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Abstract
Support vector regression (SVR) is a widely used regression technique for its competent performance. However, non-linear 
SVR is time consuming for large-scale tasks due to the dimension curse of kernelization. Recently, a budgeted stochastic 
gradient descent (BSGD) method has been developed to train large-scale kernelized SVC. In this paper, we extend the BSGD 
method to non-linear regression tasks. According to the performance of different budget maintenance strategies, we com-
bine the stochastic gradient descent (SGD) method with the merging strategy. Experimental results on real-world datasets 
show that the proposed kernelized SVR with BSGD can achieve competent accuracy, with good computational efficiency 
compared to some state-of-the-art algorithms.
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1 Introduction

SVR is a widely used regression technique which is extended 
from support vector classification (SVC) by Boser et al. [1]. 
SVR has received much attention due to its competent per-
formance in various fields, such as financial prediction, wind 
speed prediction, etc [2–4]. SVR is used to deal with small 
sample problems originally, and has obtained good results. 
However, with the massive increase of data quantities in last 
decades, how to train SVR models efficiently on large-scale 
datasets has become a hot topic.

Linear SVR has been studied firstly for big data. There 
have been many improved algorithms for large-scale lin-
ear SVR. In 2012, Chia-Hua Ho and Chih-Jen Lin extended 
state-of-the-art training methods for linear SVC to linear 
SVR [5]. There were mainly two types of methods for 
large-scale linear SVC. One was a Newton-type method 
for the primal-form [6]. The other was a coordinate descent 
approach for dual form [7]. Both of the two methods were 
extended to linear SVR in their paper. Similarly in 2015, Xie 
et al. [8] proposed a mini-batch quasi-Newton optimization 
algorithm to speed up the training process of linear SVR. 

The proposed method combined the first and second order 
gradient information estimated by a small set of training 
data with the the framework of the quasi-Newton algorithm. 
Very recently in 2016, Wang et al. [9] developed a novel 
e-Distance Weighted SVR (e-DWSVR) to address the limi-
tations of original SVR and make it scalable to large-scale 
SVR through dual coordinate descent and averaged SGD 
strategies.

Although a lot of these algorithms focus on linear SVR 
problems, large-scale kernel SVR learning is less explored. 
The main reason is that training large-scale kernelized 
SVR faces the same challenge as kernelized SVC called 
the curse of kernelization [10]. There is a growing set of 
support vectors (SVs) in the iteration of optimization, and 
results in a non-linear growth in both model update time 
and prediction time with data size. Some algorithms have 
been proposed to solve this problem. In 2015, Zheng [11] 
proposed a smoothed objective function in the primal form 
to improve the computational efficiency combined with a 
conjugate gradient algorithm. But this paper didn’t use the 
proposed method on large-scale data. Recently, Lu et al. [12] 
developed the kernel functional approximation techniques to 
solve large-scale kernel regression problems. The techniques 
including FOGD and NOGD were used to approximate a 
kernel function or kernel matrix, which transformed the ker-
nel regression problem into an approximate linear regression 
problem.
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In this paper, we intend to use the famous budgeted 
SGD (BSGD) algorithm to solve large-scale non-linear 
SVR that was firstly proposed to solve large-scale ker-
nelized SVC [10]. BSGD algorithm maintains a fixed 
number of SVs in the model, and updates them during 
the SGD training iterations. This algorithm is based on 
SGD, which is a recently popularized approach that can be 
efficient to deal with very large data or with data streams. 
Before using SGD, the objective of SVM is cast as an 
unconstrained optimization problem. Then this algorithm 
proceeds by iteratively receiving a labeled example and 
updating the model weights through SGD over the cor-
responding instantaneous objective function. Besides, the 
SGD method is combined with some budgeted mainte-
nance strategies to control the number of SVs. Actually 
budgeted online SVM algorithms were proposed by Cram-
mer et al. [13]. There were three main budget maintenance 
strategies: removal, projection and merging. In the case 
of removal, there were some different removal methods. 
In 2006, Cavallanti et  al. [14] proposed a randomized 
budget perception (RBP) that removed a random SV. RBP 
achieved satisfactory performance though it was so simple. 
The method Forgetron was proposed to remove the oldest 
SV which was created when the quality of perception was 
the lowest [15], and its removal was considered to be the 
least hurtful to the model. Another removal strategy used 
by Wang et al. [10] was to remove the smallest SV with the 
smallest norm in order to achieve the goal of minimizing 
the averaged gradient error. Before projection, most pre-
vious work has focused on removing SVs. Orabona et al. 
[16] proposed a Projectron algorithm that projected the 
SV which would be removed in removal methods onto 
the other SVs in 2009. The projection was used to mini-
mize the model weight degradation caused by removing 
a SV. For merging strategy, two SVs were merged into a 
newly created one which has the information of these two 
SVs, with the weights remaining unchanged [10]. It also 
has been proved to be the best budgeted strategy. Further-
more, Levesque et al. [17] proposed a method to combine 
removal and merging budgeted kernel SVMs trained with 
SGD in 2013, comprehensive empirical results have dem-
onstrated the effectiveness of these algorithms. Therefore 
in this paper, we extend the BSGD algorithm for large-
scale kernelized SVM to SVR and then the new algorithm 
can deal with large-scale kernelized SVR learning.

