
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187
https://doi.org/10.1007/s13042-018-0796-7

ORIGINAL ARTICLE

A fast iterative algorithm for support vector data description

Songfeng Zheng1

Received: 9 February 2017 / Accepted: 26 February 2018 / Published online: 5 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Support vector data description (SVDD) is a well known model for pattern analysis when only positive examples are reliable.
SVDD is usually trained by solving a quadratic programming problem, which is time consuming. This paper formulates the
Lagrangian of a simply modified SVDD model as a differentiable convex function over the nonnegative orthant. The resulting
minimization problem can be solved by a simple iterative algorithm. The proposed algorithm is easy to implement, without
requiring any particular optimization toolbox. Theoretical and experimental analysis show that the algorithm converges
r-linearly to the unique minimum point. Extensive experiments on pattern classification were conducted, and compared
to the quadratic programming based SVDD (QP-SVDD), the proposed approach is much more computationally efficient
(hundreds of times faster) and yields similar performance in terms of receiver operating characteristic curve. Furthermore,
the proposed method and QP-SVDD extract almost the same set of support vectors.

Keywords  Support vector data description · Quadratic programming · Penalty function method · Lagrangian dual function ·
Support vectors

1  Introduction

There is a class of pattern recognition problems, such as nov-
elty detection, where the task is to discriminate the pattern of
interest from outliers. In such a situation, positive examples
for training are relatively easier to obtain and more reliable.
However, although negative examples are very abundant, it
is usually difficult to sample enough useful negative exam-
ples for accurately modeling the outliers since they may
belong to any class. In this case, it is reasonable to assume
positive examples clustering in a certain way. As such, the
goal is to accurately describe the class of positive examples
as opposed to the wide range of negative examples.

For this purpose, Tax et al. [30, 31, 33] proposed a sup-
port vector data description (SVDD) method, which fits a
tight hypersphere in the nonlinearly transformed feature
space to include most of the positive examples. Thus, SVDD
could be regarded as a description of the data distribution
of interest. Extensive experiments [30, 31, 33] showed that

SVDD is able to correctly identify negative examples in test-
ing even though it has not seen any during training.

Like support vector machine (SVM) [34, Chap. 10],
SVDD is a kernel based method, possessing all the related
advantages of kernel machines. SVDD has been applied to
various problems, including image classification [38], hand-
written digit recognition [32], face recognition [18], remote
sensing image analysis [22], medical image analysis [29],
and multiclass problems [17, 37], to name a few. In addition,
SVDD is a preliminary step for support vector clustering [4].

The formulation of SVDD leads us to a quadratic pro-
gramming problem. Although decomposition techniques
[24, 25] or sequential minimization method [26] could be
employed to solve the quadratic programming, the train-
ing of SVDD has time complexity roughly of order O(n3) ,
where n is the training set size (see Sects. 4.2 and 4.3 for
experimental verification). Thus, training an SVDD model
could be very expensive for large dataset. As such, given the
wide application of SVDD, it is highly desirable to develop
a time-efficient yet accurate enough training algorithm for
SVDD.

In this paper, we first slightly modify the formulation
of SVDD model, resulting in a more convex minimiza-
tion problem with simpler constraints. We then apply the
quadratic penalty function method [28, Sect. 6.2.2] from

 *	 Songfeng Zheng
	 SongfengZheng@MissouriState.edu

1	 Department of Mathematics, Missouri State University,
Springfield, MO 65897, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-018-0796-7&domain=pdf

1174	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

optimization theory to absorb an equality constraint in the
dual problem, obtaining a differentiable convex function
over the nonnegative orthant as the approximated Lagran-
gian function, which can be efficiently minimized by a sim-
ple iterative algorithm. We thus call the proposed model
as Lagrangian SVDD (L-SVDD). The proposed L-SVDD
algorithm is easy to implement, requiring no particular opti-
mization toolbox besides basic standard matrix operations.
Theoretical and experimental analysis show that the algo-
rithm converges r-linearly to the global minimum point and
the algorithm has computational complexity of the order
O(n2) multiplying the iteration number.

We test the proposed approach on face detection and
handwritten digit recognition problems, and detailed per-
formance measure comparison demonstrates that L-SVDD
often yields testing accuracy very close to or slightly better
than that of the Quadratic Programming based SVDD (QP-
SVDD). More importantly, L-SVDD is much more com-
putationally efficient than QP-SVDD (i.e., 200–400 times
faster on the considered experiments). Furthermore, the two
methods extract almost identically the same set of support
vectors.

The following are several words about our notations. All
scalars are represented by symbols (i.e., English or Greek
letters) with normal font. All vectors will be denoted by bold
lower case symbols, and all are column vectors unless trans-
posed to a row vector by a prime superscript ′ . All matrices
will be denoted by bold upper case symbols. For a vector �
in ℝn , the plus function �+ is defined as (�+)i = max{0, xi} ,
for i = 1,… , n . For two vectors � and � in ℝn , � ≥ � means
ai ≥ bi for each i = 1,… , n . The notation � ⟂ � means the
two vectors � and � are perpendicular, that is,
a1b1 + a2b2 +⋯ + anbn = 0 . For a vector � ∈ ℝ

n , ‖�‖ stands
for its 2-norm, that is, ‖�‖ =

�
x2
1
+⋯ + x2

n
 . For a square

matrix � of size n × n , ‖�‖ represent the matrix norm, that
is

Thus, ‖��‖ ≤ ‖�‖ ⋅ ‖�‖ . If � is positive definite matrix, ‖�‖
is just the largest eigenvalue of �.

The rest of this paper is organized as follows: Sect. 2
briefly reviews the formulation of SVDD and presents a
simple modification to the original SVDD model; Sect. 3
formulates the approximated Lagrangian dual problem and
proposes a simple iterative algorithm to solve it, and the
convergence properties of the algorithm will also be inves-
tigated; Sect. 3 discusses the feasibility of two alternative
schemes as well; Sect. 4 compares the performance meas-
ures in terms of receiver operating characteristic curve and
training time of the proposed L-SVDD algorithm to those
of QP-SVDD on two publicly available real-world datasets,

‖�‖ = sup
�≠�n

‖��‖
‖�‖

.

and we also compare the support vectors the two methods
extracted; the experimental results in Sect. 4 also verify the
role of each parameter in the convergence behavior of the
algorithm, and the computational complexity is verified by
the experimental results as well; finally, Sect. 5 summa-
rizes this paper and discusses some possible future research
directions.

2 � Support vector data description

Given training data {�i, i = 1,… , n} with the feature vector
�i ∈ ℝ

p , let �(⋅) be a nonlinear transformation1 which maps
the original data vector into a high dimensional Hilbert fea-
ture space  . SVDD is looking for a hypersphere in  , with
radius R > 0 and center � , which has a minimum volume
containing most of the data. Therefore, we have to minimize
R2 constrained to ‖�(�i) − �‖2 ≤ R2 , for i = 1,… , n . In addi-
tion, since the training sample might contain outliers, we can
introduce a set of slack variables �i ≥ 0 , as in the framework
of support vector machine (SVM) [34, Chap. 10]. The slack
variable �i measures how much the squared distance from
the training example �i to the center � exceeds the radius
squared. Therefore, the slack variable could be understood
as a measure of errors.

Taking all the considerations into account, the SVDD
model can be obtained by solving the following optimiza-
tion problem

with constraints

where � = (�1,… , �n)
� is the vector of slack variables, and

the parameter C > 0 controls the tradeoff between the vol-
ume of the hypersphere and the permitted errors.

The Lagrangian dual of the above optimization problem
is (refer to [30, 31, 33] for detailed derivations)

with constraints

(1)min
R,�,�

F(R, �, �) = R2 + C

n∑

i=1

�i,

(2)‖�(�i) − �‖2 ≤ R2 + �i, �i ≥ 0, for i = 1,… , n,

(3)min
�

L(�) =

n∑

i=1

n∑

j=1

�i�jK(�i, �j) −

n∑

i=1

�iK(�i, �i),

(4)
n∑

i=1

�i = 1, 0 ≤ �i ≤ C for i = 1,… , n,

1  In SVM and SVDD literature, the explicit form of the function
�(⋅) is not important, and in fact, it is often difficult to write out �(⋅)
explicitly. What is important is the kernel function, that is, the inner
product of �(�i) and �(�j).

