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Abstract
Support vector data description (SVDD) is a well known model for pattern analysis when only positive examples are reliable. 
SVDD is usually trained by solving a quadratic programming problem, which is time consuming. This paper formulates the 
Lagrangian of a simply modified SVDD model as a differentiable convex function over the nonnegative orthant. The resulting 
minimization problem can be solved by a simple iterative algorithm. The proposed algorithm is easy to implement, without 
requiring any particular optimization toolbox. Theoretical and experimental analysis show that the algorithm converges 
r-linearly to the unique minimum point. Extensive experiments on pattern classification were conducted, and compared 
to the quadratic programming based SVDD (QP-SVDD), the proposed approach is much more computationally efficient 
(hundreds of times faster) and yields similar performance in terms of receiver operating characteristic curve. Furthermore, 
the proposed method and QP-SVDD extract almost the same set of support vectors.

Keywords  Support vector data description · Quadratic programming · Penalty function method · Lagrangian dual function · 
Support vectors

1  Introduction

There is a class of pattern recognition problems, such as nov-
elty detection, where the task is to discriminate the pattern of 
interest from outliers. In such a situation, positive examples 
for training are relatively easier to obtain and more reliable. 
However, although negative examples are very abundant, it 
is usually difficult to sample enough useful negative exam-
ples for accurately modeling the outliers since they may 
belong to any class. In this case, it is reasonable to assume 
positive examples clustering in a certain way. As such, the 
goal is to accurately describe the class of positive examples 
as opposed to the wide range of negative examples.

For this purpose, Tax et al. [30, 31, 33] proposed a sup-
port vector data description (SVDD) method, which fits a 
tight hypersphere in the nonlinearly transformed feature 
space to include most of the positive examples. Thus, SVDD 
could be regarded as a description of the data distribution 
of interest. Extensive experiments [30, 31, 33] showed that 

SVDD is able to correctly identify negative examples in test-
ing even though it has not seen any during training.

Like support vector machine (SVM) [34, Chap. 10], 
SVDD is a kernel based method, possessing all the related 
advantages of kernel machines. SVDD has been applied to 
various problems, including image classification [38], hand-
written digit recognition [32], face recognition [18], remote 
sensing image analysis [22], medical image analysis [29], 
and multiclass problems [17, 37], to name a few. In addition, 
SVDD is a preliminary step for support vector clustering [4].

The formulation of SVDD leads us to a quadratic pro-
gramming problem. Although decomposition techniques 
[24, 25] or sequential minimization method [26] could be 
employed to solve the quadratic programming, the train-
ing of SVDD has time complexity roughly of order O(n3) , 
where n is the training set size (see Sects. 4.2 and 4.3 for 
experimental verification). Thus, training an SVDD model 
could be very expensive for large dataset. As such, given the 
wide application of SVDD, it is highly desirable to develop 
a time-efficient yet accurate enough training algorithm for 
SVDD.

In this paper, we first slightly modify the formulation 
of SVDD model, resulting in a more convex minimiza-
tion problem with simpler constraints. We then apply the 
quadratic penalty function method [28, Sect. 6.2.2] from 
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optimization theory to absorb an equality constraint in the 
dual problem, obtaining a differentiable convex function 
over the nonnegative orthant as the approximated Lagran-
gian function, which can be efficiently minimized by a sim-
ple iterative algorithm. We thus call the proposed model 
as Lagrangian SVDD (L-SVDD). The proposed L-SVDD 
algorithm is easy to implement, requiring no particular opti-
mization toolbox besides basic standard matrix operations. 
Theoretical and experimental analysis show that the algo-
rithm converges r-linearly to the global minimum point and 
the algorithm has computational complexity of the order 
O(n2) multiplying the iteration number.

We test the proposed approach on face detection and 
handwritten digit recognition problems, and detailed per-
formance measure comparison demonstrates that L-SVDD 
often yields testing accuracy very close to or slightly better 
than that of the Quadratic Programming based SVDD (QP-
SVDD). More importantly, L-SVDD is much more com-
putationally efficient than QP-SVDD (i.e., 200–400 times 
faster on the considered experiments). Furthermore, the two 
methods extract almost identically the same set of support 
vectors.

The following are several words about our notations. All 
scalars are represented by symbols (i.e., English or Greek 
letters) with normal font. All vectors will be denoted by bold 
lower case symbols, and all are column vectors unless trans-
posed to a row vector by a prime superscript ′ . All matrices 
will be denoted by bold upper case symbols. For a vector � 
in ℝn , the plus function �+ is defined as (�+)i = max{0, xi} , 
for i = 1,… , n . For two vectors � and � in ℝn , � ≥ � means 
ai ≥ bi for each i = 1,… , n . The notation � ⟂ � means the 
two vectors � and � are perpendicular, that is, 
a1b1 + a2b2 +⋯ + anbn = 0 . For a vector � ∈ ℝ

n , ‖�‖ stands 
for its 2-norm, that is, ‖�‖ =

�
x2
1
+⋯ + x2

n
 . For a square 

matrix � of size n × n , ‖�‖ represent the matrix norm, that 
is

Thus, ‖��‖ ≤ ‖�‖ ⋅ ‖�‖ . If � is positive definite matrix, ‖�‖ 
is just the largest eigenvalue of �.

The rest of this paper is organized as follows: Sect. 2 
briefly reviews the formulation of SVDD and presents a 
simple modification to the original SVDD model; Sect. 3 
formulates the approximated Lagrangian dual problem and 
proposes a simple iterative algorithm to solve it, and the 
convergence properties of the algorithm will also be inves-
tigated; Sect. 3 discusses the feasibility of two alternative 
schemes as well; Sect. 4 compares the performance meas-
ures in terms of receiver operating characteristic curve and 
training time of the proposed L-SVDD algorithm to those 
of QP-SVDD on two publicly available real-world datasets, 

‖�‖ = sup
�≠�n

‖��‖
‖�‖

.

and we also compare the support vectors the two methods 
extracted; the experimental results in Sect. 4 also verify the 
role of each parameter in the convergence behavior of the 
algorithm, and the computational complexity is verified by 
the experimental results as well; finally, Sect. 5 summa-
rizes this paper and discusses some possible future research 
directions.

2 � Support vector data description

Given training data {�i, i = 1,… , n} with the feature vector 
�i ∈ ℝ

p , let �(⋅) be a nonlinear transformation1 which maps 
the original data vector into a high dimensional Hilbert fea-
ture space  . SVDD is looking for a hypersphere in  , with 
radius R > 0 and center � , which has a minimum volume 
containing most of the data. Therefore, we have to minimize 
R2 constrained to ‖�(�i) − �‖2 ≤ R2 , for i = 1,… , n . In addi-
tion, since the training sample might contain outliers, we can 
introduce a set of slack variables �i ≥ 0 , as in the framework 
of support vector machine (SVM) [34, Chap. 10]. The slack 
variable �i measures how much the squared distance from 
the training example �i to the center � exceeds the radius 
squared. Therefore, the slack variable could be understood 
as a measure of errors.

Taking all the considerations into account, the SVDD 
model can be obtained by solving the following optimiza-
tion problem

with constraints

where � = (�1,… , �n)
� is the vector of slack variables, and 

the parameter C > 0 controls the tradeoff between the vol-
ume of the hypersphere and the permitted errors.

