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Abstract
As one of the most promising nonlinear unsupervised dimensionality reduction (DR) technique, the Isomap reveals the 
intrinsic geometric structure of manifold by preserving geodesic distance of all data pairs. Recently, some supervised ver-
sions of Isomap have been presented to guide the manifold learning and increase the discriminating capability. However, 
the performance may deteriorate when there is no sufficient prior information available. Hence, a novel semi-supervised 
discriminant Isomap (SSD-Isomap) is proposed in the paper. First, two pairwise constraints including must-link and likely-
link (LL) are used to depict the neighborhoods of data points. Then, two graphs are constructed based on the two constraints, 
and distances between points belonging to the LL constraint are modified by a scale parameter. Finally, the geodesic distance 
metric is obtained based on the graphs, and the corresponding optimal nonlinear subspace is sought. The performance of 
SSD-Isomap is evaluated by extensive experiments of data visualization, image retrieval and classification. Compared with 
other state-of-the-art DR methods, SSD-Isomap presents more accurate and robust results.
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1  Introduction

Dimensionality reduction (DR), as a fundamental issue in 
pattern recognition, is to project the original high-dimen-
sional data into a lower-dimensional space by getting rid 
of the redundant or even irrelevant information according 
to a certain criterion. In recent years, since many emerging 
applications are revolved with the high-dimensional data, 
such as gene expressions, text mining, image classification 
and retrieval, the technique has attracted considerable atten-
tion and extensive studies have been done.

So far, many DR methods have been proposed. Among 
them, principal component analysis (PCA) [1] and linear 
discriminant analysis (LDA) [2, 3] are two representative 
methods. Recently, some methods based on manifold learn-
ing have shown their advantages, e.g. multidimensional 
scaling (MDS) [4], laplacian eigenmaps (LE) [5, 6], locally 
linear embedding (LLE) [7], t-distributed stochastic neigh-
bor embedding (t-SNE) [8] and Isomap [9, 10]. In particular, 

Isomap, which can reveal the intrinsic geometric structure 
of manifold by preserving geodesic distance of all similar-
ity pairs, has presented some encouraging results. However, 
the original Isomap is not good at extracting discriminative 
features for classification, as no class information of labeled 
data is considered. To handle the problem, several super-
vised versions of Isomap are proposed. WeightedIso uses 
a constant factor to change the Euclidean distance between 
two data points with the same class labels in the first step of 
Isomap [11]. In supervised Isomap (S-Isomap), two param-
eters are applied to update the distances among the pair-
wise points with the same and different class labels [12]. 
Zhang etc. [13] proposed a pairwise-constrained marginal 
Isomap (M-Isomap) which incorporates the pairwise cannot-
link (CL) and must-link (ML) constraints induced from the 
neighborhood graph into Isomap to guide the discriminant 
manifold learning. Inspired by M-Isomap, multi-manifold 
discriminant Isomap (MMD-Isomap) [14] was presented by 
introducing two global pairwise constraints and defining a 
joint optimization objective.

Despite the supervised DR methods can generally per-
form better than the unsupervised ones, the performances 
are deeply influenced by the number of labeled samples, 
and performance deterioration becomes inevitable when 
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there are no enough labeled data available [15, 16]. Active 
learning and semi-supervised learning are two promis-
ing learning paradigms to address the problem. Different 
from active learning which tries to select the most informa-
tive samples to be labeled [17], semi-supervised learning 
makes use of the prior knowledge of labeled samples and 
discriminative information hiding in unlabeled samples 
[18–21]. Semi-supervised discriminant analysis (SDA) 
[22] improves LDA by adding a regularization term to pre-
serve the local structures of data. In [23], semi-supervised 
Isomap (SS-Isomap) is proposed by using prior informa-
tion on exact mapping of certain data points to compute the 
low dimensional coordinates of unknown points. It is not in 
the typical sense of semi-supervised learning where both 
the labeled and unlabeled data are used for classification. 
It actually presents a method for out-of-sample mapping. 
Besides, the authors indicated that the improvement of SS-
Isomap over the basic Isomap is not significant according to 
experimental results. In [24], multiple view semi-supervised 
dimensionality reduction (MVSSDR), an improved version 
of semi-supervised dimensionality reduction (SSDR) [25], 
uses the pairwise constraints to derive embedding in each 
view and makes these embeddings comparable through a 
linear transformation.