1175International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

where K(�i, �j) = �(�i)
��(xj) is the kernel function

which satisfies Mercer’s condition [34, Chap. 10], and
� = (�1,… , �n)

� with �i being the Lagrangian multiplier for
the i-th constraint in Eq. (2).

Similar to the works on SVM [21] and support vector
regression [23], we consider the sum of squared errors in
the objective function given in Eq. (1), that is, we modify
Eq. (1) to

With this slight modification, the objective function becomes
more convex because of the square terms. Furthermore, the
nonnegativity constraint in Eq. (2) could be removed, which
is proved in the following.

Proposition 1  If (R̂, �̂, �̂) is the minimum point of func-
tion F̃(R, �, �) defined in Eq. (5), with the constraints
‖�(�i) − �‖2 ≤ R2 + �i , for i = 1,… , n , then all components
of �̂ should be nonnegative.

Proof  Assume �̂ = (𝜉1, 𝜉2,… , 𝜉n)
� and without loss of

generality, assume 𝜉1 < 0 . Let �̃ = (0, 𝜉2,… , 𝜉n)
� , that

is, we replace the first component of �̂ (which is nega-
tive) by 0 and keep others unchanged. Since 𝜉1 satis-
fies the constraint ‖𝛷(�1) − �̂‖2 ≤ R̂2 + 𝜉1 , we must have
‖𝛷(�1) − �̂‖2 ≤ R̂2 + 0 since 𝜉1 < 0 . By assumption, the
constraints are satisfied at 𝜉2,… , 𝜉n . Hence, the constraints
are satisfied at all components of �̃.

However, there is

since 𝜉1 < 0 by assumption, and this is contradiction to the
assumption that (R̂, �̂, �̂) is the minimum point. Thus, at the
minimum point, there must be 𝜉1 ≥ 0 . In the same manner,
it can be argued that all components of �̂ should be nonnega-
tive. Consequently, the nonnegative constraint on � is not
necessary, thus can be removed. 	� □

The Lagrangian function of this new problem is

with �i ’s being the nonnegative Lagrangian multipliers. At
the optimal point, the partial derivative to the primal vari-
ables are zeros. Thus, there are

(5)min
R,�,�

F̃(R, �, �) = R2 + C

n∑

i=1

𝜉2
i
.

F̃(R̂, �̂, �̃) = R̂2 + C

n∑

i=2

𝜉2
i
< R̂2 + C

n∑

i=1

𝜉2
i
= F̃(R̂, �̂, �̂)

L̃(R, �, �,�) = R2 + C

n�

i=1

𝜉2
i

+

n�

i=1

𝛼i
�
‖𝛷(�i) − �‖2 − R2 − 𝜉i

�
,

and

Substituting these results to the Lagrangian function, we
have the dual function as

The purpose is now to maximize L̃(�) or minimize
L(�) = −L̃(�)2 with respect to nonnegative �i ’s with the
constraint in Eq. (6), that is

with constraints

With the sum of errors replaced by sum of squared errors,
the resulting dual problem in Eq. (7) has an extra quadratic
term, compared to the original dual problem in Eq. (3), and
this will improve the convexity of the objective function.
Moreover, by comparing the constraints in Eqs. (4) and (8),
it is clear that the new optimization problem has simpler
constraints, without any upper bound for the dual variables.

As implemented in popular SVM toolboxes [7, 14, 15],
the quadratic programming problems in Eqs. (3) and (7) can
be solved by decomposition methods [24, 25] or sequential
minimal optimization method [26]. However, these algo-
rithms are computationally expensive with time complexity
roughly O(n3) . Thus, a fast training algorithm for SVDD
which can achieve similar accuracy as the quadratic pro-
gramming method is highly appreciated.

(6)
𝜕L̃

𝜕R
= 0 ⇒ 2R −

n∑

i=1

2R𝛼i = 0 ⇒

n∑

i=1

𝛼i = 1,

𝜕L̃

𝜕𝜉i
= 0 ⇒ 2C𝜉i − 𝛼i = 0 ⇒ 𝜉i =

𝛼i

2C
for i = 1, 2,… , n,

𝜕L̃

𝜕�
= 0 ⇒ −2

n∑

i=1

𝛼i(𝛷(�i) − �) = 0 ⇒ � =

n∑

i=1

𝛼i𝛷(�i).

L̃(�) = −
1

4C

n∑

i=1

𝛼2
i
−

n∑

i=1

n∑

j=1

𝛼i𝛼jK(�i, �j) +

n∑

i=1

𝛼iK(�i, �i).

(7)

min
�

L(�) =
1

4C

n∑

i=1

�2
i
+

n∑

i=1

n∑

j=1

�i�jK(�i, �j)

−

n∑

i=1

�iK(�i, �i),

(8)
n∑

i=1

�i = 1, �i ≥ 0 for i = 1,… , n.

2  We slightly abuse the notation here because L(�) was used in Eq.
(3). However, this will not cause any confusion because all of our fol-
lowing discussions are based on Eq. (7).

1176	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

3 � Lagrangian support vector data
description

3.1 � The algorithm

Let � be the n × n kernel matrix, that is, �ij = K(�i, �j) , let
vector � be formed by the diagonal elements of kernel matrix
� , let �n be the n × n identity matrix, and let �n ( �n ) be the
n-dimensional vector of all 1’s (0’s). The optimization problem
in Eq. (7) could be written compactly in matrix form as

with constraints

To deal with the equality constraint in Eq. (10), we consider
the penalty function method [28, Sect. 6.2.2] from opti-
mization theory. The basic idea is integrating the original
objective function with a function which incorporates some
constraints, in order to approximate a constrained optimi-
zation problem by an unconstrained problem or one with
simpler constraints. For our problem, we consider the fol-
lowing function

where �n is the n × n matrix of all elements being 1. As
proved in [28], as the penalty parameter � → ∞ , the mini-
mum point of Eq. (11) with � ≥ �n converges to the solution
to Eq. (9) with constraints in Eq. (10).

Let

The matrix � is positive definite because both � and �n are
positive semi-definite while �n is positive definite. Ignoring
the constant term in Eq. (11), we can formulate the approxi-
mated minimization problem as

The Kuhn–Tucker stationary-point problem [20, p. 94, KTP
7.2.4] for Eq. (13) is

From these equations, we have

(9)min
�

L(�) =
1

2
��

(
�n

2C
+ 2�

)
� − ���,

(10)��
n
� = 1 and � ≥ �n.

(11)

f (�) =
1

2
��

(
�n

2C
+ 2�

)
� − ��� + �(��

n
� − 1)2

=
1

2
��

(
�n

2C
+ 2� + 2��n

)
� − (� + 2��n)

�� + �,

(12)� =
�n

2C
+ 2� + 2��n and � = � + 2��n.

(13)min
�≥�n

1

2
���� − ���.

�� − � − � = �n, �
�� = 0, � ≥ �n, � ≥ �n.

� = �� − � ≥ �n and (�� − �)�� = 0,

which can be summarized as solving the classical linear
complementarity problem [10], that is, solving for � , such
that,

Since the matrix � is symmetric positive-definite, the exist-
ence and uniqueness of the solution to Eq. (14) is guaranteed
[9]. The optimality condition in Eq. (14) is satisfied if and
only if for any 𝛾 > 0 , the relationship

holds. See Appendix for a proof.
To obtain a solution to the above problem, we start from

an initial point �0 , and apply the following iterative scheme

The initial point �0 could be any vector, but in our imple-
mentation, we take �0 = �−1� . We summarize the algorithm
for L-SVDD as in Algorithm 1 below, and the convergence
analysis will be given in Sect. 3.2.

Algorithm 1: Lagrangian Support Vector Data
Description

0.	 Initialization: choose the starting point as α0 = Q−1v,
find α1 using Eq. (16), set k = 1, set the iteration number
as M, and set the error tolerance as ε.

1.	 while k < M and ||�k − �k−1|| > � do:
2.	 Set k = k + 1.

