithms
with ELM to improve the selection of the input weights
that are used to produce the output matrix. Instead of start-
ing with totally random input weights and hidden biases, a
metaheuristic algorithm is used to help in conditioning the
weights and biases of ELM and to search for a better com-
bination of them, and consequently to give a better solution.

Different types of metaheuristic algorithms were pro-
posed in the literature for optimizing the input weights and
hidden biases in ELM networks. The most studied approach
is the random initialization of a population of solutions
where each of which represents a possible values of input
weights and hidden biases. We have identified that the gen-
eral encoding scheme of the individual used in most of
works that follow this approach can be depicted as shown
in Fig. 8. In this scheme, the individual contains n elements
depending on the number of input neurons and number of
hidden neurons as given in Eq. (9):

where Z is the number of features and K is the number of
hidden neurons.

In Fig. 9 we draw a flowchart for the general model that
deploys any metaheuristic algorithm for optimizing the input
weights and biases of ELM. The first step is to generate the
initial population of random individuals. The next step is to
calculate the fitness value for each individual. Usually, the
fitness value is the RMSE of the resultant ELM model that
starts with the input weights and biases represented by the
individual. Then a new generation is constructed by apply-
ing the metaheuristic operators on the current generation.
The process continues until the termination condition is met.

Following this approach, many of the proposed algo-
rithms aimed at optimizing the input weights and hidden
biases in order to improve the performance of ELM and
minimize the number of neurons in the hidden layer.

In the early beginning of ELM, the problem of rand-
omized weights was identified, and many researchers worked
on this problem. One of the earliest work in this approach
was proposed by Zhu et al. [80] where the DE algorithm
is used to optimize the input weights. Their evolutionary

(9)n = Z × K + K,

ELM (E-ELM) showed a good generalization performance
with more compact networks when experimented on differ-
ent classification tasks.

In fact, the work of Zhu et al. [80] paved an important
research line which got the attention of many researchers.
For example, Huynh and Won [52] proposed a modified ver-
sion of the E-ELM algorithm of their predecessors in [80].
Their evolutionary least square ELM (ELS-ELM) specifies
the input weights and the hidden biases using DE, except

Fig. 8   Individual

Fig. 9   Combining ELM with metaheuristic algorithm

1553International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

that instead of starting with random individuals in the first
generation, they used least square scheme to initialize the
first generation.

Another work based on the work of Zhu et al. [80] was
also proposed by Sánchez-Monedero et al. [85]. They
slightly modified the E-ELM model by replacing the typi-
cal RMSE based fitness function with a new fitness func-
tion that combines the accuracy rate with the sensitivity. For
verifying the proposed model, the authors conducted their
experiments based on 8 binary and multi-class classification
datasets and compared their approach with E-ELM and other
multi-objective MLP network. The results showed that the
proposed model improved the sensitivity rates while main-
taining the accuracy for imbalanced datasets.

Many work in this area which investigate the application
of the well-regarded PSO algorithm or one of its variations
for the task of optimizing hidden neurons and biases in ELM
have been proposed. For example, Xu and Shu [104] pro-
posed PSO for this task with an attempt to minimize the
number of parameters that are manually set in the model.
However, the performance of their proposed PSO-ELM
model was tested based on one dataset only and compared
to the classical BP network and other PSO-based classifier.
Although PSO-ELM model showed competitive results, it
was slower than the BP-based network.

A variant of PSO was also proposed by Han et al. [33]
to condition the input and biases weights in ELM. In their
approach, they introduced an improved particle swarm opti-
mization (IPSO-ELM) to select the weights of input and
biases attached to Moore–Penrose to determine the output
weights. Interestingly, the selection of input and biases
weights were optimized based on the RMSE calculated over
a validation dataset unlike most of the models that calculate
their fitness over the training set. Another interesting feature
in their model is the incorporation of the norm of the output
weights in the optimization process. Compared to the classi-
cal ELM and other evolutionary ELM networks, their model
obtained lower error values with more compact networks
over three different datasets.

Another variant of PSO was proposed by Pacifico and
Ludermir [77] to optimize the input weights and biases in
ELM. Their approach which was called CPSOS-ELM and
based on a modified version of PSO uses the local best
neighborhood of PSO population through a mechanism
called population stereotyping. Compared to ELM, PSO-
ELM, LM and PSO-LM over four classification datasets,
their proposed model achieved best results in three datasets.

Another swarm-based algorithm called bacterial forag-
ing (BF) algorithm [79] was applied by Cho et al. [15] for
optimizing ELM. BF is a swarm-based algorithm that mim-
ics the process which bacteria follow while searching for
food. The authors used BF to search for the optimal solution
that represents the best input weights and hidden biases for

ELM network. Their proposed algorithm was applied on two
cases: the first is a regression problem which is the Califor-
nia Housing dataset, and the second is a medical classifica-
tion task. Their experiments showed that the performance
of the BF-ELM networks outperformed the classical ELM,
SVM and BP network in both cases.

A hybrid approach that combines ELM with Group
Search Optimizer (GSO) was proposed in [89]. In GSO-
ELM, the goal was to find the best weights and biases with
a reduced number of hidden neurons to achieve a good per-
formance. The authors applied four different variations of
GSO. The fitness function that was used in this algorithm
was RMSE. For evaluation, the method was tested using
six different classification datasets obtained from the UCI
repository. The model was implemented in four variations
and all were compared to the original ELM, PSO-ELM and
LM. All the models based on GSO performed better than
ELM, PSO-ELM and LM.

Following the same classical approach, improved cuckoo
search (ICS) was used to optimize the input weights and the
hidden biases of ELM in [71]. Similar to the original ELM,
the output weights are determined using MP generalized
inverse. Their proposed model which was called ICSELM
was tested on four medical classification datasets obtained
from UCI. Unlike most of the previous works, they used a
wider range of different evaluation measures to assess the
performance of the different models. Such measurements
include the accuracy, sensitivity, specificity, G-mean,
F-score, norm of the output weights and the Area Under
ROC Curve (AUC). Their experiments showed that the pro-
posed ICSELM outperformed other ELM models.

