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Abstract
In this paper, a kind of modified teaching–learning-based optimization algorithm (MTLBO) is proposed to enhance the solu-
tion quality and accelerate the convergence speed of the conventional TLBO. Compared with TLBO, the MTLBO algorithm 
possesses different updating mechanisms of the individual solution. In teacher phase of the MTLBO, the students are divided 
into two groups according to the mean result of learners in all subjects. Moreover, the two groups present different updating 
strategies of the solution. In learner phase, the students are still divided into two groups, where the first group includes the top 
half of the students and the second group contains the remaining students. The first group members increase their knowledge 
through interaction among themselves and study independently. The second group members increase their marks relying on 
their teacher. According to the above-mentioned updating mechanisms, the MTLBO can provide a good balance between 
the exploratory and exploitative capabilities. Performance of the proposed MTLBO algorithm is evaluated by 23 uncon-
strained numerical functions and 28 CEC2017 benchmark functions. Compared with TLBO and other several state-of-the-art 
optimization algorithms, the results indicate that the MTLBO shows better solution quality and faster convergence speed.

Keywords Teaching–learning-based optimization · Modified teaching–learning-based optimization · Exploratory and 
exploitative capabilities · Unconstrained numerical functions · CEC2017

1 Introduction

Many real-life optimization problems possess complicated 
properties, such as multimodality, high dimensionality and 
non-differentiability, so that they are difficult to solve. Many 
experts and scholars have indicated that exact optimization 
techniques, such as steepest decent, dynamic programming 
and linear programming, failed to provide an optimal solu-
tion for optimization problems of these types [1, 2]. For 
instance, many traditional optimization methods require the 
gradient information of optimization problems so that they 
cannot approach nondifferentiable problems. Therefore, a 
great deal of efficient nature-inspired meta-heuristic opti-
mization techniques, which do not demand the gradient 

information of optimization problems, have been proposed 
to address these complex optimization problems.

During the last three decades, the research of meta-
heuristics intelligent optimization algorithm has become a 
research hotspot. Many state-of-the-art swarm optimization 
algorithms were proposed and developed in recent decades. 
Particle swarm optimization (PSO) [3] was proposed based 
on the foraging behavior of birds. Artificial bee colony [4] 
was proposed based on the foraging behavior of honey bees. 
Gravitational search algorithm (GSA) [5] was proposed 
based on the principle of gravitational force. Krill herds (KH) 
algorithm [6] was proposed based on the foraging behavior 
of krill herds. Social-spider optimization algorithm (SSO) 
[7] was proposed based on the cooperative behavior between 
the female spiders and the male spiders. Sine Cosine Algo-
rithm (SCA) [8] was proposed based on the sine and cosine 
functions. Teaching–learning-based optimization (TLBO) 
[9] algorithm was proposed based on the teaching–learning 
behavior of class. Moreover, these nature-inspired meta-heu-
ristic optimization methods have been proved that they are 
suitable to solve those complex function problems [4, 10, 11] 
and difficult real-life problems [12–15].
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Teaching–learning-based optimization algorithm (TLBO) 
is a sort of novel population-based optimization method, 
which is proposed to obtain global solutions of continuous 
non-linear functions or engineering optimization problems. 
It has several superior properties, such as less computational 
effort, high consistency and less setting parameters. The 
TLBO has been applied to a wide range of real-world opti-
mization problems, such as electrical engineering [16–19], 
manufacturing processes [20, 21] and economic load dispatch 
[22]. However, many researchers still proposed a large num-
ber of variants to improve the performance of TLBO algo-
rithm. In order to improve the solution quality and quicken 
the convergence speed of the TLBO, Li et al. [23] proposed 
a kind of ameliorated teaching learning based optimization 
algorithm. In [24], the elitism mechanism is introduced in 
TLBO to enhance its performance. To enhance the explo-
ration and exploitation capacities of TLBO, Rao et  al., 
introduced some improved mechanisms in teaching–learn-
ing-based optimization algorithm [25]. In literature [26], 
quasi-opposition based learning concept was integrated with 
original TLBO to accelerate the convergence speed of TLBO.

In literature [1], Rao R.V. etc. indicated some nature-
inspired population-based optimization algorithms had 
several limitations in one or the other aspects. Hence, many 
researchers proposed all kinds of mechanisms to improve 
the performance of algorithms. The enhancement of one 
algorithm is divided into two ways. The first way was done 
by modifying the existing algorithms. The second way was 
done by combining the strengths of different optimization 
algorithms. In this paper, a modified teaching–learning-
based optimization algorithm is proposed by the first way.

Although the TLBO algorithm has shown good perfor-
mance for a wide range of real-world optimization problems, 
its solution quality and convergence speed are still improved 
further by some methods. In order to improve the solution 
quality and convergence speed of TLBO, a modified teach-
ing–learning-based optimization algorithm is proposed, 
namely MTLBO. In this paper, a new concept is firstly intro-
duced, which is called ‘actual teaching learning situation’ 
(ATLS). In a real-life class, superior student has good self-
learning ability and comprehensive ability, who either obtains 
knowledge from teacher and a more superior student or stud-
ies independently. For an underachiever, he gets knowledge 
from teacher or a more superior student principally. Moreover, 
a good teacher makes his or her efforts to bring the learn-
ers to his or her level in terms of knowledge. The MTLBO 
algorithm also has two phases, namely ‘teacher phase’ and 
‘learner phase’. In teacher phase, all students are divided 
into two groups according to the mean result in the class. We 
assume that if one student’s comprehensive mark is higher 
than the mean result, the student is considered as a superior. 
Otherwise, the student is regarded as an underachiever. In 
learner phase, the students are also divided into two groups. 

