
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541
https://doi.org/10.1007/s13042-018-0832-7

ORIGINAL ARTICLE

Large‑scale support vector regression with budgeted stochastic
gradient descent

Zongxia Xie1 · Yingda Li1

Received: 24 April 2017 / Accepted: 29 May 2018 / Published online: 7 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Support vector regression (SVR) is a widely used regression technique for its competent performance. However, non-linear
SVR is time consuming for large-scale tasks due to the dimension curse of kernelization. Recently, a budgeted stochastic
gradient descent (BSGD) method has been developed to train large-scale kernelized SVC. In this paper, we extend the BSGD
method to non-linear regression tasks. According to the performance of different budget maintenance strategies, we com-
bine the stochastic gradient descent (SGD) method with the merging strategy. Experimental results on real-world datasets
show that the proposed kernelized SVR with BSGD can achieve competent accuracy, with good computational efficiency
compared to some state-of-the-art algorithms.

Keywords Support vector regression · Budget maintenance strategy · Stochastic gradient descent

1 Introduction

SVR is a widely used regression technique which is extended
from support vector classification (SVC) by Boser et al. [1].
SVR has received much attention due to its competent per-
formance in various fields, such as financial prediction, wind
speed prediction, etc [2–4]. SVR is used to deal with small
sample problems originally, and has obtained good results.
However, with the massive increase of data quantities in last
decades, how to train SVR models efficiently on large-scale
datasets has become a hot topic.

Linear SVR has been studied firstly for big data. There
have been many improved algorithms for large-scale lin-
ear SVR. In 2012, Chia-Hua Ho and Chih-Jen Lin extended
state-of-the-art training methods for linear SVC to linear
SVR [5]. There were mainly two types of methods for
large-scale linear SVC. One was a Newton-type method
for the primal-form [6]. The other was a coordinate descent
approach for dual form [7]. Both of the two methods were
extended to linear SVR in their paper. Similarly in 2015, Xie
et al. [8] proposed a mini-batch quasi-Newton optimization
algorithm to speed up the training process of linear SVR.

The proposed method combined the first and second order
gradient information estimated by a small set of training
data with the the framework of the quasi-Newton algorithm.
Very recently in 2016, Wang et al. [9] developed a novel
e-Distance Weighted SVR (e-DWSVR) to address the limi-
tations of original SVR and make it scalable to large-scale
SVR through dual coordinate descent and averaged SGD
strategies.

Although a lot of these algorithms focus on linear SVR
problems, large-scale kernel SVR learning is less explored.
The main reason is that training large-scale kernelized
SVR faces the same challenge as kernelized SVC called
the curse of kernelization [10]. There is a growing set of
support vectors (SVs) in the iteration of optimization, and
results in a non-linear growth in both model update time
and prediction time with data size. Some algorithms have
been proposed to solve this problem. In 2015, Zheng [11]
proposed a smoothed objective function in the primal form
to improve the computational efficiency combined with a
conjugate gradient algorithm. But this paper didn’t use the
proposed method on large-scale data. Recently, Lu et al. [12]
developed the kernel functional approximation techniques to
solve large-scale kernel regression problems. The techniques
including FOGD and NOGD were used to approximate a
kernel function or kernel matrix, which transformed the ker-
nel regression problem into an approximate linear regression
problem.

 * Zongxia Xie
 caddiexie@hotmail.com

1 School of Computer Software, Tianjin University, Tianjin,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-018-0832-7&domain=pdf

1530 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

In this paper, we intend to use the famous budgeted
SGD (BSGD) algorithm to solve large-scale non-linear
SVR that was firstly proposed to solve large-scale ker-
nelized SVC [10]. BSGD algorithm maintains a fixed
number of SVs in the model, and updates them during
the SGD training iterations. This algorithm is based on
SGD, which is a recently popularized approach that can be
efficient to deal with very large data or with data streams.
Before using SGD, the objective of SVM is cast as an
unconstrained optimization problem. Then this algorithm
proceeds by iteratively receiving a labeled example and
updating the model weights through SGD over the cor-
responding instantaneous objective function. Besides, the
SGD method is combined with some budgeted mainte-
nance strategies to control the number of SVs. Actually
budgeted online SVM algorithms were proposed by Cram-
mer et al. [13]. There were three main budget maintenance
strategies: removal, projection and merging. In the case
of removal, there were some different removal methods.
In 2006, Cavallanti et al. [14] proposed a randomized
budget perception (RBP) that removed a random SV. RBP
achieved satisfactory performance though it was so simple.
The method Forgetron was proposed to remove the oldest
SV which was created when the quality of perception was
the lowest [15], and its removal was considered to be the
least hurtful to the model. Another removal strategy used
by Wang et al. [10] was to remove the smallest SV with the
smallest norm in order to achieve the goal of minimizing
the averaged gradient error. Before projection, most pre-
vious work has focused on removing SVs. Orabona et al.
[16] proposed a Projectron algorithm that projected the
SV which would be removed in removal methods onto
the other SVs in 2009. The projection was used to mini-
mize the model weight degradation caused by removing
a SV. For merging strategy, two SVs were merged into a
newly created one which has the information of these two
SVs, with the weights remaining unchanged [10]. It also
has been proved to be the best budgeted strategy. Further-
more, Levesque et al. [17] proposed a method to combine
removal and merging budgeted kernel SVMs trained with
SGD in 2013, comprehensive empirical results have dem-
onstrated the effectiveness of these algorithms. Therefore
in this paper, we extend the BSGD algorithm for large-
scale kernelized SVM to SVR and then the new algorithm
can deal with large-scale kernelized SVR learning.