Memetic algorithms were also utilized for optimizing
the same parameters in ELM. Zhang et al. [111] proposed
a model based on a memetic algorithm to improve the
classification accuracy. Their M-ELM model combined
population-based optimization methods with SA as a local
heuristic search method. In contrast to most of the previ-
ous works, they used classification accuracy as a fitness
function. Another noticeable point in their work is that
they experimented the M-ELM model on a large num-
ber of benchmark datasets (i.e. 22 classification datasets).
Although M-ELM showed improvement in classification
accuracy especially in datasets with large number of fea-
tures, it consumes more execution time compared to other
evolutionary-based ELM models. Recently, a model based
on dolphin swarm algorithm is proposed to optimize the
input weights and hidden biases of ELM [97]. Each indi-
vidual is called dolphin and is evaluated using RMSE.
They compared their model to the classical ELM and three
state-of-the-art models that optimize this component of
ELM. They conducted their experiments based on five
regression datasets and seven classification datasets. The
proposed model showed better generalization performance

1554	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

than the start-of-the-art methods but failed to reduce the
number of hidden neurons compared to the other methods,
and it was slower than the standard ELM.

Other examples of this classical approach with RMSE
as fitness function are DE-Coral Reef-ELM in [107], drag-
onfly algorithm (DA) with ELM in [84] and flower pollina-
tion algorithm ELM in [76].

In Table 1, we summarize the harvested work that has
been done to optimize the weights and biases of ELM
using metaheuristic algorithms. We have noticed that the
two mostly used metaheuristic algorithms are DE and
PSO, and their variants. Also, we can see that metaheuris-
tic-based ELMs are used for both classification and regres-
sion supervised learning problems with more focus on
classification.

For validation, some authors tested their proposed model
on a single dataset that represents a specific domain [104,
105]. Other authors benchmarked their model based on a
small number of datasets of a specific type of machine learn-
ing task such as classification, regression or both [14, 15].
While other studies utilized a higher number of datasets like
in [69, 111] with 16 and 22 datasets, respectively.

In this section, we have reviewed the techniques that
used different metaheuristic algorithms to optimize weights
and biases in ELM. In the next section, we will review the

approaches that added one more component to the optimiza-
tion process, which is the number of hidden neurons.

5.2 � Optimizing number of neurons

Like any other neural network, the number of hidden neu-
rons in ELM has a significant effect on its performance.
Moreover, random input weights and hidden biases in clas-
sical ELM make the network tend to require a higher num-
ber of hidden neurons in order to perform well [33, 69, 80,
85]. From the literature, we have identified four approaches
that addressed this problem, which were based on utilizing
metaheuristic algorithms to optimize the number of neurons
in the hidden layer.

The first approach was proposed by Suresh et al. [94] where
they developed a modified GA for the automatic selection of
hidden neurons and their corresponding input weights and
biases. Their real-coded GA (RCGA-ELM) modified updat-
ing operators to deal with variable-length individuals. In fact,
two genetic operators were used: the first selected the hidden
neurons, while the second optimized the values of the input
weights and biases. In their implementation, the individual
was encoded as a two-dimensional array. If we have n dimen-
sional input and L hidden neurons, then we will have the m

Table 1   Summary of main works in the literature that applied metaheuristics for optimizing the input weights and biases in ELM networks

Model Classification Regression Datasets Metaheuristic algorithm Fitness function

E-ELM [80] ✓ 4 datasets Differential evolution RMSE
PSO-ELM [104] ✓ 1 dataset Particle swarm optimizer RMSE
BF [15] ✓ ✓ 2 datasets Bacterial foraging 1

1+MSEtrn

ELS-ELM [52] ✓ 4 datasets Differential evolution RMSE
E-ELM-CS [85] ✓ 8 datasets Differential evolution 1

(1−�)C+�S

GSO-ELM [89] ✓ 6 datasets Group search optimizer RMSE
AFSA-ELM[17] ✓ 5 datasets Artificial fish swarm algorithm Accuracy
MAFSA-ELM[17] ✓ 5 datasets Adaptive modified artificial fish swarm algorithm Accuracy
SaE-ELM [14] ✓ ✓ 11 datasets Self-adaptive differential evolution algorithm RMSE
GA-ELM [105] 1 dataset Modified genetic algorithm 1

1+RMSE

IPSO-ELM [33] ✓ 3 datasets Particle swarm optimizer RMSE
CPSOS-ELM [78] ✓ 4 datasets Particle swarm optimizer RMSE
O-ELM [69] ✓ ✓ 6 datasets Genetic algorithm

Differential evolution
Simulated annealing

RMSE

QPSO-ELM [106] ✓ 5 datasets Quantum-behaved particle swarm optimization �

2
RMSE +

1

2
‖�‖

ICSELM [71] ✓ 4 datasets Improved cuckoo search Accuracy + norm
M-ELM [111] ✓ 22 datasets Differential evolution + simulated annealing Classification accuracy
SA-ELM [74] ✓ 8 datasets Ameliorated teaching learning based optimization

(ATLBO)
RMSE

DS-ELM [97] ✓ ✓ 13 datasets Dolphin swarm algorithm RMSE
CSO-ELM [24] ✓ 15 datasets Competitive swarm optimizer Accuracy

1555International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

individuals where each of which can be represented as given
in Eq. (10):

wj1 …wjn, bj are the weights and biases for the hidden neuron
j. Each row represents one neuron.

The second approach was proposed by Xue et al. [102].
They found that in the former approach there were many
genetic parameters that needed to be tuned artificially. There-
fore, they proposed a model called variable-length PSO
(VPSO-ELM) to optimize two components of ELM: the input
weights and the number of neurons. In order to make PSO
applicable for this problem, a modified version was proposed
to deal with individuals that have variable length; due to the
difference in the number of neurons. The way that individuals
were encoded in this model was adopted from [94].

