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Abstract
Extreme learning machine (ELM) is a novel and recent machine learning algorithm which was first proposed by Huang 
et al. (Proceedings of 2004 IEEE international joint conference on, pp 985–990, 2004). Over the last decade, ELM has 
gained a remarkable research interest with tremendous audiences from different domains in a short period of time due to 
its impressive characteristics over other single hidden-layer feedforward neural networks. Although ELM enjoys powerful 
advantages, it still has some potential weaknesses like performance sensitivity to the initial condition of the input weights, 
number of hidden neurons, and the selection of activation functions. In order to overcome the limitations of classical ELM, 
many metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, memetic and trajectory algorithms 
have been proposed for optimizing the different components of ELM by researchers aiming to improve the generalization 
performance of ELM networks for different types of complex problems and applications. Therefore our review paper intent 
to conduct a deep study of the important aspects of applying metaheuristic algorithms for optimizing ELM networks. Three 
main streams of research lines are identified: the optimization of input weights and hidden biases, selection of hidden 
neurons, and optimization of activation functions. Furthermore, this paper will discuss a wide spectrum of applications of 
metaheuristic-based ELM models. We will highlight the strengths of these models and the improvements that are suggested 
in the literature to overcome their weaknesses. We touch upon several interesting and challenging open issues in optimizing 
ELM using metaheuristics.
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1  Introduction

Artificial neural networks (ANNs) are information process-
ing and mathematical models which are inspired by the 
biological neural systems. They have many advantages that 
make them widely applied by different classification and 
regression problems, such as high prediction power, ability 

to model dynamic and complex systems, ease of implemen-
tation, and their parallel nature [7].

ANNs consist of a number of processing elements called 
“neurons” that are distributed over a number of layers (i.e. 
input layer, output layer and zero or more hidden layers). 
In feedforward neural networks (FFNN), neurons are fully 
connected with the neurons in the proceeding layer. Sin-
gle-hidden-layer feedforward neural networks (SLFN) are 
considered to be one of the most popular neural networks 
topologies. It was shown in the literature that SLFN are 
universal approximators which are able to approximate any 
continuous function [16, 40]. SLFNs are typically trained 
by gradient descent methods such as Backpropagation (BP) 
[82, 83]. In spite of their popularity, gradient descent based 
training algorithms such as BP, suffer major drawbacks such 
as high dependency of the initial weights of the network, 
high probability of being trapped in local minima and slow 
convergence [18, 25, 26, 30, 31, 56].
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To overcome the problems of classical feedforward neural 
networks with gradient descent training methods, ELM were 
first proposed by Huang et al. [48]. In ELM, the weights that 
connect the input layer with the hidden layer along with the 
hidden biases are randomly initialized, then the connection 
weights between the hidden layer and the output layer are 
analytically determined by finding a least-square solution 
using a simple method like the Moore–Penrose (MP) gen-
eralized inverse.

Unlike other training algorithms, ELM enjoys many 
advantages which makes it distinctive among its counterpart, 
for instance, ELM has a simple architecture which is easy to 
implement and apply. In addition to that, the learning speed 
of ELM is very fast compared to other learning algorithms 
such as BP; as training can be accomplished in seconds or 
minutes, which is significantly less than many other con-
ventional learning methods. In general, ELM enjoys a high 
generalization performance, and it is possible to use a dif-
ferent activation functions [23]. Moreover, ELM can avoid 
many problems of traditional gradient bases algorithms such 
as learning rate and local minima. [20, 46, 49, 93, 98].

Despite its pros, ELM suffers from certain drawbacks: 
ELM performance is sensitive towards the initialization 
of the structure of the network. The initial settings of the 
weights and biases, and the number of neurons affect the 
performance of ELM. In addition, ELM needs more hidden 
neurons than the traditional tuning-based methods in many 
cases [15, 32].

Different approaches were proposed in the literature 
to solve these problems and to improve the performance 
of ELM networks. One type of these approaches that has 
gained a wide interest is the metaheuristic-based approach. 
Metaheuristic algorithms are efficient methods that are 
designed to provide acceptable or near optimal solutions for 
hard optimization problems. They actually guide the search 
process to efficiently explore the search space trying to ful-
fill this goal. Many of these algorithms are derived from 
biological or physical systems [11]. Some of the advantages 
of these algorithms are: problem independent, can stochasti-
cally guide the search process in order to find near optimal 
solutions, and can be used to solve problems ranging from 
simple search to complex problems [11, 12]. One year after 
the release of ELM, metaheuristic algorithms started to be 
intensively investigated and applied in designing and opti-
mizing ELM network. Metaheuristic algorithms have shown 
significant improvement in the performance of ELM net-
works at both theoretical and empirical levels.

In literature, there are few published papers that sur-
veyed ELM. Some of these papers concentrated on ELM 
variants, while other papers discussed ELM in general and 
targeted their applications. For example, one of the earli-
est surveys was conducted by Huang et al. [46], where 
they surveyed ELM and its theories, and discussed the 

variants of ELM. Another work was conducted by Ding 
et al. [19] in which they reviewed ELM variants and dis-
cussed various applications that were handled using ELM 
in the literature. In the aforementioned paper, the authors 
listed Evolutionary ELM among the ELM variants but 
without a detailed analysis. In another paper, Ding et al. 
[20] surveyed the latest research of ELM theory, algo-
rithms and applications. They introduced three examples 
of Evolutionary ELMs. Huang et al. [41] gave some exam-
ples about the research that used Evolutionary ELM in 
other variants of ELMs. The paper reviewed ELM and 
its theories for classification and regression. Cao and Lin 
[13] surveyed ELM for high dimensional and large data 
applications. However, Evolutionary ELMs were not taken 
into consideration. Another review was presented in [1] in 
which the authors reviewed the advances of ELM and its 
applications without taking into consideration the Evolu-
tionary ELM too. Interestingly, the analysis of the exiting 
surveys in the literature showed that either they briefly 
referred to the Evolutionary ELM or they do not refer to 
them at all. This finding was one of the main motivations 
for this study. Unlike the previous surveys and reviews of 
ELMs, the objective of this paper is to conduct a compre-
hensive review of the important aspects and design issues 
of metaheuristic-based ELM networks. Moreover, we iden-
tify the main research lines for this specific type of ELMs 
and their applications.

In this paper, the review refers to all of the previous 
research that have discussed the metaheuristic-based ELM 
models by referring to the prestigious publishers such as 
Elsevier, Springer, IEEE, and others. To show the expansion 
of the metaheuristic-based ELM models in the literature, 
Fig. 1 depicts the correspondence between the year and the 
number of publications that combine ELM with metaheuris-
tics. We can observe that the number of publications per year 
was constant with only one publication for the first 6 years 
and then the number remarkably increased to reach its peak 
in 2013. Furthermore, the research has been very active in 
this field in the last 3 years. From another point of view, 
Fig. 2 lists the number of publications for each metaheuristic 
algorithm that has been used to optimize ELM. As it can be 
noticed, the most used algorithms are differential evolution 
(DE), particle swarm algorithm (PSO) and genetic algorithm 
(GA).