The rest of this paper is organized as follows. In Sect. 2,
the formulation of SVR is introduced. In Sect. 3, we intro-
duce the SGD method to linear and non-linear SVR. Then
the BSGD method is introduced into kernel SVR for large-
scale datasets. In Sect. 4, experiments on some UCI and

LIBSVM datasets are conducted to evaluate the efficiency
of our proposed method. Section 5 concludes the work.

2 Support vector regression (SVR)

Given a set of t raining samples S =
{
xi, yi

}
 ,

xi ∈ Rn, yi ∈ R, i = 1, 2,… , l , where instance xi ∈ Rn is a n−
dimensional input vector, yi ∈ R are the corresponding target
values and l is the number of samples. The goal of SVR is to
find a function f(x) that can obtain targets yi for all the training
data with high generalization performance [18]. As for the
linear case, f(x) is described as follows (we have omitted the
bias term b because it hardly affects the experimental perfor-
mance [5]),

where ⟨⋅, ⋅⟩ denotes the dot product. In order to obtain the
function f, SVR solves the following regularized optimiza-
tion problems:

where L(w, xi, yi) = max(|wTxi − yi| − �, 0) is the epsilon-
insensitive loss function, the parameter C is the regulariza-
tion parameter and the parameter � is given so that the loss
is zero if |wTxi − yi| ≤ �.

Furtherly, kernel functions are used in SVR to solve non-
linear problems [19]. The input data are mapped into a high
dimensional feature space through a nonlinear function Φ
and then x is replaced with Φ(x) , the optimization problem
becomes as follows:

In order to solve this problem, we can use the dual problem
of SVR interchangeably by employing the lagrange multipli-
ers method [5], then we can get

where � is defined as the difference between lagrange mul-
tipliers � and �∗ . Then the objective function f(x) becomes

(1)f (x) = ⟨w, x⟩,

(2)min
w

P(w) =
1

2
wTw +

C

l

l∑
i=1

L(w, xi, yi),

(3)min
w

P(w) =
1

2
wTw +

C

l

l∑
i=1

L(w,Φ(xi), yi).

(4)
w =

l∑
j=1

(�j − �∗
j
)Φ(xj)

=
l∑

j=1

�jΦ(xj),

f (x) = ⟨w,Φ(x)⟩ =
l�

i=1

�i⟨Φ(xi),Φ(x)⟩ =
l�

i=1

�iK(xi, x).

1531International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

After employing Lagrange multipliers method, we only need
to compute ⟨Φ(xi),Φ(x)⟩ to get f(x). Gaussian kernel is one
of the most used kernels. Its formula is as follows:

3 Budgeted stochastic gradient descent
for SVR

In this section, we introduce the classical SGD algorithms to
large-scale SVR firstly. Then the budget maintenance strate-
gies are introduced to combine with SGD for solving large-
scale kernelized SVR.

3.1 Stochastic gradient descent for SVR

SGD is an appealing algorithm which is widely used in the
process of learning SVMs [20–23]. With SGD, the gradient is
approximated by evaluating on training samples, over which
the optimal model weight can be achieved with a small number
of iterations. Therefore the SVM models with the SGD algo-
rithm are efficient. We introduce the SGD algorithm to SVR
and show its details in the following.

SGD works iteratively. It starts with an initial value of the
model weight w1 , and at t− th round it updates the current
weight wt as

where �t is a learning rate. Different SGD algorithms have
different �t . Pegasos and Norma are the main two SGD algo-
rithms [22, 23]. �t of the former is C / t, while the latter is
�∕

√
t (� is a constant). Here we choose Pegasos because it is

a improved SGD method [23]. ∇wPt(wt) is the sub-gradient
of the objective function Pt(w) , that is defined on the latest
example (xt, yt) . That is,

Therefore Eq. 5 can be written as

where

K(x, x�) = e
−

||x−x� ||2
2�2 .