Following a different approach, Huang and Lai [51] used
PSO with structural risk minimization to optimize only the
number of neurons. The target was to find the effective number
of hidden neurons with a good generalization performance. In
their PSO variant, the position P represented the number of
hidden neurons in ELM.

The fourth approach was proposed by Freire and Barreto in
[28]. They proposed a model called Adaptive Number of hid-
den neurons approach (ANHNA) with a goal to automatically
select the required number of neurons in addition to biases and
slopes of the activation function. The optimization process
was performed using DE and PSO. In ANHNA, the individual
(chromosome) was encoded as shown in Eq. (11) where ���⃗Ci
represents a vector of real numbers with a dimension that is
equal to 3 × Q where Q is the number of neurons:

In Eq. (11), Tij represents the jth neurons in the ith indi-
vidual. If the value of Tij ≥ 0.5 then the neuron is activated,
else the neuron is deactivated.

Table 2 lists the models that were designed to optimize
the structure of the SLFN (number of hidden neurons) used

(10)bi =

⎡⎢⎢⎢⎣

w11 w12 … w1n b1
w21 w22 … w2n b2

⋮

wm1 wm2 … wmn bL

⎤⎥⎥⎥⎦

(11)���⃗Ci =
[
Ti1,… , TiQ, ai1,… , aiQ, bi1,… , biQ

]

by ELM. In comparison with Table 1, we can see that the
amount of work that has been done so far to optimize the
number of neurons is much less than those for optimizing
the input weights and hidden biases. Moreover, only DE and
PSO have been used for optimizing this component. The
maximum number of datasets tested is eight, and we can
always see that only one type of problems, either classifica-
tion or regression, is addressed in the articles.

5.3 � Optimizing activation functions

One of the fundamental decisions when constructing neu-
ral networks is the selection of the activation function. The
selection of activation function is problem-dependent and
the performance of FFNN can highly be affected by this
selection [62, 75].

Activation functions are used to transfer input signals into
output signals. The main role of these functions is to make
neural networks able to solve nonlinear problems [54]. Simi-
larly, the performance of ELM networks can be improved by
a proper selection of the activation function used by neurons
(also known as node optimization). This optimization can be
performed by keeping the input weights and hidden biases
fixed while optimizing the activation function or by optimiz-
ing both components simultaneously. ELM supports a wide
range of activation functions [98]. In the original ELM, the
activation functions listed in Table 3 were implemented.

One of the main works that addressed the automatic
selection of the activation functions was presented by
Matias et al. [68]. The authors developed a model called
genetically optimized ELM (GO-ELM). In this model,
the output weights were calculated using least squares
algorithm with Tikhonovs regularization. GA was used to
optimize different components of ELM simultaneously.
These components are the input weights and biases, the
hidden layer components represented by the number of
neurons, and the activation function used in each neuron.
The activation function of each neuron in this model can
be zero, sigmoid function, or linear function. Their work
was tested using five benchmark datasets. The results
showed equal or better results when compared to IGA-
SLFN, SaE-ELM, LM-SLFN, and ELM in four datasets.
Later on, the same authors proposed a learning framework

Table 2   Summary of main
works in the literature that
applied metaheuristics for
optimizing number of neurons
in ELM networks

Model Classification Regression Datasets Metaheuristic algorithm

RCGA-ELM [94] ✓ 3 datasets Genetic algorithm
SRM-ELM [51] ✓ 6 datasets Particle swarm optimizer
ANHNA[28] ✓ 4 datasets Particle swarm optimizer

Differential evolution
VPSO-ELM [102] ✓ 8 datasets Variable-length particle

swarm optimizer

1556	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

for SLFN called optimized ELM (O-ELM) [69]. In this
framework, the structure and parameters are optimized
using three different optimization methods: GA, DE
(population-based) and SA (trajectory-based). Experi-
ments were conducted based on 16 benchmark datasets.
The GA version of O-ELM performed better than IGA-
SLFN, SaE-ELM, LM-SLFN, and ELM in 10 out of the
16 datasets.

A different approach was implemented by Li et al. [62].
The authors optimized a special type of ELM called tun-
able activation function ELM (TAF-ELM). In this model,
a weighted combination of activation functions was
embedded in each hidden neuron. Then, DE was used to
optimize these weights in addition to the input weights,
hidden biases and activation functions. TAF-ELM algo-
rithm showed better performance than TAF-BP and TAF-
MFNN algorithms when applied to four different datasets
representing different problems such as classification and
approximation.

6 � Applications of metaheuristic based ELM

Metaheuristic-based ELM models have been used to solve a
wide range of challenging and complex real world problems
in different areas. In the following subsections, we highlight
the main applications of these models, while in Table 4, we
list most of the applications found in the literature.

6.1 � Medical applications

Many models of metaheuristic-based ELMs have been pro-
posed and applied for medical applications. Cho et al. [15]
proposed Evolutionary ELM for optimizing ELM using
BF. The model was applied on a real medical classification
dataset called “Pima Indians Diabetes Database”. Mohapatra
et al. [71] proposed an improved cuckoo search for optimiz-
ing ELM and applied their model on four medical classi-
fication data: breast cancer, diabetes, bupa, hepatitis. The
authors used different important evaluation measures that
are commonly used in the medical field. The results showed
that the proposed model could be promising for medical
applications.