This paper is structured as follows: Sect. 2 gives a brief 
description of FFNN. Section 3 describes the classical ELM 
model. Section 4 reviews the metaheuristic algorithms and 
their classification. In Sect. 5, we identify and review the 
main approaches in the literature that utilize metaheuristic 
algorithms to optimize ELM networks. Section 6 lists most 
of the applications of metaheuristic-based ELMs. Finally, 
Sect. 7 concludes the paper and suggests some possible 
future research directions.
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2 � Feedforward neural networks

Artificial neural network (ANN) is an information process-
ing system inspired by the biological neural network system 
in a human brain. The architecture of ANN consists of a set 
of neurons, weights, and layers. The simplest model of neu-
ral networks is the single layer perceptron (SLP) [81] which 
consists of input and output layers. SLP is a neural network 
that does not have any hidden layer, which makes it unable 
to approximate nonlinear continuous functions. In order to 
solve this problem, multilayer perceptron (MLP) [99] was pro-
posed. In MLP, one layer of hidden neurons or more are added 
between input and output layers. MLP with single hidden layer 
and finite number of hidden neurons with any sigmiodal non-
linear activation function is capable of approximating any 
measurable function to any desirable degree of accuracy [40].

Feedforwad neural networks (FFNN) consist of a set of 
layers, each of which contains a number of neurons (nodes). 
The first layer receives the input and the last one produces the 
output. Each neuron in the layer is connected to all neurons of 
the next layer by a weight (forward link) as shown in Fig. 3. 
The neurons in the hidden and output layers are used to process 
the incoming information from the weighted links. The output 
of the neurons yi can be calculated as given in the following 
equation:

where n is the number of features or number of input links, 
zi are the inputs of the ith sample, wi is the weight, bi is the 
bias and �i is the activation function of the neuron i.

(1)yi = �i

(
n∑

k=1

wi
k
× zi

k
+ bi

)
,

Fig. 1   Number of publications 
per year
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The goal of using FFNN is to solve non-linear and com-
plex problems. In order to perform this task at its best, we 
need to optimize the connection weights in the network using 
a training algorithm. FFNN is trained using a training dataset 
consists of input-output pairs (x,y) where x = [x1, x2,… , xN] 
and y = [y1, y2,… , yN] . The input vector xi = (xi1, xi2,… , xin) 
has the target output yi = (yi1, yi2,… , yim) , after training, the 
output of FFNN is ŷi = (ŷi1, ŷi2,… , ŷim).

The performance of the trained FFNN is measured by find-
ing the distance between the predicted output ŷi and the target 
output yi . The aim is to minimize this value which can be 
expressed by the following mean squared error equation:

where N is the number of samples.
FNN can be used to solve regression and classification 

problems using supervised learning methods. In literature, 
there are many other forms of neural networks that can be 
applied for different purposes [5, 38, 58]. However in this 
paper, we only consider FFNN which is used by ELM (Fig. 4).

3 � Extreme learning machine

3.1 � Classical ELM

Extreme learning machine is a successful successor of train-
ing neural network using backpropagation (BP) algorithm. 
The main characteristic of ELM is its ability to overcome 
the drawbacks of training SLFNs using BP such as the local 

(2)E =
1

N

N∑
i=1

m∑
j=1

(
yij − ŷij

)2
,

minima and time constraints [14]. ELM learning phase is 
composed of two stages: (1) assigning random weights for 
the connections between input layer and hidden layer and 
the biases, and then produce the hidden layer output matrix 
H. (2) finding the output weight using the least square algo-
rithm [49]. In fact, ELM turned the learning process into a 
problem of solving linear system which gives this method 
low computational complexity. To simply train SLFN, we 
need to find the least squares solution 𝛽  of the linear system 
H� = T .

Suppose we want to train SLFNs using N distinct samples 
(xi, ti) , K neurons hidden layer and activation function g(x). 
xi = [xi1, xi2,… , xin]

T is the n dimensional input vector of the 
ith sample, ti = [ti1, ti2,… , til]

T is the output vector. In such 
a network, we will have WK×n input weights (weights that 
connect the input neurons to the hidden neurons), bK×1 the 
bias of hidden layer, and the output weights �l×K.

The output function of ELM can be formed as given in 
Eq. (3).

where �j is the weight vector that connects the hidden neuron 
j to the output neurons(≥ 1 ). � = [�1, �2,… , �K] is the weight 
vector that connects the hidden layer to the output layer with 
number of neurons ≥ 1 , and h(x) = [h1(x), h2(x),… , hK(x)] is 
the output of the hidden layer. (hx)for a particular applica-
tion, can be expressed as:

where G is a non-linear piecewise continuous function. 
Many activation functions can be used in the hidden neurons 
of the hidden layer. Among the most commonly used func-
tions are sigmoid, hardlimit and sine. (wj, bj) are the param-
eters of the jth hidden neuron and x represents an instance of 
the training samples as shown in Fig. 5.

(3)fK(x) =

K∑
j=1

�jhj(x) = h(x)�,

(4)hj(x) = G(wj, bj, x),wi, x ∈ Rd, bi ∈ R,

Fig. 3   Multilayer perceptron

Fig. 4   MLP neuron
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Formula 3 can be rewritten as H� = T , where HN×K is the 
output matrix of the hidden layer

where Wi = [Wi1,Wi2,… ,Win]
T  is the weight vector 

that connects the input neurons to the ith hidden neuron, 
xi = [xi1,… , xin] is the ith sample of training set, bi is the 
bias value of the ith hidden neuron, � is the output weight 
matrix, and T is the target output.

ELM not only tries to reach the smallest value of the train-
ing error, but also it tries to get the smallest norm of the output 
weights which is likely to increase the generalization perfor-
mance of feedforward neural network according to Bartletts 
theory [8]

Figure 5 shows SLFN prepared by ELM where the weights 
and biases that connect the input neurons and hidden neu-
rons are randomly initialized, and the weights between hid-
den neurons and the output layer are analytically determined 
using the least square solution of the system: 𝛽 = H†T  , 
where H† is the  MP generalized inverse of the matrix H.

(5)

H =

⎡
⎢⎢⎣

h(x1)

⋮

h(xN)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

h1(x1) … hK(x1))

⋮ ⋮

h1(xN) … hK(xN))

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

G(w1, b1, x1) … G(wK , bK , x1)

⋮ ⋮

G(w1, b1, xN) … G(wK , bK , xN)

⎤
⎥⎥⎦N×K

(6)minimize ∶ ‖H� − T‖2, ‖�‖.

Algorithm 1: ELM algorithm for training SLFN.
Input : D =

{(xi, ti) | xi ∈ Rn, ti ∈ Rm, i = 1, 2, · · ·N}
//Training dataset D, which contains a set
of training instances and their associated
class labels.
g(x): activation function.
K: Number of hidden neurons

Output: Output weight β
Steps:
step 1: Initialize weights wi and biases bi randomly,
i = 1, 2, · · · ,K. wiis the vector of weights that
connect the hidden neuron i to all input neurons.
step 2: Calculate the hidden output layer matrix H
step 3: Find output weights β
β = H†T

 There are various methods to determine the MP generalized 
inverse such as singular value decomposition method (SVD) 
or orthogonal projection method. In the case of orthogonal 
projection method which is common and efficient solution 
of ELM , the value of H† is (HTH)−1HT if (HTH) is non-
singular or HT (HHT )−1 if (HHT ) is non-singular. Another 
way to stabilize the performance of ELM and to increase its 
generalization performance is to apply the ridge regression 
theory [36] by adding positive integer to the diagonal of the 
matrix (HTH) or (HHT ) when calculating � . Accordingly the 
ELM output weights can be determined using the following 
equation depending on the size of the training datasets:

The simple learning algorithm of ELM can be described as 
given in Algorithm 1.