Although some semi-supervised DR methods have been 
proposed, most of them try to compute linear projections. 
However, non-linear DR may play an important role in 
human perception and learning. As a popular non-linear 
DR method, original Isomap is unsupervised and its per-
formance can be improved by considering the class label 
information when a sufficient number of labeled samples 
available. In the case of limited training data, semi-super-
vised learning is helpful. In the paper, we study to apply 
useful information from the labeled and unlabeled samples 
to manifold learning for Isomap, and a semi-supervised 
discriminant Isomap (SSD-Isomap) is presented. In the 
method, two pairwise constraints including must-link (ML) 
and likely-link (LL) are first defined. Among the constraints, 
ML is constructed based on the labeled samples, while LL 
is built for the unlabeled samples. Then, two graphs based 
on the constraints are obtained, and the distances between 
points belonging to LL constraint are reset by a scale param-
eter. Finally, the corresponding optimal nonlinear subspace 
is sought to preserve the real distance of data.

The main contributions of this paper are summarized as 
follows:

1.	 Besides the common used constraint of must-link (ML), 
the constraint of likely-link (LL) is presented to depict 
the neighborhoods of data points without class labels. 
Compared with those supervised versions of Isomap, 
such as S-Isomap, M-Isomap and MMD-Isomap, the 
local structure information in the unlabeled sample 

points is used for modification of initial values of point 
distances.

2.	 SSD-Isomap uses a similar procedure in Isomap to 
obtain the low dimensional embedding after the geo-
desic distance matrix is initialized. Unlike M-Isomap 
and MMD-Isomap, no extra optimization algorithms are 
needed. Extensive experiments on data visualization, 
image retrieval and classification show that our method 
has better performance compared with other state-of-
the-art DR methods.

The rest of this paper is organized as follow. In Sect. 2, 
the related work is briefly introduced. Section 3 describes 
the details of the proposed SSD-Isomap. In Sect. 4, extensive 
experiments are carried out for performance evaluation of 
the proposed method. Finally, Sect. 5 gives the conclusion.

2 � Related work

In the section, we first summarize some notations used 
throughout the paper. The closely related works about Iso-
map is then reviewed.

Given a data set � = [�1, �2,… , �N] ∈ RM×Nwith N 
points, DR is to find a mapping function that maps these 
points to a new data set � = [�1, �2,… , �N] ∈ Rm×N  in 
a lower dimensional space with dimension m ( m ≪ M ). 
d(�i, �j) denotes the Euclidean distance between �i and �j.

2.1 � Isomap

Isomap is a classic global nonlinear DR algorithm which 
aims at seeking an optimal subspace that best preserves 
the geodesic distance in pair data. It can be summarized as 
follows:

1.	 Construct a weighted undirected neighborhood graph 
G(V ,E) , where node vi ∈ V  corresponds to point �i . 
For every pair of data points, if d(�i, �j) is smaller than 
the fixed radius � or �j ∈ KNN(�i) (KNN means�j is 
the K-nearest neighbors of �i ), the weight of edge 
e(�i, �j) ∈ E is set to d(�i, �j).

2.	 Compute geodesic distances. Initialize the distance 
dG(�i, �j) = d(�i, �j) if �j and �i are neighbors, otherwise, 
let dG(�i, �j) = ∞ . Estimate geodesic distances between 
all pairs of data points through computing all the short-
est path distances dG(�i, �j) in G. Dijkstra’s or Floyd’s 
algorithm can be applied to find the shortest paths.