3.	 Find αk using Eq. (16).
4.	 end while
5.	 Return the vector αk.

Remark 1  In Algorithm 1, we terminate the program when
the solution does not change too much. Since the purpose is
to find a solution to Eq. (14), we can also terminate the pro-
gram if the absolute value of inner product (�k)�(��k − �) is
below a certain level. However, since it includes matrix and
vector multiplication, this stopping criterion is more expen-
sive to evaluate than the one in Algorithm 1. Thus, in our
implementation, we choose to use the stopping rule given in
Algorithm 1. Our experimental results show that when the
algorithm stops, the inner product indeed is very close to 0.
Please see Sects. 4.2 and 4.3 for the detailed results.

Remark 2  Each iteration of Algorithm 1 includes matrix
multiplying vector, vector addition/subtraction, and tak-
ing positive part of a vector component-wise, among which
the most expensive operation is matrix multiplying vector,
which has computational complexity of order O(n2) . We thus
expect the computational complexity of Algorithm 1 to be
about iteration number multiplying O(n2) . Sections 4.2 and
4.3 verify this analysis experimentally.

(14)�n ≤ (�� − �) ⟂ � ≥ �n.

(15)�� − � = (�� − � − ��)+

(16)�k+1 = �−1(� + (��k − � − ��k)+).

1177International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

Similar to SVM, we call the training examples with cor-
responding �i ’s nonzero as support vectors. Once �i ’s are
obtained, the radius R can be computed from the set of sup-
port vectors [30, 31]. In the stage of decision making, if the
distance from a new example � to the center is less than the
radius R, it is classified as a positive example; otherwise, it is
classified as a negative example. That is, the decision rule is

where b = R2 −
∑n

i=1

∑n

j=1
�i�jK(�i, �j).

3.2 � Convergence analysis

To analyze the convergence property of Algorithm 1, we
need the following

Lemma 1  Let � and � be two points in ℝp , then

Proof  For two real numbers a and b, there are four situations

(1)	 a ≥ 0 and b ≥ 0 , then |a+ − b+| = |a − b|;
(2)	 a ≥ 0 and b ≤ 0 , then |a+ − b+| = |a − 0| ≤ |a − b|;
(3)	 a ≤ 0 and b ≥ 0 , then |a+ − b+| = |0 − b| ≤ |a − b|;
(4)	 a ≤ 0 and b ≤ 0 , then |a+ − b+| = |0 − 0| ≤ |a − b|.

In summary, for one dimensional case, there is
|a+ − b+|2 ≤ |a − b|2.

Assume that Eq. (18) is true for p dimensional vectors
�p and �p . Denote the p + 1 dimensional vectors � and � as3

where ap+1 and bp+1 are real numbers. Then,

where in Eq. (19), we used the assumption on the p dimen-
sional vectors, the special result for one dimensional case,
and the definition of Euclidean norm.

By induction, Eq. (18) is proved. 	� □

(17)

f (�) = sign

(
R2 −

‖‖‖‖‖
�(�) −

n∑

i=1

�i�(�i)
‖‖‖‖‖

2)

= sign

(
2

n∑

i=1

�iK(�i, �) − K(�, �) + b

)
,

(18)‖�+ − �+‖ ≤ ‖� − �‖.

� = (�p, ap+1) and � = (�p, bp+1),

(19)

‖�+ − �+‖2 = ‖((�p)+ − (�p)+, (ap+1)+ − (bp+1)+)‖2

= ‖(�p)+ − (�p)+‖2 + ((ap+1)+ − (bp+1)+)
2

≤ ‖�p − �p‖2 + (ap+1 − bp+1)
2 = ‖� − �‖2,

With the aid of Lemma 1, we are ready to study the con-
vergence behavior of Algorithm 1, and we have the follow-
ing conclusion.

Proposition 2  With 0 < 𝛾 < 1∕C , the sequence �k obtained
by Algorithm 1 converges r-linearly [2] to the unique solu-
tion �̄ of Eq. (13), that is

Proof  The convexity of the objective function in Eq. (13)
and the convexity of the feasible region ensure the existence
and uniqueness of solution �̄ to Eq. (13). Since �̄ is the solu-
tion to Eq. (13), it must satisfy the optimality condition in
Eq. (15), that is, for any 𝛾 > 0

Multiplying Eq. (16) by � and subtracting Eq. (20), and then
taking norm gives us

Applying Lemma 1 to the vectors ��k − � − ��k and
��̄ − � − 𝛾�̄ in Eq. (21), we have

In the definition of � in Eq. (12), it is clear that the matrix
2� + 2��n is positive semi-definite because both � and
�n are, and we denote its eigenvalues as �i , i = 1, 2,… , n .
Then the eigenvalues of � are 1

2C
+ �i and the eigenvalues

of �−1 are (1

2C
+ �i)

−1 , i = 1, 2,… , n . To make the sequence
‖��k −��̄‖ converge, Eq. (22) indicates that we need
‖� − 𝛾�−1‖ < 1 , that is, the eigenvalues of � − ��−1 are all
between −1 and 1,

or

Thus, with the choice of 0 < 𝛾 < 1∕C , we have

lim sup
k→∞

‖�k − �̄‖1∕k < 1.

(20)��̄ = � + (��̄ − � − 𝛾�̄)+.

(21)
‖��k+1 −��̄‖ = ‖(��k − � − 𝛾�k)+ − (��̄ − � − 𝛾�̄)+‖.

(22)

‖��k+1 −��̄‖ ≤ ‖(��k − � − 𝛾�k) − (��̄ − � − 𝛾�̄)‖
= ‖(� − 𝛾�)(�k − �̄)‖
= ‖(� − 𝛾�−1)(��k −��̄)‖
≤ ‖� − 𝛾�−1‖ ⋅ ‖��k −��̄‖.

−1 < 1 − 𝛾

(
1

2C
+ 𝜆i

)−1

< 1 for i = 1, 2,… , n,

0 < 𝛾 < 2
(

1

2C
+ 𝜆i

)
=

1

C
+ 2𝜆i for i = 1, 2,… , n.

c = ‖� − 𝛾�−1‖ < 1.

3  For notational convenience, in this proof, we assume all the vectors
are row vectors. Clearly, the result also applies to column vectors.

1178	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

Recursively applying Eq. (22), we have that for any k,

Consequently,

where A = ‖�−1‖‖��0 −��̄‖ > 0 . Hence,

This proves the proposition. 	� □

Remark 3  The proof of Proposition 2 enables us to estimate
the iteration number M. If we require the accuracy of the
solution to be � , in the sense that ‖�M − �̄‖ < 𝜀 . From Eq.
(23), it is sufficient to have ‖�M − �̄‖ < AcM = 𝜀 , where
A = ‖�−1‖‖��0 −��̄‖ and c = ‖� − ��−1‖ . This enables
us to solve for M as

However, A cannot be calculated because �̄ is unknown.
Hence, in the implementation, we set M as a large num-
ber and terminate the program according to the criterion in
Algorithm 1.

From the proof of Proposition 2, the convergence rate of
Algorithm 1 depends on c, the norm of matrix � − ��−1 . The
analysis in the proof shows that a smaller value of c gives
a faster convergence rate. By the definition of matrix norm,
there is

from which it is clear that a larger value of � makes c smaller
and consequently makes the algorithm converge faster.

In accord with Proposition 2, let us assume that � = a∕C
for some constant 0 < a < 1 . We have,

‖��k −��̄‖ ≤ ck‖��0 −��̄‖.

(23)
‖�k − �̄‖ = ‖�−1�(�k − �̄)‖ ≤ ‖�−1‖‖��k −��̄‖

≤ ck‖�−1‖‖��0 −��̄‖ = Ack,

lim sup
k→∞

‖�k − �̄‖1∕k ≤ lim sup
k→∞

A1∕kc = c < 1.

M =
log � − logA

log c
.

c = ‖� − ��−1‖ = max
i

�
1 − �

�
1

2C
+ �i

�−1
�
,

c = max
i

{
1 − �

(
1

2C
+ �i

)−1
}

= max
i

{
1 −

a

C

(
1

2C
+ �i

)−1
}

= max
i

{
1 −

(
1

2a
+ �i

C

a

)−1
}

= max
i

{
1 −

2a

1 + 2C�i

}
.

Thus, a small value of C and the smallest eigenvalue will
make 2a

1+2C�i
 large hence c small, and consequently the algo-

rithm will converge faster. However, to the best of our
knowledge, there is no theoretical conclusion about the
dependence between the eigenvalues of 2� + 2��n and � .
Fortunately, our numerical tests revealed that with the
change of � , the largest eigenvalue of 2� + 2��n changes
dramatically while the smallest eigenvalue does not change
too much. Since c depends on the smallest eigenvalue of
2� + 2��n , we thus conclude that the convergence rate of
Algorithm 1 is not affected much by �.