The Lagrangian dual of the above optimization problem 
is (refer to [30, 31, 33] for detailed derivations)

with constraints

(1)min
R,�,�

F(R, �, �) = R2 + C

n∑

i=1

�i,

(2)‖�(�i) − �‖2 ≤ R2 + �i, �i ≥ 0, for i = 1,… , n,

(3)min
�

L(�) =

n∑

i=1

n∑

j=1

�i�jK(�i, �j) −

n∑

i=1

�iK(�i, �i),

(4)
n∑

i=1

�i = 1, 0 ≤ �i ≤ C for i = 1,… , n,

1  In SVM and SVDD literature, the explicit form of the function 
�(⋅) is not important, and in fact, it is often difficult to write out �(⋅) 
explicitly. What is important is the kernel function, that is, the inner 
product of �(�i) and �(�j).
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where K(�i, �j) = �(�i)
��(xj) is the kernel function 

which satisfies Mercer’s condition [34, Chap. 10], and 
� = (�1,… , �n)

� with �i being the Lagrangian multiplier for 
the i-th constraint in Eq. (2).

Similar to the works on SVM [21] and support vector 
regression [23], we consider the sum of squared errors in 
the objective function given in Eq. (1), that is, we modify 
Eq. (1) to

With this slight modification, the objective function becomes 
more convex because of the square terms. Furthermore, the 
nonnegativity constraint in Eq. (2) could be removed, which 
is proved in the following.

Proposition 1  If (R̂, �̂, �̂) is the minimum point of func-
tion F̃(R, �, �) defined in Eq. (5), with the constraints 
‖�(�i) − �‖2 ≤ R2 + �i , for i = 1,… , n , then all components 
of �̂ should be nonnegative.

Proof  Assume �̂ = (𝜉1, 𝜉2,… , 𝜉n)
� and without loss of 

generality, assume 𝜉1 < 0 . Let �̃ = (0, 𝜉2,… , 𝜉n)
� , that 

is, we replace the first component of �̂ (which is nega-
tive) by 0 and keep others unchanged. Since 𝜉1 satis-
fies the constraint ‖𝛷(�1) − �̂‖2 ≤ R̂2 + 𝜉1 , we must have 
‖𝛷(�1) − �̂‖2 ≤ R̂2 + 0 since 𝜉1 < 0 . By assumption, the 
constraints are satisfied at 𝜉2,… , 𝜉n . Hence, the constraints 
are satisfied at all components of �̃.

However, there is

since 𝜉1 < 0 by assumption, and this is contradiction to the 
assumption that (R̂, �̂, �̂) is the minimum point. Thus, at the 
minimum point, there must be 𝜉1 ≥ 0 . In the same manner, 
it can be argued that all components of �̂ should be nonnega-
tive. Consequently, the nonnegative constraint on � is not 
necessary, thus can be removed. 	�  □

The Lagrangian function of this new problem is

with �i ’s being the nonnegative Lagrangian multipliers. At 
the optimal point, the partial derivative to the primal vari-
ables are zeros. Thus, there are

(5)min
R,�,�

F̃(R, �, �) = R2 + C

n∑

i=1

𝜉2
i
.

F̃(R̂, �̂, �̃) = R̂2 + C

n∑

i=2

𝜉2
i
< R̂2 + C

n∑

i=1

𝜉2
i
= F̃(R̂, �̂, �̂)

L̃(R, �, �,�) = R2 + C

n�

i=1

𝜉2
i

+

n�

i=1

𝛼i
�
‖𝛷(�i) − �‖2 − R2 − 𝜉i

�
,

and

Substituting these results to the Lagrangian function, we 
have the dual function as

The purpose is now to maximize L̃(�) or minimize 
L(�) = −L̃(�)2 with respect to nonnegative �i ’s with the 
constraint in Eq. (6), that is

with constraints

With the sum of errors replaced by sum of squared errors, 
the resulting dual problem in Eq. (7) has an extra quadratic 
term, compared to the original dual problem in Eq. (3), and 
this will improve the convexity of the objective function. 
Moreover, by comparing the constraints in Eqs. (4) and (8), 
it is clear that the new optimization problem has simpler 
constraints, without any upper bound for the dual variables.

As implemented in popular SVM toolboxes [7, 14, 15], 
the quadratic programming problems in Eqs. (3) and (7) can 
be solved by decomposition methods [24, 25] or sequential 
minimal optimization method [26]. However, these algo-
rithms are computationally expensive with time complexity 
roughly O(n3) . Thus, a fast training algorithm for SVDD 
which can achieve similar accuracy as the quadratic pro-
gramming method is highly appreciated.

(6)
𝜕L̃

𝜕R
= 0 ⇒ 2R −

n∑

i=1

2R𝛼i = 0 ⇒

n∑

i=1

𝛼i = 1,

𝜕L̃

𝜕𝜉i
= 0 ⇒ 2C𝜉i − 𝛼i = 0 ⇒ 𝜉i =

𝛼i

2C
for i = 1, 2,… , n,

𝜕L̃

𝜕�
= 0 ⇒ −2

n∑

i=1

𝛼i(𝛷(�i) − �) = 0 ⇒ � =

n∑

i=1

𝛼i𝛷(�i).

L̃(�) = −
1

4C

n∑

i=1

𝛼2
i
−

n∑

i=1

n∑

j=1

𝛼i𝛼jK(�i, �j) +

n∑

i=1

𝛼iK(�i, �i).

(7)

min
�

L(�) =
1

4C

n∑

i=1

�2
i
+

n∑

i=1

n∑

j=1

�i�jK(�i, �j)

−

n∑

i=1

�iK(�i, �i),

(8)
n∑

i=1

�i = 1, �i ≥ 0 for i = 1,… , n.

2  We slightly abuse the notation here because L(�) was used in Eq. 
(3). However, this will not cause any confusion because all of our fol-
lowing discussions are based on Eq. (7).
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3 � Lagrangian support vector data 
description

3.1 � The algorithm

Let � be the n × n kernel matrix, that is, �ij = K(�i, �j) , let 
vector � be formed by the diagonal elements of kernel matrix 
� , let �n be the n × n identity matrix, and let �n ( �n ) be the 
n-dimensional vector of all 1’s (0’s). The optimization problem 
in Eq. (7) could be written compactly in matrix form as

with constraints

To deal with the equality constraint in Eq. (10), we consider 
the penalty function method [28, Sect. 6.2.2] from opti-
mization theory. The basic idea is integrating the original 
objective function with a function which incorporates some 
constraints, in order to approximate a constrained optimi-
zation problem by an unconstrained problem or one with 
simpler constraints. For our problem, we consider the fol-
lowing function

where �n is the n × n matrix of all elements being 1. As 
proved in [28], as the penalty parameter � → ∞ , the mini-
mum point of Eq. (11) with � ≥ �n converges to the solution 
to Eq. (9) with constraints in Eq. (10).

Let

The matrix � is positive definite because both � and �n are 
positive semi-definite while �n is positive definite. Ignoring 
the constant term in Eq. (11), we can formulate the approxi-
mated minimization problem as

The Kuhn–Tucker stationary-point problem [20, p. 94, KTP 
7.2.4] for Eq. (13) is

From these equations, we have

(9)min
�

L(�) =
1

2
��

(
�n

2C
+ 2�

)
� − ���,

(10)��
n
� = 1 and � ≥ �n.