3.2 � Universal approximation and classification 
capabilities of ELM

The universal approximation capability was proven for 
generalized SLFN (eg. [39, 61]) taking into consideration 
that the tuning of hidden neurons parameters are performed 
through the training phase, and the activation functions 
used in the hidden neurons are continuous and differenti-
able. Huang et al. [43] proved that SLFN with maximum 
N hidden neurons and activation function such as sigmoid, 
ramp or radial basis is able to learn N distinct data samples 
with zero error. On the other hand, ELM uses random hidden 
neurons which mean that all the parameters of the hidden 
neurons (input weights and hidden biases in case of additive 
hidden nodes or centers, and impact factors in case of RBF 
networks) are set randomly without the need to tune them 

(7)𝛽 =

⎧⎪⎨⎪⎩

HT
�

I

C
+ HHT

�−1

T , whenN ≤ K�
I

C
+ HTH

�−1

HTT whenN > K

Fig. 5   Architecture of the Single hidden layer—feedforward neural 
network
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using training sets. Remarkably, Huang et al. [45] proved 
that even with this random generation of parameters, ELM 
is still a universal approximator. It has been shown that ELM 
can use any nonlinear piecewise continuous random hidden 
neurons, and at the same time preserve the universal approx-
imation property. Moreover Huang et al. [47] showed that 
ELM with different types of random hidden neuron networks 
is able to identify different disjoint regions (classification 
capability). ELM with quite enough number of hidden neu-
rons and non-constant piecewise continuous activation func-
tion is able to approximate any complex decision boundaries 
in classification.

3.3 � Multilayer ELM

As mentioned previously, classical ELM and its variants 
have very attractive properties such as good generaliza-
tion performance and fast learning speed. These properties 
have played a great role in increasing the significance of 
ELM as a machine learning research topic. Following that, 
ELM and its variants have been applied for different clas-
sification tasks, and performed well in various applications. 
Nevertheless, ELM still faces some issues when used for 
practical applications such as voice recognition. In many 
applications, we need some feature learning before clas-
sification which introduces the need for multilayer option. 
Derived from this need, Kasun et al. [55] proposed a mul-
tilayer learning algorithm based on ELM called multilayer 
extreme learning machine (ML-ELM). The basic block of 
this learning algorithm is the autoencoder. Autoencoder is 
used as a feature extractor and can be employed in train-
ing multilayer networks. Tang et al. [95] extended ELM to 
propose hierarchal ELM (H-ELM) to deal with multilayer 
as depicted in Fig. 6. H-ELM tries to utilize the advantages 
of ELM theories presented in [45] that were omitted in [55]. 
H-ELM does not only preserve the efficiency of training, but 
also enhances the performance of ELM. The learning proce-
dure of H-ELM consists of two stages: (1) feature encoding 
and (2) feature classification. In the first stage, H-ELM uses 
N-Layer of unsupervised learning for feature extraction. The 

output of this stage is a set of sparse features. Each layer of 
this stage can be treated as an independent module, and once 
the features of each hidden layer are extracted, they are fixed 
and never been tuned. The second stage uses the output of 
the last layer in unsupervised learning stage which (i.e. high 
level extracted features of the input data) as an input for 
the classification stage. The output is randomly perturbed 
(random projections of the extracted features) and taken as 
inputs to ELM to produce the output of the whole network.

3.4 � Local receptive fields based ELM

The original ELM introduces fully connected neural net-
work in which all the input neurons are connected to the hid-
den neurons. This ELM architecture has been considerably 
researched and been applied to many fields and applications. 
However, there are some fields such as image processing and 
speech recognition where we can benefit from strong local 
connections. Huang et al. [44] studied the ability of ELM to 
support local receptive fields and proposed local receptive 
fields based extreme learning machine (ELM-LRF). They 
showed that ELM theories are naturally valid for local recep-
tive fields and it can work with any type of random hidden 
neurons if they are randomly generated using continuous 
probability distribution. An example of local receptive fields 
that can be employed by ELM are the random convolutional 
hidden neurons. ELM-LRF preserved the properties of ELM 
by generating the hidden neurons randomly and determining 
the output weights analytically.

However unlike ELM which focuses only on the weights 
between the input and hidden layers, ELM-LRF introduces 
randomness in two parts: the first is the random connec-
tions (the density of connections between input neurons 
and hidden neurons that is determined by different types 
of application probability distributions). The second is the 
weights between input neurons and hidden neurons that 
are generated randomly [42]. In local connections we can 
observe dense connections around some input neurons and 
sparse elsewhere. As mentioned above the fully connected 
ELM is extensively studied while ELM that employees local 

Fig. 6   Framework of H-ELM
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connections is very promising research area and need more 
investigations.

4 � Metaheuristics

The metaheuristics term is widely used to refer to a class 
of stochastic search algorithms that incorporate randomiza-
tion and local search [103]. The main goal of metaheuristic 
algorithms is to find the optimal solution of hard optimi-
zation problems in a reasonable time. Theoretically, if we 
have unlimited time and all regions of the search space are 
accessible, then we will be able to find the optimality [103]. 
In hard optimization problems we are actually looking for a 
quality solution in a reasonable time taking into considera-
tion that the optimal solution may not be obtained [10].

As previously mentioned, metaheuristic algorithms com-
bine randomness and local search together. Dealing with 
large search space when solving an optimization problems 
makes it impossible to find every posiible solution. There-
fore adding some degree of randomness is necessary and 
very helpful for exploring different regions and for increas-
ing the diversity of the solutions, thus finding an optimal or 
near-optimal solution in an acceptable running time [103].

Metaheuristic algorithms must take into consideration 
two processes to be able to give an acceptable results, the 
first is the exploration (diversification) process, and the other 
one is the exploitation (intensification) process. The role of 
exploration is to explore the regions in the search space, 
looking for optimal solutions. It can be helpful in generating 
diverse solutions and is also useful in avoiding falling into 
local optima. On the other hand, exploitation is essential 
for concentrating the search on the promising area that pos-
sesses the good solutions.

Any metaheuristic algorithm must show a good balance 
between these two components in order to achieve a good 
performance. The main differences between metaheuristic 
algorithms are recognized by the the way that they com-
bine exploration and exploitation [12]. Metaheuristic algo-
rithms are good for complex, nonlinear and non-differential 
problems but usually they are suitable for a specific class of 
problems. This is actually confirmed by No the Free Lunch 
(NFL) [35, 100] theorem which states that if algorithm A 
performs better than algorithm B in a specific class of prob-
lems it will face a degradation in the performance in other 
classes of problems where B may perform better.