The first group includes the top half of the student and the 
second group contains the remaining students. The first group 
members are regarded as superior students. Oppositely, the 
second group members are underachievers. According to the 
analysis of ATLS, a superior and an underachiever have differ-
ent solution updating mechanisms. The detailed computation 
process of MTLBO is presented in Sect. 3. It is noted that the 
MTLBO algorithm has a good balance between exploration 
and exploitation. In literature [27], authors defined the explo-
ration and exploitation, “Exploration is the process of visiting 
entirely new regions of a search space, whilst exploitation is 
the process of visiting those regions of a search space within 
the neighborhood of previously visited points”. To evaluate 
the performance of MTLBO, 23 unconstraint benchmark 
numerical functions and 28 CEC2017 benchmark functions 
are selected as the test suite. Compared with the original 
TLBO, the proposed MTLBO algorithm not only enhances 
the solution quality, but also improves the convergence speed 
on most testing functions. In addition, simulations on 23 
benchmark functions demonstrate that MTLBO outperforms 
several algorithms in general, including the artificial bee col-
ony (ABC) [4], gravitational search algorithm(GSA) [5], Krill 
herds(KH) algorithm [6], social-spider optimization algorithm 
(SSO) [7], Sine Cosine Algorithm (SCA) [8].

The main contributions of this paper are summarized as 
follows:

1. This paper firstly proposes the concept of ‘actual teach-
ing learning situation’ (ATLS).

2. Based on ATLS, a modified teaching–learning-based 
optimization algorithm is proposed.

3. The proposed MTLBO is applied to solve 23 uncon-
straint benchmark functions and 28 CEC2017 functions.

4. The solution quality and convergence speed of the origi-
nal TLBO are improved obviously.

The rest of this paper is organized as follows. Section 2 
reviews the basic TLBO algorithm. Section 3 presents the 
proposed MTLBO algorithm in detail. Section 4 shows the 
performance evaluation of the MTLBO. Section 5 concludes 
this paper.

2  Teaching–learning‑based optimization 
algorithm

Teaching–learning-based optimization algorithm (TLBO) 
is a novel population-based meta-heuristic intelligent algo-
rithm, which is inspired and proposed by the influence of a 
teacher on the output of learners in a class. For the TLBO 
algorithm, it has two vital parts, namely ‘Teacher phase’ and 
‘Learner phase’. The teaching–learning-based optimization 
algorithm is described briefly as follows.
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2.1  Teacher phase

In teacher phase, learners obtain knowledge from their 
teacher. The teacher is regarded as the most knowledgeable 
person in a class, who makes big efforts to bring learners 
up to his or her level. Supposed that at any iteration i, Mi 
is the mean value of the marks and Ti is the teacher. The 
teacher will put effort to move the mean value Mi to its own 
level. However, it is hardly realized and the teacher is able 
to improve the mean of the class room depending on his or 
her capability. Therefore, the difference between the teacher 
Ti and the existing mean Mi is given by the Eq. (1). In this 
phase, the existing solution is updated based on the diff 
according to the following expression (2).

where Xold,i is the ith learner’s mark before updating, Xnew,i is 
the mark after learning from the teacher. ri is the uniform ran-
dom numbers from 0 to 1.TF = round[1 + rand(0, 1){2 − 1}] 
is a teaching factor, which controls the mean value to be 
changed. During the algorithm, teaching factor is generated 
randomly in the range [1, 2]. If TF is equal to 1, the mean 
value of the class room is not increased in the knowledge 
level. Oppositely, 2 indicate that the mean value of the class 
room completes transfer of knowledge.

2.2  Learner phase

In this phase, learners increase their knowledge through 
learning mutually. A learner can improve his or her knowl-
edge through interacting randomly with other learners, 
such as group discussions, presentations and formal com-
munications. Moreover, a learner gains knowledge from 
the more knowledge and experience person. The modifi-
cation process of learners could be described as follows.

At any iteration i, randomly select two learners Xi and 
Xj , where i ≠ j.

(1)diff = ri(Ti − TFMi)

(2)Xnew,i = Xold,i + diff

(3)Xnew,i =

{
Xold,i + ri(Xi − Xj) if f (Xi) < f (Xj)

Xold,i + ri(Xj − Xi) if f (Xi) > f (Xj)

3  The modified teaching–learning‑based 
optimization algorithm

In this section, a new concept is firstly introduced, which 
is called ‘actual teaching learning situation’ (ATLS). In 
a real-life class, one student is considered as a supe-
rior student or an underachiever according to his or her 
comprehensive results. For a superior student, he or she 
has good self-learning ability, so he or she can not only 
increase his or her knowledge relying on self-study, but 
also obtain knowledge from teacher or a more superior 
student. For an underachiever, they obtain knowledge 
from their teacher or a more superior student princi-
pally. Moreover, a good teacher makes his or her efforts 
to bring the learners to his or her level in terms of knowl-
edge. Based on the actual ‘teaching learning’ situation, 
a modified teaching–learning-based optimization algo-
rithm, namely MTLBO, is proposed to enhance the solu-
tion quality and accelerate the convergence speed of the 
conventional TLBO. The MTLBO algorithm is described 
in detail as follows.