(11)

f (�) =
1

2
��

(
�n

2C
+ 2�

)
� − ��� + �(��

n
� − 1)2

=
1

2
��

(
�n

2C
+ 2� + 2��n

)
� − (� + 2��n)

�� + �,

(12)� =
�n

2C
+ 2� + 2��n and � = � + 2��n.

(13)min
�≥�n

1

2
���� − ���.

�� − � − � = �n, �
�� = 0, � ≥ �n, � ≥ �n.

� = �� − � ≥ �n and (�� − �)�� = 0,

which can be summarized as solving the classical linear 
complementarity problem [10], that is, solving for � , such 
that,

Since the matrix � is symmetric positive-definite, the exist-
ence and uniqueness of the solution to Eq. (14) is guaranteed 
[9]. The optimality condition in Eq. (14) is satisfied if and 
only if for any 𝛾 > 0 , the relationship

holds. See Appendix for a proof.
To obtain a solution to the above problem, we start from 

an initial point �0 , and apply the following iterative scheme

The initial point �0 could be any vector, but in our imple-
mentation, we take �0 = �−1� . We summarize the algorithm 
for L-SVDD as in Algorithm 1 below, and the convergence 
analysis will be given in Sect. 3.2.

Algorithm  1: Lagrangian Support Vector Data 
Description

0.	 Initialization: choose the starting point as α0 = Q−1v, 
find α1 using Eq. (16), set k = 1, set the iteration number 
as M, and set the error tolerance as ε.

1.	 while k < M and ||�k − �k−1|| > � do:
2.	    Set k = k + 1.

3.	    Find αk using Eq. (16).
4.	 end while
5.	 Return the vector αk.

Remark 1  In Algorithm 1, we terminate the program when 
the solution does not change too much. Since the purpose is 
to find a solution to Eq. (14), we can also terminate the pro-
gram if the absolute value of inner product (�k)�(��k − �) is 
below a certain level. However, since it includes matrix and 
vector multiplication, this stopping criterion is more expen-
sive to evaluate than the one in Algorithm 1. Thus, in our 
implementation, we choose to use the stopping rule given in 
Algorithm 1. Our experimental results show that when the 
algorithm stops, the inner product indeed is very close to 0. 
Please see Sects. 4.2 and 4.3 for the detailed results.

Remark 2  Each iteration of Algorithm 1 includes matrix 
multiplying vector, vector addition/subtraction, and tak-
ing positive part of a vector component-wise, among which 
the most expensive operation is matrix multiplying vector, 
which has computational complexity of order O(n2) . We thus 
expect the computational complexity of Algorithm 1 to be 
about iteration number multiplying O(n2) . Sections 4.2 and 
4.3 verify this analysis experimentally.

(14)�n ≤ (�� − �) ⟂ � ≥ �n.

(15)�� − � = (�� − � − ��)+

(16)�k+1 = �−1(� + (��k − � − ��k)+).
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Similar to SVM, we call the training examples with cor-
responding �i ’s nonzero as support vectors. Once �i ’s are 
obtained, the radius R can be computed from the set of sup-
port vectors [30, 31]. In the stage of decision making, if the 
distance from a new example � to the center is less than the 
radius R, it is classified as a positive example; otherwise, it is 
classified as a negative example. That is, the decision rule is

where b = R2 −
∑n

i=1

∑n

j=1
�i�jK(�i, �j).

3.2 � Convergence analysis

To analyze the convergence property of Algorithm 1, we 
need the following

Lemma 1  Let � and � be two points in ℝp , then

Proof  For two real numbers a and b, there are four situations

(1)	 a ≥ 0 and b ≥ 0 , then |a+ − b+| = |a − b|;
(2)	 a ≥ 0 and b ≤ 0 , then |a+ − b+| = |a − 0| ≤ |a − b|;
(3)	 a ≤ 0 and b ≥ 0 , then |a+ − b+| = |0 − b| ≤ |a − b|;
(4)	 a ≤ 0 and b ≤ 0 , then |a+ − b+| = |0 − 0| ≤ |a − b|.

In summary, for one dimensional case, there is 
|a+ − b+|2 ≤ |a − b|2.

Assume that Eq. (18) is true for p dimensional vectors 
�p and �p . Denote the p + 1 dimensional vectors � and � as3

where ap+1 and bp+1 are real numbers. Then,

where in Eq. (19), we used the assumption on the p dimen-
sional vectors, the special result for one dimensional case, 
and the definition of Euclidean norm.

By induction, Eq. (18) is proved. 	�  □

(17)

f (�) = sign

(
R2 −

‖‖‖‖‖
�(�) −

n∑

i=1

�i�(�i)
‖‖‖‖‖

2)

= sign

(
2

n∑

i=1

�iK(�i, �) − K(�, �) + b

)
,

(18)‖�+ − �+‖ ≤ ‖� − �‖.

� = (�p, ap+1) and � = (�p, bp+1),

(19)

‖�+ − �+‖2 = ‖((�p)+ − (�p)+, (ap+1)+ − (bp+1)+)‖2

= ‖(�p)+ − (�p)+‖2 + ((ap+1)+ − (bp+1)+)
2

≤ ‖�p − �p‖2 + (ap+1 − bp+1)
2 = ‖� − �‖2,

With the aid of Lemma 1, we are ready to study the con-
vergence behavior of Algorithm 1, and we have the follow-
ing conclusion.

Proposition 2  With 0 < 𝛾 < 1∕C , the sequence �k obtained 
by Algorithm 1 converges r-linearly [2] to the unique solu-
tion �̄ of Eq. (13), that is

Proof  The convexity of the objective function in Eq. (13) 
and the convexity of the feasible region ensure the existence 
and uniqueness of solution �̄ to Eq. (13). Since �̄ is the solu-
tion to Eq. (13), it must satisfy the optimality condition in 
Eq. (15), that is, for any 𝛾 > 0

Multiplying Eq. (16) by � and subtracting Eq. (20), and then 
taking norm gives us

Applying Lemma 1 to the vectors ��k − � − ��k and 
��̄ − � − 𝛾�̄ in Eq. (21), we have

In the definition of � in Eq. (12), it is clear that the matrix 
2� + 2��n is positive semi-definite because both � and 
�n are, and we denote its eigenvalues as �i , i = 1, 2,… , n . 
Then the eigenvalues of � are 1

2C
+ �i and the eigenvalues 

of �−1 are ( 1

2C
+ �i)

−1 , i = 1, 2,… , n . To make the sequence 
‖��k −��̄‖ converge, Eq. (22) indicates that we need 
‖� − 𝛾�−1‖ < 1 , that is, the eigenvalues of � − ��−1 are all 
between −1 and 1,

or

Thus, with the choice of 0 < 𝛾 < 1∕C , we have

lim sup
k→∞

‖�k − �̄‖1∕k < 1.

(20)��̄ = � + (��̄ − � − 𝛾�̄)+.

(21)
‖��k+1 −��̄‖ = ‖(��k − � − 𝛾�k)+ − (��̄ − � − 𝛾�̄)+‖.

(22)

‖��k+1 −��̄‖ ≤ ‖(��k − � − 𝛾�k) − (��̄ − � − 𝛾�̄)‖
= ‖(� − 𝛾�)(�k − �̄)‖
= ‖(� − 𝛾�−1)(��k −��̄)‖
≤ ‖� − 𝛾�−1‖ ⋅ ‖��k −��̄‖.