(5)wt+1 ← wt − �t∇wPt(wt),

(6)Pt(w) =
1

2
wTw + C ∗ L(w, xt, yt).

(7)wt+1 ← (1 − �t)wt + �txt,

From Eq. 8, we can know that if |wTxi − yi| ≤ � , �t = 0 . Then
the sample (xt, yt) is useless to the output and can therefore
be ignored.

3.2 Kernelized SGD for SVR

The SGD algorithm can be easily kernelized combined with
kernels to train nonlinear SVR models. When introducing a
non-linear function Φ that maps x from the input to the feature
space and replacing x with Φ(x) , wt can be described as

where

After kernelization, the Expression 7 of the weight w is con-
verted to the following:

According to above equation of � , the sample can be ignored
if the value of � is zero. Therefore the optimization problem
of kernel SVR can be described by either a weight vector w
or a set of � and samples. We use pseudo-code to show the
process of training the non-linear SVR in Algorithm 1. In
the algorithm, Gaussian kernel is used. We get the value of
� in different cases (line 8 to 13 of Algorithm 1). Then we
update the value of � continually, finally output the optimal
function.

(8)𝛽t ←

⎧
⎪⎨⎪⎩

0 if �wTxt − yt� ≤ 𝜀

−C if wTxt − yt > 𝜀

C if wTxt − yt < −𝜀 .

wt =

t∑
j=1

�jΦ(xj),

�j = �j

t∏
k=j+1

(1 − �k).

(9)wt+1 ← (1 − �t)wt + �tΦ(xt).

1532 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

Algorithm 1 SGD for kernel SVR.
1:Input: samplesS = {xi, yi}, xi ∈ Rn, yi ∈ R, i = 1, 2, · · · , l, kernel k,
penalty factor C, learning rate η, cycle index Epoch, SVs set Ib, #SVs b.
2:Initialize: b = 0,Ib = {}.
3:for epochi = 1,· · ·,Epoch do
4: for i=1,2,· · ·,l do
5: t = (epochi− 1) ∗ l + i; l is the number of samples.
6: receive (xt, yt) = (xm, ym), m is randomly determined.
7: if t == 1
8: b = b+ 1, θ1 = β1 = 1, Ib = Ib xt;
9: else
10: if k(xt, Ib)θj − yt > ε
11: b = b+ 1,βb = C,Ib = Ib xt,

12: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

13: end if
14: if k(xt, Ib)θj − yt < −ε
15: b = b+ 1,βb = −C,Ib = Ib xt,

16: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

17: end if
18: end if
19: end for
20:end for

21:Output:ft+1(x) =
b

i=1
k(Ib, x)θi. Ib = {SV1, SV2, . . . , SVb}.

3.3 Budgeted maintenance strategies

In this subsection, we employ a budget maintenance strategy
to solve non-linear SVR models. The strategy predefines a
fixed budget B, which means that the number of SVs can’t
exceed B during iterations. When the number of SVs exceeds
B, the strategy will execute a budget maintenance step. Gen-
erally there are three main budget maintenance strategies:
merging, projection, and removal. According to the perfor-
mance of kinds of strategies in the paper [10], we choose to
combine SGD method with a merging strategy. Then the pro-
cess of employing the merging strategy to SVR is described.

The goal of budgeted strategy is to minimize the averaged
gradient error represented by Ē as paper [10]. The goal is solved
by minimizing the current gradient error ‖Et‖ at each round
according to the theorem defined in the original paper [10].
Define the gradient error Et =

Δt

�t
 and �t is the learning rate.

Therefore we finally solve the following objective function:

where ‖△t ‖ is the weight degradation. In the following, we
address Eq. 10 using the merging strategy which can merge
two SVs to a newly created one. First, for the current weight,

(10)min‖△t ‖2,

we suppose to merge Φ(xm) Φ(xn) to a new one M, then M
is represented by

assuming that �m + �n ≠ 0 . In order to maintain the weight
unchanged, the coefficient of M is set to �m + �n . In order to
get M, this problem is turned into another one which find an
input vector z whose image Φ(z) is at the minimum distance
from the M′s [10]. Then the objective function is converted
to the following:

In this paper, the Gaussian kernel is used in the experi-
ments. It is a radial kernel, so the kernel can be expressed
as k(x, x�) = k̃(‖x − x�‖2) . k(x, x�) ≤ 1 , k(x, x) = 1 . With this
property, Eq. 11 can be written as:

Then the Eq. 12 can be reduced to:

M =
�mΦ(xm) + �nΦ(xn)

(�m + �n)
,

(11)
min
z

‖M − Φ(z)‖2
= min

z

�
MTM + Φ(z)TΦ(z) − 2MTΦ(z)

�
.