3.1  Teacher phase

In this phase, all students are divided into two groups based 
on the mean value of the class room. One group contains 
the superior students, another includes the underachiev-
ers. We assume that if one student’s comprehensive mark 
is higher than the mean mark of the class, the student is 
considered as a superior student. Otherwise, the student is 
regarded as an underachiever. In this paper, the proposed 
MTLBO is used to solve the minimum optimization prob-
lem, so the individual presents the best performance with 
the lowest fitness value. In MTLBO, for a superior stu-
dent, he can get knowledge from the best individual and 
study independently. The meaning of study independent 
is that the superior student still searches the optimal solu-
tion along with his previous information direction. For 
an underachiever, he obtains knowledge from his teacher. 
Based on the above analysis, the solution updating mecha-
nism is shown in Eq. (4). Moreover, the expression of iner-
tia weight is presented in Eq. (5).

(4)
Xnew,i =

⎧⎪⎨⎪⎩

Xold,i ×W + (Xbest − Xold,i) × rand if f (Xold,i) < f (Xmean)

(Xold,i + (rand − 0.5) × 2 × (Xmean − Xold,i)) × sin

�
𝜋

2
×

iter

MaxIter

�
+ diff × cos

�
𝜋

2
×

iter

MaxIter

�
if f (Xold,i) > f (Xmean)

(5)W = �start − (�start − �end) ×
iter

MaxIter
The Xnew is accepted if it gives a better function value.
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Seen from Eq. (4), Xmean is the mean result, W is the 
inertia weight which decides to balance the exploration 
and exploitation ability. Additionally, we also introduce 
sin(

�

2
×

iter

MaxIter
) and cos( �

2
×

iter

MaxIter
) as inertia weights 

which can accelerate the convergence speed. iter is the cur-
rent iteration, MaxIter is the maximum iteration. Seen from 
Eq. (5), the inertia weight descends linearly from�start to 
�end . Therefore, the adjustment process of inertia weight 
allows the MTLBO algorithm to explore the search space 
in the initial steps and to exploit the optimal solution in the 
latter steps.

It is noted that the two inertia weights sin( �
2
×

iter

MaxIter
) 

and cos( �
2
×

iter

MaxIter
) are firstly introduced to accelerate 

the convergence speed of TLBO. With the operation of 
MTLBO, the changing curves of two inertia weights are 
shown in Fig. 1. For an underachiever, his fitness value 
f (Xold,i) is higher than the mean fitness value f (Xmean) , so 
he obtains knowledge from his teacher at the early stage. 
So the teacher plays an important role to improve the 
student’s knowledge in the initial step. With the running 
of MTLBO, all individuals close to the optimal solution 
gradually if the algorithm shows good global convergence 
ability. Therefore, to avoid trapping into local optimum, 
the diversity of the population is increased in the latter 
step. Based on the analysis, the solution quality and con-
vergence speed of MTLBO are indeed enhanced by the 
two inertia weights.

3.2  Learner phase

After teacher phase, the fitness values of all learners are 
sorted in ascending order. Then, the students are divided 
into two groups, where the first group includes the top 
half students and the second group contains the remaining 

students. The first group members are regarded as superior 
students, so they can not only obtain knowledge from a more 
superior student, but also study independently. The second 
group members get knowledge from their teacher princi-
pally. Therefore, the first group students update their results 
based on Eq. (6). On the contrary, the second group learners 
update their results according to Eq. (7).

Shown in Eq. (6), in jth iteration, for a learner Xi , ran-
domly selects a learner Xneighbour , where neighbour ≠ i . If 
Xneighbour has a smaller fitness value than Xi , the student Xi 
will obtain the knowledge from Xneighbour ; otherwise, he will 
learn knowledge by himself. Based on this kind of mecha-
nism, the diversity of the population will be increased and 
the convergence speed will be quickened simultaneously. For 
the second group members, there is a big gap between the 
latter of half learners and the teacher, so a big correction is 
needed to improve the learner’s mark. Also, the convergence 
speed is accelerated obviously.

3.3  MTLBO procedure

In order to improve the performance of the conventional 
TLBO, a sort of new TLBO variant is proposed. Based on 
the aforementioned explanations of the proposed optimiza-
tion algorithm, the general procedure of MTLBO algorithm 
is given in detail as follows.

(6)

if f (Xold,i) > f (Xneighbour)

Xnew,i = Xold,i + (Xneighbour − Xold,i) × cos

(
𝜋

2
×

iter

MaxIter

)

else

Xnew,i = Xold,i + (rand − 0.5) × 2 × (Xupper lim it − Xlower lim it)

end

(7)Xnew,i = Xold,i + (Xbest − Xold,i) × cos

(
�

2
×

iter

MaxIter

)
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Fig. 1  The simulation curves of sin(x) and cos(x) function
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4  Experimental study and discussion

4.1  Experimental setup

In this section, to evaluate the performance of MTLBO, 
23 famous unconstraint benchmark numerical function 

problems are adopted, which includes 7 unimodal high 
dimension functions (F1–F7), 6 multimodal high dimen-
sion functions (F8–F13) and 10 fixed dimension functions 
(F14–F23). For unimodal test functions, every function has 
only one global optima solution, which makes them be bene-
ficial for verifying the convergence speed and exploitation of 

Table 1  23 benchmark functions used in experiments

C characteristics, U unimodal, S separable, N non-separable

No. Range C Global optima Formulation

F1 [− 100, 100] US 0 f (x) =
∑n

i=1
(xi)

2

F2 [− 10] UN 0 f (x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi��

F3 [− 100, 100] UN 0 f (x) =
∑n

i=1
(
∑i

j=1
xj)

2

F4 [− 100, 100] UN 0 f (x) = max
i
{|xi|, 1 ⩽ i ⩽ n}

F5 [− 100, 100] UN 0 f (x) = − cos(x1) cos(x2) exp(−(x1 − �)2 − (x2 − �)2)

F6 [− 100, 100] US 0 f (x) =
∑n

i=1

�⌊xi + 0.5⌋�2
F7 [− 1.28,1.28] US 0 f (x) =

∑n

i=1
(ixi)