Another metaheuristic-based ELM model for medical
applications was recently proposed by Eshaty et al. [24].
The model used a hybrid methodology that utilized Com-
petitive Swarm Optimizer to optimize ELM (CSO-ELM).
The performance of this model was tested using 15 medical
classification problems and also tested for function approxi-
mation of SinC function. The model used ELM and Regular-
ized ELM. CSO-ELM not only increased the generalization
performance of ELM compared to PSO and DE, but also

Table 3   Activation functions

Name Function

Sigmoid f (x) =
1

1+e−x

Sine f (x) = sin x

Hardlim f (x) = 1 if n ≥ 0, 0 otherwise

Triangular basis f (x) = 1 − abs(x) if − 1 ≤ x ≤ 1, 0 otherwise

Radial basis f (x) = e−x
2

Table 4   Summary of
main metaheuristic based
ELMs designed for specific
applications

Model Year Application Metaheuristic algorithm

PSO-ELM [104] 2006 Production prediction PSO
BF-ELM [15] 2007 Medical data classification BF
RCGA-ELM [94] 2009 Visual quality of JPEG images GA
E-ELMcv,IE-ELMcv [66] 2013 Image analysis DE
ELM-IPSO [6] 2013 Medical-brain tumor tissue characterization PSO
GO-ELM [68] 2013 Temperature of cement kiln plant PSO
Modified GA-ELM [105] 2013 Power system economic dispatch GA
QPSO-ELM [92] 2014 Handwriting numeral recognition PSO
ICS-ELM [71] 2015 Medical classification Improved CS
ELM-MABC [63] 2015 Short-term load forecasting Modified ABC
BDE-ELM,SaDE-

ELM,TDE-ELM [65]
2016 Prediction of effluent from WWTP DE

GA-ELM [50] 2016 SO2 emissions prediction GA
SaE-ELM [73] 2016 Soil temperature prediction DE
Self-adjusting ELM [74] 2016 Pulverized coal furnace thermal efficiency ATLBO
SaELM [86] 2017 Water network management DE
CSO-ELM [24] 2018 Medical classification CSO

1557International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

significantly decreased the training time of Evolutionary
ELM.

A specific medical application for brain tumor tissue char-
acterization was investigated by Arunadevi and Deepa [6].
The authors proposed an improved PSO to optimize ELM
(ELM-IPSO) for classifying and segmenting of brain tissue
and tumor from 3D MRI tumor images. Interestingly, ELM-
IPSO scored 98.25% accuracy when applied to SPL Harvard
benchmark dataset which contains contrast and non-contrast
3D MR brain images. Moreover, the model was tested using
real-time datasets.

6.2 � Image analysis and applications

In image applications, Suresh and Babu [94] introduced
RCGA-ELM to estimate the visual quality of JPEG images.
The results of their experiments showed that the model
improved the assessment process of image quality of ELM
classifier. For image analysis, Liu and Wang [66] proposed
an approach based on E-ELM for face images classifica-
tion. The authors improved the classification accuracy of
E-ELM by introducing two variants of E-ELM: cross-vali-
dation-based evolutionary ELM (E-ELMcv) and cross-val-
idation-based improved evolutionary ELM (IE-ELMcv). In
both cases, the authors introduced cross validation to avoid
using extra validation set for training. They selected clas-
sification accuracy as their fitness function. Experiments
were applied on four datasets of face images. Experimental
results showed that the proposed algorithms outperformed
other tested algorithms in terms of accuracy, and they were
effective in image analysis.

6.3 � Environmental applications

Different variants of metaheuristic-based ELM models were
deployed and investigated in remarkable environmental
applications. For example, it is well known that SO2 is a
harmful pollutant for the environment and it is very hard and
challenging to control the percent of SO2 in the air due to
the complex and uncontrollable emission processes in many
countries. Huang et al. [50] proposed a GA-based ELM
model for predicting SO2 concentration in the exhausted
emissions into air as a result of production process of chemi-
cal fertilizers. Their GA-ELM model showed relatively accu-
rate and efficient prediction results.

Another environmental application was proposed by
Nahvi et al. [73] to predict the soil temperature in different
depths. Soil temperature is important in many fields such as
hydrology, agriculture and atmospheric researches. A self-
adaptive evolutionary ELM (SaE-ELM) was introduced to
manage this application. SaE-ELM used DE to optimize
ELM input weights and hidden biases. This approach was

compared to ELM and validated against GP and ANN. Their
SaE-ELM showed higher generalization performance.

6.4 � Power, control, and other engineering
applications

In power engineering, the application of metaheuristic-based
ELM models was investigated in short-term load forecasting
(STLF). Li et al. [63] developed a modified artificial bee col-
ony (MABC) to tune the parameters of ELM to forecast the
load power. Accurate forecasting results are important in this
application to improve the electrical power system and to
minimize operating costs. ELM-MABC was tested using two
datasets: ISO New England data and North American elec-
tric utility data. Another power application that can greatly
benefit from optimization is the power system economic
dispatch problem. The idea is to optimize set of parameters
to minimize the generation costs. Yang et al. [105] used a
modified GA to optimize ELM, and applied it for power
system economic dispatch.

In control engineering, Niu et al. [74] proposed a self-
adjusting ELM for pulverized coal furnace thermal effi-
ciency. The problem was both complex and non-linear
which makes it an appropriate candidate to be solved using
metaheuristic-based ELM. Another application in control
engineering was investigated by Lin et al. [65] for predict-
ing the effluent from wastewater treatment plant (WWTP).
The authors proposed three variations of evolutionary ELM
algorithms for the problem: basic differential evolution ELM
(BDE-ELM), self-adaptive DE (SaDE-ELM), and another
improved variation of DE with local search (TDE-ELM).
TDE-ELM performed better than all other algorithms, and
the experiments showed that the three applied evolutionary
ELMs outperformed the traditional ELM.

In cement kiln plants, Matias et al. [68] proposed a
metaheuristic based ELM to predict the temperature in the
burning zone. The model utilized GA to tune the structure
of ELM in order to use it for estimating the temperature
in this application. The results showed that the developed
model was able to replace the physical pyrometer sensor in
estimating the temperature of the burning zone.