3.	 Construct m-dimensional embedding. Define the Isomap 
criterion as follows:
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Let � = � − (1∕N)��T  , where I is a N × N  identity 
matrix, and e is the vector of all ones. Let Q be a N × N 
matrix with elements �ij = d2

G
(�i, �j) . According to 

MDS, the lower-dimensional embedding Y is obtained as 
[
√
�1�1,

√
�2�2,…

√
�m�m]

T  , where {�i}mi=1 denotes the 
eigenvector according to the first m leading eigenvalues of 
� = −���∕2.

2.2 � Supervised versions of Isomap

Since Isomap is an unsupervised DR algorithm, it is not 
good at extracting discriminative features for classification 
task. Some supervised versions have been presented by con-
sidering the class label information [26]. In WeightedIso, the 
Euclidean distances between points with the same labels are 
reduced by a constant rescaling factor, and then Isomap is 
implemented based on these new distances. S-Isomap [12] 
develops this idea and defines a different distance metric as 
follows:

where l(�i) is the class label of �i . The parameters of � and 
� are used to control the range of d(�i, �j) . Usually, � is set 
to be a small positive value, and � is set to be the average 
Euclidean distance between all pairs of data point. The two 
parameters both modify the distances between data points 
with help of the class labels, and can improve the classifica-
tion performance.

In M-Isomap [13], two local pairwise constraint sets, i.e., 
must-link (ML) and cannot-link (CL) are defined as

According to Eqs. (3) and (4), two pairwise-constrained 
neighborhood graphs GML and GCL can be constructed. 
M-Isomap optimizes the following two criteria:

(1)min
�

∑
�i,�j

(d(�i, �j) − dG(�i, �j))
2

(2)

∧

d(�i, �j) =

⎧
⎪⎨⎪⎩

�
1 − exp(−d2(�i, �j)∕�) if l(�i) = l(�j)�
exp(d2(�i, �j)∕�) − � if l(�i) ≠ l(�j)

,

(3)SML =
{
(�i, �j)

|||l
(
�i
)
= l(�j), �j ∈ KNN(�i)

}
,

(4)SCL =
{
(�i, �j)

|||l(�i) ≠ l(�j), �j ∈ KNN(�i)
}
.

(5)JML = min
�

∑
(�i,�j)∈SML

(d(�i, �j) − dML
G

(�i, �j))
2
,

(6)JCL = max
�

∑
(�i,�j)∈SCL

(d(�i, �j) − dCL
G
(�i, �j))

2
,

where dML
G

(�i, �j) and dCL
G
(�i, �j) are the shortest path dis-

tances between �i and �j in GML and GCL , respectively. By 
combing Eqs. (5) and (6), the optimization problem can 
be solved by using iterative trace ratio (ITR) algorithm. 
Inspired by M-Isomap, MMD-Isomap [14] is proposed by 
introducing two global pairwise constraints sets. The two 
optimization criteria are combined through a regularization 
parameter, and SMACOF is used to solve the objective.

3 � Semi‑supervised discriminant Isomap

The supervised versions of Isomap can usually perform bet-
ter than the original one, but the performance improvement 
largely depends on whether there are enough number of 
labeled samples. According to the idea of semi-supervised 
learning, some discriminative information hiding in the unla-
beled samples can be complementary to the prior knowledge. 
In view of this, a semi-supervised discriminant Isomap (SSD-
Isomap) is presented. A “good” projection should be the one 
which two data points in the new subspace are close to each 
other if and only if they have the same labels or they are in 
neighborhood in the original feature space.

3.1 � Pairwise‑constrained graphs

L e t  �L = {�1,… , �L} ∈ R
M×L  a n d 

�U = {�L+1,… , �L+U} ∈ R
M×U be the labeled and unlabeled 

data sets. A weighted undirected neighborhood graph G(V ,E) 
is first constructed. The edge weight e(�i, �j) ∈ {0, 0.5, 1} is 
used to indicate three types (disconnection, strong connec-
tion and weak connection) of the neighboring points. Specifi-
cally, when the labeled samples �i and �j have the same class 
labels, the connection between the two points is strong with 
e(�i, �j) = 1 ; when �i ∈ �U is among K-nearest neighbors of �j 
or �j ∈ �U is among K-nearest neighbors of �i , the connection 
between the two points is weak with e(�i, �j) = 0.5 ; otherwise, 
there is no connection with e(�i, �j) = 0 . Therefore, a global 
pairwise-constrained set (namely ML) for the labeled samples 
and a local pairwise-constrained set named by likely-link (LL) 
for the unlabeled samples are defined as follows:

where l(�i) is the class label of �i ( i = 1, 2,… , L ). Based on 
these definitions, an ML-constrained graph GL(V ,E) based 
on the labeled data and an LL-constrained graph GU(V ,E) 
based on the unlabeled data are constructed by keeping the 
edges with e(�i, �j) = 1 and e(�i, �j) = 0.5 , respectively.

(7)SL
ML

=
{
(�i, �j)

|||e(�i, �j) = 1, l(�j) = l(�i)
}
,

(8)SU
LL

=
{
(�i, �j)

|||e(�i, �j) = 0.5, �j ∈ KNN(�i)
}
,
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3.2 � Geodesic distance metrics

Based  on  t he  cons t r a ined  g raph  GL(V ,E)  , 
dML(�i, �j) =

‖‖‖�i − �j
‖‖‖2 is computed for the linking pair 

(�i, �j) ∈ SL
ML

 . For a pair (�i, �j) ∈ SU
LL

 , they are likely to be 
connected, but there is a possibility that they come from dif-
ferent classes and thus no edge should be put between them. 
In view of this, a compromise factor γ is applied to reset their 
distance according to the graph GU(V ,E):

where � ∈ (0, 1) . Through computing dML and dLL 
for all pairs (�i, �j) ( i, j = 1, 2,… , L + U  ), the dis-
tance matrix DSS is constructed. The geodesic distances 
between all pairs of points are estimated by comput-
ing their shortest path distances dSSD(�i, �j) . Similar to 
Isomap, the shortest path between each pair of points is 
computed by Floyd’s algorithm. In particular, initialize 
dSSD(�i, �j) = dSS(�i, �j) for points �i and �j . Then for each 
value of k = 1, 2,… , L + U  in turn, replace all entries 
dSSD(�i, �j) by min{dSSD(�i, �j), dSSD(�i, �k) + dSSD(�k, �j)} . 
Finally, the matrix DSSDwill contain the shortest path dis-
tances between all pairs of points.

3.3 � Objective function

Like Isomap and S-Isomap, SSD-Isomap seeks the projection 
which can preserve the original manifold structure between 
all pair of points in a lower dimensional space. The object 
function is defined as:

where � = [�1, �2,… , �N] ∈ Rm×(L+U) is the lower dimen-
sional representations of � . Let �SSD = −��SSD�∕2 and 

(9)dLL(�i, �j) =
‖‖‖�i − �j

‖‖‖2
/
� ,

(10)
JSSD = min

�

∑
(�i,�j)∈S

L
ML

or (�i,�j)∈S
U
LL

(d(�i, �j) − dSSD(�i, �j))
2,

�SSD
ij

= (dSSD
G

(�i, �j))
2 ; then Eq.  (10) can be rewritten as 

follows:

where ‖ ⋅ ‖F is the Frobenius matrix norm. The final embed-
ding Y can be obtained by the classic MDS. The whole train-
ing procedure of SSD-Isomap is listed in Table 1.

As one of Isomap series methods, SSD-Isomap uses 
the constraints of ML and LL to guide the computation of 
geodesic distance metrics. The computational complex-
ity is O(N3) when Floyd’s algorithm is used, and it can be 
improved to O(kN2 logN) when Dijkstra’s algorithm is used, 
where N and k are the sample size and neighborhood size, 
respectively. Based on the shortest paths between all pairs of 
samples, eigen-decomposition is applied to obtain the lower-
dimensional embedding. The time complexity isO(N3) . In 
fact, the computational complexity is always a bottleneck for 
all the Isomap series methods when they are applied to large 
data sets. But landmark Isomap [10] presents an effective 
solution to the problem, and can reduce the computational 
cost to O(knN logN) for the shortest-paths calculation and 
O(n2N) for the MDS eigenvalue calculation, where n is the 
number of landmark points and n ≪ N . So, SSD-Isomap can 
handle large-scale datasets by adopting the scheme.