The rest of this paper is organized as follows. In Sect. 2, 
the formulation of SVR is introduced. In Sect. 3, we intro-
duce the SGD method to linear and non-linear SVR. Then 
the BSGD method is introduced into kernel SVR for large-
scale datasets. In Sect. 4, experiments on some UCI and 

LIBSVM datasets are conducted to evaluate the efficiency 
of our proposed method. Section 5 concludes the work.

2  Support vector regression (SVR)

Given a set  of  t raining samples S =
{
xi, yi

}
 , 

xi ∈ Rn, yi ∈ R, i = 1, 2,… , l , where instance xi ∈ Rn is a n−
dimensional input vector, yi ∈ R are the corresponding target 
values and l is the number of samples. The goal of SVR is to 
find a function f(x) that can obtain targets yi for all the training 
data with high generalization performance [18]. As for the 
linear case, f(x) is described as follows (we have omitted the 
bias term b because it hardly affects the experimental perfor-
mance [5]),

where ⟨⋅, ⋅⟩ denotes the dot product. In order to obtain the 
function f, SVR solves the following regularized optimiza-
tion problems:

where L(w, xi, yi) = max(|wTxi − yi| − �, 0) is the epsilon-
insensitive loss function, the parameter C is the regulariza-
tion parameter and the parameter � is given so that the loss 
is zero if |wTxi − yi| ≤ �.

Furtherly, kernel functions are used in SVR to solve non-
linear problems [19]. The input data are mapped into a high 
dimensional feature space through a nonlinear function Φ 
and then x is replaced with Φ(x) , the optimization problem 
becomes as follows:

In order to solve this problem, we can use the dual problem 
of SVR interchangeably by employing the lagrange multipli-
ers method [5], then we can get

where � is defined as the difference between lagrange mul-
tipliers � and �∗ . Then the objective function f(x) becomes

(1)f (x) = ⟨w, x⟩,

(2)min
w

P(w) =
1

2
wTw +

C

l

l∑
i=1

L(w, xi, yi),

(3)min
w

P(w) =
1

2
wTw +

C

l

l∑
i=1

L(w,Φ(xi), yi).

(4)
w =

l∑
j=1

(�j − �∗
j
)Φ(xj)

=
l∑

j=1

�jΦ(xj),

f (x) = ⟨w,Φ(x)⟩ =
l�

i=1

�i⟨Φ(xi),Φ(x)⟩ =
l�

i=1

�iK(xi, x).
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After employing Lagrange multipliers method, we only need 
to compute ⟨Φ(xi),Φ(x)⟩ to get f(x). Gaussian kernel is one 
of the most used kernels. Its formula is as follows:

3  Budgeted stochastic gradient descent 
for SVR

In this section, we introduce the classical SGD algorithms to 
large-scale SVR firstly. Then the budget maintenance strate-
gies are introduced to combine with SGD for solving large-
scale kernelized SVR.

3.1  Stochastic gradient descent for SVR

SGD is an appealing algorithm which is widely used in the 
process of learning SVMs [20–23]. With SGD, the gradient is 
approximated by evaluating on training samples, over which 
the optimal model weight can be achieved with a small number 
of iterations. Therefore the SVM models with the SGD algo-
rithm are efficient. We introduce the SGD algorithm to SVR 
and show its details in the following.