In maintenance and rehabilitation, Sattar et al. [86] Pro-
posed a prediction model for ongoing maintenance/rehabili-
tation of the water network. The model estimates the next
potential pipe failure within the network. In their work, the
authors compared ELM with three of its variants. One of
these variants was self-adaptive ELM (SaELM). SaELM
optimizes ELM using DE. The results showed that ELM
outperformed its three other variants. The work also showed
that ELM based models performed better than other models
like ANN, support vector machine (SVM), and non-linear
regression (NNR).

1558	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

7 � Conclusions and possible future
directions

In this paper, we provided the first literature review on the
studies that addressed optimizing ELM networks using
metaheuristic algorithms. Two main types of works in this
domain were reviewed: the first focused on the works that
targeted the improvement of ELM by optimizing its differ-
ent components using metaheuristic algorithms, while the
second focused on the applications of metaheuristic-based
ELM networks in real-life problems.

Based on the review presented in this work, we can see
that metaheuristic algorithms have been intensively inves-
tigated over the last decade for optimizing the components
of ELM networks. Despite the popularity of metaheuristic-
based ELMs and their recent advances, there are still sev-
eral areas that need further investigation:

•	 The state-of-the-art applications of metaheuristic-based
ELMs in real life specific problems are still at early
stage. It would be very interesting for the researchers
and practitioners to see how metaheuristic-based ELM
networks would perform in a wide range of common
and popular applications which are not investigated
enough by this approach, such as patter recognition,
health and medical applications, environmental mod-
eling, and engineering problems.

•	 To the best of our knowledge, there is still no work that
have investigated the performance of this type of models
at large-scale datasets with very high dimensionality. In
the era of big data, such studies could be extremely useful
for some domains like bioinformatics, image processing
and other real-time engineering problems.

•	 With the rapid increase in the amount of training data
in massive applications, recently, there have been inter-
esting studies conducted on developing various ELM
version to overcome the memory problems and costly
large matrix operations [9, 108–110]. On the other
side, the efficiency of metaheuristic algorithms have
been also studied at the large scales for same reasons
[3, 4, 101]. However, the integration between the two
research lines still at a very early stage and have the
potential for promising performance outcome.

•	 As it was shown in Sect. 5, the works that addressed
optimizing the structure and activation functions are
much less than those addressing optimizing the input
weights and biases. Further investigation can be made
at the level of those two components. It would also
be very interesting to see the applications of these
approaches in real-life problems.

•	 Based on our survey it is noticed that the most com-
monly implemented fitness functions in ELM are the

MSE and accuracy rates. However, to the best of our
knowledge, there is no study that compares the perfor-
mance of ELM based on these different fitness func-
tions. We believe that such a study would be very ben-
eficial and interesting for the audience in this field.

Compliance with ethical standards 

Conflict of interest  The authors declare that there is no conflict of in-
terest regarding the publication of this paper.

References

	 1.	 Alade OA , Selamat A, Sallehuddin R (2017) A review of
advances in extreme learning machine techniques and its appli-
cations. In: International conference of reliable information and
communication technology. Springer, pp 885–895

	 2.	 Alexandridis A, Famelis IT, Tsitouras C, Simos T, Tsitouras C
(2016) Particle swarm optimization for complex nonlinear opti-
mization problems. In: AIP conference proceedings, vol 1738.
AIP Publishing, pp 480120

	 3.	 Aljarah I, Ludwig SA (2012) Parallel particle swarm optimi-
zation clustering algorithm based on mapreduce methodology.
In: Nature and biologically inspired computing (NaBIC), 2012
fourth world congress on. IEEE, pp 104–111

	 4.	 Aljarah I, Ludwig SA (2013) A new clustering approach based
on glowworm swarm optimization. In: Evolutionary computation
(CEC), 2013 IEEE congress on. IEEE, pp 2642–2649

	 5.	 Almeida LB (1989) Backpropagation in perceptrons with feed-
back. In: Neural computers. Springer, pp199–208

	 6.	 Arunadevi B, Deepa SN (2013) Brain tumor tissue categori-
zation in 3D magnetic resonance images using improved PSO
for extreme learning machine. Progress Electromagn Res B
49:31–54

	 7.	 Azzini A, Tettamanzi AGB (2011) Evolutionary anns: a state of
the art survey. Intell Artif 5(1):19–35

	 8.	 Bartlett PL (1998) The sample complexity of pattern classi-
fication with neural networks: the size of the weights is more
important than the size of the network. IEEE Trans Inf Theory
44(2):525–536

	 9.	 Bi X, Zhao X, Wang G, Zhang P, Wang C (2015) Distributed
extreme learning machine with kernels based on mapreduce.
Neurocomputing 149:456–463

	 10.	 Leonora B, Marco D, Gambardella LM, Gutjahr WJ (2009) A
survey on metaheuristics for stochastic combinatorial optimiza-
tion. Nat Comput 8(2):239–287

	 11.	 Blum C, Roli A (2003) Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Computi Surv
35(3):268–308

	 12.	 BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimiza-
tion metaheuristics. Inf Sci 237:82–117

	 13.	 Cao J, Lin Z (2015) Extreme learning machines on high dimen-
sional and large data applications: a survey. Math Probl Eng

	 14.	 Cao J, Lin Z, Huang G-B (2012) Self-adaptive evolutionary
extreme learning machine. Neural Process Lett 36(3):285–305

	 15.	 Cho J-H, Lee D-J, Chun M-G (2007) Parameter optimization of
extreme learning machine using bacterial foraging algorithm. J
Korean Ins Intell Syst 17(6):807–812

1559International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

	 16.	 Cybenko G (1989) Approximation by superpositions of a sigmoi-
dal function. Math Control Signals Syst 2(4):303–314

	 17.	 de Oliveira JFL, Ludermir TB (2012) An evolutionary extreme
learning machine based on fuzzy fish swarms. In: Proceedings
on the international conference on artificial intelligence (ICAI),
p 1. The Steering Committee of The World Congress in Com-
puter Science, Computer Engineering and Applied Computing
(WorldComp)