In summary, we reach the conclusion that, to achieve a
faster convergence rate, we should set � large and C small ( �
depends on C in our implementation), and � does not signifi-
cantly impact the convergence behavior. We should mention
that C also controls the error of the model, so setting C small
might make the resulting model perform poorly in classifica-
tion. We will numerically verify these analysis in Sect. 4.2.

3.3 � Discussion on two alternatives

We train the L-SVDD model by solving the linear comple-
mentarity problem in Eq. (14), and Algorithm 1 is based on
the condition in Eq. (15) at the optimum point. Alternatively,
the optimality condition can be written as

where 𝛾̃ > 0.
In principle, similar to Algorithm 1, we can design an algo-

rithm based on recursive relation

with some appropriately selected 𝛾̃ . Intuitively, the algo-
rithm based on Eq. (25) should be more computationally
efficient in each iteration than Algorithm 1 which is based
on Eq. (16). The reason is that Eq. (16) involves three vec-
tor addition/subtraction operations and two matrix and vec-
tor multiplications, while Eq. (25) only includes two vector
addition/subtraction operations and one matrix and vector
multiplication.

To choose 𝛾̃ , as in the proof of Proposition 2, we let the
unique solution to Eq. (14) be �̄ , which must satisfy

Subtracting Eq. (26) from Eq. (25), taking norm, and apply-
ing Lemma 1, we have

Thus, to make the potential algorithm converge, we must
have ‖� − 𝛾̃�‖ < 1.

(24)� = (� − 𝛾̃(�� − �))+,

(25)�k+1 = (�k − 𝛾̃(��k − �))+,

(26)�̄ = (�̄ − 𝛾̃(��̄ − �))+.

‖�k+1 − �̄‖ = ‖(�k − 𝛾̃(��k − �))+ − (�̄ − 𝛾̃(��̄ − �))+‖
≤ ‖(�k − 𝛾̃(��k − �)) − (�̄ − 𝛾̃(��̄ − �))‖
= ‖(� − 𝛾̃�)(�k − �̄)‖ ≤ ‖� − 𝛾̃�‖ ⋅ ‖�k − �̄‖.

1179International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

Denote the eigenvalues of matrix 2� + 2��n as
�i , i = 1, 2,… , n , then the eigenvalues of � − 𝛾̃� are
1 − 𝛾̃(

1

2C
+ 𝜆i) . To ensure ‖� − 𝛾̃�‖ < 1 , we need all the

eigenvalues of � − 𝛾̃� to be between −1 and 1, that is

or

Thus, we should choose 𝛾̃ as

where �max = max{�1, �2,… , �n}.
However, our experimental results4 show that �max is

large because � need to be large, as required by the penalty
function method. As a result, this will make 𝛾̃ very small
and consequently, make the potential algorithm based on
Eq. (25) converge slowly. We tested this alternative idea in
our experiments, and the result showed that, under the same
stopping criterion, compared to Algorithm 1, although each
iteration is more time efficient, the algorithm based on Eq.
(25) needs much more iterations to converge,5 hence spend-
ing more time.

The purpose of Algorithm 1 is to solve the quadratic
minimization problem given in Eq. (13), and another alter-
native is to apply interior point method (IPM) [2, 5, 28] to
this problem. Let �k be the k-th step solution to the prob-
lem of minimizing some convex function g(�) with some
constraints using IPM, and denote the global minimum
point as �� . In [2], it was proved that �k converges to ��
not only r-linearly, but also q-superlinearly in the sense that
‖�k+1 − ��‖∕‖�k − ��‖ → 0 . Proposition 2 shows that the
proposed L-SVDD algorithm also has r-linear convergence
rate. However, L-SVDD algorithm cannot achieve q-super-
linear convergence rate. This means that theoretically, IPM
should converge in fewer iterations than L-SVDD.

In each iteration of L-SVDD algorithm, the operation is
quite simple, with the most expensive computation being
matrix and vector multiplication. However, each IPM itera-
tion is much more complicated, because it includes evaluat-
ing the objective function and constraint values, calculating

−1 < 1 − 𝛾̃

(
1

2C
+ 𝜆i

)
< 1 for i = 1, 2,… , n,

0 < 𝛾̃ <
2

1

2C
+ 𝜆i

=
4C

1 + 2C𝜆i
for i = 1, 2,… , n.

0 < 𝛾̃ <
4C

1 + 2C𝜆max

,

the gradients and Hessian, finding the search direction, and
conducting a backtracking line search to update the solution.
These operations include several matrix inversion and more
matrix multiplications. Thus, each iteration of IPM is much
more expensive than L-SVDD. Hence, although IPM con-
verges in fewer iterations, it might spend more computing
time and resource (e.g., memory) than L-SVDD.

We developed the interior point method based SVDD
model (IPM-SVDD) by adapting the MATLAB code from
https​://pcarb​o.githu​b.io/conve​xprog​.html. Section 4.2 pre-
sents the comparison between IPM-SVDD and L-SVDD
in terms of iteration number and CPU time for achieving
convergence.

4 � Experimental results and analysis

On a face dataset and the USPS handwritten digit dataset,
we compared the performances of the proposed Lagrangian
SVDD (L-SVDD) and the ordinary Quadratic Programming
based SVDD (QP-SVDD), which is obtained by applying a
quadratic programming solver to Eq. (7) with constraints
in Eq. (8).

4.1 � Experiment setup and performance measures

The program for L-SVDD was developed using MATLAB,
and we did not do any specific code optimization; QP-SVDD
was implemented based on the MATLAB SVM toolbox [14]
with the core quadratic programming solver written in C++.
The source code of this work is available upon request. All
the experiments were conducted on a laptop computer with
Intel(R) Core(TM) i5-2450M CPU 2.50 GHz and 4 GB
memory, with Windows 7 Professional operating system
and MATLAB® R2007b as the platform. During all experi-
ments that incorporated measurement of running time, one
core was used solely for the experiments, and the number
of other processes running on the system was minimized.

In our experiments, we adopted the Gaussian kernel

with � = 8 . We set the SVDD control parameter C = 2 in
the algorithms. The parameter setting in our experiments
might not be optimal to achieve the best testing performance.
Nonetheless, our purpose is not to achieve the least testing
error, but to compare the performances between L-SVDD
and QP-SVDD; therefore, the comparison is fair as long as
the parameter settings are the same for the two algorithms.
In general, we can select the optimal parameter setting (C, �)
by applying cross validation, generalized approximate cross
validation [36], or other criteria mentioned in [8, 13], but

K(�, �) = exp

�
−
‖� − �‖2

2�2

�

4  To the best of our knowledge, there is no theoretical result regard-
ing the dependence between the largest eigenvalue of matrix
2� + 2��n and the parameter �.
5  For instance, on the face detection problem in Sect. 4.2, to achieve
the error tolerance of 10−5 , the algorithm based on Eq. (25) needs
more than 20,000 iterations to converge.

https://pcarbo.github.io/convexprog.html

1180	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

since it is not the focus of this paper, we choose not to pursue
further in this issue.

To make the L-SVDD algorithm converge fast, from
the conclusion at the end of Sect. 3.2, we should set � a
large value. In all of our experiments, we chose � = 0.95∕C
to ensure the convergence of Algorithm 1. According to
the theoretical property of penalty function method [28,
Sect. 6.2.2], the parameter � in the definition of � in Eq.
(12) should be as large as possible. In our experiments, we
found that setting � = 200 is enough to ensure the close-
ness of �′

n
� and 1 (in fact, all the experimental results

have |��
n
� − 1| < 0.002 when the L-SVDD training algo-

rithm terminates). Section 4.2 also studies the roles of
the parameters C, � , and � in the convergence behavior of
Algorithm 1. The iteration number M in Algorithm 1 was
set to be 3000, although in our experiments we found that
most times the algorithm converges in 1000 iterations. The
tolerance parameter in Algorithm 1 was set to be 10−5.