SGD works iteratively. It starts with an initial value of the 
model weight w1 , and at t− th round it updates the current 
weight wt as

where �t is a learning rate. Different SGD algorithms have 
different �t . Pegasos and Norma are the main two SGD algo-
rithms [22, 23]. �t of the former is C / t, while the latter is 
�∕

√
t ( � is a constant). Here we choose Pegasos because it is 

a improved SGD method [23]. ∇wPt(wt) is the sub-gradient 
of the objective function Pt(w) , that is defined on the latest 
example (xt, yt) . That is,

Therefore Eq. 5 can be written as

where

K(x, x�) = e
−

||x−x� ||2
2�2 .

(5)wt+1 ← wt − �t∇wPt(wt),

(6)Pt(w) =
1

2
wTw + C ∗ L(w, xt, yt).

(7)wt+1 ← (1 − �t)wt + �txt,

From Eq. 8, we can know that if |wTxi − yi| ≤ � , �t = 0 . Then 
the sample (xt, yt) is useless to the output and can therefore 
be ignored.

3.2  Kernelized SGD for SVR

The SGD algorithm can be easily kernelized combined with 
kernels to train nonlinear SVR models. When introducing a 
non-linear function Φ that maps x from the input to the feature 
space and replacing x with Φ(x) , wt can be described as

where

After kernelization, the Expression 7 of the weight w is con-
verted to the following:

According to above equation of � , the sample can be ignored 
if the value of � is zero. Therefore the optimization problem 
of kernel SVR can be described by either a weight vector w 
or a set of � and samples. We use pseudo-code to show the 
process of training the non-linear SVR in Algorithm 1. In 
the algorithm, Gaussian kernel is used. We get the value of 
� in different cases (line 8 to 13 of Algorithm 1). Then we 
update the value of � continually, finally output the optimal 
function.

(8)𝛽t ←

⎧
⎪⎨⎪⎩

0 if �wTxt − yt� ≤ 𝜀

−C if wTxt − yt > 𝜀

C if wTxt − yt < −𝜀 .

wt =

t∑
j=1

�jΦ(xj),

�j = �j

t∏
k=j+1

(1 − �k).

(9)wt+1 ← (1 − �t)wt + �tΦ(xt).
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Algorithm 1 SGD for kernel SVR.
1:Input: samplesS = {xi, yi}, xi ∈ Rn, yi ∈ R, i = 1, 2, · · · , l, kernel k,
penalty factor C, learning rate η, cycle index Epoch, SVs set Ib, #SVs b.
2:Initialize: b = 0,Ib = {}.
3:for epochi = 1,· · ·,Epoch do
4: for i=1,2,· · ·,l do
5: t = (epochi− 1) ∗ l + i; l is the number of samples.
6: receive (xt, yt) = (xm, ym), m is randomly determined.
7: if t == 1
8: b = b+ 1, θ1 = β1 = 1, Ib = Ib xt;
9: else
10: if k(xt, Ib)θj − yt > ε
11: b = b+ 1,βb = C,Ib = Ib xt,

12: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

13: end if
14: if k(xt, Ib)θj − yt < −ε
15: b = b+ 1,βb = −C,Ib = Ib xt,

16: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

17: end if
18: end if
19: end for
20:end for

21:Output:ft+1(x) =
b

i=1
k(Ib, x)θi. Ib = {SV1, SV2, . . . , SVb}.

3.3  Budgeted maintenance strategies

In this subsection, we employ a budget maintenance strategy 
to solve non-linear SVR models. The strategy predefines a 
fixed budget B, which means that the number of SVs can’t 
exceed B during iterations. When the number of SVs exceeds 
B, the strategy will execute a budget maintenance step. Gen-
erally there are three main budget maintenance strategies: 
merging, projection, and removal. According to the perfor-
mance of kinds of strategies in the paper [10], we choose to 
combine SGD method with a merging strategy. Then the pro-
cess of employing the merging strategy to SVR is described.