4 � Experiments

In this section, the extensive experiments are carried out to 
evaluate the performance of the proposed SSD-Isomap. The 
visual, classification and image retrieval performances are 
compared with those of some state-of-the-art DR algorithms 
including the unsupervised Isomap, MDS, Laplacian Eigen-
maps (LE), LLE, the supervised LDA, S-Isomap, M-Isomap, 
and the semi-supervised SDA, SSDR. In this study, we test 
a synthetic data set, six benchmark image data sets includ-
ing Corel [27–29], UC Merced LULC [30], Caltech101 
[31], YALE [32, 33], ORL [34], MNIST [35], and six UCI 

(11)JSSD(�) = min
�

‖‖‖�
T� − �SSD‖‖‖F,

Table 1   SSD-Isomap
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data sets [36]. All of the experiments were run in MAT-
LAB with Intel(R) core(TM) i5-3470 CPU at 3.2 GHz and 
12 GB RAM.

4.1 � Visualization

An artificial data set of Swiss roll is used in the section. This 
3-D data set with 1600 samples has 4 classes and is shown in 
Fig. 1. In the experiment, half of data is randomly selected 
as the training (labeled) samples, and the rest is treated as 
test (unlabeled) samples. In Figs. 1, 4-class samples are 
marked by different colors. Furthermore, labeled samples 
are denoted by the symbol of ‘circle’, and unlabeled sam-
ples from four classes are denoted by the symbol of ‘stars’, 
‘plus’, ‘square’ and ‘diamond’, respectively. For unsuper-
vised DR methods, all 1600 samples are used to obtain the 
lower dimensional representations. For supervised methods, 
the lower embedding is computed only based on the training 
samples, and the map approximated by a BP neural network 
is applied to all samples. For semi-supervised methods, the 
map is established based on both labeled and unlabeled 
samples.

To get the best performance of algorithms, their param-
eters are carefully adjusted. The number of neighbors K is 
set to 30 for S-Isomap, 7 for Isomap and LLE, 150 for the 
proposed SSD-Isomap. We follow the same settings as [12] 
for S-Isomap: the parameter � is set to 0.5, and the parameter 
� is set to be the average Euclidean distance between all 
pairs of data points. In our algorithm, the parameter of � is 
determined by fivefold cross validation and is set to 0.1. The 
visualization results are shown in Fig. 2.

It can be observed that the unsupervised methods includ-
ing Isomap, MDS, LE and LLE cannot separate the four-
class data clearly. T-SNE can achieve a clear separation, but 
the clusters in green and blue are wrongly divided into two 
subparts. In supervised and semi-supervised methods, LDA, 
M-Isomap, SDA, SSDR and MVSSDR also fail to achieve 
separation. The clusters in the S-Isomap embedding space 

are generally separable, but there still exist overlaps between 
clusters in red and blue, and clusters in green and black. 
Compared with other methods, the proposed SSD-Isomap 
provides a better separation on the clusters.

4.2 � Image retrieval

Three data sets including Caltech101, Corel1000 and UC 
Merced LULC are used in the section. Caltech101 data 
set, which has been widely adopted for object recognition 
and image retrieval tasks, has 101 categories with 40–800 
images per category. The size of each image is roughly 
300 × 200 pixels. Corel1000 data set is a part of the real-
world photos from COREL Photo Gallery. It has 10 catego-
ries with 100 images per category. The UC Merced LULC 
data set, obtained from aerial imagery, consists of images 
from 20 classes, with a pixel resolution of 30 cm. Each class 
contains 100 images of size 256 by 256 pixels. We extract 
basic color features and wavelet texture features to describe 
images [37, 38]. The features include color histogram (32 
dimensions), color moment (64 dimensions), color auto cor-
relogram (6 dimensions), wavelet moment (40 dimensions) 
and Gabor transform where the number of scales was set 4 
and orientation was set 6 (48 dimensions). All the features 
are concatenated into a long vector as an image feature and 
each image is represented by a 190-dimensional vector. The 
new feature is normalized to zero mean and unit variance.