	 18.	 Ding S, Chunyang S, Junzhao Y (2011) An optimizing bp neural
network algorithm based on genetic algorithm. Artif Intell Rev
36(2):153–162

	 19.	 Ding S, Xinzheng X, Nie R (2014) Extreme learning machine
and its applications. Neural Comput Appl 25(3–4):549–556

	 20.	 Ding S, Zhao H, Zhang Y, Xinzheng X, Nie R (2015) Extreme
learning machine: algorithm, theory and applications. Artif Intell
Rev 44(1):103–115

	 21.	 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimi-
zation by a colony of cooperating agents. IEEE Trans Syst Man
Cybern Part B Cybern 26(1):29–41

	 22.	 Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Micro machine and human science, 1995.
MHS’95., Proceedings of the sixth international symposium on.
IEEE, pp 39–43

	 23.	 Ertuğrul ÖF, Kaya Y (2014) A detailed analysis on extreme
learning machine and novel approaches based on elm. Am J
Comput Sci Eng 1(5):43–50

	 24.	 Eshtay M, Faris H, Obeid N (2018) Improving extreme learning
machine by competitive swarm optimization and its application
for medical diagnosis problems. Expert Syst Appl 104:134

	 25.	 Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural
networks using multi-verse optimizer for binary classification
problems. App Intell 45(2):322–332

	 26.	 Faris H, Aljarah I, Al-Madi N, Mirjalili S (2016) Optimizing the
Learning Process of Feedforward Neural Networks Using Light-
ning Search Algorithm. Int J Artif Intell Tools 25(06):1650033

	 27.	 Feo TA, Resende MGC (1995) Greedy randomized adaptive
search procedures. J Glob Optim 6(2):109–133

	 28.	 Freire A, Barreto G (2014) A new model selection approach for
the elm network using metaheuristic optimization. In: European
symposium on artificial neural networks, computational intel-
ligence and machine learning (ESANN)

	 29.	 Glover F (1989) Tabu search part I. ORSA J Comput
1(3):190–206

	 30.	 Gori M, Tesi A (1992) On the problem of local minima in back-
propagation. IEEE Trans Pattern Anal Mach Intell 1:76–86

	 31.	 Gupta JND, Sexton RS (1999) Comparing backpropagation
with a genetic algorithm for neural network training. Omega
27(6):679–684

	 32.	 Hagan MT, Menhaj MB (1994) Training feedforward net-
works with the Marquardt algorithm. IEEE Trans Neural Netw
5(6):989–993

	 33.	 Han F, Yao H-F, Ling Q-H (2013) An improved evolutionary
extreme learning machine based on particle swarm optimization.
Neurocomputing 116:87–93

	 34.	 Hart WE, Krasnogor N, Smith JE (2004) Recent advances in
memetic algorithms, volume 166. Springer, Berlin

	 35.	 Ho Y-C, Pepyne DL (2002) Simple explanation of the no-
free-lunch theorem and its implications. J Optim Theory Appl
115(3):549–570

	 36.	 Hoerl AE, Kennard RW (1970) Ridge regression: biased estima-
tion for nonorthogonal problems. Technometrics 12(1):55–67

	 37.	 Holland JH (1992) Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control,
and artificial intelligence. MIT Press, Cambridge

	 38.	 Hopfield JJ (1982) Neural networks and physical systems with
emergent collective computational abilities. Proc Nat Acad Sci
79(8):2554–2558

	 39.	 Hornik K (1991) Approximation capabilities of multilayer
feedforward networks. Neural Netw 4(2):251–257

	 40.	 Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359–366

	 41.	 Huang G, Huang G-B, Song S, You K (2015) Trends in extreme
learning machines: a review. Neural Netw 61:32–48

	 42.	 Huang G-B (2015) What are extreme learning machines? Fill-
ing the gap between frank Rosenblatts dream and John von
Neumanns puzzle. Cogn Comput 7(3):263–278

	 43.	 Huang G-B, Babri HA (1998) Upper bounds on the number
of hidden neurons in feedforward networks with arbitrary
bounded nonlinear activation functions. IEEE Trans Neural
Netw 9(1):224–229

	 44.	 Huang G-B, Bai Z, Kasun LLC, Vong CM (2015) Local recep-
tive fields based extreme learning machine. IEEE Comput
Intell Mag 10(2):18–29

	 45.	 Huang G-B, Chen L, Siew CK et al (2006) Universal approxi-
mation using incremental constructive feedforward net-
works with random hidden nodes. IEEE Trans Neural Netw
17(4):879–892

	 46.	 Guang-Bin H, Wang DH, Lan Y (2011) Extreme learning
machines: a survey. Int J Mach Learn Cybern 2(2):107–122

	 47.	 Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning
machine for regression and multiclass classification. IEEE Trans
Syst Man Cybern Part B Cybern 42(2):513–529

	 48.	 Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning
machine: a new learning scheme of feedforward neural net-
works. In: Neural networks, 2004. Proceedings of 2004 IEEE
international joint conference on, vol 2. IEEE, pp 985–990

	 49.	 Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learn-
ing machine: theory and applications. Neurocomputing
70(1):489–501

	 50.	 Huang Q, Jiang C, Huang Y (2016) The prediction method of
SO_2 concentration in sulfuric acid production process based
on GA-ELM. In: Intelligent human-machine systems and
cybernetics (IHMSC), 2016 8th international conference on,
vol 2. IEEE, pp 140–143

	 51.	 Huang Y, Lai D (2012) Hidden node optimization for extreme
learning machine. Aasri Procedia 3:375–380

	 52.	 Huynh HT, Won Y (2008) Evolutionary algorithm for training
compact single hidden layer feedforward neural networks. In:
International joint conference on neural networks (IJCNN).
IEEE, pp 3028–3033

	 53.	 Karaboga D (2005) An idea based on honey bee swarm for
numerical optimization. Technical report, Technical report-
tr06, Erciyes University, Engineering Faculty, Computer Engi-
neering Department