(12)min
z

(
2 − 2MTΦ(z)

)
.

1533International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

Next we take the directive of 13 with respect to z,

Then the formula of z simplified by h is obtained:

where h =
𝛼mk̃

�(‖xm−z‖2)
𝛼mk̃

�(‖xm−z‖2)+𝛼nk̃�(‖xn−z‖2) , and k̃�(x) is the first deriva-

tive of k̃ . After expressing z, we take Eq. 14 into Eq. 13, then
the objective function can be simplified to find the optimal h:

(13)

max
z

f (z) = max
z

MTΦ(z)

= (
𝛼mΦ(xm)+𝛼nΦ(xn)

(𝛼m+𝛼n)
)TΦ(z)

=
1

𝛼m+𝛼n
((𝛼mΦ(xm)

TΦ(z) + (𝛼nΦ(xn)
TΦ(z))

=
1

𝛼m+𝛼n
(𝛼mk̃(‖xm − z‖2) + 𝛼nk̃(‖xn − z‖2)),

∇zf (z) = 0.

(14)z = hxm + (1 − h)xn,

max
h

(
�m

�m + �n
k1−h(xm, xn) +

�n

�m + �n
kh(xm, xn)

)
,

where kh(x, x�) = k(hx, hx�) . Now we have transformed the
objective function into the search for the optimal h. Learning
from the methods of [10], we use the golden search method
to find it. Then the optimal z can be obtained from Eq. 14.

After getting the optimal z, the original objective func-
tion to be solved as follows:

There is still a problem how to choose what pair of SVs to
merge. To reduce the computational cost, we firstly compute
the smallest value of ‖�m‖2 as one of pair, then we choose
another one through a loop of SVs. After finishing these
series of work, the algorithm’s framework of BSGD is listed
in Algorithm 2. At the beginning, a budget B is predefined
to bound the number of SVs and a parameter b is defined to
record the number of current SVs. In the iteration, when b
exceeds B, the budgeted strategy is executed.

(15)‖△t ‖2 ≡ min ‖�mΦ(xm) + �nΦ(xn) − �zΦ(xz)‖2.

Algorithm 2 BSGD for kernel SVR.
1:Input: samplesS = {xi, yi}, xi ∈ Rn, yi ∈ R, i = 1, 2, · · · , l, kernel k,
penalty factor C, learning rate η, cycle index Epoch, SVs set Ib, #SVs b,
Budget B.
2:Initialize: b = 0,Ib = {}.
3:for epochi = 1,· · ·,Epoch do
4: for i=1,2,· · ·,l do
5: t = (epochi− 1) ∗ l + i; l is the number of samples.
6: receive (xt, yt) = (xm, ym), m is randomly determined.
7: if t == 1
8: b = b+ 1, θ1 = β1 = 1, Ib = Ib xt;
9: else
10: if k(xt, Ib)θj − yt > ε
11: b = b+ 1,βb = C,Ib = Ib xt,

12: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

13: end if
14: if k(xt, Ib)θj − yt < −ε
15: b = b+ 1,βb = −C,Ib = Ib xt,

16: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

17: end if
18: if b > B
19: wt+1 ← wt+1 −∆t;//∆t is expressed as Equation 15.
20: b = b− 1;
21: end if
22: end if
23: end for
24:end for

25:Output:ft+1(x) =
b

i=1
k(Ib, x)θi. Ib = {SV1, SV2, . . . , SVb}.

1534 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

4 Experiments

In this section, we evaluate the BSGD method with a merg-
ing strategy and compare it to related algorithms including
original SGD method [23] and LIBSVM [24] on 9 datasets.

4.1 Experimental settings

We select total 9 datasets in our experiments, and all expect
3 Wind-speed datasets are publicly available at LIBSVM or
UCI datasets. We preprocess the datasets as follows. Firstly,
all features and target values of datasets are normalized into
[0, 1] excepting 3 Wind-speed datasets. Secondly, in order
to ensure the experiments for large-scale datasets, datasets
Cadata and CASP are repeated for 10 times. Cpusmall and
Space_ga are repeated for 100 times. The descriptions of
these datasets including the numbers of features, training
and test data are listed in Table 1.

