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Abstract
In many multilabel learning applications, instances with labels being fully provided are scarce, while partially labelled data 
and unlabelled data are more common due to the expensive cost of manual labelling. However, most of existing models are 
based on the assumption that the fully labelled training data is sufficient. To deal with the partially labelled and unlabelled 
data effectively, we present a novel semi-supervised multilabel learning approach based on constrained non-negative matrix 
factorization in this paper. This approach assumes that if two instances are highly similar in terms of their features, they 
would also be similar in their associated labels set. Specifically, We first define three matrices to measure the similarity of 
each pair of instances in two different ways. Then, the optimal assignation of labels to the unlabelled instance is determined 
by minimizing the differentiation between these two similarity sets via a non-negative matrix factorization process. We also 
present a threshold learning algorithm to determine the classification threshold for each label in our proposed approach. 
Extensive experiment is conducted on various datasets, and the results demonstrate that our method show significantly better 
performance than other state-of-the-art approaches. It is especially suitable for the situations with a smaller size of labelled 
training data, or subset of the training data are partially labelled.

Keywords  Semi-supervised learning · Nonnegative matrix factorization (NMF) · Multilabel learning · Weak label

1  Introduction

In traditional machine learning, an instance is usually 
assumed to have only one class label. However, in real appli-
cations, an instance usually consists of multiple concepts 
simultaneously. For instance, in text categorization, a news 
report could cover several topics; while in scene classifica-
tion, an image could be related to some scenarios, to name a 
few. Accordingly, learning models that could predict multi-
ple labels simultaneously for an instance is called multilabel 
learning [22]. In multilabel learning, each instance is also 
represented by a vector of features as in traditional single-
label classification, while associated with multiple labels 
instead of a single label [30]. Nowadays, there have been 
extensive applications of multilabel learning, such as text 

categorization [20], gene function analysis [5] and image or 
video annotation [17], et al.

Over the last decade, a variety of multilabel learning 
models have been proposed, such as Binary Relevance [3], 
Classifier Chains [19], ML-kNN [29], ML-DT [5], Rank-
SVM [6], MIAL [25] and so on. More details on these algo-
rithms are described in the related work section. Generally, 
most of these approaches assume that for every instance, 
all its labels have been provided, and the training dataset is 
sufficiently to learn a stable classifier. However, in real appli-
cations, the expensive cost on manual labelling process pos-
sibly makes a large size of full labelled training data unfea-
sible, while obtaining partial labeled data or a small size 
of full labelled data is easy relatively. Furthermore, some 
researchers found that a great amount of unlabelled data 
used together with labelled data for training, can be gener-
ated a considerable improvement on prediction accuracy [2]. 
In this case, the semi-supervised multilabel learning would 
be of a huge practical values, and many semi-supervised 
learning algorithms have been proposed and applied [1, 31].

In addition, some multilabel learning applications only 
have a small size of training dataset but with a great number 
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of labels. Consequently, the training dataset related to each 
label is not sufficient for training a stable classifier. To deal 
with this issue, Liu et al. present a semi-supervised mul-
tilabel learning approach [16], which is based on the key 
assumption that two instances tend to have large overlap in 
their assigned class memberships if they share high similar-
ity in their input patterns. This approach explores the unla-
belled data and the class correlation simultaneously, and 
addresses the problem arising from a small size of training 
data, but it still needs the training instance with full labels. 
However, as a matter of fact, it is very difficult to get full 
labels for each instance, especially when the size of labels in 
a multilabel domain is huge. Usually, only partial labels are 
available. To solve this issue, we propose a novel approach 
for semi-supervised multilabel learning based on the con-
strained non-negative matrix factorization (NMF) model. 
We name it as NMFSML in this paper. Our approach is also 
based on the assumption described above, but the difference 
is that we apply NMF method to deal with the optimization 
task. The advantage of NMFSML is that it does not need 
the training instance with full labels and it is more efficient. 
Specifically, we first define three matrices to measure the 
similarity of all possible pairs of instances in two different 
ways, i.e., one based on their features (input pattern), and 
another based on the label memberships (output pattern). 
Utilizing the nonnegative matrix factorization technology, 
we then learn the optimal labels for unlabelled instances 
through minimizing the differentiation between these two 
similarity sets.