The goal of budgeted strategy is to minimize the averaged 
gradient error represented by Ē as paper [10]. The goal is solved 
by minimizing the current gradient error ‖Et‖ at each round 
according to the theorem defined in the original paper [10]. 
Define the gradient error Et =

Δt

�t
 and �t is the learning rate. 

Therefore we finally solve the following objective function:

where ‖△t ‖ is the weight degradation. In the following, we 
address Eq. 10 using the merging strategy which can merge 
two SVs to a newly created one. First, for the current weight, 

(10)min‖△t ‖2,

we suppose to merge Φ(xm) Φ(xn) to a new one M, then M 
is represented by

assuming that �m + �n ≠ 0 . In order to maintain the weight 
unchanged, the coefficient of M is set to �m + �n . In order to 
get M, this problem is turned into another one which find an 
input vector z whose image Φ(z) is at the minimum distance 
from the M′s [10]. Then the objective function is converted 
to the following:

In this paper, the Gaussian kernel is used in the experi-
ments. It is a radial kernel, so the kernel can be expressed 
as k(x, x�) = k̃(‖x − x�‖2) . k(x, x�) ≤ 1 , k(x, x) = 1 . With this 
property, Eq. 11 can be written as:

Then the Eq. 12 can be reduced to:

M =
�mΦ(xm) + �nΦ(xn)

(�m + �n)
,

(11)
min
z

‖M − Φ(z)‖2
= min

z

�
MTM + Φ(z)TΦ(z) − 2MTΦ(z)

�
.

(12)min
z

(
2 − 2MTΦ(z)

)
.
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Next we take the directive of 13 with respect to z,

Then the formula of z simplified by h is obtained:

where h =
𝛼mk̃

�(‖xm−z‖2)
𝛼mk̃

�(‖xm−z‖2)+𝛼nk̃�(‖xn−z‖2) , and k̃�(x) is the first deriva-

tive of k̃ . After expressing z, we take Eq. 14 into Eq. 13, then 
the objective function can be simplified to find the optimal h:

(13)

max
z

f (z) = max
z

MTΦ(z)

= (
𝛼mΦ(xm)+𝛼nΦ(xn)

(𝛼m+𝛼n)
)TΦ(z)

=
1

𝛼m+𝛼n
((𝛼mΦ(xm)

TΦ(z) + (𝛼nΦ(xn)
TΦ(z))

=
1

𝛼m+𝛼n
(𝛼mk̃(‖xm − z‖2) + 𝛼nk̃(‖xn − z‖2)),

∇zf (z) = 0.

(14)z = hxm + (1 − h)xn,

max
h

(
�m

�m + �n
k1−h(xm, xn) +

�n

�m + �n
kh(xm, xn)

)
,

where kh(x, x�) = k(hx, hx�) . Now we have transformed the 
objective function into the search for the optimal h. Learning 
from the methods of [10], we use the golden search method 
to find it. Then the optimal z can be obtained from Eq. 14.

After getting the optimal z, the original objective func-
tion to be solved as follows:

There is still a problem how to choose what pair of SVs to 
merge. To reduce the computational cost, we firstly compute 
the smallest value of ‖�m‖2 as one of pair, then we choose 
another one through a loop of SVs. After finishing these 
series of work, the algorithm’s framework of BSGD is listed 
in Algorithm 2. At the beginning, a budget B is predefined 
to bound the number of SVs and a parameter b is defined to 
record the number of current SVs. In the iteration, when b 
exceeds B, the budgeted strategy is executed.

(15)‖△t ‖2 ≡ min ‖�mΦ(xm) + �nΦ(xn) − �zΦ(xz)‖2.

Algorithm 2 BSGD for kernel SVR.
1:Input: samplesS = {xi, yi}, xi ∈ Rn, yi ∈ R, i = 1, 2, · · · , l, kernel k,
penalty factor C, learning rate η, cycle index Epoch, SVs set Ib, #SVs b,
Budget B.
2:Initialize: b = 0,Ib = {}.
3:for epochi = 1,· · ·,Epoch do
4: for i=1,2,· · ·,l do
5: t = (epochi− 1) ∗ l + i; l is the number of samples.
6: receive (xt, yt) = (xm, ym), m is randomly determined.
7: if t == 1
8: b = b+ 1, θ1 = β1 = 1, Ib = Ib xt;
9: else
10: if k(xt, Ib)θj − yt > ε
11: b = b+ 1,βb = C,Ib = Ib xt,

12: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

13: end if
14: if k(xt, Ib)θj − yt < −ε
15: b = b+ 1,βb = −C,Ib = Ib xt,

16: update θ = {θ1, θ2, · · · , θb}, where θj = βj

b

k=j+1
(1− ηk).