Besides, the selection of optimal parameters is accom-
plished through a grid search conducted on each param-
eter. For the non-linear SVR, RBF kernel is used in the
algorithms. SVR with the SGD or BSGD method has a

cross loop of regularization C = [10−4, 10−3,… , 104] ,
RBF ke r ne l w id t h � = [10−4, 10−3,… , 104] and
� = [2−10, 2−9,… , 20] . While LIBSVM has a cross loop of
penalty_C = [2−2, 2−1,… , 26] , � = [2−10, 2−9,… , 22] and
RBF kernel width � = [10−4, 10−3,… , 104] . Table 2 lists
the optimal parameter values.

All experiments are conducted on a 8G RAM 3.6 GHz
Intel core. Our proposed algorithms are implemented in
MATLAB 2013B.

4.2 Experimental results and analysis

In this subsection, the performance of these algorithms on
large-scale datasets described above are listed. Mean squared
error (MSE), R-square, training time, test time and the num-
ber of SVs are 5 indexes of evaluating the proposed algo-
rithms. Tables 3, 4 and 5 details the performance of these
algorithms on different datasets. In the tables, numbers in
brackets denote the number of SVs and the test time created
by evaluating each algorithm. The best MSE, R-square, the
shortest training time and test time are indicated in bold.

Then Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the accuracy,
training time, test time and the number of SVs of each algo-
rithms on all datasets change with the increase of sample
numbers. The algorithms are represented by the line with
different shapes and colors. From Figs. 1, 2, 3, 4, 5, 6, 7, 8
and 9, we know that if the size of dataset is small, MSE is
high, and the training time and test time of the BSGD meth-
ods are not significantly shorter than those of libsvm. This
shows that the BSGD methods are more suitable for large
datasets compared with libsvm.

As is shown in tables and figures, obviously the BSGD
algorithm has achieved competent accuracy with signifi-
cantly improved computational efficiency. Pegasos and LIB-
SVM have an advantage in accuracy owing to their large
number of SVs in SVM modeling, thus resulting a high com-
putational cost. For the two budget methods, we sacrifice a
little accuracy to achieve a great improvement in efficiency.

Table 1 Properties of different datasets

Note that these datasets are sorted according to the number of
instances that varies from 3107 to 521,280

Data #Instances Training size Testing size #Features

Space_ga 3107 250,000 607 6
Cpusmall 8192 600,000 2192 12
TFIDF-2006 16,087 16,087 3308 150,360
Cadata 20,640 180,000 2640 8
CASP 45,730 400,000 5730 9
Wind-ningxia 51,840 450,000 6840 24
Wind-farm 246,360 246,360 26,360 6
MSD 515,345 463,715 51,630 90
Wind-saihanba 521,280 521,280 60,000 12

Table 2 The optimal parameters
of different algorithms

Datasets SVR_SGD/BSGD(RBF) LIBSVM(RBF)

� C � � C �

Space_ga 2−3 101 10−1 2−3 21 10−2

Cpusmall 2−4 102 10−1 2−4 21 10−1

TFIDF-2006 2−1 101 100 2−6 26 100

Cadata 2−4 103 10−1 2−4 21 100

CASP 2−3 103 10−2 2−3 26 10−1

Wind-ningxia 2−1 10−2 10−4 2−5 23 10−4

Wind-farm 2−1 103 102 2−3 23 10−3

MSD 2−4 101 10−1 2−4 25 10−1

Wind-saihanba 2−6 102 102 2−4 23 10−4

1535International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

For the training time, the proposed BSGD method is multi-
ple times even dozens of times faster than non-budget algo-
rithms. For the test time, the proposed BSGD method is
dozens of times even hundreds of times faster than others.
Comparing with the traditional methods in which the num-
ber of SVs increases dramatically, we use a budget method
to control the number of SVs at a fixed value. Besides, with

Table 3 Testing MSE and
the number of SVs using the
different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIBSVM classical support vector regression
method, SGD stochastic gradient descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are indicated in bold

Datasets SVR_SGD (Pegasos) SVR_BSGD B = 500 SVR_BSGD B = 200 LIBSVM
MSE (#SVs)

Space_ga 0.0023 (4749) 0.0023 (500) 0.0024 (200) 0.0018 (3685)
Cpusmall 0.0022 (5938) 0.0022 (500) 0.0024 (200) 0.0023 (4314)
TFIDF-2006 0.1403 (1878) 0.1532 (500) 0.1540 (200) 0.1403 (11,410)
Cadata 0.0138 (61,692) 0.0140 (500) 0.0142 (200) 0.0140 (51871)
CASP 0.0432 (218,649) 0.0452 (500) 0.0486 (200) 0.0424 (206,490)
Wind-ningxia 0.4131 (127,467) 0.4883 (500) 0.5289 (200) 0.3036 (353,426)
Wind-farm 4.2212 (183,413) 4.2485 (500) 4.2641 (200) 3.9364 (232,965)
MSD 0.0153 (924) 0.0153 (500) 0.0153 (200) 0.0111 (111,601)
Wind-saihanba 0.8557 (256,773) 0.8606 (500) 0.8626 (200) 0.8352 (413,745)