In our experiment on Caltech101, we use 10 out of 101 
categories, and images from each class are randomly split 
into a training set of 80 images and a test set of 20 images. 
For Corel1000 and UC Merced LULC data sets, image sam-
ples are evenly divided into training set and test set. In train-
ing set, samples are further split into labeled and unlabeled 
subsets equally, and only samples belonging to the labeled 
subset can be used for the supervised DR methods. For other 
methods, all samples in the training set are used to obtain the 
lower dimensional projection. For nonlinear DR methods, 
such as Isomap, S-Isomap, M-Isomap and SSD-Isomap, a 
BP neural network is constructed to simulate the mapping 
from high dimension to lower dimension based on the train-
ing set. In the reduced dimension space, L2 distance metric 
is employed to measure the similarities between the query 
image from the test set and the labeled images. Precision is 
used as the quantitative index for performance evaluation.

The dimension of data is reduced to the number of classes 
of each data set for all DR methods except for LDA. The 
parameters of each method are carefully adjusted to get the 
best performance. Table 2 lists the comparison on precision 
of top 5 to 25 (with 5 step intervals) retrieved images, and 
average precisions are also presented. On each data set, the 
best performance is emphasized by bold. As we can see, 
SSD-Isomap obtains the highest precisions on the three data 
sets. According to the average performance, the 12 methods Fig. 1   Data set of Swiss roll
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Fig. 2   The 2D embedding 
obtained by different methods 
on the Swiss roll data set
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can be sorted as: (1) SSD-Isomap, SDA, S-Isomap, SSDR, 
LDA, MVSSDR, LE, MDS, Isomap, t-SNE, M-Isomap and 
LLE for Corel1000; (2) SSD-Isomap, LDA, SDA, SSDR, 
S-Isomap, MVSSDR, t-SNE, LE, MDS, Isomap, LLE and 
M-Isomap for LULC; (3) SSD-Isomap, S-Isomap, LDA, 
SDA, SSDR, M-Isomap, MVSSDR, MDS, LE, Isomap, 
t-SNE and LLE for Caltech101.

To compare the effect of number of dimensions on 
retrieval performance, Fig. 3 presents the average precisions 
of different methods when the number of dimension changes 
from 5 to 40 on the Caltech101 data set. It is obvious that 
the supervised and semi-supervised methods perform better 
than unsupervised ones. SSD-Isomap generally achieves the 
highest precisions except when the dimension is reduced to 
5 and 30. SDA slightly outperforms S-Isomap, and SSDR 
ranks between S-Isomap and M-Isomap. In the figure, many 
methods achieve best performance when number of dimen-
sions is 10. As known, the high-dimensional data can be 
efficiently represented in a space of a much lower dimension 
without losing much information. The number of reduced 
dimensions is a key parameter for DR. If the dimension is 
too small, important features are projected onto the same 
dimension, and if the dimension is too large, the projec-
tions become noisy. In Fig. 3, the performances of differ-
ent methods exhibit the phenomenon. When the number of 

dimensions grows, the retrieval precision of each method 
reaches a maximum in a ten-dimensional space and then 
decreases. Hence the intrinsic dimension of Caltech101 data 
set may be 10 by empirical analysis. Indeed, how to estimate 
intrinsic dimension is still an open issue, and it is beyond 
the scope of this paper. But Fig. 3 also shows that intrinsic 
dimension is significant for DR methods.

4.3 � Classification

In classification experiments, three image data sets including 
MNIST, YALE and ORL, and six UCI data sets are used for 
performance comparison. The MNIST data set has 70,000 
hand written digit images with sizes of 28 × 28 pixels. Each 
image is denoted by a 784-dimensional vector. YALE face 
data set contains 165 images of 15 individuals. These face 
images are resized to 32 × 32 pixels with 256 Gy levels, 
and each image is presented by a 1024-dimensional vector. 
In ORL data set, 400 images with sizes of 32 × 32 pixels 
are from 40 persons, so each image is also denoted by a 
1024-dimensional vector. Table 3 gives the details of the 
six UCI data sets.