4
+ random[0, 1)

F8 [− 500, 500] MS − 418.9829 × n
f (x) =

∑n

i=1
−xi sin

����xi��
�

F9 [− 5.12,5.12] MS 0 f (x) =
∑n

i=1
[x2

i
− 10 cos(2�xi) + 10]

F10 [− 600, 600] MN 0 f (x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�
xi√
i

�
+ 1

F11 [− 32, 32] MN 0
f (x) = −20 exp

�
−0.2

�
1

n

∑n

i=1
x2
i

�
− exp

�
1

n

∑n

i=1
cos(2�xi)

�
+ 20 + e

F12 [− 50, 50] MN 0 f (x) =
𝜋

n

�
10 sin(𝜋y1) +

�n−1

i=1
(yi − 1)2[1 + 10sin

2(𝜋yi+1)] + (yn − 1)2
�

+
∑n

i=1
u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4
; u(xi, a, k,m) =

⎧⎪⎨⎪⎩

k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

F13 [− 50, 50] MN 0 f (x) = 0.1

{
sin

2(3�x1) +
∑n

i=1
(xi − 1)2[1 + sin

2(3�xi + 1)] + (xn − 1)2[1 + sin
2(2�xn)]

}

+
∑n

i=1
u(xi, 5, 100, 4)

F14 [− 65.53,65.53] MS 1
f (x) =

�
1

500
+
∑25

j=1

1

j+
∑2

i=1
(xi−aij)

6

�−1

F15 [− 5, 5] MN 0.00030
f (x) =

∑11

i=1

�
ai −

x1(b
2

i
+bix2)

b2
i
+bix3+x4

�2

F16 [− 5, 5] MN − 1.0316 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2

F17 [− 5, 10] × [0, 14] MS 0.398
f (x) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10

(
1 −

1

8�

)
cos x1 + 10

F18 [− 5, 5] MN 3 f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)]×

[30 + (2x1 − 3x2)
2
× (18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)]

F19 [0, 1] MN − 3.86 f (x) = −
∑4

i=1
ci exp[−

∑3

j=1
aij(xj − pij)

2
]

F20 [0, 1] MN − 3.32 f (x) = −
∑4

i=1
ci exp[−

∑6

j=1
aij(xj − pij)

2
]

F21 [0, 10] MN − 10.1532 f (x) =
∑5

i=1

∑4

j=1
[(xj − aij)(xj − aij)

T
+ ci]

−1

F22 [0, 10] MN − 10.4028 f (x) = −
∑7

i=1

∑4

j=1
[(xj − aij)(xj − aij)

T
+ ci]

−1

F23 [0, 10] MN − 10.5363 f (x) = −
∑10

i=1

∑4

j=1
[(xj − aij)(xj − aij)

T
+ ci]

−1
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algorithm. For multimodal test functions, every function has 
multiple local solutions other than the global optimal solu-
tion. These multimodal test functions are suitable to measure 
the local optima avoidance and the explorative ability of 
algorithms. These testing functions are described in detail 
in Table 1, in which includes the searching range, the theory 
global optima and functional characteristics.

In addition, the performance of the proposed MTLBO 
algorithm is compared with other heuristic optimization 
algorithms: artificial bee colony (ABC) [4], Gravitational 
Search Algorithm (GSA) [5], Krill Herds algorithm (KH) 
[6], Social-Spider Optimization algorithm (SSO) [7], Sine 

Table 2  Parameters setting

Method Popula-
tion 
size

Maximum 
iteration

Dimension others

ABC 40 1000 20, 50 Limit = 200
GSA 40 1000 20, 50 G0 = 100, α = 20
SSO 40 1000 20, 50 PF = 0.7
KH 40 1000 20, 50 –
SCA 40 1000 20, 50 a = 2
TLBO 20 1000 20, 50 –
MTLBO 20 1000 20, 50 �start = 0.9 , �end = 0.2

Table 3  The mean solution and standard deviation of the 30 trails obtained for 20 dimensional functions

Boldface in the tables indicates that the optimization algorithm presents the best performance in several algorithms, which can obtain the theo-
retical optimal solution or close to the optimal solution of the testing numerical functions

F Performance ABC GSA SSO KH SCA TLBO MTLBO

F1 Mean 3.3942 × 10−16 3.7129 × 10−17 0.0200 0 1.4334 × 10−9 4.1139 × 10−217 0
Std 8.1362 × 10−17 4.3444 × 10−18 1.0586 × 10−17 0 2.4044 × 10−9 0 0

F2 Mean 9.6955 × 10−16 1.6734 × 10−8 0.6165 897.1568 5.1521 × 10−9 1.0161 × 10−123 3.9294 × 10−303

Std 1.1904 × 10−16 2.7740 × 10−9 1.1292 × 10−16 4.5989 × 103 1.1962 × 10−8 5.2000 × 10−123 0
F3 Mean 2.4931 × 103 55.6512 0.1133 NaN 105.6656 1.1661 × 105 1.4188 × 105

Std 890.0995 31.1602 8.4690 × 10−17 NaN 216.7389 5.8675 × 104 2.5207 × 105

F4 Mean 0.8876 2.7401 × 10−9 0.0775 29.3327 0.5232 3.7398 × 10−77 2.1576 × 10−295

Std 0.2650 6.6278 × 10−10 1.4115 × 10−17 7.3133 0.9179 2.0149 × 10−76 0
F5 Mean 0.7563 24.9559 81.9765 18.7448 17.9380 18.9149 0.3947