Table 4 Training time (s) and test time (s) using the different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIBSVM classical support vector regression method, SGD stochastic gradient
descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are indicated in bold

Datasets SVR_SGD (Pegasos) SVR_BSGD B = 500 SVR_BSGD B = 200 LIBSVM
Trainging time (testing time)

Space_ga 24.88 (0.0821) 17.31 (0.0078) 11.03 (0.0017) 33.28 (0.0431)
Cpusmall 109.11 (0.2917) 43.58 (0.0252) 27.90 (0.0098) 334.76 (0.3034)
TFIDF-2006 1658.66 (5.8231) 1411.99 (2.5539) 1015.13 (1.0586) 1611.85 (302.4381)
Cadata 417.11 (2.9933) 146.15 (0.0254) 66.97 (0.0102) 817.01 (3.0857)
CASP 4735.20 (30.7338) 547.14 (0.0528) 304.88 (0.0274) 21121.77 (37.1780)
Wind-ningxia 7539.24 (16.3556) 342.73 (0.0660) 168.00 (0.0239) 12968.19 (122.7013)
Wind-farm 1722.33 (61.1324) 540.45 (0.2331) 218.78 (0.0723) 2452.69 (73.4664)
MSD 62.48 (0.9606) 56.90 (0.6189) 31.32 (0.2279) 15294.16 (751.3881)
Wind-saihanba 8421.00 (300.0160) 696.58 (0.5143) 340.07 (0.1834) 19608.94 (932.5680)

Table 5 R-square of different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIB-
SVM classical support vector regression method, SGD stochastic gra-
dient descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are
indicated in bold

Datasets SVR_SGD
(Pegasos)

SVR_
BSGD B =
500

SVR_
BSGD B =
200

LIBSVM

R-square

Space_ga 0.3723 0.3723 0.3451 0.5088
Cpusmall 0.9325 0.9325 0.9263 0.9294
TFIDF-2006 0.5147 0.4701 0.4673 0.5147
Cadata 0.7780 0.7748 0.7715 0.7748
CASP 0.4931 0.4697 0.4298 0.5025
Wind-ningxia 0.9572 0.9495 0.9452 0.9686
Wind-farm 0.8547 0.8538 0.8532 0.8645
MSD 0.0377 0.0377 0.0377 0.3091
Wind-saihanba 0.9472 0.9469 0.9468 0.9485

Table 6 Complexities on different algorithms

In the table, B is the pre-defined budget equal to the number of SVs,
and #SVs is the number of SVs in models, l is the number of samples.
As reference [10], update time listing in the table includes both model
update time and budget maintenance time and space corresponds
to space needed to store the model and perform model update and
budget maintenance

Algorithms Update time Space

BSGD + merging O(B) O(B2)

SVR_SGD O(#SVs) O(l2)

1536 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

the increase of training sample numbers, the MSE has a
tendency to decrease. Of course the training time and test
time will increase gradually. However, the training time
and test time of the BSGD methods increase slower than

non-budget methods. Especially for test time, it increases
slowly, even there is almost no increase in the BSGD meth-
ods. This proves the efficiency and effectiveness of our pro-
posed BSGD method.

0 0.5 1 1.5 2 2.5

x 10
5

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15

20

25

30

35

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

0

0.02

0.04

0.06

0.08

0.1

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

0

1000

2000

3000

4000

5000

Length of data stream
#S

Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 1 MSE, training time, test time and SVs of Space_ga

0 1 2 3 4 5 6

x 10
5

2

2.5

3

3.5
x 10

−3

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

0

50

100

150

200

250

300

350

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

0

1000

2000

3000

4000

5000

6000

Length of data stream

#S
Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 2 MSE, training time, test time and SVs of Cpusmall

1537International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

Finally, we present the MSE and training time of SVR
with BSGD method on CASP dataset with a increase of
budget size in Fig. 10. It shows that with the increase of
budget size, the MSEs have the tendency to decrease, and

the training times increase gradually with the increase of
budget sizes. Tables 3 and 4 also show the results of the
BSGD algorithm with two budgets including 200 and 500.
With the decrease of budget size, the accuracy and training

0 0.5 1 1.5 2

x 10
4

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2

x 10
4

10
2

10
3

10
4

10
5

Length of data stream
#S

Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 3 MSE, training time, test time and SVs of TFIDF-2006