In the decision rule given by Eq. (17), we changed the
value of the parameter b, and for each value of b, we cal-
culated the true positive rate and false positive rate. We
then plot the true positive rate vs. the false positive rate,
resulting the receiver operating characteristic (ROC) curve
[11], which will be used to illustrate the performance of
the classifier. The classifier performs better if the corre-
sponding ROC curve is higher. In order to numerically
compare the ROC curves of different methods, we calcu-
late the area under the curve (AUC) [11]. The larger the
AUC, the better the overall performance of the classifier.

To compare the support vectors extracted by the two
algorithms, we regard the support vectors given by QP-
SVDD as true support vectors, and denote them as the set
SVQ , denote the support vectors from L-SVDD as SVL . We
define precision and recall [27] as

where |S| represents the size of a set S. High precision
means that L-SVDD finds substantially more correct sup-
port vectors than incorrect ones, while high recall means
that L-SVDD extracts most of the correct support vectors.

4.2 � Face detection

This experiment used the face dataset provided by the Center
for Biological and Computational Learning (CBCL) at MIT.
The training set consists of 6977 images, with 2429 face
images and 4548 non-face images; the testing set consists of
24,045 images, including 472 face images and 23,573 non-
face images. Each image is of size 19 × 19 , with pixel values
between 0 and 1. We did not extract any specific features
for face detection (e.g., the features used in [35]), instead,
we directly used the pixel values as input to L-SVDD and
QP-SVDD.

Figure 1 shows the ROC curves of QP-SVDD and
L-SVDD on the testing set. The ROC curves are so close
that if we plot them in the same figure, they will be indistin-
guishable. The closeness of the ROC curves indicates that
the two resulting classifiers should perform very closely.
Indeed, the AUC for QP-SVDD is 0.8506 while the AUC
for L-SVDD is 0.8512, that is, L-SVDD classifier performs
even slightly better. On our computer, QP-SVDD spent
7301.8 s in training while it took the L-SVDD training algo-
rithm 862 iterations to converge, consuming only 13.0729
s. In another word, the proposed L-SVDD is almost 560
times faster than QP-SVDD in training. Thus, we could con-
clude that L-SVDD is much more time-efficient in training

precision =
|SVQ ∩ SVL|

|SVL|
and recall =

|SVQ ∩ SVL|
|SVQ|

,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curve for QP−SVDD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curve for L−SVDD

(a) (b)

Fig. 1   The ROC curves of a QP-SVDD and b L-SVDD on CBCL testing dataset

1181International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

than QP-SVDD, while still possessing similar classification
performance.

QP-SVDD found 79 support vectors, while L-SVDD
extracted 85 support vectors, with the precision rate 92.94%
and the recall rate 100%. These numbers indicate that
L-SVDD and QP-SVDD obtain models with similar com-
plexity. The precision and recall rates show that L-SVDD
correctly finds all the support vectors while only mistak-
enly regards a few training examples as support vectors.
We should mention that, by mathematical and experimen-
tal analysis, the original SVDD papers [31, 33] conclude
that, for the SVDD model with Gaussian kernel, the number
of support vectors decreases as the kernel parameter � or
the control parameter C increases. This conclusion should
be true for L-SVDD because it is just another solution
(although approximate) to the same problem. We tested this
conjecture by changing different parameter settings, and
found that the number of support vectors for L-SVDD also
follows the conclusion presented in [31, 33]. Since this issue
is not particular to L-SVDD, we choose not to present the
results.

We denote the solution of QP-SVDD as �Q , and calculate
the norm of the difference between the k-th iteration solution
of L-SVDD and the QP-SVDD solution, that is, ‖�k − �Q‖ .
The black curve in Fig. 2a represents the evolution of the
norm ‖�k − �Q‖ , which shows that the difference indeed

decreases to zero exponentially. We further fit the obtained
values of ‖�k − �Q‖ to an exponential function Ack , and we
plot the fitted curve in Fig. 2a as the red dashed curve. We
see that the calculated values and the fitted values are close
to each other, and this numerically verifies our theoretical
result in Eq. (23).

The purpose of Algorithm 1 is to solve Eq. (14) with
respect to � . To observe the evolution of the solution, Fig. 2b
plots the inner product (�k)�(��k − �) , which approaches 0
as the training program proceeds. In fact, when the algorithm
terminated, the inner product value was −3.6883 × 10−4 ,
very close to 0.

To numerically investigate the relationship between the
training time of QP-SVDD and the training set size, we grad-
ually increase the training set size and record the training
time (in seconds) of QP-SVDD, and the results are given in
Table 1, in which we also list the ratio between the train-
ing time and the cubic of training set size. Table 1 shows
that, with the increasing of training set size, the training
time increases dramatically, and the majority of the ratio
t∕n3 are around 0.4618 × 10−6 (average of the 3rd row). This
suggests that the training time complexity of QP-SVDD is
around O(n3).

We conducted the same experiment with L-SVDD, and
Table 2 gives the training time of L-SVDD for different
training set size, and the number of iterations needed are

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iteration Number

N
or

m
 o

f D
iff

er
en

ce

Convergence Curve of α

Calculated Curve
Fitted Exponential Curve

0 100 200 300 400 500 600 700 800 900
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−3

Iteration Number

In
ne

r
P

ro
du

ct

(a) (b)

Fig. 2   a On the CBCL face training dataset, the convergence of the L-SVDD solution �k to the QP-SVDD solution �
Q
 in terms of the norm of

the difference vector. b The evolution of the inner product (�k)�(��k − �) with the iteration number

Table 1   The training time (t,
in seconds) of QP-SVDD with
different training set size (n)

For the purpose of complexity analysis, the values for t∕n3(×10−6) are also listed

Training set size (n) 400 800 1200 1600 2000 2400

Training time (t) 21.8 218.6 850.1 2090.7 4033.0 6864.7
t∕n3(×10−6) 0.3405 0.4270 0.4920 0.5104 0.5041 0.4966

1182	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

also shown. To verify our theoretical analysis in Remark
2, we calculated the time per iteration (tpi), and the ratio
between tpi and n2 , which are also presented in Table 2.
Table 2 shows that the values of tpi∕n2 are around a constant,
i.e., 0.2662 × 10−8 (average of the 5th row). This indicates
that the time per iteration is of order O(n2) , hence the total
training time complexity of L-SVDD is about the iteration
number multiplying O(n2) , which is consistent with the theo-
retical analysis in Remark 2.

In the derivation of Eq. (11), to absorb the constraint ∑n

i=1
�i = 1 in Eq. (10), we introduced a parameter � in

the penalty function, and the penalty function method
requires that � should be large enough to ensure the valid-
ity of the constraint [28, Sect. 6.2.2]. To verify this, we
randomly selected 600 face images as training data and
run the L-SVDD algorithm for different settings of � and
C (since � depends on C through � = 0.95∕C ). Table 3

gives the values of
∑n

i=1
�i for different parameter settings.

The results show that as long as � large enough,
∑n

i=1
�i is

reasonably close to 1. Moreover, for a fixed � ,
∑n

i=1
�i is

almost the same for a variety of C values. This paper sets
� = 200 , which is sufficient to make the constraint hold
approximately.

To experimentally investigate the impact of parameters
C, � , and � to the convergence behavior of L-SVDD, we
randomly select 600 face images, and run L-SVDD train-
ing algorithm with different parameter settings. We first fix
C = 4 and � = 200 , and change the value of � . Table 4 lists
the number of iterations to converge along with different
values of � . It is observed that as � increases, the algorithm
converges faster. Next, we fix � = 100 , set � = 0.95∕C ,
and change the value of C, and Table 5 gives the number
of iterations to converge along with different values of

Table 2   The training time (t,
in seconds) of L-SVDD with
different training set size (n)

For the purpose of time complexity analysis, the iteration numbers needed to converge, the time per itera-
tion (tpi), and tpi∕n2 are also listed

Training set size (n) 400 800 1200 1600 2000 2400

Training time (t) 0.1092 0.5772 1.5912 3.5256 7.0512 11.8249
Iteration 191 347 441 560 726 853
Time per iteration (tpi) 0.0006 0.0017 0.0036 0.0063 0.0097 0.0139
tpi∕n2(×10−8) 0.3573 0.2599 0.2506 0.2459 0.2428 0.2407

Table 3   On a subset from face
data, the values of

∑n

i=1
�i with

different parameter settings

� 100 150 200 300 400 500 600

C = 1 0.9982 0.9988 0.9991 0.9994 0.9996 0.9996 0.9997
C = 2 0.9983 0.9988 0.9991 0.9994 0.9996 0.9997 0.9997
C = 4 0.9983 0.9989 0.9991 0.9994 0.9996 0.9997 0.9997
C = 8 0.9983 0.9989 0.9991 0.9994 0.9996 0.9997 0.9997

Table 4   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of �

� 0.9 / C 0.92 / C 0.94 / C 0.95 / C 0.97 / C 0.98 / C 0.99 / C

Iteration 516 508 499 496 487 483 479

Table 5   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of C 

C 1 2 4 6 8 10 16

Iteration 145 272 495 685 852 1012 1425

Table 6   On a subset of face data, the number of iterations needed for L-SVDD to converge with different values of �

� 100 150 200 300 400 500

Iteration 495 495 496 494 492 489

1183International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

C. We see that a smaller C will result in faster conver-
gence. Finally, we fix C = 4 and � = 0.95∕C , and change
the parameter � . Table 6 shows the number of iterations
to converge with different values of � . It is evident that �
hardly has any significant influence to the convergence
rate. All these numerical results are consistent with our
theoretical analysis in Sect. 3.2.