In the literature, metaheuristic algorithms are classified 
in many ways. One of the classifications that is widely 
used in the literature is to classify them into trajectory-
based metaheuristics and population-based metaheuris-
tics [12]. Trajectory-based algorithms use single solu-
tion and evolve to reach some satisfactory solution. They 
tend to focus on the exploitation process. In contrast, 

population-based algorithms start with a population of 
solutions and they tend to perform more exploration. In 
addition to these, another promising class of metaheuristic 
algorithms is memetic algorithms, where they combine 
trajectory and population based techniques together. Fig-
ure 7 shows the classification of metaheuristic algorithms 
with some examples.

4.1 � Trajectory‑based metaheuristics

In this section, a trajectory-based metaheuristics, which 
also called a single-solution metaheuristics are going to 
be described. This type of algorithms starts with a sin-
gle solution and applies some heuristics that are inspired 
by nature or adapted from some phenomena. The process 
keeps improving the solution until a satisfactory solution is 
obtained [75]. Examples of trajectory algorithms are simu-
lated annealing (SA) [57], tabu search (TS) [29], greedy 
randomized adaptive search procedure (GRASP) [27], vari-
able neighborhood search (VNS) [70], guided local search 
(GLS) [96] and iterated local search (ILS) [91]. SA and TS 
are among the most commonly used and applied trajectory 
algorithms in the literature.

SA is inspired by the physical process of annealing, in 
which, the material temperature is raised and then cooling 
is done slowly until the material reaches low energy state. 
The algorithm starts with initial solution and initial value of 
parameter T. At each iteration, a new solution s′ is selected 
randomly from the neighborhood of s. The acceptance of the 
new solution is determined according to the objective func-
tion for s and s′ , and the current value of T. SA uses Monte 
Carlo method to determine the acceptance probability of 
the new solution.

Unlike SA which does not learn from the past and does 
not use memory, TS explicitly uses memory by a mechanism 
inspired by human memory to manage local search. The 
idea of TS is to memorize recently visited areas of search 
space and prevent returning to them, which is referred to 
as cycling. TS maintains a tabu list that retains the recent 
solutions or some attributes of them. If the list is short, the 
search will exploit the area. On the contrary, if the list is 
long, it forces the search to explore more areas in the search 
space. These algorithms are called local search algorithms 
because they start with a current solution and then they try 
to modify it by changing some of its components.

4.2 � Population‑based metaheuristics

Population-based metaheuristics start with a collection of 
solutions rather than a single solution as in the case of trajec-
tory metaheuristics. These algorithms are inspired by evo-
lution theory, animal behavior in nature, biology, or other 
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natural phenomena. Population-based algorithms show more 
exploration abilities when compared to trajectory-based. 
They can be classified into two popular categories: evolu-
tionary algorithms and Swarm intelligence algorithms.

4.2.1 � Evolutionary algorithms

Evolutionary algorithms search the complex search space 
for the best solution using a methodology derived from the 
nature such as mutation, selection and reproduction. Exam-
ples of evolutionary algorithms are genetic algorithm (GA) 
[37], evolution strategy (ES) [88], Differential evolution 
(DE) [90] and genetic programming (GP) [59]. The basic 
idea behind all existing variants of evolutionary algorithms 
is almost similar. They all generate a set of solutions to form 
a population, then they calculate the fitness of individuals 
and apply a number of reproduction operators while keeping 
the best individual.

In evolutionary algorithms, a set of candidate solutions at 
a given iteration is called a generation. The solutions are also 
called individuals and their quality as a solution is calculated 
using a predefined fitness function. In each generation, solu-
tions with the best fitness values have higher probability to 
be selected for reproduction to form the next generation. 
Evolutionary algorithms usually apply a set of operators on 
the individuals to reproduce new generations.

A typical example of evolutionary algorithms is GA 
which was first proposed by John Holland in 1975. Since 
then, it has been used in many applications to find the 

optimal or near-optimal solutions [67]. Natural selection 
from biological evolution is the base of genetic algorithm.

4.2.2 � Swarm intelligence

Swarm intelligence (SI) algorithms mimic the social behav-
ior of swarms or flocks (animals, insects, fish, ...). The most 
popular example of this category is particle swarm optimiza-
tion (PSO) [22]. Some of other widely used SI algorithms 
are Ant colony optimization (ACO) [21], bacterial foraging 
optimization (BFO) [79], fish swarm algorithm (FSA) [64] 
and artificial bee colony (ABC) [53]. The main idea of SI 
algorithms is to start with a swarm (a set of solutions that 
are randomly generated) and then modify these solutions 
depending on a number of heuristics inspired by the behav-
ior of swarms in nature.

PSO [22] is inspired by the search techniques that are 
used by flocks of birds to discover unknown places. It uses 
a population (swarm) of solutions (particles) that are mod-
ified during the iterations. PSO has gained a huge popu-
larity because of its simplicity and efficiency [2]. Each 
particle in PSO represents a solution. Basically, the search 
process in PSO depends on two main factors: each parti-
cle retains its best experience which is called (pbest) and 
the best among the whole swarm which is called (gbest) 
[87]. The particles have position and velocity in the search 
space where they will be changed using a predefined equa-
tions in order to find the global optimum.

ACO is another well-regarded metaheuristic algorithm 
[21]. It simulates the way that ants follow to find the path 

Fig. 7   Classification of metaheuristic algorithms with examples
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between the colony and the food. Ants in nature use phero-
mone as a chemical communication medium between each 
other to find the shortest path to the source of food.

4.3 � Memetic algorithms

Memetic algorithm (MA) is a class of metaheuristic algo-
rithms that combines population-based with trajectory-
based metaheuristic algorithms in order to incorporate 
global optimization with local search techniques [72]. 
Evolutionary algorithms such as GA and DE perform well 
on the side of exploration but they are poor when exploit-
ing the neighborhood. On the other hand, trajectory-based 
algorithms such as SA and TS search exploit the neighbor-
hood of the solution very well but they may get trapped in 
a local optima. MA is a promising and growing category 
of metaheuristics that try to solve these problems by com-
bining global optimization techniques with local search 
methods [34, 60].

5 � Metaheuristic formulation of the ELM 
components

The performance of SLFNs is highly affected by two main 
factors: the structure of the network and the learning algo-
rithm. One of the most interesting properties about FFNN 
setup is that it can be seen as an optimization problem [105]. 
The goal is to find the best model that establishes the best 
predictive relationship between the data and the output. In 
this section, we discuss the models presented in the literature 
to optimize the FFNN regarding specific learning algorithm 
which is ELM.

ELM gains its popularity as a learning algorithm for 
SLFN due to its good generalization and fast learning char-
acteristics, especially with large and complex datasets. The 
number of neurons in the hidden layer, the initial values 
of weights between layers, biases connected to the hidden 
neurons and activation function, all form a high influence 
on the performance of the ELM [69]. Metaheuristics were 
applied in the literature to optimize the different components 
of the network such as the structure, input weights, and the 
activation functions.

In general, before applying any metaheuristic algorithm 
for optimizing a given problem, there are two crucial design 
issues that are very important to address:

•	 The design of the individual (also known as chromosome 
or particle in GA and PSO, respectively) which represents 
the solution of the given problem.

•	 The selection of the fitness function that is going to be used 
to evaluate the quality of the generated solutions by the 
algorithm.