	 54.	 Karlik B, Olgac AV (2011) Performance analysis of various acti-
vation functions in generalized MLP architectures of neural net-
works. Int J Artif Intell Expert Syst 1(4):111–122

	 55.	 Kasun LLC, Zhou H, Huang G-B, Vong CM (2013) Represen-
tational learning with elms for big data

	 56.	 Kaya Y, Kayci L, Tekin R, Ertuğrul ÖF (2014) Evaluation
of texture features for automatic detecting butterfly species
using extreme learning machine. J Exp Theor Artif Intell
26(2):267–281

	 57.	 Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization
by simulated annealing. Science 220(4598):671–680

	 58.	 Kohonen T (1990) The self-organizing map. Proc IEEE
78(9):1464–1480

1560	 International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561

1 3

	 59.	 Koza JR (1992) Genetic programming: on the programming
of computers by means of natural selection, vol 1. MIT Press,
Cambridge

	 60.	 Krasnogor N, Smith J (2005) A tutorial for competent memetic
algorithms: model, taxonomy, and design issues. IEEE Trans
Evol Comput 9(5):474–488

	 61.	 Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer
feedforward networks with a nonpolynomial activation function
can approximate any function. Neural Netw 6(6):861–867

	 62.	 Li B, Li Y, Rong X (2013) The extreme learning machine learn-
ing algorithm with tunable activation function. Neural Comput
Appl 22(3–4):531–539

	 63.	 Li S, Wang P, Goel L (2015) Short-term load forecasting by
wavelet transform and evolutionary extreme learning machine.
Electr Power Syst Res 122:96–103

	 64.	 Li X, Shao Z, Qian J et al (2002) An optimizing method based
on autonomous animats: fish-swarm algorithm. Syst Eng Theory
Pract 22(11):32–38

	 65.	 Lin M, Zhang C, Su C (2016) Prediction of effluent from
WWTPS using differential evolutionary extreme learning
machines. In: Control conference (CCC), 2016 35th Chinese.
IEEE, pp 2034–2038

	 66.	 Liu N, Wang H (2013) Evolutionary extreme learning machine
and its application to image analysis. J Signal Proces Syst
73(1):73–81

	 67.	 Malhotra R, Singh N, Singh Y (2011) Genetic algorithms: con-
cepts, design for optimization of process controllers. Comput Inf
Sci 4(2):39

	 68.	 Matias T, Araújo R, Antunes CH, Gabriel D (2013) Genetically
optimized extreme learning machine. In: Emerging technologies
and factory automation (ETFA), 2013 IEEE 18th conference on.
IEEE, pp 1–8

	 69.	 Matias T, Souza F, Arajo R, Antunes CH (2014) Learning of a
single-hidden layer feedforward neural network using an opti-
mized extreme learning machine. Neurocomputing 129:428–436

	 70.	 Mladenović N, Hansen P (1997) Variable neighborhood search.
Comput Oper Res 24(11):1097–1100

	 71.	 Mohapatra P, Chakravarty S, Dash PK (2015) An improved
cuckoo search based extreme learning machine for medical data
classification. Swarm Evol Comput 24:25–49

	 72.	 Moscato P (1989) On evolution, search, optimization, genetic
algorithms and martial arts: towards memetic algorithms. Tech-
nical Report C3P Report 826, California Institute of Technology

	 73.	 Nahvi B, Habibi J, Mohammadi K, Shamshirband S, Razgan
OSA (2016) Using self-adaptive evolutionary algorithm to
improve the performance of an extreme learning machine for esti-
mating soil temperature. Comput Electron Agric 124:150–160

	 74.	 Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters
self-adjusting extreme learning machine. Neural Process Lett
44(3):813–830

	 75.	 Ojha VK, Abraham A, Snášel V (2017) Metaheuristic design
of feedforward neural networks: a review of two decades of
research. Eng Appl Artif Intell 60:97–116

	 76.	 Salam MA, Hegazy O, Soliman OS (2015) Fpa-elm model for
stock market prediction. Int J Adv Res Comput Sci Softw Eng
5(2):1050–1063

	 77.	 Pacifico LDS, Ludermir TB (2006) Evolutionary extreme learn-
ing machine based on particle swarm optimization and clustering
strategies. In: International joint conference on neural networks
(IJCNN). IEEE, pp 1–6

	 78.	 Pacifico LDS, Ludermir TB (2013) Evolutionary extreme learn-
ing machine based on particle swarm optimization and clustering
strategies. In: Neural networks (IJCNN), the 2013 international
joint conference on. IEEE, pp 1–6

	 79.	 Passino KM (2002) Biomimicry of bacterial foraging for distrib-
uted optimization and control. IEEE Control Syst 22(3):52–67

	 80.	 Qin-Yu Z, Qin AK, Suganthan PN, Huang G-B (2005) Evo-
lutionary extreme learning machine. Pattern recognition
38(10):1759–1763

	 81.	 Rosenblatt F (1958) The perceptron: a probabilistic model for
information storage and organization in the brain. Psychol Rev
65(6):386

	 82.	 Rumelhart DE, Hinton GE, Williams RJ (1988) Neurocomput-
ing: foundations of research chapter Learning Representations
by back-propagating errors. MIT Press, Cambridge, pp 696–699

	 83.	 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning inter-
national representations by error propagation. In: Rumelhart DE,
McCleland JL (eds) Parallel distributed processing: exploration
in the microstructure of cognition, vol 1, Chap 8. MIT Press,
Cambridge

	 84.	 Salam MA, Zawbaa HM, Emary E, Ghany KKA, Parv B (2016)
A hybrid dragonfly algorithm with extreme learning machine for
prediction. In: INnovations in Intelligent SysTems and Applica-
tions (INISTA), 2016 international symposium on. IEEE, pp 1–6