To compare the interior point method based SVDD (IPM-
SVDD) to the proposed L-SVDD, we randomly select 600
face images and train the two SVDD models with different
parameter settings, and the convergence measures are given
in Table 7. Table 7 shows that, with all the parameter set-
tings, although IPM-SVDD converges in fewer iterations, it
spends considerably more training time than L-SVDD (i.e.,
50–100 times slower). This is expected due to the reason
that was stated in Sect. 3.3. We also notice that in all cases,
the difference between the IPM solution ( �I ) and L-SVDD
solution ( �L ) was within 10−4 in terms of the norm of the
difference vector, i.e., ‖�I − �L‖ < 10−4 , and this means that
the two methods get very close models.

In our experiments, it was also observed that if we set the
training set size n = 1200 , the IPM-SVDD training program
would have memory issue on our computer but L-SVDD did
not have such problem even for n = 2400 . This is because
IPM needs variables for gradient, Hessian, search directions,
and other intermediate results, while L-SVDD does not have
any intermediate result to store in memory. From our analy-
sis and experimental results, we may claim that the proposed
L-SVDD is not only time efficient but also space efficient,
compared to IPM-SVDD.

4.3 � Handwritten digit recognition

The handwritten digits dataset consists of 7291 training
examples and 2007 testing examples, and is available at
https​://web.stanf​ord.edu/~hasti​e/ElemS​tatLe​arn/. The data-
set consists of normalized handwritten digits (“0” to “9”),
each is a 16 × 16 gray-scale image. Same as the experiment
in Sect. 4.2, we simply use these 256 pixel values as inputs
to the algorithms.

To compare the performance of L-SVDD to that of QP-
SVDD, we created ten binary classification problems, with
each digit as positive class, respectively. The performance
measures of QP-SVDD and L-SVDD are given in Table 8,

which lists the number of support vectors, AUC on testing
set, and training time for each algorithm. We observe that for
all the ten problems, the AUC of both algorithms are quite
close, since the difference between AUC is at most 0.001,
and most problems have AUC difference even under 0.0004.
The ROC curves of QP-SVDD and L-SVDD, similar to the
results on CBCL face data, are almost indistinguishable (also
indicated by the AUC values), we thus choose not to present
the ROC curves.

Table 8 also lists the training times of QP-SVDD and
L-SVDD on all the ten problems, and the sizes of the con-
sidered problems are also given. It is observed that for the
problems with size under 1000, L-SVDD terminates within
1 second; for the two problems with larger size, L-SVDD
needs 2–3 s. To clearly illustrate the speed advantage of
L-SVDD, Table 8 lists the ratio between the training times
of QP-SVDD and L-SVDD for different problems. It is clear
that on most of the problems, L-SVDD is 200–400 times
faster than the QP counterpart. More importantly, we should
mention that in our implementation, the core quadratic pro-
gramming code for QP-SVDD was developed in C++ which
is much more computationally efficient than MATLAB,
in which L-SVDD was developed. Taking this factor into
account, L-SVDD would be much more time-efficient than
QP-SVDD, if they were implemented in the same program-
ming language and ran on the same platform.

To gain further insight about the computational com-
plexity of QP-SVDD, we compare the training time of QP-
SVDD on each problem. Since the problem for digit “8”
has the smallest size, we use it as the baseline. We calculate
the ratio of the training time on each digit to that on digit
“8”, along with the cubic of the problem size ratio, and the
results are given in Table 9. Table 9 shows that the two num-
bers are close enough for each problem, which indicates that
the training time of QP-SVDD grows roughly in the rate of
O(n3).

Table 11 lists the number of iterations needed for
L-SVDD training algorithm to converge. We see that the
algorithm usually terminates in 600 iterations, with only
one exception. To analyze the computational complexity of
L-SVDD, we first calculate the average time spent on one
iteration for each problem, using the information given in
Tables 8 and 11. We denote the results as tpi0 through tpi9
(“tpi” stands for “time per iteration”). Same as the analysis

Table 7   The iteration numbers
needed and the training time
(in seconds) of IPM-SVDD
and L-SVDD with different
parameter settings ( � was set to
be 0.95 / C)

�: 100 200

C : 2 4 8 2 4 8

Iter IPM-SVDD 28 29 29 28 29 29
Time IPM-SVDD 37.2530 37.6430 38.0330 36.6758 37.6742 37.7366
Iter L-SVDD 272 495 852 272 496 846
Time L-SVDD 0.2808 0.4836 0.6864 0.3432 0.4368 0.7176

https://web.stanford.edu/%7ehastie/ElemStatLearn/

1184	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

for QP-SVDD, we use digit “8” as the baseline, and cal-
culate the ratio of the time per iteration in training on
each digit to that on digit “8”, along with the square of the
problem size ratio. The results are presented in Table 10,
which shows that these numbers are reasonably close for
each problem, and this indicates that the time per itera-
tion grows roughly with order O(n2) . Consequently, the
time complexity of training L-SVDD (i.e., Algorithm 1)
is about O(n2) multiplying the iteration number, which is

consistent with the result in Sect. 4.2. These analysis veri-
fies our theoretical analysis in Remark 2.

In our implementations for QP-SVDD and L-SVDD, the
kernel matrix was calculated beforehand, thus the time spent
on calculating kernel matrix was not counted as training
time. In fact, computing kernel matrix spent much more time
than Algorithm 1 itself in our experiments.6 Our theoretical

Table 8   On the handwritten
digit dataset, the performance
comparison between QP-SVDD
and L-SVDD

The listed are the training set size, the number of support vectors found by each method, the AUC on the
testing set by each method, and the training times in seconds. The last column gives the ratio between the
training times of the two algorithms on each problem

Digit # Train Method # SV AUC​ Training time Time ratio

“0” 1194 QP-SVDD 109 0.9811 867.8648 409.0615
L-SVDD 111 0.9813 2.1216

“1” 1005 QP-SVDD 18 0.9905 478.6579 158.9803
L-SVDD 19 0.9905 3.0108

“2” 731 QP-SVDD 128 0.8977 165.7199 366.3128
L-SVDD 128 0.8973 0.4524

“3” 658 QP-SVDD 82 0.9480 121.6184 236.2440
L-SVDD 84 0.9485 0.5148

“4” 652 QP-SVDD 87 0.9396 117.4064 268.7875
L-SVDD 88 0.9405 0.4368

“5” 556 QP-SVDD 94 0.8889 70.6685 283.1270
L-SVDD 95 0.8891 0.2496

“6” 664 QP-SVDD 81 0.9785 124.8008 285.7161
L-SVDD 82 0.9783 0.4056

“7” 645 QP-SVDD 62 0.9711 113.3035 258.0662
L-SVDD 63 0.9709 0.4836

“8” 542 QP-SVDD 86 0.9165 66.8152 237.9459
L-SVDD 87 0.9168 0.2808

“9” 644 QP-SVDD 65 0.9752 114.5671 253.2429
L-SVDD 66 0.9753 0.4524

Table 9   For QP-SVDD, the
cubic of problem size ratios and
the training time ratios on the
handwritten digit dataset

The results show that QP-SVDD roughly has computational complexity O(n3)