The main contributions of this paper are summarized as 
following:

1.	 We present a novel semi-supervised multilabel learn-
ing framework based on constrained NMF (NMFSML), 
explore the iterative updating rules, and implement the 
optimization process. Compared to existing approaches 
for multilabel learning, NMFSML is more efficient for 
such applications with a small size of training data and 
even allow including data with partial labels, especially 
for the learning situation with a great amount of labels.

2.	 We propose a classification threshold learning algorithm 
combine with our proposed leaning approach, which can 
solve the threshold setting issue within multilabel clas-
sification algorithms.

3.	 We conduct extensive experiment on various datasets 
from different domains, and compare our approach 
with other approaches. The results demonstrate that our 
approach performs significantly better than the other 
approaches.

The remaining of this paper is outlined as follows. Sec-
tion 2 introduces related works regarding multilabel learn-
ing. Section  3 details the proposed novel approach for 

semi-supervised multilabel learning based on constrained 
non-negative matrix factorization, including the definition 
of semi-supervised multilabel learning, the iterative update 
rules, the optimization process of NMFSML, and the clas-
sification threshold learning algorithm. Section 4 reports the 
experiment design and results analysis. Section 5 concludes 
our work.

2 � Related works

In the last decade, a diversity of multilabel learning 
approaches have been presented and successfully applied 
in various areas. These approaches can be roughly divided 
into two categories: problem transformation approaches and 
algorithm adaptation approaches.

For problem transformation approaches, the basic idea 
is to transform the multilabel learning problem into other 
learning problem. A typical approach of this type is Binary 
Relevance, which decomposes the multilabel learning into a 
set of independent binary classifications, each binary classi-
fication corresponding respectively to a class [3]. The draw-
back of this method is that it ignores the correlation between 
different labels, which could provide useful information to 
assist label prediction. To address this issue, many methods 
that incorporate the class correlation into multilabel learn-
ing have been developed in recent years, including Classifier 
Chains [19], IBLR-ML+ [4], LEAD [28], CDN-LR [12], 
SELD [9] and so on. Additionally, some approaches such as 
Calibrated Label Ranking algorithm [10] transform it into a 
problem of label ranking, and some approaches convert the 
multilabel learning problem into a set of multiclass clas-
sification problems.

Approaches that based on algorithm adaptation solve 
the multilabel learning problem by developing the common 
learning algorithm to directly handle the multilabel data, 
typical approaches include ML-kNN algorithm which adapts 
lazy learning techniques [29], ML-DT approach which 
alters decision tree model [5], Rank-SVM algorithm which 
modifies kernel techniques [6], and CML approach which 
improves information theoretic techniques [11], et al.

Both of the problem transformation approaches and algo-
rithm adaptation approaches are based on the assumption, 
which the training dataset is enough for learning stable clas-
sifiers and all labels of every instance are provided. How-
ever, this assumption is not true in some real applications. 
Furthermore, these approaches ignore that there are usually 
a huge amount of unlabelled instances, when used with the 
labelled instances, could boost the learning performance 
significantly.

Nonnegative matrix factorization (NMF) [14] is a popular 
method for finding parts-based representations of nonnega-
tive data. Due to the dimension reduction effectiveness of 
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NMF [13, 18], it has been successfully applied for multilabel 
classification such as PLST [21], MLC-BMaD [26], CNMF 
[16] and so on. However, the original NMF is an unsuper-
vised learning algorithm, it cannot make full use of labeled 
data to improve learning performance, so many researchers 
develop the usage of NMF to a semi-supervised manner [8, 
24, 27], and so on. In this paper, we present a novel approach 
for semi-supervised multilabel learning based on constrain 
NMF, our proposed approach is effective for this learning 
situation with a small size of training dataset but with a great 
number of labels. Most importantly, it does not require each 
training instance with all their labels provided.