Std 1.3903 28.4303 1.4454 × 10−14 0.0067 1.3403 0.0796 1.0169
F6 Mean 3.2932 × 10−16 1.5688 × 10−17 0.0383 4.7961 2.0232 3.3132 0.0280

Std 7.4504 × 10−17 5.1923 × 10−18 0 0.0197 0.2579 0.6164 0.0765
F7 Mean 0.0311 0.0140 0.0238 0.0256 0.0045 0.0033 5.9881 × 10−4

Std 0.0093 0.0059 3.5288 × 10−18 0.0245 0.0037 0.0020 5.7362 × 10−4

Table 4  The mean solution and standard deviation of the 30 trails obtained for 50 dimensional functions

Boldface in the tables indicates that the optimization algorithm presents the best performance in several algorithms, which can obtain the theo-
retical optimal solution or close to the optimal solution of the testing numerical functions

F Performance ABC GSA SSO KH SCA TLBO MTLBO

F1 Mean 6.1565 × 10−16 1.4246 × 10−16 0.4024 0 86.5724 6.5515 × 10−212 0
Std 1.1515 × 10−16 4.9424 × 10−17 0 0 272.2453 0 0

F2 Mean 2.2326 × 10−5 0.0648 4.0976 0 0.0060 1.3766 × 10−123 1.1999 × 10−315

Std 5.0059 × 10−6 0.2535 2.7101 × 10−15 0 0.0088 7.3874 × 10−123 0
F3 Mean 3.7849 × 104 1.2271 × 103 76.5628 NaN 2.8965 × 104 6.6681 × 105 2.2227 × 105

Std 5.9003 × 103 264.7120 1.4454 × 10−14 NaN 1.2914 × 104 3.7769 × 105 3.6225 × 105

F4 Mean 36.7053 6.3075 1.2721 36.2370 54.9184 7.0098 × 10−71 2.0639 × 10−301

Std 2.3312 1.5901 2.2584 × 10−16 9.7421 8.7282 2.4333 × 10−70 0
F5 Mean 29.9906 73.5339 127.5353 48.5074 3.7847 × 105 48.9214 1.7580

Std 32.4871 42.3755 4.3361 × 10−14 0.0192 7.0952 × 105 0.0244 5.3000
F6 Mean 4.7381 × 10−9 1.6136 × 10−16 0.4510 12.2656 40.0340 10.8708 0.2016

Std 4.8158 × 10−9 3.7676 × 10−17 5.6460 × 10−17 0.0338 51.7003 0.5515 0.4879
F7 Mean 0.2550 0.3216 0.7195 0.0235 0.7172 0.0031 5.0401 × 10−4

Std 0.0496 0.4789 0 0.0174 1.5154 0.0017 5.7680 × 10−4
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Cosine Algorithm (SCA) [8] and TLBO. They are the state-
of-the-art optimization algorithms in recent years. The preset 
parameters of each algorithm are given in Table 2, where 
contains population size, maximal iteration and algorithm 
specific-parameter etc. Shown in Table 2, the maximum 
iteration indicates that every algorithm stops optimizing 
after 1000 circles. Dimension represents the dimensions 
of optimization parameters. For ABC, if a position cannot 
be improved further through a predetermined number of 
cycles called Limit then that food source is assumed to be 

abandoned [4]. For GSA, G0 is the initial gravitational con-
stant and � is a constant. In [5], the initial gravitational con-
stant G0 is equal to 100 and � is equal to 20. For SSO, PF is 
a probability threshold. For SCA, a is a constant, which is set 
2 in [8]. Note that: in original TLBO, duplicate elimination 
process is applied to increase the population diversity. How-
ever, the process is not used in our algorithm. So the number 
of function evaluations of MTLBO algorithm is = (2 × popu-
lation size × number of generations). The computation cost 
will be decreased when the two algorithms have the same 
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Fig. 2  Convergence curves of the 7 methods on 6 unimodal functions with 20 dimensions
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maximum generations. In this paper, the population size of 
the TLBO and MTLBO algorithm is set to 20.

The tests are implemented on Intel (R) Core(TM)64 × 2 
Dual Core Processor T5670 @1.80, 1.79 GHz and 2 GB 
RAM. All algorithms are coded and carried out in Matlab 
2009 version under the Windows XP Professional.

4.2  Comparison with other algorithms

In this subsection, simulations using MTLBO, ABC, GSA, 
KH, SSO, SCA and TLBO are conducted on all the above 
23 functions. Due to the stochastic nature of meta-heuristics, 
the results of one single run may be unreliable. Therefore, 
each algorithm runs 30 times independently to reduce the 
statistical error. The performance of different optimization 

algorithms in terms of the mean and standard deviation (SD) 
of solutions obtained in the 30 independent runs for 20 and 
50 dimensional functions. The maximal iteration 1000 is 
used as the stopping criterion.