17: end if
18: if b > B
19: wt+1 ← wt+1 −∆t;//∆t is expressed as Equation 15.
20: b = b− 1;
21: end if
22: end if
23: end for
24:end for

25:Output:ft+1(x) =
b

i=1
k(Ib, x)θi. Ib = {SV1, SV2, . . . , SVb}.
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4  Experiments

In this section, we evaluate the BSGD method with a merg-
ing strategy and compare it to related algorithms including 
original SGD method [23] and LIBSVM [24] on 9 datasets.

4.1  Experimental settings

We select total 9 datasets in our experiments, and all expect 
3 Wind-speed datasets are publicly available at LIBSVM or 
UCI datasets. We preprocess the datasets as follows. Firstly, 
all features and target values of datasets are normalized into 
[0, 1] excepting 3 Wind-speed datasets. Secondly, in order 
to ensure the experiments for large-scale datasets, datasets 
Cadata and CASP are repeated for 10 times. Cpusmall and 
Space_ga are repeated for 100 times. The descriptions of 
these datasets including the numbers of features, training 
and test data are listed in Table 1.

Besides, the selection of optimal parameters is accom-
plished through a grid search conducted on each param-
eter. For the non-linear SVR, RBF kernel is used in the 
algorithms. SVR with the SGD or BSGD method has a 

cross loop of regularization C = [10−4, 10−3,… , 104] , 
RBF ke r ne l  w id t h  � = [10−4, 10−3,… , 104] and 
� = [2−10, 2−9,… , 20] . While LIBSVM has a cross loop of 
penalty_C = [2−2, 2−1,… , 26] , � = [2−10, 2−9,… , 22] and 
RBF kernel width � = [10−4, 10−3,… , 104] . Table 2 lists 
the optimal parameter values.

All experiments are conducted on a 8G RAM 3.6 GHz 
Intel core. Our proposed algorithms are implemented in 
MATLAB 2013B.

4.2  Experimental results and analysis

In this subsection, the performance of these algorithms on 
large-scale datasets described above are listed. Mean squared 
error (MSE), R-square, training time, test time and the num-
ber of SVs are 5 indexes of evaluating the proposed algo-
rithms. Tables 3, 4 and 5 details the performance of these 
algorithms on different datasets. In the tables, numbers in 
brackets denote the number of SVs and the test time created 
by evaluating each algorithm. The best MSE, R-square, the 
shortest training time and test time are indicated in bold.

Then Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the accuracy, 
training time, test time and the number of SVs of each algo-
rithms on all datasets change with the increase of sample 
numbers. The algorithms are represented by the line with 
different shapes and colors. From Figs. 1, 2, 3, 4, 5, 6, 7, 8 
and 9, we know that if the size of dataset is small, MSE is 
high, and the training time and test time of the BSGD meth-
ods are not significantly shorter than those of libsvm. This 
shows that the BSGD methods are more suitable for large 
datasets compared with libsvm.

As is shown in tables and figures, obviously the BSGD 
algorithm has achieved competent accuracy with signifi-
cantly improved computational efficiency. Pegasos and LIB-
SVM have an advantage in accuracy owing to their large 
number of SVs in SVM modeling, thus resulting a high com-
putational cost. For the two budget methods, we sacrifice a 
little accuracy to achieve a great improvement in efficiency. 