The same manner as in Sect. 4.2 is adopted to generate 
the training and test sets for MNIST, YALE and ORL data 
sets. In UCI data set, the two sets are obtained by fivefold 
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Fig. 2   (continued)
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cross validation. A BP neural network is used to approximate 
the maps of nonlinear DR methods. The final class labels of 
test data are determined by KNN classifier. The dimension 
of data is reduced to the number of classes of each data set 
for all DR methods except for LDA.

Table 4 presents the classification accuracies of 12 meth-
ods on the nine data sets. It is interesting to find that LDA 

performs better than SSD-Isomap on ORL and wine data 
sets. It seems that manifold methods generally perform 
worse on the two data sets. For ORL data set, SSD-Isomap 
is inferior to LDA, but comparable with SDA and SSDR. 
For wine data set, LDA, SDA and SSDR outperform SSD-
Isomap, but SSD-Isomap performs best in the manifold 
methods. In general, SSD-Isomap shows the best or second 

Table 2   Retrieval precisions of 
different methods

5 10 15 20 25 Ave

Corel1000
 Isomap 0.4424 0.3950 0.3593 0.3369 0.3130 0.3793
 MDS 0.4896 0.4308 0.3932 0.3603 0.3335 0.4015
 LE 0.4952 0.4450 0.4085 0.3739 0.3410 0.4127
 LLE 0.3478 0.3060 0.2697 0.2490 0.2322 0.2809
 t-SNE 0.4148 0.3914 0.3724 0.3508 0.3254 0.3710
 LDA 0.5204 0.5164 0.5144 0.5114 0.4964 0.5118
 S-Isomap 0.6352 0.6356 0.6185 0.6184 0.6054 0.6226
 M-Isomap 0.4220 0.3390 0.2739 0.2285 0.1996 0.2936
 SDA 0.6720 0.6558 0.6440 0.6290 0.5998 0.6401
 SSDR 0.6412 0.6196 0.5963 0.5669 0.5229 0.5893
 MVSSDR 0.5444 0.5134 0.4833 0.4616 0.4373 0.4880
 SSD-Isomap 0.6890 0.6844 0.6808 0.6754 0.6524 0.6764

LULC
 Isomap 0.1854 0.1628 0.1478 0.1397 0.1282 0.1524
 MDS 0.1870 0.1660 0.1503 0.1401 0.1327 0.1552
 LE 0.2026 0.1764 0.1536 0.1404 0.1279 0.1602
 LLE 0.1630 0.1397 0.1218 0.1105 0.1044 0.1279
 t-SNE 0.2028 0.1859 0.1680 0.1567 0.1446 0.1726
 LDA 0.3990 0.3805 0.3643 0.3456 0.3267 0.3632
 S-Isomap 0.2584 0.2582 0.2581 0.2581 0.2528 0.2571
 M-Isomap 0.1380 0.1268 0.1197 0.1141 0.1082 0.1214
 SDA 0.4028 0.3775 0.3523 0.3313 0.3092 0.3547
 SSDR 0.3210 0.3047 0.2883 0.2777 0.2661 0.2916
 MVSSDR 0.3154 0.2763 0.2448 0.2213 0.2038 0.2523
 SSD-Isomap 0.4622 0.4561 0.4523 0.4465 0.4354 0.4505