−1 < 1 − 𝛾

(
1

2C
+ 𝜆i

)−1

< 1 for i = 1, 2,… , n,

0 < 𝛾 < 2
(

1

2C
+ 𝜆i

)
=

1

C
+ 2𝜆i for i = 1, 2,… , n.

c = ‖� − 𝛾�−1‖ < 1.

3  For notational convenience, in this proof, we assume all the vectors 
are row vectors. Clearly, the result also applies to column vectors.
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Recursively applying Eq. (22), we have that for any k,

Consequently,

where A = ‖�−1‖‖��0 −��̄‖ > 0 . Hence,

This proves the proposition. 	�  □

Remark 3  The proof of Proposition 2 enables us to estimate 
the iteration number M. If we require the accuracy of the 
solution to be � , in the sense that ‖�M − �̄‖ < 𝜀 . From Eq. 
(23), it is sufficient to have ‖�M − �̄‖ < AcM = 𝜀 , where 
A = ‖�−1‖‖��0 −��̄‖ and c = ‖� − ��−1‖ . This enables 
us to solve for M as

However, A cannot be calculated because �̄ is unknown. 
Hence, in the implementation, we set M as a large num-
ber and terminate the program according to the criterion in 
Algorithm 1.

From the proof of Proposition 2, the convergence rate of 
Algorithm 1 depends on c, the norm of matrix � − ��−1 . The 
analysis in the proof shows that a smaller value of c gives 
a faster convergence rate. By the definition of matrix norm, 
there is

from which it is clear that a larger value of � makes c smaller 
and consequently makes the algorithm converge faster.

In accord with Proposition 2, let us assume that � = a∕C 
for some constant 0 < a < 1 . We have,

‖��k −��̄‖ ≤ ck‖��0 −��̄‖.

(23)
‖�k − �̄‖ = ‖�−1�(�k − �̄)‖ ≤ ‖�−1‖‖��k −��̄‖

≤ ck‖�−1‖‖��0 −��̄‖ = Ack,

lim sup
k→∞

‖�k − �̄‖1∕k ≤ lim sup
k→∞

A1∕kc = c < 1.

M =
log � − logA

log c
.

c = ‖� − ��−1‖ = max
i

�
1 − �

�
1

2C
+ �i

�−1
�
,

c = max
i

{
1 − �

(
1

2C
+ �i

)−1
}

= max
i

{
1 −

a

C

(
1

2C
+ �i

)−1
}

= max
i

{
1 −

(
1

2a
+ �i

C

a

)−1
}

= max
i

{
1 −

2a

1 + 2C�i

}
.

Thus, a small value of C and the smallest eigenvalue will 
make 2a

1+2C�i
 large hence c small, and consequently the algo-

rithm will converge faster. However, to the best of our 
knowledge, there is no theoretical conclusion about the 
dependence between the eigenvalues of 2� + 2��n and � . 
Fortunately, our numerical tests revealed that with the 
change of � , the largest eigenvalue of 2� + 2��n changes 
dramatically while the smallest eigenvalue does not change 
too much. Since c depends on the smallest eigenvalue of 
2� + 2��n , we thus conclude that the convergence rate of 
Algorithm 1 is not affected much by �.

In summary, we reach the conclusion that, to achieve a 
faster convergence rate, we should set � large and C small ( � 
depends on C in our implementation), and � does not signifi-
cantly impact the convergence behavior. We should mention 
that C also controls the error of the model, so setting C small 
might make the resulting model perform poorly in classifica-
tion. We will numerically verify these analysis in Sect. 4.2.

3.3 � Discussion on two alternatives

We train the L-SVDD model by solving the linear comple-
mentarity problem in Eq. (14), and Algorithm 1 is based on 
the condition in Eq. (15) at the optimum point. Alternatively, 
the optimality condition can be written as

where 𝛾̃ > 0.
In principle, similar to Algorithm 1, we can design an algo-

rithm based on recursive relation

with some appropriately selected 𝛾̃ . Intuitively, the algo-
rithm based on Eq. (25) should be more computationally 
efficient in each iteration than Algorithm 1 which is based 
on Eq. (16). The reason is that Eq. (16) involves three vec-
tor addition/subtraction operations and two matrix and vec-
tor multiplications, while Eq. (25) only includes two vector 
addition/subtraction operations and one matrix and vector 
multiplication.

To choose 𝛾̃ , as in the proof of Proposition 2, we let the 
unique solution to Eq. (14) be �̄ , which must satisfy

Subtracting Eq. (26) from Eq. (25), taking norm, and apply-
ing Lemma 1, we have

Thus, to make the potential algorithm converge, we must 
have ‖� − 𝛾̃�‖ < 1.

(24)� = (� − 𝛾̃(�� − �))+,

(25)�k+1 = (�k − 𝛾̃(��k − �))+,

(26)�̄ = (�̄ − 𝛾̃(��̄ − �))+.

‖�k+1 − �̄‖ = ‖(�k − 𝛾̃(��k − �))+ − (�̄ − 𝛾̃(��̄ − �))+‖
≤ ‖(�k − 𝛾̃(��k − �)) − (�̄ − 𝛾̃(��̄ − �))‖
= ‖(� − 𝛾̃�)(�k − �̄)‖ ≤ ‖� − 𝛾̃�‖ ⋅ ‖�k − �̄‖.
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Denote the eigenvalues of matrix 2� + 2��n as 
�i , i = 1, 2,… , n , then the eigenvalues of � − 𝛾̃� are 
1 − 𝛾̃(

1

2C
+ 𝜆i) . To ensure ‖� − 𝛾̃�‖ < 1 , we need all the 

eigenvalues of � − 𝛾̃� to be between −1 and 1, that is

or

Thus, we should choose 𝛾̃ as

where �max = max{�1, �2,… , �n}.
However, our experimental results4 show that �max is 

large because � need to be large, as required by the penalty 
function method. As a result, this will make 𝛾̃ very small 
and consequently, make the potential algorithm based on 
Eq. (25) converge slowly. We tested this alternative idea in 
our experiments, and the result showed that, under the same 
stopping criterion, compared to Algorithm 1, although each 
iteration is more time efficient, the algorithm based on Eq. 
(25) needs much more iterations to converge,5 hence spend-
ing more time.

The purpose of Algorithm 1 is to solve the quadratic 
minimization problem given in Eq. (13), and another alter-
native is to apply interior point method (IPM) [2, 5, 28] to 
this problem. Let �k be the k-th step solution to the prob-
lem of minimizing some convex function g(�) with some 
constraints using IPM, and denote the global minimum 
point as �� . In [2], it was proved that �k converges to �� 
not only r-linearly, but also q-superlinearly in the sense that 
‖�k+1 − ��‖∕‖�k − ��‖ → 0 . Proposition 2 shows that the 
proposed L-SVDD algorithm also has r-linear convergence 
rate. However, L-SVDD algorithm cannot achieve q-super-
linear convergence rate. This means that theoretically, IPM 
should converge in fewer iterations than L-SVDD.