4.2.1  The analysis of experimental results for unimodal 
functions

In this subsection, 7 unimodal functions are adopted to eval-
uate the performance of MTLBO. The experimental results 
of 20 and 50 dimensional functions are listed in Tables 3 
and 4, respectively. Boldface in the tables indicates the 
best results. The mean value is smaller, the performance of 
algorithm is better. The standard deviation value is lower, 
the stability of algorithm is stronger. For these tables, it is 

Table 5  The mean solution and standard deviation of the 30 trails obtained for 20 dimensional functions

Boldface in the tables indicates that the optimization algorithm presents the best performance in several algorithms, which can obtain the theo-
retical optimal solution or close to the optimal solution of the testing numerical functions

F Performance ABC GSA SSO KH SCA TLBO MTLBO

F8 Mean − 8.3305 × 103 − 2.3397 × 103 − 5.5567 × 103 − 0.0072 − 3.2045 × 103 − 3.7204 × 103 − 8.2473 × 103

Std 77.3979 463.0206 0 0.0069 208.8084 459.2280 584.1095
F9 Mean 5.3780 × 10−8 11.3094 34.4531 0 2.8124 0 0

Std 2.9457 × 10−7 4.5593 2.1681 × 10−14 0 9.1900 0 0
F10 Mean 2.3626 × 10−14 3.7268 × 10−9 0.1975 8.8818 × 10−16 7.0677 5.8620 × 10−15 8.8818 × 10−16

Std 3.6850 × 10−15 5.7988 × 10−10 0 0 9.2269 1.7702 × 10−15 0
F11 Mean 2.4863 × 10−4 1.1012 0.0093 0 0.1110 4.9241 × 10−4 0

Std 0.0013 0.5304 0 0 0.2490 0.0027 0
F12 Mean 3.2263 × 10−16 0.0207 6.0676 × 10−14 1.8701 0.2869 3.7561 1.3021

Std 6.4048 × 10−17 0.0538 4.4109 × 10−19 0.0098 0.0596 2.6951 1.4403
F13 Mean 9.6792 × 10−8 2.2046 × 10−32 4.9199 × 10−5 1.9465 1.1521 0.0896 0.0911

Std 2.9025 × 10−7 2.6147 × 10−32 0 0.0125 0.1264 0.3019 0.0736

Table 6  The mean solution and standard deviation of the 30 trails obtained for 50 dimensional functions

Boldface in the tables indicates that the optimization algorithm presents the best performance in several algorithms, which can obtain the theo-
retical optimal solution or close to the optimal solution of the testing numerical functions

F Performance ABC GSA SSO KH SCA TLBO MTLBO

F8 Mean − 1.9816 × 104 − 3.7426 × 103 − 1.1177 × 104 − 0.0066 − 5.1824 × 103 − 5.8073 × 103 − 2.0811 × 104

Std 270.0780 677.5553 5.5503 × 10−12 0.0048 333.4967 646.3627 475.5265
F9 Mean 1.5958 50.2454 166.8171 0 66.0374 0 0

Std 1.1231 11.5670 0 0 58.4216 0 0
F10 Mean 1.5896 × 10−4 7.3771 × 10−9 1.2179 8.8818 × 10−16 15.5625 6.3357 × 10−15 8.8818 × 10−16

Std 6.5017 × 10−4 1.3053 × 10−9 2.2584 × 10−16 0 8.3866 1.8027 × 10−15 0
F11 Mean 0.0029 22.7147 0.0163 0 1.5832 0 0

Std 0.0089 5.5042 0 0 1.1008 0 0
F12 Mean 5.4282 × 10−11 0.8593 1.4589 1.4572 1.5736 × 106 4.1903 1.7068

Std 4.0601 × 10−11 0.5038 2.2584 × 10−16 0.0036 3.1857 × 106 2.8568 1.7145
F13 Mean 6.4083 × 10−7 0.1561 3.7347 × 10−4 4.8963 2.9214 × 106 1.5130 2.1563

Std 1.3216 × 10−6 0.3800 2.7568 × 10−19 0.0257 3.9542 × 106 7.1825 1.9684
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easy to see that MTLBO algorithm wins the smallest mean 
value and standard deviation value in 5 unimodal functions. 
Additionally, Fig. 2 graphically presents the comparison in 
terms of convergence speed and solution quality for solving 
6 unimodal functions (F1, F2, F4, F5, F6 and F7) with 20 
dimensions. The detailed analysis of experimental results is 
given as follows.

Tables 3 and 4 show that MTLBO outperforms some 
other methods in terms of the mean and standard deviation 
for some unimodal functions. Shown in Table 3, the per-
formance of MTLBO is the best than all other methods for 
functions F1, F2, F4, F5 and F7. The GSA has the small-
est mean and standard deviation for function F6. The SSO 
displays the best performance for function F3. Particularly, 
compared with TLBO, the MTLBO shows better perfor-
mance for functions F1, F2, F4, F5, F6 and F7. The results 
reveal that MTLBO algorithm enhances the solution quality. 
Table 4 indicates that the mean and the standard deviation of 
MTLBO is the best than all other algorithms for functions 

F1, F4, F5 and F7. The GSA also has the smallest mean and 
standard deviation for function F6. The SSO still displays 
the best performance for function F3. The KH shows the 
best performance for functions F1 and F2. Compared with 
TLBO, MTLBO shows better performance for all the 7 func-
tions. In short, MTLBO outperforms all the other algorithms 
on most functions.

4.2.2  The analysis of experimental results for multimodal 
functions

In this subsection, 6 multimodal functions are used to evalu-
ate the performance of MTLBO. The experimental results of 
20 and 50 dimensional functions are listed in Tables 5 and 6, 
respectively. Boldface in the tables indicates the best results. 
The mean value is smaller, the performance of algorithm 
is better. The standard deviation value is lower, the stabil-
ity of algorithm is stronger. According to these tables, the 
proposed MTLBO algorithm presents superior performance 
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Fig. 3  Convergence curves of the 7 methods on 4 multimodal functions with 50 dimensions
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on most functions. Additionally, Fig. 3 graphically presents 
the comparison in terms of convergence speed and solution 
quality for solving 4 unimodal functions (F9, F10, F11 and 
F12) with 50 dimensions. The detailed analysis of experi-
mental results is given as follows.