Table 1  Properties of different datasets

Note that these datasets are sorted according to the number of 
instances that varies from 3107 to 521,280

Data #Instances Training size Testing size #Features

Space_ga 3107 250,000 607 6
Cpusmall 8192 600,000 2192 12
TFIDF-2006 16,087 16,087 3308 150,360
Cadata 20,640 180,000 2640 8
CASP 45,730 400,000 5730 9
Wind-ningxia 51,840 450,000 6840 24
Wind-farm 246,360 246,360 26,360 6
MSD 515,345 463,715 51,630 90
Wind-saihanba 521,280 521,280 60,000 12

Table 2  The optimal parameters 
of different algorithms

Datasets SVR_SGD/BSGD(RBF) LIBSVM(RBF)

� C � � C �

Space_ga 2−3 101 10−1 2−3 21 10−2

Cpusmall 2−4 102 10−1 2−4 21 10−1

TFIDF-2006 2−1 101 100 2−6 26 100

Cadata 2−4 103 10−1 2−4 21 100

CASP 2−3 103 10−2 2−3 26 10−1

Wind-ningxia 2−1 10−2 10−4 2−5 23 10−4

Wind-farm 2−1 103 102 2−3 23 10−3

MSD 2−4 101 10−1 2−4 25 10−1

Wind-saihanba 2−6 102 102 2−4 23 10−4
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For the training time, the proposed BSGD method is multi-
ple times even dozens of times faster than non-budget algo-
rithms. For the test time, the proposed BSGD method is 
dozens of times even hundreds of times faster than others. 
Comparing with the traditional methods in which the num-
ber of SVs increases dramatically, we use a budget method 
to control the number of SVs at a fixed value. Besides, with 

Table 3  Testing MSE and 
the number of SVs using the 
different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIBSVM classical support vector regression 
method, SGD stochastic gradient descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are indicated in bold

Datasets SVR_SGD (Pegasos) SVR_BSGD B = 500 SVR_BSGD B = 200 LIBSVM
MSE (#SVs)

Space_ga 0.0023 (4749) 0.0023 (500) 0.0024 (200) 0.0018 (3685)
Cpusmall 0.0022 (5938) 0.0022 (500) 0.0024 (200) 0.0023 (4314)
TFIDF-2006 0.1403 (1878) 0.1532 (500) 0.1540 (200) 0.1403 (11,410)
Cadata 0.0138 (61,692) 0.0140 (500) 0.0142 (200) 0.0140 (51871)
CASP 0.0432 (218,649) 0.0452 (500) 0.0486 (200) 0.0424 (206,490)
Wind-ningxia 0.4131 (127,467) 0.4883 (500) 0.5289 (200) 0.3036 (353,426)
Wind-farm 4.2212 (183,413) 4.2485 (500) 4.2641 (200) 3.9364 (232,965)
MSD 0.0153 (924) 0.0153 (500) 0.0153 (200) 0.0111 (111,601)
Wind-saihanba 0.8557 (256,773) 0.8606 (500) 0.8626 (200) 0.8352 (413,745)

Table 4  Training time (s) and test time (s) using the different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIBSVM classical support vector regression method, SGD stochastic gradient 
descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are indicated in bold

Datasets SVR_SGD (Pegasos) SVR_BSGD B = 500 SVR_BSGD B = 200 LIBSVM
Trainging time (testing time)

Space_ga 24.88 (0.0821) 17.31 (0.0078) 11.03 (0.0017) 33.28 (0.0431)
Cpusmall 109.11 (0.2917) 43.58 (0.0252) 27.90 (0.0098) 334.76 (0.3034)
TFIDF-2006 1658.66 (5.8231) 1411.99 (2.5539) 1015.13 (1.0586) 1611.85 (302.4381)
Cadata 417.11 (2.9933) 146.15 (0.0254) 66.97 (0.0102) 817.01 (3.0857)
CASP 4735.20 (30.7338) 547.14 (0.0528) 304.88 (0.0274) 21121.77 (37.1780)
Wind-ningxia 7539.24 (16.3556) 342.73 (0.0660) 168.00 (0.0239) 12968.19 (122.7013)
Wind-farm 1722.33 (61.1324) 540.45 (0.2331) 218.78 (0.0723) 2452.69 (73.4664)
MSD 62.48 (0.9606) 56.90 (0.6189) 31.32 (0.2279) 15294.16 (751.3881)
Wind-saihanba 8421.00 (300.0160) 696.58 (0.5143) 340.07 (0.1834) 19608.94 (932.5680)

Table 5  R-square of different algorithms

B number of budgeted support vectors, BSGD budgeted SGD, LIB-
SVM classical support vector regression method, SGD stochastic gra-
dient descent, SVR support vector regression
The best MSE, R-square, the shortest training time and test time are 
indicated in bold