In each iteration of L-SVDD algorithm, the operation is 
quite simple, with the most expensive computation being 
matrix and vector multiplication. However, each IPM itera-
tion is much more complicated, because it includes evaluat-
ing the objective function and constraint values, calculating 

−1 < 1 − 𝛾̃

(
1

2C
+ 𝜆i

)
< 1 for i = 1, 2,… , n,

0 < 𝛾̃ <
2

1

2C
+ 𝜆i

=
4C

1 + 2C𝜆i
for i = 1, 2,… , n.

0 < 𝛾̃ <
4C

1 + 2C𝜆max

,

the gradients and Hessian, finding the search direction, and 
conducting a backtracking line search to update the solution. 
These operations include several matrix inversion and more 
matrix multiplications. Thus, each iteration of IPM is much 
more expensive than L-SVDD. Hence, although IPM con-
verges in fewer iterations, it might spend more computing 
time and resource (e.g., memory) than L-SVDD.

We developed the interior point method based SVDD 
model (IPM-SVDD) by adapting the MATLAB code from 
https​://pcarb​o.githu​b.io/conve​xprog​.html. Section 4.2 pre-
sents the comparison between IPM-SVDD and L-SVDD 
in terms of iteration number and CPU time for achieving 
convergence.

4 � Experimental results and analysis

On a face dataset and the USPS handwritten digit dataset, 
we compared the performances of the proposed Lagrangian 
SVDD (L-SVDD) and the ordinary Quadratic Programming 
based SVDD (QP-SVDD), which is obtained by applying a 
quadratic programming solver to Eq. (7) with constraints 
in Eq. (8).

4.1 � Experiment setup and performance measures

The program for L-SVDD was developed using MATLAB, 
and we did not do any specific code optimization; QP-SVDD 
was implemented based on the MATLAB SVM toolbox [14] 
with the core quadratic programming solver written in C++. 
The source code of this work is available upon request. All 
the experiments were conducted on a laptop computer with 
Intel(R) Core(TM) i5-2450M CPU 2.50 GHz and 4 GB 
memory, with Windows 7 Professional operating system 
and MATLAB® R2007b as the platform. During all experi-
ments that incorporated measurement of running time, one 
core was used solely for the experiments, and the number 
of other processes running on the system was minimized.

In our experiments, we adopted the Gaussian kernel

with � = 8 . We set the SVDD control parameter C = 2 in 
the algorithms. The parameter setting in our experiments 
might not be optimal to achieve the best testing performance. 
Nonetheless, our purpose is not to achieve the least testing 
error, but to compare the performances between L-SVDD 
and QP-SVDD; therefore, the comparison is fair as long as 
the parameter settings are the same for the two algorithms. 
In general, we can select the optimal parameter setting (C, �) 
by applying cross validation, generalized approximate cross 
validation [36], or other criteria mentioned in [8, 13], but 

K(�, �) = exp

�
−
‖� − �‖2

2�2

�

4  To the best of our knowledge, there is no theoretical result regard-
ing the dependence between the largest eigenvalue of matrix 
2� + 2��n and the parameter �.
5  For instance, on the face detection problem in Sect. 4.2, to achieve 
the error tolerance of 10−5 , the algorithm based on Eq. (25) needs 
more than 20,000 iterations to converge.

https://pcarbo.github.io/convexprog.html
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since it is not the focus of this paper, we choose not to pursue 
further in this issue.

To make the L-SVDD algorithm converge fast, from 
the conclusion at the end of Sect. 3.2, we should set � a 
large value. In all of our experiments, we chose � = 0.95∕C 
to ensure the convergence of Algorithm 1. According to 
the theoretical property of penalty function method [28, 
Sect. 6.2.2], the parameter � in the definition of � in Eq. 
(12) should be as large as possible. In our experiments, we 
found that setting � = 200 is enough to ensure the close-
ness of �′

n
� and 1 (in fact, all the experimental results 

have |��
n
� − 1| < 0.002 when the L-SVDD training algo-

rithm terminates). Section 4.2 also studies the roles of 
the parameters C, � , and � in the convergence behavior of 
Algorithm 1. The iteration number M in Algorithm 1 was 
set to be 3000, although in our experiments we found that 
most times the algorithm converges in 1000 iterations. The 
tolerance parameter in Algorithm 1 was set to be 10−5.

In the decision rule given by Eq. (17), we changed the 
value of the parameter b, and for each value of b, we cal-
culated the true positive rate and false positive rate. We 
then plot the true positive rate vs. the false positive rate, 
resulting the receiver operating characteristic (ROC) curve 
[11], which will be used to illustrate the performance of 
the classifier. The classifier performs better if the corre-
sponding ROC curve is higher. In order to numerically 
compare the ROC curves of different methods, we calcu-
late the area under the curve (AUC) [11]. The larger the 
AUC, the better the overall performance of the classifier.

To compare the support vectors extracted by the two 
algorithms, we regard the support vectors given by QP-
SVDD as true support vectors, and denote them as the set 
SVQ , denote the support vectors from L-SVDD as SVL . We 
define precision and recall [27] as

where |S| represents the size of a set S. High precision 
means that L-SVDD finds substantially more correct sup-
port vectors than incorrect ones, while high recall means 
that L-SVDD extracts most of the correct support vectors.

4.2 � Face detection

This experiment used the face dataset provided by the Center 
for Biological and Computational Learning (CBCL) at MIT. 
The training set consists of 6977 images, with 2429 face 
images and 4548 non-face images; the testing set consists of 
24,045 images, including 472 face images and 23,573 non-
face images. Each image is of size 19 × 19 , with pixel values 
between 0 and 1. We did not extract any specific features 
for face detection (e.g., the features used in [35]), instead, 
we directly used the pixel values as input to L-SVDD and 
QP-SVDD.

Figure  1 shows the ROC curves of QP-SVDD and 
L-SVDD on the testing set. The ROC curves are so close 
that if we plot them in the same figure, they will be indistin-
guishable. The closeness of the ROC curves indicates that 
the two resulting classifiers should perform very closely. 
Indeed, the AUC for QP-SVDD is 0.8506 while the AUC 
for L-SVDD is 0.8512, that is, L-SVDD classifier performs 
even slightly better. On our computer, QP-SVDD spent 
7301.8 s in training while it took the L-SVDD training algo-
rithm 862 iterations to converge, consuming only 13.0729 
s. In another word, the proposed L-SVDD is almost 560 
times faster than QP-SVDD in training. Thus, we could con-
clude that L-SVDD is much more time-efficient in training 

precision =
|SVQ ∩ SVL|

|SVL|
and recall =

|SVQ ∩ SVL|
|SVQ|

,
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Fig. 1   The ROC curves of a QP-SVDD and b L-SVDD on CBCL testing dataset
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than QP-SVDD, while still possessing similar classification 
performance.

QP-SVDD found 79 support vectors, while L-SVDD 
extracted 85 support vectors, with the precision rate 92.94% 
and the recall rate 100%. These numbers indicate that 
L-SVDD and QP-SVDD obtain models with similar com-
plexity. The precision and recall rates show that L-SVDD 
correctly finds all the support vectors while only mistak-
enly regards a few training examples as support vectors. 
We should mention that, by mathematical and experimen-
tal analysis, the original SVDD papers [31, 33] conclude 
that, for the SVDD model with Gaussian kernel, the number 
of support vectors decreases as the kernel parameter � or 
the control parameter C increases. This conclusion should 
be true for L-SVDD because it is just another solution 
(although approximate) to the same problem. We tested this 
conjecture by changing different parameter settings, and 
found that the number of support vectors for L-SVDD also 
follows the conclusion presented in [31, 33]. Since this issue 
is not particular to L-SVDD, we choose not to present the 
results.