Similarly, utilizing metaheuristics for optimizing ELM net-
works have to address the two aforementioned points. The 
design of the solution in the metaheuristic algorithm depends 
on the components of the ELM network that are intended to 
be optimized. For instance, we can optimize only the weights 
and biases of the network and keep its structure fixed, or we 
can simultaneously optimize different components such as the 
weights and biases, and the number of neurons.

After conducting a thorough review of what has been done 
in the literature, we have identified three main approaches for 
optimizing ELM networks based on metaheuristic algorithms. 
The main stream and the most studied approach is to utilize a 
metaheuristic algorithm for optimizing only the weights and 
biases which represent the links that connect the input and the 
hidden layers neurons. The second approach which gained less 
interest in the literature is the simultaneous optimization of the 
weights and biases in addition to the structure of the network 
(i.e. number of neurons). The third approach is concerned with 
optimizing the values that are produced by the hidden neurons. 
We have noticed that the latter approach is so far the least 
investigated among the other approaches.

After designing the individual encoding of the ELM 
components that were pre-specified for optimization, any 
metaheuristic can be utilized to optimize these components. 
In the case of trajectory-based metaheuristics the algorithm 
starts with one individual, while in the case of population-
based metaheuristics it starts with a set of individuals that 
represents the first generation. In both cases, the quality of the 
individual must be evaluated using a predefined fitness func-
tion. We noticed that the most popular fitness function used in 
the reviewed papers is the root mean squared error (RMSE) 
which can be measured as given in Eq. (8):

In the following three subsections, we thoroughly review the 
main three approaches proposed in the literature for optimiz-
ing ELM networks using metaheuristic algorithms.

5.1 � Optimizing input weights and biases

Computing output weights in classical ELM based on ran-
dom input weights and hidden biases could lead to a non-
optimal performance and could result in ill-condition [33, 
69, 74]. Moreover, random inputs weights and hidden biases 
could lead to overfitting because the ELM will learn the 
training data too well [89].

(8)
RMSE =

����∑N

j=1

���
∑K

i=1
�ig(wi.xj + bi) − ti

���
m × N

.
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Realizing these drawbacks, much previous research have 
proposed the combination of metaheuristic algorithms 
with ELM to improve the selection of the input weights 
that are used to produce the output matrix. Instead of start-
ing with totally random input weights and hidden biases, a 
metaheuristic algorithm is used to help in conditioning the 
weights and biases of ELM and to search for a better com-
bination of them, and consequently to give a better solution.

Different types of metaheuristic algorithms were pro-
posed in the literature for optimizing the input weights and 
hidden biases in ELM networks. The most studied approach 
is the random initialization of a population of solutions 
where each of which represents a possible values of input 
weights and hidden biases. We have identified that the gen-
eral encoding scheme of the individual used in most of 
works that follow this approach can be depicted as shown 
in Fig. 8. In this scheme, the individual contains n elements 
depending on the number of input neurons and number of 
hidden neurons as given in Eq. (9):

where Z is the number of features and K is the number of 
hidden neurons.

In Fig. 9 we draw a flowchart for the general model that 
deploys any metaheuristic algorithm for optimizing the input 
weights and biases of ELM. The first step is to generate the 
initial population of random individuals. The next step is to 
calculate the fitness value for each individual. Usually, the 
fitness value is the RMSE of the resultant ELM model that 
starts with the input weights and biases represented by the 
individual. Then a new generation is constructed by apply-
ing the metaheuristic operators on the current generation. 
The process continues until the termination condition is met.

Following this approach, many of the proposed algo-
rithms aimed at optimizing the input weights and hidden 
biases in order to improve the performance of ELM and 
minimize the number of neurons in the hidden layer.

In the early beginning of ELM, the problem of rand-
omized weights was identified, and many researchers worked 
on this problem. One of the earliest work in this approach 
was proposed by Zhu et al. [80] where the DE algorithm 
is used to optimize the input weights. Their evolutionary 

(9)n = Z × K + K,

ELM (E-ELM) showed a good generalization performance 
with more compact networks when experimented on differ-
ent classification tasks.

In fact, the work of Zhu et al. [80] paved an important 
research line which got the attention of many researchers. 
For example, Huynh and Won [52] proposed a modified ver-
sion of the E-ELM algorithm of their predecessors in [80]. 
Their evolutionary least square ELM (ELS-ELM) specifies 
the input weights and the hidden biases using DE, except 

Fig. 8   Individual

Fig. 9   Combining ELM with metaheuristic algorithm
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that instead of starting with random individuals in the first 
generation, they used least square scheme to initialize the 
first generation.

Another work based on the work of Zhu et al. [80] was 
also proposed by Sánchez-Monedero et  al. [85]. They 
slightly modified the E-ELM model by replacing the typi-
cal RMSE based fitness function with a new fitness func-
tion that combines the accuracy rate with the sensitivity. For 
verifying the proposed model, the authors conducted their 
experiments based on 8 binary and multi-class classification 
datasets and compared their approach with E-ELM and other 
multi-objective MLP network. The results showed that the 
proposed model improved the sensitivity rates while main-
taining the accuracy for imbalanced datasets.

Many work in this area which investigate the application 
of the well-regarded PSO algorithm or one of its variations 
for the task of optimizing hidden neurons and biases in ELM 
have been proposed. For example, Xu and Shu [104] pro-
posed PSO for this task with an attempt to minimize the 
number of parameters that are manually set in the model. 
However, the performance of their proposed PSO-ELM 
model was tested based on one dataset only and compared 
to the classical BP network and other PSO-based classifier. 
Although PSO-ELM model showed competitive results, it 
was slower than the BP-based network.

A variant of PSO was also proposed by Han et al. [33] 
to condition the input and biases weights in ELM. In their 
approach, they introduced an improved particle swarm opti-
mization (IPSO-ELM) to select the weights of input and 
biases attached to Moore–Penrose to determine the output 
weights. Interestingly, the selection of input and biases 
weights were optimized based on the RMSE calculated over 
a validation dataset unlike most of the models that calculate 
their fitness over the training set. Another interesting feature 
in their model is the incorporation of the norm of the output 
weights in the optimization process. Compared to the classi-
cal ELM and other evolutionary ELM networks, their model 
obtained lower error values with more compact networks 
over three different datasets.

Another variant of PSO was proposed by Pacifico and 
Ludermir [77] to optimize the input weights and biases in 
ELM. Their approach which was called CPSOS-ELM and 
based on a modified version of PSO uses the local best 
neighborhood of PSO population through a mechanism 
called population stereotyping. Compared to ELM, PSO-
ELM, LM and PSO-LM over four classification datasets, 
their proposed model achieved best results in three datasets.

Another swarm-based algorithm called bacterial forag-
ing (BF) algorithm [79] was applied by Cho et al. [15] for 
optimizing ELM. BF is a swarm-based algorithm that mim-
ics the process which bacteria follow while searching for 
food. The authors used BF to search for the optimal solution 
that represents the best input weights and hidden biases for 

ELM network. Their proposed algorithm was applied on two 
cases: the first is a regression problem which is the Califor-
nia Housing dataset, and the second is a medical classifica-
tion task. Their experiments showed that the performance 
of the BF-ELM networks outperformed the classical ELM, 
SVM and BP network in both cases.