(n
0
∕n

8
)3 = 10.69 (n

1
∕n

8
)3 = 6.38 (n

2
∕n

8
)3 = 2.45 (n

3
∕n

8
)3 = 1.79 (n

4
∕n

8
)3 = 1.74

t
0
∕t

8
= 12.98 t

1
∕t

8
= 7.16 t

2
∕t

8
= 2.48 t

3
∕t

8
= 1.82 t

4
∕t

8
= 1.76

(n
5
∕n

8
)3 = 1.08 (n

6
∕n

8
)3 = 1.84 (n

7
∕n

8
)3 = 1.68 (n

8
∕n

8
)3 = 1 (n

9
∕n

8
)3 = 1.67

t
5
∕t

8
= 1.06 t

6
∕t

8
= 1.87 t

7
∕t

8
= 1.69 t

8
∕t

8
= 1 t

9
∕t

8
= 1.71

Table 10   For L-SVDD, the
square of problem size ratios
and the ratio of time per
iteration in training on the
handwritten digit dataset

The results show that L-SVDD roughly has computational complexity O(n2) multiplying the iteration num-
ber

(n
0
∕n

8
)2 = 4.85 (n

1
∕n

8
)2 = 3.44 (n

2
∕n

8
)2 = 1.82 (n

3
∕n

8
)2 = 1.47 (n

4
∕n

8
)2 = 1.45

tpi
0
∕tpi

8
= 4.54 tpi

1
∕tpi

8
= 2.76 tpi

2
∕tpi

8
= 2.00 tpi

3
∕tpi

8
= 1.43 tpi

4
∕tpi

8
= 1.58

(n
5
∕n

8
)2 = 1.05 (n

6
∕n

8
)2 = 1.50 (n

7
∕n

8
)2 = 1.42 (n

9
∕n

8
)2 = 1 (n

9
∕n

8
)2 = 1.41

tpi
5
∕tpi

8
= 0.99 tpi

6
∕tpi

8
= 1.39 tpi

7
∕tpi

8
= 1.43 tpi

8
∕tpi

8
= 1 tpi

9
∕tpi

8
= 1.43

6  For example, for digit “0”, our computer spent 47.0655 s on con-
structing kernel matrix, while only 2.1216 s on Algorithm 1.

1185International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

analysis of the computational complexity for QP-SVDD and
L-SVDD is consistent with the experimental results, but the
order of complexity seems not to support the results pre-
sented in Table 8, which shows that L-SVDD is much more
time-efficient than QP-SVDD.

To explain this apparent paradox, we write the training
time of QP-SVDD as tQ = k1n

3 , and that of L-SVDD could
be written as tL = k2Mn2 , where M is the iteration number
of L-SVDD, n is the training set size, and k1 and k2 are con-
stants. Using the information form Table 8, we can calcu-
late that in average k1 ≈ 4.3644 × 10−7 ; and we calculate
k2 ≈ 2.5785 × 10−9 from Tables 8 and 11. Note that these
numbers are comparable to those obtained in Sect. 4.2 from
Tables 1 and 2. Therefore, k1 is much larger than k2 in aver-
age (about 170 times), and this explains why L-SVDD is so
much more time-efficient than the QP counterpart.

Table 8 shows that QP-SVDD and L-SVDD extract
roughly the same number of support vectors. To investigate
the overlap of the sets of support vectors, we calculate the

precision and recall rates, given in Table 11. The results
show that all the recall rates are 100%, which means that
L-SVDD extracts all the support vectors which are found
by QP-SVDD, and the very high precision rates demonstrate
that L-SVDD only mistakenly regards a few training exam-
ples as support vectors.

Similar to the experiment on face dataset, on the problem
for digit “4”, we calculate the norm of difference between
the vector �k from the k-th iteration of L-SVDD and the vec-
tor �Q from QP-SVDD, shown as the black curve in Fig. 3a,
which also gives the fitted exponential function as the red
dashed curve. We once again see that the calculated values
and the fitted values are very close to each other, and this
numerically verifies our theoretical analysis presented in Eq.
(23). Figure 3b presents the inner product (�k)�(��k − �)
with the iteration number on the problem of digit “4”, which
clearly shows that the inner product approaches 0 as the
training algorithm proceeds. In fact, when the algorithm ter-
minated, the inner product value was −1.6360 × 10−4 . The

Table 11   Comparison of the support vectors extracted by QP-SVDD and those extracted by L-SVDD, in terms of precision and recall rates

This table also presents the iteration numbers needed for L-SVDD to converge

Digit “0” “1” “2” “3” “4”

Precision 98.20% 94.74% 100% 97.62% 98.86%
Recall 100% 100% 100% 100% 100%
#Iteration 604 1410 292 465 357

 Digit “5” “6” “7” “8” “9”

Precision 98.95% 98.78% 98.41% 98.85% 97.01%
Recall 100% 100% 100% 100% 100%
#Iteration 325 378 438 363 409

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration Number

N
or

m
 o

f D
iff

er
en

ce

Convergence Curve of α

Calculated Curve
Fitted Exponential Curve

0 50 100 150 200 250 300 350
−6

−5

−4

−3

−2

−1

0
x 10

−3

Iteration Number

In
ne

r
P

ro
du

ct

(a) (b)

Fig. 3   a On digit “4”, the convergence of the L-SVDD solution �k to the QP-SVDD solution �Q in terms of the norm of the difference vector. b
On digit “4”, the evolution of the inner product (�k)�(��k − �) with the iteration number

1186	 International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187

1 3

curves on other digits give the same pattern, thus we do not
show them all.

5 � Conclusion and future works

Support vector data description (SVDD) is a well known
tool for data description and patter classification, with wide
applications. In literature, the SVDD model is often trained
by solving the dual of a constrained optimization problem,
resulting in a quadratic programming. However, the quad-
ratic programming is computationally expensive to solve,
with time complexity about O(n3) , where n is the training
set size.

Using the sum of the squared error and the idea of quad-
ratic penalty function method, we formulate the Lagrangian
dual problem of SVDD as minimizing a convex quadratic
function over the positive orthant, which can be solved
efficiently by a simple iterative algorithm. The proposed
Lagrangian SVDD (L-SVDD) algorithm is very easy to
implement, requiring no particular optimization toolbox
other than basic matrix operations. Theoretical and experi-
mental analysis show that the L-SVDD solution converges
to the Quadratic Programming based SVDD (QP-SVDD)
solution r-linearly.

Extensive experiments were conducted on various pat-
tern classification problems, and we compared the perfor-
mance of L-SVDD to that of QP-SVDD, in terms of ROC
curve measures and the training time. Our results show that
L-SVDD has similar classification performance as its QP
counterpart; both L-SVDD and QP-SVDD extract almost
the same set of support vectors. However, L-SVDD is a
couple hundreds times faster than QP-SVDD in training.
The experiments also verified the theoretical analysis about
the convergence rate and the training time complexity of
L-SVDD.

Due to the limit of available computing resource, we
did not test L-SVDD on larger training set. However, if
the training set is too large, we conjecture that the perfor-
mance of L-SVDD might deteriorate. One reason is that in
Algorithm 1 for L-SVDD, we need to calculate the inverse
of an n × n matrix � , where n is the training set size. It is
well known that inverting a large matrix is numerically
unreliable and time/memory consuming. Another reason
is that Algorithm 1 involves matrix and vector multiplica-
tion, whose computing cost scales up with n2 . This work
verifies the speed advantage of L-SVDD when the train-
ing set size is at order of several thousands. It would be
insightful to investigate the performance of L-SVDD for
larger scaled problems.

This paper formulates the optimization problem for
L-SVDD as a linear complementarity problem shown
in Eq. (14), and we propose Algorithm 1 to solve it. In

optimization literature, there are many methods to solve
linear complementarity problem, for example, Newton’s
method [1], pivoting method [16], and the methods in [10].
Thus, as next step of work, we plan to apply these methods
to L-SVDD model.

Similar to the works on support vector machine for clas-
sification [12] and regression [3], we can remove the con-
straint in Eq. (13) by adding extra penalty terms, obtaining
an unconstrained optimization problem for an approxi-
mated SVDD model. Then gradient based optimization
methods can be applied to this approximation, for exam-
ple, Newton’s method [5], coordinate gradient descent [6],
block-wise coordinate descent [19], or conjugate gradient
method [39, 40]. This is another possible extension to the
current work.