We denote the solution of QP-SVDD as �Q , and calculate 
the norm of the difference between the k-th iteration solution 
of L-SVDD and the QP-SVDD solution, that is, ‖�k − �Q‖ . 
The black curve in Fig. 2a represents the evolution of the 
norm ‖�k − �Q‖ , which shows that the difference indeed 

decreases to zero exponentially. We further fit the obtained 
values of ‖�k − �Q‖ to an exponential function Ack , and we 
plot the fitted curve in Fig. 2a as the red dashed curve. We 
see that the calculated values and the fitted values are close 
to each other, and this numerically verifies our theoretical 
result in Eq. (23).

The purpose of Algorithm 1 is to solve Eq. (14) with 
respect to � . To observe the evolution of the solution, Fig. 2b 
plots the inner product (�k)�(��k − �) , which approaches 0 
as the training program proceeds. In fact, when the algorithm 
terminated, the inner product value was −3.6883 × 10−4 , 
very close to 0.

To numerically investigate the relationship between the 
training time of QP-SVDD and the training set size, we grad-
ually increase the training set size and record the training 
time (in seconds) of QP-SVDD, and the results are given in 
Table 1, in which we also list the ratio between the train-
ing time and the cubic of training set size. Table 1 shows 
that, with the increasing of training set size, the training 
time increases dramatically, and the majority of the ratio 
t∕n3 are around 0.4618 × 10−6 (average of the 3rd row). This 
suggests that the training time complexity of QP-SVDD is 
around O(n3).

We conducted the same experiment with L-SVDD, and 
Table 2 gives the training time of L-SVDD for different 
training set size, and the number of iterations needed are 
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Fig. 2   a On the CBCL face training dataset, the convergence of the L-SVDD solution �k to the QP-SVDD solution �
Q
 in terms of the norm of 

the difference vector. b The evolution of the inner product (�k)�(��k − �) with the iteration number

Table 1   The training time (t, 
in seconds) of QP-SVDD with 
different training set size (n)

For the purpose of complexity analysis, the values for t∕n3(×10−6) are also listed

Training set size (n) 400 800 1200 1600 2000 2400

Training time (t) 21.8 218.6 850.1 2090.7 4033.0 6864.7
t∕n3(×10−6) 0.3405 0.4270 0.4920 0.5104 0.5041 0.4966
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also shown. To verify our theoretical analysis in Remark 
2, we calculated the time per iteration (tpi), and the ratio 
between tpi and n2 , which are also presented in Table 2. 
Table 2 shows that the values of tpi∕n2 are around a constant, 
i.e., 0.2662 × 10−8 (average of the 5th row). This indicates 
that the time per iteration is of order O(n2) , hence the total 
training time complexity of L-SVDD is about the iteration 
number multiplying O(n2) , which is consistent with the theo-
retical analysis in Remark 2.

In the derivation of Eq. (11), to absorb the constraint ∑n

i=1
�i = 1 in Eq. (10), we introduced a parameter � in 

the penalty function, and the penalty function method 
requires that � should be large enough to ensure the valid-
ity of the constraint [28, Sect. 6.2.2]. To verify this, we 
randomly selected 600 face images as training data and 
run the L-SVDD algorithm for different settings of � and 
C (since � depends on C through � = 0.95∕C ). Table 3 

gives the values of 
∑n

i=1
�i for different parameter settings. 

The results show that as long as � large enough, 
∑n

i=1
�i is 

reasonably close to 1. Moreover, for a fixed � , 
∑n

i=1
�i is 

almost the same for a variety of C values. This paper sets 
� = 200 , which is sufficient to make the constraint hold 
approximately.

To experimentally investigate the impact of parameters 
C, � , and � to the convergence behavior of L-SVDD, we 
randomly select 600 face images, and run L-SVDD train-
ing algorithm with different parameter settings. We first fix 
C = 4 and � = 200 , and change the value of � . Table 4 lists 
the number of iterations to converge along with different 
values of � . It is observed that as � increases, the algorithm 
converges faster. Next, we fix � = 100 , set � = 0.95∕C , 
and change the value of C, and Table 5 gives the number 
of iterations to converge along with different values of 

Table 2   The training time (t, 
in seconds) of L-SVDD with 
different training set size (n)

For the purpose of time complexity analysis, the iteration numbers needed to converge, the time per itera-
tion (tpi), and tpi∕n2 are also listed

Training set size (n) 400 800 1200 1600 2000 2400

Training time (t) 0.1092 0.5772 1.5912 3.5256 7.0512 11.8249
# Iteration 191 347 441 560 726 853
Time per iteration (tpi) 0.0006 0.0017 0.0036 0.0063 0.0097 0.0139
tpi∕n2(×10−8) 0.3573 0.2599 0.2506 0.2459 0.2428 0.2407

Table 3   On a subset from face 
data, the values of 

∑n

i=1
�i with 

different parameter settings

� 100 150 200 300 400 500 600

C = 1 0.9982 0.9988 0.9991 0.9994 0.9996 0.9996 0.9997
C = 2 0.9983 0.9988 0.9991 0.9994 0.9996 0.9997 0.9997
C = 4 0.9983 0.9989 0.9991 0.9994 0.9996 0.9997 0.9997
C = 8 0.9983 0.9989 0.9991 0.9994 0.9996 0.9997 0.9997

Table 4   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of �

� 0.9 / C 0.92 / C 0.94 / C 0.95 / C 0.97 / C 0.98 / C 0.99 / C

# Iteration 516 508 499 496 487 483 479

Table 5   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of C 

C 1 2 4 6 8 10 16

# Iteration 145 272 495 685 852 1012 1425

Table 6   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of �

� 100 150 200 300 400 500

# Iteration 495 495 496 494 492 489
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C. We see that a smaller C will result in faster conver-
gence. Finally, we fix C = 4 and � = 0.95∕C , and change 
the parameter � . Table 6 shows the number of iterations 
to converge with different values of � . It is evident that � 
hardly has any significant influence to the convergence 
rate. All these numerical results are consistent with our 
theoretical analysis in Sect. 3.2.

To compare the interior point method based SVDD (IPM-
SVDD) to the proposed L-SVDD, we randomly select 600 
face images and train the two SVDD models with different 
parameter settings, and the convergence measures are given 
in Table 7. Table 7 shows that, with all the parameter set-
tings, although IPM-SVDD converges in fewer iterations, it 
spends considerably more training time than L-SVDD (i.e., 
50–100 times slower). This is expected due to the reason 
that was stated in Sect. 3.3. We also notice that in all cases, 
the difference between the IPM solution ( �I ) and L-SVDD 
solution ( �L ) was within 10−4 in terms of the norm of the 
difference vector, i.e., ‖�I − �L‖ < 10−4 , and this means that 
the two methods get very close models.

In our experiments, it was also observed that if we set the 
training set size n = 1200 , the IPM-SVDD training program 
would have memory issue on our computer but L-SVDD did 
not have such problem even for n = 2400 . This is because 
IPM needs variables for gradient, Hessian, search directions, 
and other intermediate results, while L-SVDD does not have 
any intermediate result to store in memory. From our analy-
sis and experimental results, we may claim that the proposed 
L-SVDD is not only time efficient but also space efficient, 
compared to IPM-SVDD.