A hybrid approach that combines ELM with Group 
Search Optimizer (GSO) was proposed in [89]. In GSO-
ELM, the goal was to find the best weights and biases with 
a reduced number of hidden neurons to achieve a good per-
formance. The authors applied four different variations of 
GSO. The fitness function that was used in this algorithm 
was RMSE. For evaluation, the method was tested using 
six different classification datasets obtained from the UCI 
repository. The model was implemented in four variations 
and all were compared to the original ELM, PSO-ELM and 
LM. All the models based on GSO performed better than 
ELM, PSO-ELM and LM.

Following the same classical approach, improved cuckoo 
search (ICS) was used to optimize the input weights and the 
hidden biases of ELM in [71]. Similar to the original ELM, 
the output weights are determined using MP generalized 
inverse. Their proposed model which was called ICSELM 
was tested on four medical classification datasets obtained 
from UCI. Unlike most of the previous works, they used a 
wider range of different evaluation measures to assess the 
performance of the different models. Such measurements 
include the accuracy, sensitivity, specificity, G-mean, 
F-score, norm of the output weights and the Area Under 
ROC Curve (AUC). Their experiments showed that the pro-
posed ICSELM outperformed other ELM models.

Memetic algorithms were also utilized for optimizing 
the same parameters in ELM. Zhang et al. [111] proposed 
a model based on a memetic algorithm to improve the 
classification accuracy. Their M-ELM model combined 
population-based optimization methods with SA as a local 
heuristic search method. In contrast to most of the previ-
ous works, they used classification accuracy as a fitness 
function. Another noticeable point in their work is that 
they experimented the M-ELM model on a large num-
ber of benchmark datasets (i.e. 22 classification datasets). 
Although M-ELM showed improvement in classification 
accuracy especially in datasets with large number of fea-
tures, it consumes more execution time compared to other 
evolutionary-based ELM models. Recently, a model based 
on dolphin swarm algorithm is proposed to optimize the 
input weights and hidden biases of ELM [97]. Each indi-
vidual is called dolphin and is evaluated using RMSE. 
They compared their model to the classical ELM and three 
state-of-the-art models that optimize this component of 
ELM. They conducted their experiments based on five 
regression datasets and seven classification datasets. The 
proposed model showed better generalization performance 
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than the start-of-the-art methods but failed to reduce the 
number of hidden neurons compared to the other methods, 
and it was slower than the standard ELM.

Other examples of this classical approach with RMSE 
as fitness function are DE-Coral Reef-ELM in [107], drag-
onfly algorithm (DA) with ELM in [84] and flower pollina-
tion algorithm ELM in [76].

In Table 1, we summarize the harvested work that has 
been done to optimize the weights and biases of ELM 
using metaheuristic algorithms. We have noticed that the 
two mostly used metaheuristic algorithms are DE and 
PSO, and their variants. Also, we can see that metaheuris-
tic-based ELMs are used for both classification and regres-
sion supervised learning problems with more focus on 
classification.

For validation, some authors tested their proposed model 
on a single dataset that represents a specific domain [104, 
105]. Other authors benchmarked their model based on a 
small number of datasets of a specific type of machine learn-
ing task such as classification, regression or both [14, 15]. 
While other studies utilized a higher number of datasets like 
in [69, 111] with 16 and 22 datasets, respectively.

In this section, we have reviewed the techniques that 
used different metaheuristic algorithms to optimize weights 
and biases in ELM. In the next section, we will review the 

approaches that added one more component to the optimiza-
tion process, which is the number of hidden neurons.

5.2 � Optimizing number of neurons

Like any other neural network, the number of hidden neu-
rons in ELM has a significant effect on its performance. 
Moreover, random input weights and hidden biases in clas-
sical ELM make the network tend to require a higher num-
ber of hidden neurons in order to perform well [33, 69, 80, 
85]. From the literature, we have identified four approaches 
that addressed this problem, which were based on utilizing 
metaheuristic algorithms to optimize the number of neurons 
in the hidden layer.

The first approach was proposed by Suresh et al. [94] where 
they developed a modified GA for the automatic selection of 
hidden neurons and their corresponding input weights and 
biases. Their real-coded GA (RCGA-ELM) modified updat-
ing operators to deal with variable-length individuals. In fact, 
two genetic operators were used: the first selected the hidden 
neurons, while the second optimized the values of the input 
weights and biases. In their implementation, the individual 
was encoded as a two-dimensional array. If we have n dimen-
sional input and L hidden neurons, then we will have the m 

Table 1   Summary of main works in the literature that applied metaheuristics for optimizing the input weights and biases in ELM networks

Model Classification Regression Datasets Metaheuristic algorithm Fitness function

E-ELM [80] ✓ 4 datasets Differential evolution RMSE
PSO-ELM [104] ✓ 1 dataset Particle swarm optimizer RMSE
BF [15] ✓ ✓ 2 datasets Bacterial foraging 1

1+MSEtrn

ELS-ELM [52] ✓ 4 datasets Differential evolution RMSE
E-ELM-CS [85] ✓ 8 datasets Differential evolution 1

(1−�)C+�S

GSO-ELM [89] ✓ 6 datasets Group search optimizer RMSE
AFSA-ELM[17] ✓ 5 datasets Artificial fish swarm algorithm Accuracy
MAFSA-ELM[17] ✓ 5 datasets Adaptive modified artificial fish swarm algorithm Accuracy
SaE-ELM [14] ✓ ✓ 11 datasets Self-adaptive differential evolution algorithm RMSE
GA-ELM [105] 1 dataset Modified genetic algorithm 1

1+RMSE

IPSO-ELM [33] ✓ 3 datasets Particle swarm optimizer RMSE
CPSOS-ELM [78] ✓ 4 datasets Particle swarm optimizer RMSE
O-ELM [69] ✓ ✓ 6 datasets Genetic algorithm

Differential evolution
Simulated annealing

RMSE

QPSO-ELM [106] ✓ 5 datasets Quantum-behaved particle swarm optimization �

2
RMSE +

1

2
‖�‖

ICSELM [71] ✓ 4 datasets Improved cuckoo search Accuracy + norm
M-ELM [111] ✓ 22 datasets Differential evolution + simulated annealing Classification accuracy
SA-ELM [74] ✓ 8 datasets Ameliorated teaching learning based optimization 

(ATLBO)
RMSE

DS-ELM [97] ✓ ✓ 13 datasets Dolphin swarm algorithm RMSE
CSO-ELM [24] ✓ 15 datasets Competitive swarm optimizer Accuracy
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individuals where each of which can be represented as given 
in Eq. (10):

wj1 …wjn, bj are the weights and biases for the hidden neuron 
j. Each row represents one neuron.

The second approach was proposed by Xue et al. [102]. 
They found that in the former approach there were many 
genetic parameters that needed to be tuned artificially. There-
fore, they proposed a model called variable-length PSO 
(VPSO-ELM) to optimize two components of ELM: the input 
weights and the number of neurons. In order to make PSO 
applicable for this problem, a modified version was proposed 
to deal with individuals that have variable length; due to the 
difference in the number of neurons. The way that individuals 
were encoded in this model was adopted from [94].

Following a different approach, Huang and Lai [51] used 
PSO with structural risk minimization to optimize only the 
number of neurons. The target was to find the effective number 
of hidden neurons with a good generalization performance. In 
their PSO variant, the position P represented the number of 
hidden neurons in ELM.