3 � Our Proposed NMFSML Approach

3.1 � Semi‑supervised multiLabel learning

We formally def ine the semi-supervised mul-
t i label  learning problem as  fol lows.  Denote 
X = {x1, x2,… , xl−1, xl, xl+1,⋯ , xn} ⊂ Rm as the entire data-
set, where n is the total number of instances, including the 
labelled instances and the unlabelled instances, the labelled 
instances includes fully labelled data and partially labelled 
data. Without loss of generality, we let the first l instances 
be the labelled instances. Let C = {c1, c2,… , cq} be a set of 
labels, where q is the total number of labels. For the labeled 
instances, their label information can be presented in the 
matrix Y = [yij]l×q as the label matrix, where yij = 1 indicates 
label cj is instance xi′s relevant or true label, yij = 0 indicates 
label cj is not instance xi′s relevant or not true label, and 
yij = −1 indicates that it is unknown whether the label cj is 
instance xi′s relevant or true label. The task of semi-super-
vised multilabel learning is to learn a function h ∶ X → 2C 
from the dataset X, which is used to predict the unknown 
labels for the test data.

3.2 � The framework of NMFSML

In this section, we will detail our proposed novel approach 
for semi-supervised multilabel learning. Our work is also 
based on the assumption which if two instances are highly 
similar in terms of their features, they would also be simi-
lar in their associated labels set. We measure the similar-
ity between two instances in two ways respectively, one is 
called input pattern similarity that is based on the corre-
lation between their features, and another is called output 
pattern similarity that is based on the correlation between 
their label memberships. According to the assumption, 
for a pair of instances, their input pattern similarity and 
output pattern similarity should be similar. Hence we can 
predict the optimal assignment of label memberships to an 
unlabelled instance through minimizing the differentiation 

between these two similarity sets, and this optimization task 
can be transformed into a non-negative matrix factorization 
problem.

In order to calculate the input pattern similarity and out-
put pattern similarity, similar to Liu et al. proposed approach 
[16], we also introduce three matrices, but the calculating 
method of these matrices are not same, the difference will 
be given in the following section. (1) Normalized matrix 
A = [aij]n×n as the input pattern similarity matrix, where ele-
ment aij ≥ 0 represents the similarity measurement between 
the two instances xi and xj based on their input patterns, it 
can be computed from their features using Euclidean dis-
tance or cosine similarity in the m-dimensional space; (2) 
Matrix B = [bkl]q×q as the label similarity matrix, where ele-
ment bkl ≥ 0 represents the similarity measurement between 
two labels ck and cl ; and (3) Matrix T = [tik]n×q as the label 
confidence matrix, where element tik ≥ 0 is the confidence 
score of assigning label ck to instance xi . For considering 
the scale mismatch between the two similarities, it need to 
normalize these matrices after it has been computed.

In Liu et al. proposed approach, it need first compute the 
input pattern similarity matrix A and label similarity matrix 
B, and then use them and the assigned class labels informa-
tion to iterative compute the label confidence matrix T, so 
it still needs the training instances with full labels. While in 
our approach, the label confidence matrix T is computed via 
constrained non-negative matrix factorization technology by 
using the input pattern similarity matrix A and label matrix 
Y, without direct calculation of the label similarity matrix 
B, so it can address the weak label problem.

According to the matrices defined above, for any 
two instances xi and xj , their label confidence vector is 
Ti = (ti1, ti2,⋯ , tiq) and Tj = (tj1, tj2,⋯ , tjq) respectively. 
Therefore, the measurement of output pattern similarity 
between instances xi and xj can be represented as TiBTjT , 
while their measurement of input pattern similarity is aij . 
Following the assumption above, we expect that these two 
measurements of similarity closer, denote as aij ≈ TiBTj

T . It 
can be obtained the optimization problem as follows:

Furthermore, the formula in Eq. (1) would be reformulated 
as the following NMF problem:

where ‖⋅‖F stands for the Frobenius norm, and H = BTT.
In the semi-supervised multilabel learning, the training 

instances include labelled instances and unlabelled instances. 
For each labelled instance, their estimated label confidence 
score tik should be equal with the associated label value yik . 

(1)arg min
T ,B≥0

n∑

i=1

n∑

j=1

(aij − TiBTj
T )2

(2)arg min
T ,H≥0

‖A − TH‖2
F
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Therefore, we refer to the associated label information as 
constraint on NMF process, and the optimization problem is 
depicted as follows:

where � is a smooth regularization parameter and 
�(‖T‖2

F
+ ‖H‖2

F
) is a regularization term serving as smooth-

ness constraint to improve the robustness of the learned 
model.