4.3 � Handwritten digit recognition

The handwritten digits dataset consists of 7291 training 
examples and 2007 testing examples, and is available at 
https​://web.stanf​ord.edu/~hasti​e/ElemS​tatLe​arn/. The data-
set consists of normalized handwritten digits (“0” to “9”), 
each is a 16 × 16 gray-scale image. Same as the experiment 
in Sect. 4.2, we simply use these 256 pixel values as inputs 
to the algorithms.

To compare the performance of L-SVDD to that of QP-
SVDD, we created ten binary classification problems, with 
each digit as positive class, respectively. The performance 
measures of QP-SVDD and L-SVDD are given in Table 8, 

which lists the number of support vectors, AUC on testing 
set, and training time for each algorithm. We observe that for 
all the ten problems, the AUC of both algorithms are quite 
close, since the difference between AUC is at most 0.001, 
and most problems have AUC difference even under 0.0004. 
The ROC curves of QP-SVDD and L-SVDD, similar to the 
results on CBCL face data, are almost indistinguishable (also 
indicated by the AUC values), we thus choose not to present 
the ROC curves.

Table 8 also lists the training times of QP-SVDD and 
L-SVDD on all the ten problems, and the sizes of the con-
sidered problems are also given. It is observed that for the 
problems with size under 1000, L-SVDD terminates within 
1 second; for the two problems with larger size, L-SVDD 
needs 2–3 s. To clearly illustrate the speed advantage of 
L-SVDD, Table 8 lists the ratio between the training times 
of QP-SVDD and L-SVDD for different problems. It is clear 
that on most of the problems, L-SVDD is 200–400 times 
faster than the QP counterpart. More importantly, we should 
mention that in our implementation, the core quadratic pro-
gramming code for QP-SVDD was developed in C++ which 
is much more computationally efficient than MATLAB, 
in which L-SVDD was developed. Taking this factor into 
account, L-SVDD would be much more time-efficient than 
QP-SVDD, if they were implemented in the same program-
ming language and ran on the same platform.

To gain further insight about the computational com-
plexity of QP-SVDD, we compare the training time of QP-
SVDD on each problem. Since the problem for digit “8” 
has the smallest size, we use it as the baseline. We calculate 
the ratio of the training time on each digit to that on digit 
“8”, along with the cubic of the problem size ratio, and the 
results are given in Table 9. Table 9 shows that the two num-
bers are close enough for each problem, which indicates that 
the training time of QP-SVDD grows roughly in the rate of 
O(n3).

Table  11 lists the number of iterations needed for 
L-SVDD training algorithm to converge. We see that the 
algorithm usually terminates in 600 iterations, with only 
one exception. To analyze the computational complexity of 
L-SVDD, we first calculate the average time spent on one 
iteration for each problem, using the information given in 
Tables 8 and 11. We denote the results as tpi0 through tpi9 
(“tpi” stands for “time per iteration”). Same as the analysis 

Table 7   The iteration numbers 
needed and the training time 
(in seconds) of IPM-SVDD 
and L-SVDD with different 
parameter settings ( � was set to 
be 0.95 / C)

�: 100 200

C :  2 4 8 2 4 8

# Iter IPM-SVDD 28 29 29 28 29 29
Time IPM-SVDD 37.2530 37.6430 38.0330 36.6758 37.6742 37.7366
# Iter L-SVDD 272 495 852 272 496 846
Time L-SVDD 0.2808 0.4836 0.6864 0.3432 0.4368 0.7176

https://web.stanford.edu/%7ehastie/ElemStatLearn/
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for QP-SVDD, we use digit “8” as the baseline, and cal-
culate the ratio of the time per iteration in training on 
each digit to that on digit “8”, along with the square of the 
problem size ratio. The results are presented in Table 10, 
which shows that these numbers are reasonably close for 
each problem, and this indicates that the time per itera-
tion grows roughly with order O(n2) . Consequently, the 
time complexity of training L-SVDD (i.e., Algorithm 1) 
is about O(n2) multiplying the iteration number, which is 

consistent with the result in Sect. 4.2. These analysis veri-
fies our theoretical analysis in Remark 2.

In our implementations for QP-SVDD and L-SVDD, the 
kernel matrix was calculated beforehand, thus the time spent 
on calculating kernel matrix was not counted as training 
time. In fact, computing kernel matrix spent much more time 
than Algorithm 1 itself in our experiments.6 Our theoretical 

Table 8   On the handwritten 
digit dataset, the performance 
comparison between QP-SVDD 
and L-SVDD

The listed are the training set size, the number of support vectors found by each method, the AUC on the 
testing set by each method, and the training times in seconds. The last column gives the ratio between the 
training times of the two algorithms on each problem

Digit # Train Method # SV AUC​ Training time Time ratio

“0” 1194 QP-SVDD 109 0.9811 867.8648 409.0615
L-SVDD 111 0.9813 2.1216

“1” 1005 QP-SVDD 18 0.9905 478.6579 158.9803
L-SVDD 19 0.9905 3.0108

“2” 731 QP-SVDD 128 0.8977 165.7199 366.3128
L-SVDD 128 0.8973 0.4524

“3” 658 QP-SVDD 82 0.9480 121.6184 236.2440
L-SVDD 84 0.9485 0.5148

“4” 652 QP-SVDD 87 0.9396 117.4064 268.7875
L-SVDD 88 0.9405 0.4368

“5” 556 QP-SVDD 94 0.8889 70.6685 283.1270
L-SVDD 95 0.8891 0.2496

“6” 664 QP-SVDD 81 0.9785 124.8008 285.7161
L-SVDD 82 0.9783 0.4056

“7” 645 QP-SVDD 62 0.9711 113.3035 258.0662
L-SVDD 63 0.9709 0.4836

“8” 542 QP-SVDD 86 0.9165 66.8152 237.9459
L-SVDD 87 0.9168 0.2808

“9” 644 QP-SVDD 65 0.9752 114.5671 253.2429
L-SVDD 66 0.9753 0.4524

Table 9   For QP-SVDD, the 
cubic of problem size ratios and 
the training time ratios on the 
handwritten digit dataset

The results show that QP-SVDD roughly has computational complexity O(n3)
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Table 10   For L-SVDD, the 
square of problem size ratios 
and the ratio of time per 
iteration in training on the 
handwritten digit dataset

The results show that L-SVDD roughly has computational complexity O(n2) multiplying the iteration num-
ber
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6  For example, for digit “0”, our computer spent 47.0655 s on con-
structing kernel matrix, while only 2.1216 s on Algorithm 1.
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analysis of the computational complexity for QP-SVDD and 
L-SVDD is consistent with the experimental results, but the 
order of complexity seems not to support the results pre-
sented in Table 8, which shows that L-SVDD is much more 
time-efficient than QP-SVDD.