The fourth approach was proposed by Freire and Barreto in 
[28]. They proposed a model called Adaptive Number of hid-
den neurons approach (ANHNA) with a goal to automatically 
select the required number of neurons in addition to biases and 
slopes of the activation function. The optimization process 
was performed using DE and PSO. In ANHNA, the individual 
(chromosome) was encoded as shown in Eq. (11) where ���⃗Ci 
represents a vector of real numbers with a dimension that is 
equal to 3 × Q where Q is the number of neurons:

In Eq. (11), Tij represents the jth neurons in the ith indi-
vidual. If the value of Tij ≥ 0.5 then the neuron is activated, 
else the neuron is deactivated.

Table 2 lists the models that were designed to optimize 
the structure of the SLFN (number of hidden neurons) used 

(10)bi =

⎡⎢⎢⎢⎣

w11 w12 … w1n b1
w21 w22 … w2n b2

⋮

wm1 wm2 … wmn bL

⎤⎥⎥⎥⎦

(11)���⃗Ci =
[
Ti1,… , TiQ, ai1,… , aiQ, bi1,… , biQ

]

by ELM. In comparison with Table 1, we can see that the 
amount of work that has been done so far to optimize the 
number of neurons is much less than those for optimizing 
the input weights and hidden biases. Moreover, only DE and 
PSO have been used for optimizing this component. The 
maximum number of datasets tested is eight, and we can 
always see that only one type of problems, either classifica-
tion or regression, is addressed in the articles.

5.3 � Optimizing activation functions

One of the fundamental decisions when constructing neu-
ral networks is the selection of the activation function. The 
selection of activation function is problem-dependent and 
the performance of FFNN can highly be affected by this 
selection [62, 75].

Activation functions are used to transfer input signals into 
output signals. The main role of these functions is to make 
neural networks able to solve nonlinear problems [54]. Simi-
larly, the performance of ELM networks can be improved by 
a proper selection of the activation function used by neurons 
(also known as node optimization). This optimization can be 
performed by keeping the input weights and hidden biases 
fixed while optimizing the activation function or by optimiz-
ing both components simultaneously. ELM supports a wide 
range of activation functions [98]. In the original ELM, the 
activation functions listed in Table 3 were implemented.

One of the main works that addressed the automatic 
selection of the activation functions was presented by 
Matias et al. [68]. The authors developed a model called 
genetically optimized ELM (GO-ELM). In this model, 
the output weights were calculated using least squares 
algorithm with Tikhonovs regularization. GA was used to 
optimize different components of ELM simultaneously. 
These components are the input weights and biases, the 
hidden layer components represented by the number of 
neurons, and the activation function used in each neuron. 
The activation function of each neuron in this model can 
be zero, sigmoid function, or linear function. Their work 
was tested using five benchmark datasets. The results 
showed equal or better results when compared to IGA-
SLFN, SaE-ELM, LM-SLFN, and ELM in four datasets. 
Later on, the same authors proposed a learning framework 

Table 2   Summary of main 
works in the literature that 
applied metaheuristics for 
optimizing number of neurons 
in ELM networks

Model Classification Regression Datasets Metaheuristic algorithm

RCGA-ELM [94] ✓ 3 datasets Genetic algorithm
SRM-ELM [51] ✓ 6 datasets Particle swarm optimizer
ANHNA[28] ✓ 4 datasets Particle swarm optimizer

Differential evolution
VPSO-ELM [102] ✓ 8 datasets Variable-length particle 

swarm optimizer
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for SLFN called optimized ELM (O-ELM) [69]. In this 
framework, the structure and parameters are optimized 
using three different optimization methods: GA, DE 
(population-based) and SA (trajectory-based). Experi-
ments were conducted based on 16 benchmark datasets. 
The GA version of O-ELM performed better than IGA-
SLFN, SaE-ELM, LM-SLFN, and ELM in 10 out of the 
16 datasets.

A different approach was implemented by Li et al. [62]. 
The authors optimized a special type of ELM called tun-
able activation function ELM (TAF-ELM). In this model, 
a weighted combination of activation functions was 
embedded in each hidden neuron. Then, DE was used to 
optimize these weights in addition to the input weights, 
hidden biases and activation functions. TAF-ELM algo-
rithm showed better performance than TAF-BP and TAF-
MFNN algorithms when applied to four different datasets 
representing different problems such as classification and 
approximation.

6 � Applications of metaheuristic based ELM

Metaheuristic-based ELM models have been used to solve a 
wide range of challenging and complex real world problems 
in different areas. In the following subsections, we highlight 
the main applications of these models, while in Table 4, we 
list most of the applications found in the literature.

6.1 � Medical applications

Many models of metaheuristic-based ELMs have been pro-
posed and applied for medical applications. Cho et al. [15] 
proposed Evolutionary ELM for optimizing ELM using 
BF. The model was applied on a real medical classification 
dataset called “Pima Indians Diabetes Database”. Mohapatra 
et al. [71] proposed an improved cuckoo search for optimiz-
ing ELM and applied their model on four medical classi-
fication data: breast cancer, diabetes, bupa, hepatitis. The 
authors used different important evaluation measures that 
are commonly used in the medical field. The results showed 
that the proposed model could be promising for medical 
applications.

Another metaheuristic-based ELM model for medical 
applications was recently proposed by Eshaty et al. [24]. 
The model used a hybrid methodology that utilized Com-
petitive Swarm Optimizer to optimize ELM (CSO-ELM). 
The performance of this model was tested using 15 medical 
classification problems and also tested for function approxi-
mation of SinC function. The model used ELM and Regular-
ized ELM. CSO-ELM not only increased the generalization 
performance of ELM compared to PSO and DE, but also 

Table 3   Activation functions

Name Function

Sigmoid f (x) =
1

1+e−x

Sine f (x) = sin x

Hardlim f (x) = 1 if n ≥ 0, 0 otherwise

Triangular basis f (x) = 1 − abs(x) if − 1 ≤ x ≤ 1, 0 otherwise

Radial basis f (x) = e−x
2

Table 4   Summary of 
main metaheuristic based 
ELMs designed for specific 
applications

Model Year Application Metaheuristic algorithm

PSO-ELM [104] 2006 Production prediction PSO
BF-ELM [15] 2007 Medical data classification BF
RCGA-ELM [94] 2009 Visual quality of JPEG images GA
E-ELMcv,IE-ELMcv [66] 2013 Image analysis DE
ELM-IPSO [6] 2013 Medical-brain tumor tissue characterization PSO
GO-ELM [68] 2013 Temperature of cement kiln plant PSO
Modified GA-ELM [105] 2013 Power system economic dispatch GA
QPSO-ELM [92] 2014 Handwriting numeral recognition PSO
ICS-ELM [71] 2015 Medical classification Improved CS
ELM-MABC [63] 2015 Short-term load forecasting Modified ABC
BDE-ELM,SaDE-

ELM,TDE-ELM [65]
2016 Prediction of effluent from WWTP DE

GA-ELM [50] 2016 SO2 emissions prediction GA
SaE-ELM [73] 2016 Soil temperature prediction DE
Self-adjusting ELM [74] 2016 Pulverized coal furnace thermal efficiency ATLBO
SaELM [86] 2017 Water network management DE
CSO-ELM [24] 2018 Medical classification CSO
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significantly decreased the training time of Evolutionary 
ELM.