3.3 � Optimization algorithm

In this section, we explore an iterative updating algorithm 
which is used to get the local optima of Eq. (3). Based on the 
matrix property Tr(AB) = Tr(BA) , the objective function can 
be written as:

Denote � and � as the Lagrange multiplier to constraints 
tij ≥ 0 and hij ≥ 0 , respectively. The Lagrange function L is

We get the following equations by requesting the derivatives 
of L with respect to T and H respectively.

Under the Kuhn-Tucker condition �ijtij = 0 and �ijhij = 0 , we 
can obtain the equations of yij and hij as follows:

So, the above equations can lead to the updating rules:

(3)

arg min
T ,H≥0

{‖A − TH‖2
F
+ �(‖T‖2

F
+ ‖H‖2

F
)}

s.t. tik = yik

(yik ≠ −1;i = 1, 2,… , l;k = 1, 2,… , q)

OF = ‖A − TH‖2
F
+ �(‖T‖2

F
+ ‖H‖2

F
)

= Tr((A − TH)(A − TH)T ) + �(‖T‖2
F
+ ‖H‖2

F
)

= Tr(AAT ) − 2Tr(AHTTT ) + Tr(THHTTT ) + �(‖T‖2
F
+ ‖H‖2

F
)

L = OF + Tr(�TT ) + Tr(�HT )

�L

�T
= − 2AHT + 2THHT + 2�T + � = 0

�L

�H
= − 2TTA + 2TTTH + 2�H + � = 0

(AHT )ijtij − (THHT + �T)ijtij =0

(TTA)ijhij − (TTTH + �H)ijhij =0

(4)tij ← tij

(AHT )ij

(THHT + �T)ij

(5)hij ← hij

(TTA)ij

(TTTH + �H)ij

By using the auxiliary function method, we can prove the 
convergence of this updating rules [15, 27].

To sum up, the procedure to solve the optimization prob-
lem proposed above could be formulated as in Algorithm 1.

The original NMF is an unsupervised learning algorithm, 
we extent the standard NMF to a semi-supervised learning 
algorithm by taking the label information as a hard constraint 
in this paper. In the semi-supervised multilabel learning, the 
training instances include labelled instances and unlabelled 
instances, for some labelled instances, only a “partial” label 
set is available probably (weak label problem). As the defini-
tion of label matrix in Sect. 3.1, where yij=−1 indicates that 
it is unknown whether the label cj is instance xi ’s relevant or 
true label. In our proposed method, we refer to the associated 
label information as constraint on NMF process, for each 
labelled instance, their estimated label confidence score tij 
should be equal with the associated label value yij . So in 
Algorithm 1, where i ≤ l and yij ≠ −1 , we let tij = yij , oth-
erwise calculate tij using NMF method. Then our proposed 
method can address the weak label problem.

Algorithm 1: Label Constrained NMF Algorithm
Input: Input pattern similarity matrix A; Label matrix Y ;
Parameter α
Output:Matrices T and H
Steps:
(1) Initialize T and H by random positive values
(2) Repeat
(3) if (i ≤ l)&&(yij �= −1)

tij = yij
(4) else

tij = tij
(AHT )ij

(THHT+αT )ij

hij = hij
(TTA)ij

(TT TH+αH)ij
(5) Until Convergence criterion is met
(6) Output T and H

3.4 � Label predicting

For a new instance xu , we denote its input pattern similar-
ity as a normalized vector Au = (au1, au2,⋯ , aun) , wherein 
element auj ( 1 ≤ j ≤ n ) represents the input pattern simi-
larity measurement between the new instance xu and the 
training instance xj . Then the label confidence vector 
Tu = (tu1, tu2,⋯ , tuq) can be computed by the following 
equation.

where matrix H is the output of NMF, H−1 is the generalized 
inverse matrix of matrix H.

After that, we would predict the optimal assignation of 
labels to the new instance xu as follows:

(6)Tu = AuH
−1

(7)yuk =

{
1, tuk ≥ 𝜀k
0, tuk < 𝜀k
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where �k is the classification threshold of class label ck (the 
calculation method of classification threshold will be pre-
sented in the next section), tuk is the confidence score of 
predicting the k-th label ck to the new instance xu . While 
yuk = 1 indicates the class label ck is xi′s relevant or true 
label, yuk = 0 indicates class label ck is not xi′s relevant or 
not true label.