Caltech101
 Isomap 0.3500 0.3300 0.3147 0.2960 0.2902 0.3167
 MDS 0.3980 0.3765 0.3530 0.3322 0.3224 0.3564
 LE 0.3430 0.3265 0.3110 0.2995 0.2854 0.3131
 LLE 0.2690 0.2405 0.2290 0.2208 0.2178 0.2354
 t-SNE 0.3270 0.3105 0.2983 0.2888 0.2800 0.3009
 LDA 0.6140 0.6010 0.6023 0.5940 0.5830 0.5989
 S-Isomap 0.6150 0.6125 0.6117 0.6112 0.6110 0.6123
 M-Isomap 0.5520 0.5390 0.5260 0.5028 0.4846 0.5209
 SDA 0.6210 0.6075 0.5967 0.5785 0.5654 0.5938
 SSDR 0.5720 0.5520 0.5395 0.5215 0.5106 0.5391
 MVSSDR 0.4490 0.4255 0.4080 0.3985 0.3880 0.4120
 SSD-Isomap 0.6660 0.6640 0.6610 0.6587 0.6518 0.6613
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best performance in most data sets except wine, and achieves 
the highest averaged accuracy. Figure 4 shows the classifica-
tion accuracy obtained by SSD-Isomap with different � on 
wine data set. It can be seen that better performance can be 
achieved when � ranges from 0.2 to 0.6.

5 � Conclusions

A novel nonlinear DR method, SSD-Isomap, is presented 
in the paper. In SSD-Isomap, the original unsupervised 
Isomap is extended to the semi-supervised learning para-
digm. We use a new constraint of LL from the unlabeled 
data to depict the local structure of data points, and the 
popular constraint of ML from the labeled data to pre-
sent the class information. Based on the two constraints, 
graphs are constructed and the geodesic distance matrix 
is initialized. Then, the matrix is optimized by a similar 
procedure in Isomap and the low dimensional embedding 
is obtained. SSD-Isomap not only exploits useful informa-
tion from both labeled and unlabeled data, but also applies 
the intrinsic nonlinear structure of the data. Therefore, it 
can achieve a discriminative lower-dimensional mapping. 
The extensive experimental comparisons between SSD-
Isomap and other state-of-the-art methods have demon-
strated that SSD-Isomap is more robust and effective in 
visualization, image retrieval and classification.
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Fig. 3   Average precision comparison when number of dimensions 
changes on Caltech101 data set

Table 3   Six UCI data sets

Data set Size Classes Attributes

Abbr. Name

Wine Wine 178 3 13
Glass Glass identification 214 6 10
Iris Iris 150 3 4
Liv Liver disorder 345 2 7
Seeds Seeds 210 3 7
Sales Wholesale customer 440 3 8

Table 4   Classification accuracy 
on the MNIST, YALE, ORL 
and UCI

MNIST YALE ORL Wine Glass Iris Liv Seeds Sales Ave.

Isomap 0.7625 0.3373 0.3650 0.7020 0.6356 0.9267 0.5913 0.8762 0.5593 0.6395
MDS 0.4775 0.3700 0.3210 0.6852 0.6166 0.9400 0.5623 0.8667 0.5141 0.5948
LE 0.8090 0.3171 0.4000 0.6743 0.6037 0.9133 0.5391 0.8810 0.5681 0.6340
LLE 0.4410 0.3457 0.4050 0.6967 0.4770 0.8267 0.5362 0.6667 0.5162 0.5457
t-SNE 0.8355 0.3253 0.4150 0.6681 0.6130 0.9667 0.5739 0.8333 0.5546 0.6428
LDA 0.6212 0.4321 0.4900 0.9717 0.5748 0.9600 0.6029 0.9238 0.5404 0.6797
S-Isomap 0.8175 0.1860 0.1600 0.9038 0.5977 0.9333 0.6870 0.8714 0.5932 0.6389
M-Isomap 0.7385 0.1220 0.1150 0.6575 0.6171 0.8467 0.7619 0.8095 0.7182 0.5985
SDA 0.7820 0.4375 0.4200 0.9606 0.6268 0.9533 0.5826 0.9381 0.5789 0.6978
SSDR 0.7960 0.4850 0.4280 0.9495 0.5741 0.9400 0.5971 0.9286 0.6043 0.7003
MVSSDR 0.7445 0.3452 0.3750 0.6685 0.5272 0.9160 0.5681 0.8095 0.5866 0.6156
SSD-Isomap 0.8410 0.4634 0.4300 0.8755 0.6512 0.9724 0.7449 0.9524 0.7259 0.7396

Fig. 4   Classification accuracy of SSD-Isomap with different values of 
� on wine data set
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