Seen from Table 5, the performance of MTLBO is better 
than other algorithms for functions F8, F9, F10 and F11. The 
ABC has the smallest mean and standard deviation for func-
tion F12. The GSA has better performance in terms of the 
mean and the standard deviation than all other methods for 
function F13. The KH shows the best performance than all 
other algorithms for functions F9, F10 and F11. The origi-
nal TLBO has good performance for function F9. Table 6 
shows the performance results for 50 dimensional functions. 
For this table, it is easy to observe that MTLBO wins the 
smallest mean and standard deviation for functions F8, F9, 
F10 and F11 as well. Moreover, the ABC has the smallest 
mean and standard deviation in two functions F12 and F13. 
The KH algorithm also obtains the better performance for 
functions F9, F10 and F11. Compared with TLBO, MTLBO 
shows better performance for all functions except function 
F13. In brief, the proposed MTLBO improves the solution 
quality for multi-modal functions.

4.2.3  The analysis of experimental results for fixed 
dimension functions

In this subsection, 10 fixed dimension functions are applied 
to evaluate the performance of the proposed modified teach-
ing–learning-based optimization algorithm. The experimen-
tal results are listed in Table 7. According to this Table, the 
ABC can achieve the global optimal solution on all func-
tions. The GSA can find the global optima on 4 functions 
(F14, F16, F17, F18). The SSO algorithm can find the global 
optima or the solutions close to the global optima on 9 func-
tions except F14. The KH can find the global optima only 
on two functions (F14, F15). The SCA can find the global 
solutions on 6 functions (F14, F15, F16, F17, F18, F19). 
For TLBO, it can achieve the global optima solution on 7 
functions (F14, F15, F16, F17, F18, F19, F20). The MTLBO 
can find the global optima on six functions (F14, F17, F18, 
F21, F22, F23) with short running time. For the remaining 
functions, MTLBO can obtain the solution quite close to 
the global optima. Particularly, compared with TLBO, the 
running time of MTLBO is shorter on all fixed dimension 
functions. It is noted that although the solution updating 
mechanism of MTLBO is more complex than the original 
TLBO, the MTLBO algorithm eliminates the duplicate 
elimination process. Hence, the computation cost will be 
decreased when the two methods have the same maximum 
generation. Moreover, three inertia weights are introduced 
in MTLBO to enhance the convergence speed and solution 
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quality. Therefore, MTLBO is able to obtain good solution 
with low simulation time.

4.3  Comparisons with TLBO on CEC2017 benchmark 
functions

In this subsection, the performance of MTLBO is compared 
with TLBO on 28 CEC2017 benchmark functions, which are 
obtained from the literature [28]. These functions contain 
2 unimodal functions, 7 simple multimodal functions, 10 
hybrid functions and 9 composition functions. The detailed 
descriptions of these functions are recorded in literature 
[28]. For both MTLBO and TLBO, the population size is 
40 and the maximum iteration is 500. In order to reduce the 
computation error, MTLBO and TLBO separately run 30 

times for every testing function. Average results of 30 trials 
of simulations are listed in Tables 8, 9 and 10, respectively.

Seen from Tables 8, 9 and 10, TLBO and MTLBO gain 
similar performance on most testing functions. However, 
the two algorithms cannot get the global optima for every 
testing function. Therefore, TLBO and MTLBO are suit-
able to solve the basic benchmark functions that have global 
optima in zero point. In the future, we will focus on solving 
the problem of TLBO and MTLBO.

5  Conclusions

In this paper, a variant of TLBO which is called MTLBO is 
proposed to enhance the solution quality and convergence 
speed of TLBO. The proposed MTLBO algorithm firstly 

Table 8  The mean solution and standard deviation of the 30 trails obtained for 10 dimensional functions

Function TLBO MTLBO

Mean Std Mean Std

Shifted and rotated bent cigar function 2.1789 × 1010 7.5819 × 109 2.0798 × 1010 7.7529 × 109

Shifted and rotated zakharov function 1.6606 × 106 6.9452 × 106 1.2711 × 106 2.6771 × 106

Shifted and rotated rosenbrock’s function 3.4615 × 103 1.3754 × 103 3.0728 × 103 1.4009 × 103

Shifted and rotated rastrigin’s function 659.3708 25.0948 665.6474 23.1643
Shifted and rotated expanded scaffer’s F6 function 700.5771 14.2159 700.0188 16.8315
Shifted and rotated lunacek bi_rastrigin function 1.1650 × 103 89.8692 1.2042 × 103 107.6970
Shifted and rotated non-continuous rastrigin’s function 941.3247 19.3184 940.2373 19.8744
Shifted and rotated levy function 5.5234 × 103 1.5285 × 103 6.0253 × 103 1.6432 × 103

Shifted and rotated schwefel’s function 3.4838 × 103 268.7526 3.7045 × 103 356.4339
Hybrid function 1 (N = 3) 2.6565 × 104 2.9365 × 104 2.7699 × 104 2.4414 × 104

Hybrid function 2(N = 3) 2.7798 × 109 1.4411 × 109 2.9408 × 109 1.5693 × 109

Hybrid function 3 (N = 3) 2.5563 × 108 2.4573 × 108 2.8851 × 108 3.6181 × 108

Hybrid function 4 (N = 4) 8.2390 × 106 1.1475 × 107 1.1691 × 107 2.2147 × 107

Hybrid function 5 (N = 4) 3.0534 × 107 3.8550 × 107 1.6513 × 107 3.7513 × 107

Hybrid function 6 (N = 4) 2.8254 × 103 208.9106 2.8057 × 103 229.4395
Hybrid function 6 (N = 5) 2.5095 × 103 228.6194 2.4121 × 103 228.4598
Hybrid function 6 (N = 5) 8.9181 × 108 7.7793 × 108 9.8545 × 108 7.5464 × 108