In summary, the steps of predicting the optimal assign-
ment of class memberships to the new instance could be 
formulated as in Algorithm 2.

Algorithm 2: Label predicting algorithm
Input:Training dataset X; matrix H;new instance
xu;classification threshold vector ε.
Output:Label vector Yu;
Steps:
(1) Computing the input pattern similarity normalized vector
Au

(2) Computing the label confidence vector by Eq. (6)
(3) Predicting the optimal assignment of class memberships
using Eq. (7)
(4) Output Yu

3.5 � Classification threshold learning

The classification threshold determination is an important 
issue in multilabel learning, the researchers conducted 
extensive research on threshold determination problem, such 
as Read et al. put forward the threshold calibration method 
[19], Fan et al. propose the SCutFBR algorithm [7] and so 
on. In our early research experiments, we have observed that 
some threshold calibration methods that are independent of 
the specific multilabel learning algorithm do not achieve 
efficient classification outcomes, such as that it is very inef-
ficient by simply using an arbitrary threshold like 0.5. In 
the next section, we will propose the threshold calibration 
method which in agreement with our proposed multilabel 
learning method NMFSML based on the training dataset.

For one class label ck ∈ C ( 1 ≤ k ≤ q ), we denote the 
accept threshold, the reject threshold and the classification 
threshold as pk , rk and �k respectively, and the classification 
threshold vector as � = (�1, �2,⋯ , �q) . Firstly, we calculate 
the confidence score vector Ti = (ti1, ti2,⋯ , tiq) for each 
labelled instance xi ∈ X ( 1 ≤ i ≤ l ) by using Eq. (6), then 
compute the pk , rk and �k as follows:

where avg{⋅} stands for the averaging function.

(8)pk =avg{tik|yik = 1, 1 ≤ i ≤ l}

(9)rk =avg{tik|yik = 0, 1 ≤ i ≤ l}

(10)�k =avg{pk, rk}

4 � Experiments

In this section, we report the experiments conducted on sev-
eral typical datasets to evaluate our proposed approach, we 
compare it with other state-of-the-art methods and evaluate 
their performance.

4.1 � Dataset and evaluation metric

We carry out experiments on four typical datasets that 
described in Table 1. These datasets come from a variety 
of domains including image, music, biology and audio, 
which are extensively used for evaluating multilabel learn-
ing methods, more detailed description can be obtained from 
the website1. For one dataset D, we denote |D|, F(D), L(D) 
and LD(D) as the number of instances, number of features, 
number of possible labels, and average number of labels per 
example in dataset respectively.

We use the standard information retrieval metric 
F1-measure to evaluate the effectiveness and efficiency of 
our proposed approach. F1-measure value is more precise 
to evaluate the performance of classifiers, because it is a 
combination value with summarizing of both precision and 
recall.

4.2 � Baselines and experimental setup

We compare our model (NMFSML) with four baselines 
approaches: (1) Classifier Chains (CC), this algorithm 
transforms a multilabel learning task into a binary classi-
fication tasks chain, and each binary classifier is depend 
on the previous ones [19]; (2) IBLR-ML+, which unifies 
instance-based learning and logistic regression, and com-
bines model-based and similarity-based inference for mul-
tilabel classification [4]; (3) Calibrated Label Ranking 
(CLR), which transforms a multilabel learning task into a 
label ranking task, where ranking among labels is fulfilled 
by pairwise comparison [10]; (4) CNMF, which is a semi-
supervised multilabel learning by constrained non-negative 
matrix factorization [16]. The fourth method is similar to 
our approach. For IBLR-ML+, we let the nearest neighbors 

Table 1   Datasets used in experiments

Name Domain |D| F(D) L(D) LD(D)

Scene Image 2407 294 6 1.074
Birds Audio 645 260 19 1.014
Yeast Biology 2417 103 14 4.237
Cal500 Music 502 68 174 26.044

1  http://mulan.sourceforge.net/datasets-mlc.html



1098	 International Journal of Machine Learning and Cybernetics (2019) 10:1093–1100

1 3

as 10. For CNMF, the input pattern similarity matrix A is 
computed as the cosine similarity between their features, 
the class similarity matrix B is implemented through com-
puting the pairwise class similarity based on their vector 
representation (each class c is represented as a binary vector 
whose elements are set to be one if the corresponding train-
ing example belong to the class c and zero otherwise). The 
CC, IBLR-ML+ and CLR are implemented in Mulan [23], 
which is an open source framework designed for multilabel 
learning.