Datasets SVR_SGD 
(Pegasos)

SVR_
BSGD B = 
500

SVR_
BSGD B = 
200

LIBSVM

R-square

Space_ga 0.3723 0.3723 0.3451 0.5088
Cpusmall 0.9325 0.9325 0.9263 0.9294
TFIDF-2006 0.5147 0.4701 0.4673 0.5147
Cadata 0.7780 0.7748 0.7715 0.7748
CASP 0.4931 0.4697 0.4298 0.5025
Wind-ningxia 0.9572 0.9495 0.9452 0.9686
Wind-farm 0.8547 0.8538 0.8532 0.8645
MSD 0.0377 0.0377 0.0377 0.3091
Wind-saihanba 0.9472 0.9469 0.9468 0.9485

Table 6  Complexities on different algorithms

In the table, B is the pre-defined budget equal to the number of SVs, 
and #SVs is the number of SVs in models, l is the number of samples. 
As reference [10], update time listing in the table includes both model 
update time and budget maintenance time and space corresponds 
to space needed to store the model and perform model update and 
budget maintenance

Algorithms Update time Space

BSGD + merging O(B) O(B2)

SVR_SGD O(#SVs) O(l2)
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the increase of training sample numbers, the MSE has a 
tendency to decrease. Of course the training time and test 
time will increase gradually. However, the training time 
and test time of the BSGD methods increase slower than 

non-budget methods. Especially for test time, it increases 
slowly, even there is almost no increase in the BSGD meth-
ods. This proves the efficiency and effectiveness of our pro-
posed BSGD method.
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Fig. 1  MSE, training time, test time and SVs of Space_ga
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Fig. 2  MSE, training time, test time and SVs of Cpusmall
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Finally, we present the MSE and training time of SVR 
with BSGD method on CASP dataset with a increase of 
budget size in Fig. 10. It shows that with the increase of 
budget size, the MSEs have the tendency to decrease, and 

the training times increase gradually with the increase of 
budget sizes. Tables 3 and 4 also show the results of the 
BSGD algorithm with two budgets including 200 and 500. 
With the decrease of budget size, the accuracy and training 
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Fig. 3  MSE, training time, test time and SVs of TFIDF-2006
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Fig. 5  MSE, training time, test time and SVs of CASP
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Fig. 6  MSE, training time, test time and SVs of Wind-ningxia
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Fig. 8  MSE, training time, test time and SVs of MSD
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time decrease gradually. So we can balance accuracy and 
efficiency through regulating the size of budget. As for how 
to choose suitable budget value, normally we can choose the 
rough budget value on when the precision increases rela-
tively slow. However for different datasets, the budget value 
can be choosed depending on the preference on efficiency 
or accuracy.

Table 6 shows the update time and space of different 
methods. We can know that our method has constant space 
and constant time complexity per update, which is O(B). 
However, time and space complexity of SGD method is 
growing with the number of SVs and samples, respectively. 
Therefore, for large datasets, the complexity of SGD will 
become large while our method is only related the prede-
fined number B.

4.3  Experimental summary

In this subsection, we summarize the conclusions obtained 
in our experiments.

1. Our proposed non-linear SVR with the BSGD method 
can solve the large-scale non-linear regression problems 

effectively, and avoid the huge time cost created by the 
traditional methods.

2. Through regulating the size of budget, we can balance 
accuracy and efficiency of the SVR models when deal-
ing with non-linear regression problems.

5  Conclusions

In this paper, we propose a BSGD method to slove the 
large-scale non-linear SVR problems. It extends the SGD 
method to the optimization process of SVR, and combine 
with a budget method to control the number of SVs to 
overcome the curse of kernelization. Our empirical results 
on different large-scale datases demonstrate that the pro-
posed SVR with the BSGD method can solve the large-
scale non-linear regression problems well. It can achieve 
competent accuracy with significantly improved compu-
tational efficiency. Besides, through controlling the size 
of budget, we can balance the accuracy and efficiency of 
non-linear regression tasks.
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Fig. 9  MSE, training time, test time and SVs of Wind-saihanba
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Fig. 10  MSE and training time of CASP with different budget size
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