To explain this apparent paradox, we write the training 
time of QP-SVDD as tQ = k1n

3 , and that of L-SVDD could 
be written as tL = k2Mn2 , where M is the iteration number 
of L-SVDD, n is the training set size, and k1 and k2 are con-
stants. Using the information form Table 8, we can calcu-
late that in average k1 ≈ 4.3644 × 10−7 ; and we calculate 
k2 ≈ 2.5785 × 10−9 from Tables 8 and 11. Note that these 
numbers are comparable to those obtained in Sect. 4.2 from 
Tables 1 and 2. Therefore, k1 is much larger than k2 in aver-
age (about 170 times), and this explains why L-SVDD is so 
much more time-efficient than the QP counterpart.

Table  8 shows that QP-SVDD and L-SVDD extract 
roughly the same number of support vectors. To investigate 
the overlap of the sets of support vectors, we calculate the 

precision and recall rates, given in Table 11. The results 
show that all the recall rates are 100%, which means that 
L-SVDD extracts all the support vectors which are found 
by QP-SVDD, and the very high precision rates demonstrate 
that L-SVDD only mistakenly regards a few training exam-
ples as support vectors.

Similar to the experiment on face dataset, on the problem 
for digit “4”, we calculate the norm of difference between 
the vector �k from the k-th iteration of L-SVDD and the vec-
tor �Q from QP-SVDD, shown as the black curve in Fig. 3a, 
which also gives the fitted exponential function as the red 
dashed curve. We once again see that the calculated values 
and the fitted values are very close to each other, and this 
numerically verifies our theoretical analysis presented in Eq. 
(23). Figure 3b presents the inner product (�k)�(��k − �) 
with the iteration number on the problem of digit “4”, which 
clearly shows that the inner product approaches 0 as the 
training algorithm proceeds. In fact, when the algorithm ter-
minated, the inner product value was −1.6360 × 10−4 . The 

Table 11   Comparison of the support vectors extracted by QP-SVDD and those extracted by L-SVDD, in terms of precision and recall rates

This table also presents the iteration numbers needed for L-SVDD to converge

Digit “0” “1” “2” “3” “4”

Precision 98.20% 94.74% 100% 97.62% 98.86%
Recall 100% 100% 100% 100% 100%
#Iteration 604 1410 292 465 357

 Digit “5” “6” “7” “8” “9”

Precision 98.95% 98.78% 98.41% 98.85% 97.01%
Recall 100% 100% 100% 100% 100%
#Iteration 325 378 438 363 409

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration Number

N
or

m
 o

f D
iff

er
en

ce

Convergence Curve of α

 

 
Calculated Curve
Fitted Exponential Curve

0 50 100 150 200 250 300 350
−6

−5

−4

−3

−2

−1

0
x 10

−3

Iteration Number

In
ne

r 
P

ro
du

ct

(a) (b)

Fig. 3   a On digit “4”, the convergence of the L-SVDD solution �k to the QP-SVDD solution �Q in terms of the norm of the difference vector. b 
On digit “4”, the evolution of the inner product (�k)�(��k − �) with the iteration number
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curves on other digits give the same pattern, thus we do not 
show them all.

5 � Conclusion and future works

Support vector data description (SVDD) is a well known 
tool for data description and patter classification, with wide 
applications. In literature, the SVDD model is often trained 
by solving the dual of a constrained optimization problem, 
resulting in a quadratic programming. However, the quad-
ratic programming is computationally expensive to solve, 
with time complexity about O(n3) , where n is the training 
set size.

Using the sum of the squared error and the idea of quad-
ratic penalty function method, we formulate the Lagrangian 
dual problem of SVDD as minimizing a convex quadratic 
function over the positive orthant, which can be solved 
efficiently by a simple iterative algorithm. The proposed 
Lagrangian SVDD (L-SVDD) algorithm is very easy to 
implement, requiring no particular optimization toolbox 
other than basic matrix operations. Theoretical and experi-
mental analysis show that the L-SVDD solution converges 
to the Quadratic Programming based SVDD (QP-SVDD) 
solution r-linearly.

Extensive experiments were conducted on various pat-
tern classification problems, and we compared the perfor-
mance of L-SVDD to that of QP-SVDD, in terms of ROC 
curve measures and the training time. Our results show that 
L-SVDD has similar classification performance as its QP 
counterpart; both L-SVDD and QP-SVDD extract almost 
the same set of support vectors. However, L-SVDD is a 
couple hundreds times faster than QP-SVDD in training. 
The experiments also verified the theoretical analysis about 
the convergence rate and the training time complexity of 
L-SVDD.

Due to the limit of available computing resource, we 
did not test L-SVDD on larger training set. However, if 
the training set is too large, we conjecture that the perfor-
mance of L-SVDD might deteriorate. One reason is that in 
Algorithm 1 for L-SVDD, we need to calculate the inverse 
of an n × n matrix � , where n is the training set size. It is 
well known that inverting a large matrix is numerically 
unreliable and time/memory consuming. Another reason 
is that Algorithm 1 involves matrix and vector multiplica-
tion, whose computing cost scales up with n2 . This work 
verifies the speed advantage of L-SVDD when the train-
ing set size is at order of several thousands. It would be 
insightful to investigate the performance of L-SVDD for 
larger scaled problems.

This paper formulates the optimization problem for 
L-SVDD as a linear complementarity problem shown 
in Eq. (14), and we propose Algorithm 1 to solve it. In 

optimization literature, there are many methods to solve 
linear complementarity problem, for example, Newton’s 
method [1], pivoting method [16], and the methods in [10]. 
Thus, as next step of work, we plan to apply these methods 
to L-SVDD model.

Similar to the works on support vector machine for clas-
sification [12] and regression [3], we can remove the con-
straint in Eq. (13) by adding extra penalty terms, obtaining 
an unconstrained optimization problem for an approxi-
mated SVDD model. Then gradient based optimization 
methods can be applied to this approximation, for exam-
ple, Newton’s method [5], coordinate gradient descent [6], 
block-wise coordinate descent [19], or conjugate gradient 
method [39, 40]. This is another possible extension to the 
current work.
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mer Faculty Fellowship from Missouri State University.

Orthogonality condition for two 
nonnegative vectors

We show that two nonnegative vectors � and � are per-
pendicular, if and only if � = (� − ��)+ for any real 𝛾 > 0.

If two nonnegative real numbers a and b satisfy ab = 0 , 
there is at least one of a and b is 0. If a = 0 and b ≥ 0 , 
then for any 𝛾 > 0 , a − �b ≤ 0 , so that (a − �b)+ = 0 = a ; 
if a > 0 , we must have b = 0 , then for any real 𝛾 > 0 , 
(a − �b)+ = (a)+ = a . In both cases, there is a = (a − �b)+ 
for any real number 𝛾 > 0.

Conversely, assume that two nonnegative real numbers 
a and b can be written as a = (a − �b)+ for any real number 
𝛾 > 0 . If a and b are both strictly positive, then a − 𝛾b < a 
since 𝛾 > 0 . Consequently, (a − 𝛾b)+ < a , which is contra-
dict to the assumption that a = (a − �b)+ . Thus at least one 
of a and b must be 0, i.e., ab = 0.

Now assume that nonnegative vectors � and � in space 
ℝ

p are perpendicular, that is, 
∑p

i=1
aibi = 0 . Since both 

of ai and bi are nonnegative, there must be aibi = 0 for 
i = 1, 2,… , p . By the last argument, this is equivalent to 
ai = (ai − �bi)+ for any 𝛾 > 0 and any i = 1, 2,… , p . In vec-
tor form, we have � = (� − ��)+.
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