In order to improve the quality of the experimental 
results, according to the convergence of iterative rules, we 
set the convergence criteria as (|(tij)n+1 − (tij)n| ≤ 10−4)

&&(|(hij)n+1 − (hij)n| ≤ 10−4) in Algorithm 1, where n is 
the iterative computation times.

In addition, for Eq. (3), the effect of parameter � need 
to be further explored, � is to control the smoothness and 
robustness of the learned model. To explore the parametri-
cal stability of our approach, we evaluate the performance 
(F1-measure) of NMFSML on the all datasets under a series 
of varying parameter settings. We randomly select 50% 
data points from the dataset as the labelled data, and then 
increase � gradually from 0 to 1 with a step size of 0.1, the 
experimental results is plotted in Fig. 1. The results sug-
gest that the proposed framework NMFSML can achieve a 
relatively good performance when the parameter � is in the 
range [0.4, 0.6], we choose � = 0.5.

4.3 � Experiment design and results analysis

To comprehensively evaluate the performance of our 
approach NMFSML, we design two experiments as fol-
lows. All programs are run on datasets using five-fold cross 

validation, and the result shown in the following figures is 
the average value.

Experiment 1: Compare NMFSML with other approaches. 
We randomly select a portion of instances from the data-
set as the labelled set, select 20% instances as the testing 
data, and the remaining part of instances will be used as the 
unlabelled data (for NMLSML and CNMF). The portion of 
labeled data gradually increases from 5% to 70% with a step 
size of 5% and the results as shown in Fig. 2.

Experiment 2: The performance based on partially 
labelled data. We randomly select 50% instances from 
the dataset as the labelled data, and the remaining part of 
instances are used as the unlabelled data and the testing set. 
We randomly change a portion of known labels to unknown 
labels in the labelled data, then the full labels data will be 
changed to partial labels data. The portion of the partial 
labels data gradually increases from 0% to 40% with a step 
size of 5% and the result as shown in Fig. 3. This experiment 
is only to show the effectiveness of our approach to solve 
the weak label problem, and we will not compare it with 
other methods and discuss the performance due to space 
limitations.

According to the comparative analysis based on the 
experiment results, we can get the findings as follows. From 
Fig. 2, we observe that, these methods are all showing the 
increasing trend in terms of F1 measure with the increase 
of labelled data, but NMFSML and CNMF make more 
significant improvement compared to another three base-
line approaches, especially on the learning scenario with 
a small size of dataset for training (at the lower percentage 
of labelled data) or with a large number of labels. Because 
in these learning scenarios where the training dataset asso-
ciated to each label is insufficient, NMFSML and CNMF 
can utilize the unlabelled data to assist label prediction, but 
CC, IBLR-ML+ and CLR cannot. Additionally, from Fig. 3, 
we can see that, the NMFSML shows a trend of decreasing 
F1-measure when the percentage of partially labelled data 
increases, but the rate of F1-measure decline is far less than 
the increasing rate of partially labelled data. Therefore, the 
NMFSML can solve the weak label problem effectively, but 
CNMF cannot.

5 � Conclusions

In this paper, we propose a novel framework for semi-
supervised multilabel learning based on constrained NMF, 
and present a threshold learning algorithm which can 
determine the classification threshold for each label within 
our NMFSML model. The advantage of our proposed 
method is that it not only utilize the relation between dif-
ferent labels, but also exploit the unlabelled data simulta-
neously for learning, and the learned representations can 
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have more discriminating power by using the information 
provided by a few labelled instances and a large number of 
unlabelled instances. We have conducted extensive experi-
ment on a board rage of datesets, and the results indicate 
that our method outperforms other state-of-the-art multila-
bel learning methods significantly. The NMFSML is espe-
cially suitable for the learning scenarios with a small size 
of labelled data for training, or the training data include 
partially labelled data.
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Fig. 2   Compare NMFSML with other approaches. a Scene. b Birds. c Yeast. d Cal500
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Fig. 3   The performance based on partial labels data
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