Hybrid function 6 (N = 5) 9.1999 × 107 1.2794 × 108 1.1065 × 108 1.8413 × 108

Hybrid function 6 (N = 6) 2.5313 × 103 114.5715 2.5755 × 103 136.1357
Composition function 1 (N = 3) 2.4257 × 103 59.9058 2.4487 × 103 28.6270
Composition function 2 (N = 3) 4.1366 × 103 426.7760 4.2685 × 103 613.4919
Composition function 3 (N = 4) 2.8117 × 103 37.1548 2.8441 × 103 50.7518
Composition function 4 (N = 4) 3.0234 × 103 89.2576 3.0302 × 103 102.9255
Composition function 5 (N = 5) 4.7568 × 103 820.9488 4.6981 × 103 879.5401
Composition function 6 (N = 5) 4.9994 × 103 430.6828 5.0198 × 103 515.2874
Composition function 7 (N = 6) 3.4271 × 103 126.5702 3.4305 × 103 100.7306
Composition function 8 (N = 6) 4.1905 × 103 219.3734 4.1905 × 103 230.7724
Composition function 9 (N = 3) 3.9582 × 103 201.7234 3.9729 × 103 184.4599
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introduces the concept of ‘actual teaching–learning situ-
ation’ so that the population updating mechanism is con-
formed to the real class. Also, three inertia weights are used 
to enhance the solution quality and convergence speed and 
balance the exploration and exploitation of MTLBO. The 
performance of MTLBO algorithm is verified over a series 
of 23 unconstraint benchmark numerical function prob-
lems. The results reveal that the proposed MTLBO outper-
forms other state-of-the-art algorithms on most functions. 

In addition, 28 CEC2017 benchmark functions are used to 
verify the performance of MTLBO. The experimental results 
reveal that the current version of MTLBO can not present 
satisfactory performance on these testing functions.

In the future, the MTLBO will be improved and used to 
solve more challenging rotated and shifted functions and 
optimize the structure of artificial neural network. Simulta-
neously, it will be used for real life problems.

Table 9  The mean solution and standard deviation of the 30 trails obtained for 30 dimensional functions

Function TLBO MTLBO

Mean Std Mean Std

Shifted and rotated Bent cigar function 1.2284 × 1011 2.0771 × 1010 1.2737 × 1011 1.8538 × 1010

Shifted and rotated zakharov function 4.6740 × 109 2.0136 × 1010 5.2896 × 109 1.8405 × 1010

Shifted and rotated rosenbrock’s function 5.5946 × 104 1.3124 × 104 5.4755 × 104 1.3595 × 104

Shifted and rotated rastrigin’s function 1.1844 × 103 60.5419 1.2014 × 103 55.1426
Shifted and rotated expanded scaffer’s F6 function 741.6269 11.7887 737.8008 11.7779
Shifted and rotated lunacek bi_rastrigin function 3.5356 × 103 317.4131 3.4276 × 103 262.7589
Shifted and rotated non-continuous rastrigin’s function 1.4159 × 103 53.2604 1.4146 × 103 54.5449
Shifted and rotated levy function 4.1115 × 104 6.1019 × 103 3.7494 × 104 7.2148 × 103

Shifted and rotated schwefel’s function 9.9218 × 103 488.0740 1.0917 × 104 486.5566
Hybrid function 1 (N = 3) 1.4090 × 105 2.8593 × 105 1.1163 × 106 4.5772 × 106

Hybrid function 2(N = 3) 2.9353 × 1010 6.5555 × 109 2.6977 × 1010 8.0056 × 109

Hybrid function 3 (N = 3) 2.8415 × 1010 7.5450 × 109 2.9294 × 1010 8.5243 × 109

Hybrid function 4 (N = 4) 7.1860 × 107 5.2320 × 107 8.9172 × 107 6.2885 × 107

Hybrid function 5 (N = 4) 7.8007 × 109 2.9895 × 109 8.3547 × 109 3.1943 × 109

Hybrid function 6 (N = 4) 9.3028 × 103 2.1722 × 103 9.5515 × 103 2.7252 × 103

Hybrid function 6 (N = 5) 7.6930 × 104 1.1215 × 105 3.5421 × 104 3.6445 × 104

Hybrid function 6 (N = 5) 8.2693 × 108 5.7650 × 108 9.0937 × 108 6.1028 × 108

Hybrid function 6 (N = 5) 9.2381 × 109 4.1533 × 109 9.2560 × 109 3.5055 × 109

Hybrid function 6 (N = 6) 3.9225 × 103 257.5821 3.9576 × 103 144.7786
Composition function 1 (N = 3) 2.9323 × 103 59.2757 2.9414 × 103 53.1039
Composition function 2 (N = 3) 1.1560 × 104 614.2084 1.2360 × 104 517.3640
Composition function 3 (N = 4) 3.9044 × 103 178.3639 4.0075 × 103 234.8605
Composition function 4 (N = 4) 4.0858 × 103 192.2295 4.3857 × 103 224.2766
Composition function 5 (N = 5) 1.9252 × 104 3.7711 × 103 1.7118 × 104 3.7649 × 103

Composition function 6 (N = 5) 1.6058 × 104 1.7721 × 103 1.5894 × 104 1.7017 × 103

Composition function 7 (N = 6) 5.5456 × 103 809.0739 5.6290 × 103 555.7922
Composition function 8 (N = 6) 1.3723 × 104 2.0055 × 103 1.3862 × 104 1.9271 × 103

Composition function 9 (N = 3) 7.7406 × 104 9.7483 × 104 1.2417 × 105 2.0214 × 105
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