	 85.	 Sánchez-Monedero J, Hervas-Martinez C, Gutiérrez PA, Ruz
MC, Moreno MCR, Cruz-Ramirez M (2010) Evaluating the
performance of evolutionary extreme learning machines by a
combination of sensitivity and accuracy measures. Neural Netw
World 20(7):899

	 86.	 Sattar AMA, Erturul ÖF, Gharabaghi B, McBean EA, Cao J
(2017) Extreme learning machine model for water network man-
agement. J Neural Comput Appl 2017:1–13

	 87.	 Schuh MA, Angryk RA, Sheppard JW (2012) Evolving kernel
functions with particle swarms and genetic programming. In:
FLAIRS conference

	 88.	 Schwefel H-P (1987) Collective phenomena in evolutionary
systems

	 89.	 Silva DNG, Pacifico LDS, Ludermir TB (2011) An evolution-
ary extreme learning machine based on group search optimiza-
tion. In: Congress on evolutionary computation (CEC). IEEE, pp
574–580

	 90.	 Storn R, Price K (1997) Differential evolutiona simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341–359

	 91.	 Stützle TG (1999) Local search algorithms for combinatorial
problems: analysis, improvements, and new applications, vol
220. Infix Sankt Augustin

	 92.	 Sun X, Qin L (2014) An extreme learning machine based on
quantum particle swarm optimization and its application in hand-
written numeral recognition. In: Software engineering and ser-
vice science (ICSESS), 2014 5th IEEE international conference
on. IEEE, pp 323–326

	 93.	 Sun Z-L, Choi T-M, Kin-Fan A, Yong Y (2008) Sales forecast-
ing using extreme learning machine with applications in fashion
retailing. Decis Support Syst 46(1):411–419

	 94.	 Suresh S, Babu RV, Kim HJ (2009) No-reference image quality
assessment using modified extreme learning machine classifier.
Appl Soft Comput 9(2):541–552

	 95.	 Tang J, Deng C, Huang G-B (2016) Extreme learning machine
for multilayer perceptron. IEEE Trans Neural Netw Learn Syst
27(4):809–821

	 96.	 Voudouris C (1997) Guided local search for combinatorial opti-
misation problems. PhD Thesis, University of Essex

	 97.	 Wang J, Ye K, Cao J, Wang T, Xue A, Cheng Y, Yin C (2017)
Doa estimation of excavation devices with elm and music-based
hybrid algorithm. Cogn Comput 9:1–17

	 98.	 Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of
extreme learning machine. Neurocomputing 74(16):2483–2490

	 99.	 Werbos PJ (1974) Beyond regression: new tools for prediction
and analysis in the behavioral science. Ph. D. Thesis, Harvard
University

1561International Journal of Machine Learning and Cybernetics (2019) 10:1543–1561	

1 3

	100.	 Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

	101.	 Xu X, Ji Z, Yuan F, Liu X (2014) A novel parallel approach of
cuckoo search using mapreduce. In: 2014 international confer-
ence on computer, communications and information technology
(CCIT 2014). Atlantis Press

	102.	 Xue B, Ma X, Gu J, Li Y (2013) An improved extreme learn-
ing machine based on variable-length particle swarm optimiza-
tion. In: International conference on robotics and biomimetics
(ROBIO). IEEE, pp 1030–1035

	103.	 Yang X-S (2010) Nature-inspired metaheuristic algorithms.
Luniver Press, Bristol

	104.	 You X, Shu Y (2006) Evolutionary extreme learning machine-
based on particle swarm optimization. Adv Neural Netw ISNN
2006:644–652

	105.	 Yang H, Yi J, Zhao J, Dong ZY (2013) Extreme learning machine
based genetic algorithm and its application in power system eco-
nomic dispatch. Neurocomputing 102:154–162

	106.	 Yang Z, Wen X, Wang Z (2015) Qpso-elm: an evolutionary
extreme learning machine based on quantum-behaved particle
swarm optimization. In: International conference on advanced
computational intelligence (ICACI). IEEE, pp 69–72

	107.	 Yang Z, Zhang T, Zhang D (2016) A novel algorithm with differ-
ential evolution and coral reef optimization for extreme learning
machine training. Cogn Neurodyn 10(1):73–83

	108.	 Zhai J, Hong-yu X, Wang X (2012) Dynamic ensemble extreme
learning machine based on sample entropy. Soft Comput
16(9):1493–1502

	109.	 Zhai J, Zang L, Zhou Z (2018) Ensemble dropout extreme learn-
ing machine via fuzzy integral for data classification. Neurocom-
puting 275:1043–1052

	110.	 Zhai J, Zhang S, Wang C (2017) The classification of imbalanced
large data sets based on mapreduce and ensemble of elm classi-
fiers. Int J Mach Learn Cybern 8(3):1009–1017

	111.	 Zhang Y, Cai Z, Wu J, Wang X, Liu X (2015) A memetic algo-
rithm based extreme learning machine for classification. In: Neu-
ral networks (IJCNN), 2015 international joint conference on
neural networks. IEEE, pp 1–8

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Metaheuristic-based extreme learning machines: a review of design formulations and applications
	Abstract
	1 Introduction
	2 Feedforward neural networks
	3 Extreme learning machine
	3.1 Classical ELM
	3.2 Universal approximation and classification capabilities of ELM
	3.3 Multilayer ELM
	3.4 Local receptive fields based ELM

	4 Metaheuristics
	4.1 Trajectory-based metaheuristics
	4.2 Population-based metaheuristics
	4.2.1 Evolutionary algorithms
	4.2.2 Swarm intelligence

	4.3 Memetic algorithms

	5 Metaheuristic formulation of the ELM components
	5.1 Optimizing input weights and biases
	5.2 Optimizing number of neurons
	5.3 Optimizing activation functions

	6 Applications of metaheuristic based ELM
	6.1 Medical applications
	6.2 Image analysis and applications
	6.3 Environmental applications
	6.4 Power, control, and other engineering applications

	7 Conclusions and possible future directions
	References