Acknowledgements  The author would like to thank the editors and
four anonymous reviewers for their constructive suggestions which
greatly helped improve the paper. This work was supported by a Sum-
mer Faculty Fellowship from Missouri State University.

Orthogonality condition for two
nonnegative vectors

We show that two nonnegative vectors � and � are per-
pendicular, if and only if � = (� − ��)+ for any real 𝛾 > 0.

If two nonnegative real numbers a and b satisfy ab = 0 ,
there is at least one of a and b is 0. If a = 0 and b ≥ 0 ,
then for any 𝛾 > 0 , a − �b ≤ 0 , so that (a − �b)+ = 0 = a ;
if a > 0 , we must have b = 0 , then for any real 𝛾 > 0 ,
(a − �b)+ = (a)+ = a . In both cases, there is a = (a − �b)+
for any real number 𝛾 > 0.

Conversely, assume that two nonnegative real numbers
a and b can be written as a = (a − �b)+ for any real number
𝛾 > 0 . If a and b are both strictly positive, then a − 𝛾b < a
since 𝛾 > 0 . Consequently, (a − 𝛾b)+ < a , which is contra-
dict to the assumption that a = (a − �b)+ . Thus at least one
of a and b must be 0, i.e., ab = 0.

Now assume that nonnegative vectors � and � in space
ℝ

p are perpendicular, that is,
∑p

i=1
aibi = 0 . Since both

of ai and bi are nonnegative, there must be aibi = 0 for
i = 1, 2,… , p . By the last argument, this is equivalent to
ai = (ai − �bi)+ for any 𝛾 > 0 and any i = 1, 2,… , p . In vec-
tor form, we have � = (� − ��)+.

References

	 1.	 Aganagić M (1984) Newton’s method for linear complementarity
problems. Math Program 28(3):349–362

	 2.	 Armand P, Gilbert JC, Jan-Jégou S (2000) A feasible BFGS inte-
rior point algorithm for solving convex minimization problems.
SIAM J Optim 11(1):199–222

1187International Journal of Machine Learning and Cybernetics (2019) 10:1173–1187	

1 3

	 3.	 Balasundaram S, Gupta D, Kapil (2014) Lagrangian support vec-
tor regression via unconstrained convex minimization. Neural
Netw 51:67–79

	 4.	 Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support
vector clustering. J Mach Learn Res 2:125–137

	 5.	 Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena
Scientific, Belmont, MA

	 6.	 Chang K-W, Hsieh C-J, Lin C-J (2008) Coordinate descent method
for large-scale L

2
-loss linear support vector machines. J. Mach

Learn Res 9:1369–1398
	 7.	 Chang CC, Lin CJ (2011) LIBSVM: a library for support vector

machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27
	 8.	 Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choos-

ing multiple parameters for support vector machines. Mach Learn
46(1–3):131–159

	 9.	 Cottle RW (1983) On the uniqueness of solutions to linear com-
plementarity problems. Math Program 27(2):191–213

	10.	 Cottle RW, Pang J-S, Stone RE (1992) The linear complementarity
problem. SIAM, Philadelphia, PA

	11.	 Fawcett T (2006) An introduction to ROC analysis. Pattern Rec-
ognit Lett 27(8):861–874

	12.	 Fung G, Mangasarian OL (2003) Finite Newton method for
Lagrangian support vector machine classification. Neurocomput-
ing 55:39–55

	13.	 Gold C, Sollich P (2003) Model selection for support vector
machine classification. Neurocomputing 55(1–2):221–249

	14.	 Gunn SR (1997) Support vector machines for classification and
regression, technical report, image speech and intelligent systems
research group, University of Southampton. http://users​.ecs.soton​
.ac.uk/srg/publi​catio​ns/pdf/SVM.pdf

	15.	 Joachims J (1999) Making large-scale SVM learning practical.
In: chölkopf B, Burges SC, Smola A (eds)Advances in Kernel
methods—support vector learning. MIT-Press

	16.	 Kremers H, Talman D (1994) A new pivoting algorithm for the
linear complementarity problem allowing for an arbitrary starting
point. Math Program 63(1):235–252

	17.	 Lee D, Lee J (2007) Domain described support vector classifier
for multi-classification problems. Pattern Recogn 40(1):41–51

	18.	 Lee S-W, Park J, Lee S-W (2006) Low resolution face recogni-
tion based on support vector data description. Pattern Recogn
39(9):1809–1812

	19.	 Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent
procedures for the multi-task Lasso, with applications to neural
semantic basis discovery. In: Proceedings of the 26th Int’l Conf.
on Machine Learning, pp 649–656

	20.	 Mangasarian OL (1994) Nonlinear programming. SIAM, Phila-
delphia, PA

	21.	 Mangasarian OL, Musicant DR (2001) Lagrangian support vector
machines. J Mach Learn Rese 1:161–177

	22.	 Muñoz-Marí J, Bruzzone L, Camps-Valls G (2007) A support
vector domain description approach to supervised classification

of remote sensing images. IEEE Trans Geosci Remote Sens
45(8):2683–2692

	23.	 Musicant DR, Feinberg A (2004) Active set support vector regres-
sion. IEEE Trans Neural Netw 15(2):268–275

	24.	 Osuna E, Freund R, Girosi F (1997) An improved training algo-
rithm for support vector machines. In: Proceedings of IEEE Work-
shop Neural Networks for Signal Processing, pp 276–285

	25.	 Osuna E, Freund R, Girosi F (1997) Training support vector
machines: an application to face detection. In: Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition

	26.	 Platt J (1998) Fast training of support vector machines using
sequential minimal optimization. In: Schölkopf B, Burges C,
Smola A (eds) Advances in Kernel methods—support vector
learning. MIT-Press

	27.	 Powers DMW (2011) Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and correlation.
J Mach Learn Technol 2(1):37–63

	28.	 Ruszczyński A (2006) Nonlinear optimization. Princeton Univer-
sity Press, Princeton, NJ

	29.	 Tang R, Han J, Zhang X (2009) Efficient iris segmentation
method with support vector domain description. Opt Appl
XXXIX(2):365–374

	30.	 Tax DMJ, Duin RPW (1999) Data domain description using sup-
port vectors. Neural Networks, Proc. of the European Symposium
on Artificial, pp 251–256

	31.	 Tax DMJ, Duin RPW (1999) Support vector domain description.
Pattern Recogn Lett 20(11–13):1191–1199

	32.	 Tax DMJ, Duin RPW (2002) Uniform object generation for opti-
mizing one-class classifiers. J Mach Learn Res 2:155–173

	33.	 Tax DMJ, Duin RPW (2004) Support vector data description.
Mach Learn 54(1):45–66

	34.	 Vapnik V (1998) Statistical learning theory. Wiley, NY
	35.	 Viola P, Jones M (2001) Rapid object detection using a boosted

cascade of simple features. In: Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition

	36.	 Wahba G, Lin Y, Zhang H (2000) Generalized approximate cross
validation for support vector machines, or, another way to look at
margin-like quantities. In: Smola B, Scholkopf, Schurmans (eds)
Advances in large margin classifiers. MIT Press

	37.	 Wang X, Lu S, Zhai J (2008) Fast fuzzy multicategory SVM based
on support vector domain description. Int J Patt Recogn Artif
Intell 1:109–120

	38.	 Yu X, Dementhon D, Doermann D (2008) Support vector data
description for image categorization from internet images. In:
Proc. of IEEE International Conf. on Pattern Recognition

	39.	 Zheng S (2015) A fast algorithm for training support vector
regression via smoothed primal function minimization. Int J Mach
Learn Cybernet 6(1):155–166

	40.	 Zheng S (2016) Smoothly approximated support vector domain
description. Pattern Recogn 49(1):55–64

http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf
http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf

	A fast iterative algorithm for support vector data description
	Abstract
	1 Introduction
	2 Support vector data description
	3 Lagrangian support vector data description
	3.1 The algorithm
	3.2 Convergence analysis
	3.3 Discussion on two alternatives

	4 Experimental results and analysis
	4.1 Experiment setup and performance measures
	4.2 Face detection
	4.3 Handwritten digit recognition

	5 Conclusion and future works
	Acknowledgements
	References