0 0.5 1 1.5 2 2.5

x 10
5

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

0

200

400

600

800

1000

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

10
2

10
3

10
4

10
5

10
6

Length of data stream

#S
Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 4 MSE, training time, test time and SVs of Cadata

1538 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

0 1 2 3 4

x 10
5

0.04

0.045

0.05

0.055

0.06

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4

x 10
5

10
1

10
2

10
3

10
4

10
5

Length of data stream

Tr
ain

ing
 tim

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4

x 10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4

x 10
5

10
2

10
3

10
4

10
5

10
6

10
7

Length of data stream
#S

Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 5 MSE, training time, test time and SVs of CASP

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

10
1

10
2

10
3

10
4

10
5

Length of data stream

Tr
ain

ing
 tim

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

10
−2

10
0

10
2

10
4

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

10
2

10
3

10
4

10
5

10
6

10
7

Length of data stream

#S
Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 6 MSE, training time, test time and SVs of Wind-ningxia

1539International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

0 0.5 1 1.5 2 2.5

x 10
5

3.9

4

4.1

4.2

4.3

4.4

4.5

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

0

500

1000

1500

2000

2500

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 0.5 1 1.5 2 2.5

x 10
5

10
2

10
3

10
4

10
5

10
6

10
7

Length of data stream
#S

Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 7 MSE, training time, test time and SVs of Wind-speed

0 1 2 3 4 5

x 10
5

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

0

2000

4000

6000

8000

10000

12000

14000

16000

Length of data stream

Tr
ai

ni
ng

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

10
−2

10
0

10
2

10
4

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5

x 10
5

10
2

10
4

10
6

Length of data stream

#S
Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 8 MSE, training time, test time and SVs of MSD

1540 International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

time decrease gradually. So we can balance accuracy and
efficiency through regulating the size of budget. As for how
to choose suitable budget value, normally we can choose the
rough budget value on when the precision increases rela-
tively slow. However for different datasets, the budget value
can be choosed depending on the preference on efficiency
or accuracy.

Table 6 shows the update time and space of different
methods. We can know that our method has constant space
and constant time complexity per update, which is O(B).
However, time and space complexity of SGD method is
growing with the number of SVs and samples, respectively.
Therefore, for large datasets, the complexity of SGD will
become large while our method is only related the prede-
fined number B.

4.3 Experimental summary

In this subsection, we summarize the conclusions obtained
in our experiments.

1. Our proposed non-linear SVR with the BSGD method
can solve the large-scale non-linear regression problems

effectively, and avoid the huge time cost created by the
traditional methods.

2. Through regulating the size of budget, we can balance
accuracy and efficiency of the SVR models when deal-
ing with non-linear regression problems.

5 Conclusions

In this paper, we propose a BSGD method to slove the
large-scale non-linear SVR problems. It extends the SGD
method to the optimization process of SVR, and combine
with a budget method to control the number of SVs to
overcome the curse of kernelization. Our empirical results
on different large-scale datases demonstrate that the pro-
posed SVR with the BSGD method can solve the large-
scale non-linear regression problems well. It can achieve
competent accuracy with significantly improved compu-
tational efficiency. Besides, through controlling the size
of budget, we can balance the accuracy and efficiency of
non-linear regression tasks.

0 1 2 3 4 5 6

x 10
5

0.8

0.9

1

1.1

1.2

1.3

Length of data stream

M
SE

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

10
1

10
2

10
3

10
4

10
5

Length of data stream

Tr
ain

ing
 tim

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

10
0

10
2

10
4

Length of data stream

Te
st

 ti
m

e
(s

)

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

0 1 2 3 4 5 6

x 10
5

10
2

10
3

10
4

10
5

10
6

10
7

Length of data stream
#S

Vs

nonlinear SGD
BSGD (B = 200)
BSGD (B = 500)
nonlinear LIBSVM

Fig. 9 MSE, training time, test time and SVs of Wind-saihanba

1541International Journal of Machine Learning and Cybernetics (2019) 10:1529–1541

1 3

Acknowledgements This work is supported by the National Natural
Science Foundation of China under Grant Nos. 61432011, U1435212,
and 61105054. This article is also supported by Commission for
Collaborating Research Program, Key Laboratory of Solar Activity,
National Astronomical Observatories, Chinese Academy of Sciences
with KLSA201403.