A specific medical application for brain tumor tissue char-
acterization was investigated by Arunadevi and Deepa [6]. 
The authors proposed an improved PSO to optimize ELM 
(ELM-IPSO) for classifying and segmenting of brain tissue 
and tumor from 3D MRI tumor images. Interestingly, ELM-
IPSO scored 98.25% accuracy when applied to SPL Harvard 
benchmark dataset which contains contrast and non-contrast 
3D MR brain images. Moreover, the model was tested using 
real-time datasets.

6.2 � Image analysis and applications

In image applications, Suresh and Babu [94] introduced 
RCGA-ELM to estimate the visual quality of JPEG images. 
The results of their experiments showed that the model 
improved the assessment process of image quality of ELM 
classifier. For image analysis, Liu and Wang [66] proposed 
an approach based on E-ELM for face images classifica-
tion. The authors improved the classification accuracy of 
E-ELM by introducing two variants of E-ELM: cross-vali-
dation-based evolutionary ELM (E-ELMcv) and cross-val-
idation-based improved evolutionary ELM (IE-ELMcv). In 
both cases, the authors introduced cross validation to avoid 
using extra validation set for training. They selected clas-
sification accuracy as their fitness function. Experiments 
were applied on four datasets of face images. Experimental 
results showed that the proposed algorithms outperformed 
other tested algorithms in terms of accuracy, and they were 
effective in image analysis.

6.3 � Environmental applications

Different variants of metaheuristic-based ELM models were 
deployed and investigated in remarkable environmental 
applications. For example, it is well known that SO2 is a 
harmful pollutant for the environment and it is very hard and 
challenging to control the percent of SO2 in the air due to 
the complex and uncontrollable emission processes in many 
countries. Huang et al. [50] proposed a GA-based ELM 
model for predicting SO2 concentration in the exhausted 
emissions into air as a result of production process of chemi-
cal fertilizers. Their GA-ELM model showed relatively accu-
rate and efficient prediction results.

Another environmental application was proposed by 
Nahvi et al. [73] to predict the soil temperature in different 
depths. Soil temperature is important in many fields such as 
hydrology, agriculture and atmospheric researches. A self-
adaptive evolutionary ELM (SaE-ELM) was introduced to 
manage this application. SaE-ELM used DE to optimize 
ELM input weights and hidden biases. This approach was 

compared to ELM and validated against GP and ANN. Their 
SaE-ELM showed higher generalization performance.

6.4 � Power, control, and other engineering 
applications

In power engineering, the application of metaheuristic-based 
ELM models was investigated in short-term load forecasting 
(STLF). Li et al. [63] developed a modified artificial bee col-
ony (MABC) to tune the parameters of ELM to forecast the 
load power. Accurate forecasting results are important in this 
application to improve the electrical power system and to 
minimize operating costs. ELM-MABC was tested using two 
datasets: ISO New England data and North American elec-
tric utility data. Another power application that can greatly 
benefit from optimization is the power system economic 
dispatch problem. The idea is to optimize set of parameters 
to minimize the generation costs. Yang et al. [105] used a 
modified GA to optimize ELM, and applied it for power 
system economic dispatch.

In control engineering, Niu et al. [74] proposed a self-
adjusting ELM for pulverized coal furnace thermal effi-
ciency. The problem was both complex and non-linear 
which makes it an appropriate candidate to be solved using 
metaheuristic-based ELM. Another application in control 
engineering was investigated by Lin et al. [65] for predict-
ing the effluent from wastewater treatment plant (WWTP). 
The authors proposed three variations of evolutionary ELM 
algorithms for the problem: basic differential evolution ELM 
(BDE-ELM), self-adaptive DE (SaDE-ELM), and another 
improved variation of DE with local search (TDE-ELM). 
TDE-ELM performed better than all other algorithms, and 
the experiments showed that the three applied evolutionary 
ELMs outperformed the traditional ELM.

In cement kiln plants, Matias et  al. [68] proposed a 
metaheuristic based ELM to predict the temperature in the 
burning zone. The model utilized GA to tune the structure 
of ELM in order to use it for estimating the temperature 
in this application. The results showed that the developed 
model was able to replace the physical pyrometer sensor in 
estimating the temperature of the burning zone.

In maintenance and rehabilitation, Sattar et al. [86] Pro-
posed a prediction model for ongoing maintenance/rehabili-
tation of the water network. The model estimates the next 
potential pipe failure within the network. In their work, the 
authors compared ELM with three of its variants. One of 
these variants was self-adaptive ELM (SaELM). SaELM 
optimizes ELM using DE. The results showed that ELM 
outperformed its three other variants. The work also showed 
that ELM based models performed better than other models 
like ANN, support vector machine (SVM), and non-linear 
regression (NNR).
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7 � Conclusions and possible future 
directions

In this paper, we provided the first literature review on the 
studies that addressed optimizing ELM networks using 
metaheuristic algorithms. Two main types of works in this 
domain were reviewed: the first focused on the works that 
targeted the improvement of ELM by optimizing its differ-
ent components using metaheuristic algorithms, while the 
second focused on the applications of metaheuristic-based 
ELM networks in real-life problems.

Based on the review presented in this work, we can see 
that metaheuristic algorithms have been intensively inves-
tigated over the last decade for optimizing the components 
of ELM networks. Despite the popularity of metaheuristic-
based ELMs and their recent advances, there are still sev-
eral areas that need further investigation:

•	 The state-of-the-art applications of metaheuristic-based 
ELMs in real life specific problems are still at early 
stage. It would be very interesting for the researchers 
and practitioners to see how metaheuristic-based ELM 
networks would perform in a wide range of common 
and popular applications which are not investigated 
enough by this approach, such as patter recognition, 
health and medical applications, environmental mod-
eling, and engineering problems.

•	 To the best of our knowledge, there is still no work that 
have investigated the performance of this type of models 
at large-scale datasets with very high dimensionality. In 
the era of big data, such studies could be extremely useful 
for some domains like bioinformatics, image processing 
and other real-time engineering problems.

•	 With the rapid increase in the amount of training data 
in massive applications, recently, there have been inter-
esting studies conducted on developing various ELM 
version to overcome the memory problems and costly 
large matrix operations [9, 108–110]. On the other 
side, the efficiency of metaheuristic algorithms have 
been also studied at the large scales for same reasons 
[3, 4, 101]. However, the integration between the two 
research lines still at a very early stage and have the 
potential for promising performance outcome.

•	 As it was shown in Sect. 5, the works that addressed 
optimizing the structure and activation functions are 
much less than those addressing optimizing the input 
weights and biases. Further investigation can be made 
at the level of those two components. It would also 
be very interesting to see the applications of these 
approaches in real-life problems.

•	 Based on our survey it is noticed that the most com-
monly implemented fitness functions in ELM are the 

MSE and accuracy rates. However, to the best of our 
knowledge, there is no study that compares the perfor-
mance of ELM based on these different fitness func-
tions. We believe that such a study would be very ben-
eficial and interesting for the audience in this field.
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