References

 1. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm
for optimal margin classifiers. In: Proceedings of the fifth annual
workshop on Computational learning theory, ACM, pp 144–152

 2. Brown JD, Summers MF, Johnson BA (2015) Prediction of hydro-
gen and carbon chemical shifts from rna using database mining
and support vector regression. J Biomol NMR 63(1):1–14

 3. Chen J, Xue X, Ha M, Yu D, Ma L (2014) Support vector regres-
sion method for wind speed prediction incorporating probability
prior knowledge. Math Probl Eng 2014(2014):1–10

 4. Osuna E, Freund R, Girosi F (1997) Training support vector
machines: an application to face detection. In: Computer Vision
and Pattern Recognition, 1997. Proceedings, 1997 IEEE Com-
puter Society Conference on 1997, pp 130–136

 5. Ho CH, Lin CJ (2012) Large-scale linear support vector regres-
sion. J Mach Learn Res 13(1):3323–3348

 6. Lin CJ, Weng RC, Keerthi SS (2007) Trust region newton method
for large-scale logistic regression. J Mach Learn Res 9(2):561–568

 7. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S
(2008) A dual coordinate descent method for large-scale linear
SVM. In: ICML, pp 1369–1398

 8. Xie X, Chen C, Chen Z (2015) Mini-batch quasi-newton opti-
mization for large scale linear support vector regression. In:
International Conference on Mechatronics, Materials, Chemis-
try and Computer Engineering

 9. Wang Y, Ou G, Pang W, Huang L, Coghill GM (2016) e-distance
weighted support vector regression. CoRR. arXiv :1607.06657

 10. Wang Z, Crammer K, Vucetic S (2012) Breaking the curse of
kernelization: budgeted stochastic gradient descent for large-
scale SVM training. J Mach Learn Res 13(1):3103–3131

 11. Zheng S (2015) A fast algorithm for training support vector
regression via smoothed primal function minimization. Int J
Mach Learn Cybern 6(1):1–12

 12. Lu J, Hoi SC, Wang J, Zhao P, Liu Z-Y (2016) Large scale
online kernel learning. J Mach Learn Res 17(47):1–43

 13. Crammer K, Kandola J, Singer Y (2003) Online classification
on a budget. Adv Neural Inf Process Syst 40(2):225–232

 14. Cavallanti G, Cesa-Bianchi N, Gentile C (2006) Tracking the
best hyperplane with a simple budget perceptron. Mach Learn
69(2–3):143–167

 15. Dekel O, Shalev-Shwartz S, Singer Y (2008) The forgetron:
a kernel-based perceptron on a budget. SIAM J Comput
37(5):1342–1372

 16. Orabona F, Keshet J, Caputo B (2009) Bounded kernel-based
online learning. J Mach Learn Res 10(6):2643–2666

 17. Lvesque JC (2013) Ensembles of budgeted kernel support vec-
tor machines for parallel large scale learning. In: NIPS 2013
Workshop on Big Learning: Advances in Algorithms and Data
Management

 18. Smola AJ, Scholkopf B (2004) A tutorial on support vector
regression. Stat Comput 14(3):199–222

 19. Cristianini N, Scholkopf B (2002) Support vector machines and
kernel methods: the new generation of learning machines. Ai
Mag 23(3):31–41

 20. Bordes A, Bottou L, Gallinari P (2009) Sgd-qn: careful
quasi-newton stochastic gradient descent. J Mach Learn Res
10(3):1737–1754

 21. Zhu ZA, Chen W, Wang G, Zhu C, Chen Z (2009) P-packSVM:
Parallel Primal grAdient desCent Kernel SVM. In: IEEE 13th
International Conference on Data Mining, pp 677–686

 22. Kivinen J, Smola AJ, Williamson RC (2004) Online learning with
kernels. IEEE Trans Signal Process 52:2165–2176

 23. Shalev-Shwartz S, Singer Y, Srebro N, Cotter A (2007), Pegasos:
primal estimated sub-gradient solver for SVM. In: Machine Learn-
ing, Proceedings of the Twenty-Fourth International Conference,
pp 3–30

 24. Chang CC, Lin CJ (2011) Libsvm: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):389–396

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

10
2

10
3

10
4

10
5

10
6

0.042

0.044

0.046

0.048

0.05

0.052

0.054

Budget Size

M
SE

BSGD
SGD

0 200 400 600 800 1000
100

200

300

400

500

600

700

800

900

1000

1100

Budget Size

Tr
ai

ni
ng

 ti
m

e
(s

)

Fig. 10 MSE and training time of CASP with different budget size

http://arxiv.org/abs/1607.06657

	Large-scale support vector regression with budgeted stochastic gradient descent
	Abstract
	1 Introduction
	2 Support vector regression (SVR)
	3 Budgeted stochastic gradient descent for SVR
	3.1 Stochastic gradient descent for SVR
	3.2 Kernelized SGD for SVR
	3.3 Budgeted maintenance strategies

	4 Experiments
	4.1 Experimental settings
	4.2 Experimental results and analysis
	4.3 Experimental summary

	5 Conclusions
	Acknowledgements
	References

