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Abstract
Laplacian Eigenmaps is a popular nonlinear dimensionality reduction technique and there exist various scenarios of its exten-
sions. In this paper, a semi-supervised rough fuzzy Laplacian Eigenmaps (SSRFLE) approach is developed for dimensionality 
reduction of high dimensional hybrid data. In the proposed method, a set of semi-supervised fuzzy similarity granules are 
constructed to characterize the similarity between samples according to the principle that homogeneous samples have higher 
similarity degrees than heterogeneous samples. A neighborhood rough fuzzy set model of such fuzzy similarity granules is 
built to assess the degrees two samples belong to the same class. A Laplacian nearest neighborhood graph and a class-related 
neighborhood graph are constructed to characterize the topological structure between samples and between each sample and 
its prototype to ensure homogeneous samples being mapped closer to and more compact around the prototypes in a lower 
dimensional space. In view of the fact that different features bring out distinct impacts on performances of feature extraction 
and clustering, the significance of each feature is assessed by designing an information entropy measure and the weighted 
distance between samples is incorporated into the proposed technique. A series of simulation experiments on real world 
hybrid datasets are carried out. Experimental results show superior performance of the proposed method in classification 
accuracy and data visualization compared with other state of the art semi-supervised methods.

Keywords Laplacian Eigenmaps · Dimensionality reduction · Information entropy · Significance of feature · Neighborhood 
rough fuzzy sets

1 Introduction

Due to rapid emergence of high dimensional data in recent 
years, more and more scholars pay close attention to dimen-
sionality reduction techniques, an important research issue 
in machine learning community. Dimensionality reduction 
aims to reduce redundant or irrelevant features, and extract 
salient characteristics in order to compress data, decrease 
computing complexity, and improve efficiency and accuracy 
of data classification and recognition [14, 37, 38, 43].

Feature extraction is a distinguished way to dimension-
ality reduction that maps a high dimensional dataset into a 
lower dimensional space where the essential characterization 
of original data is preserved as much as possible. It can be 
divided into two categories, the linear and nonlinear. Princi-
pal component analysis (PCA) [3], independent component 
analysis (ICA) [32], linear discriminant analysis (LDA) [24, 
46], and local preserving projection (LPP) [13] are typical 
linear dimensionality reduction techniques, developed under 
different optimization criteria. In practice, almost all datasets 
do not have linear structures and linear techniques cannot 
handle nonlinear data. Various nonlinear dimensionality 
reduction techniques have been developed and falls into two 
types, based on kernel function methods [35] and based on 
manifold learning methods [21]. Nonlinear dimensionality 
reduction techniques based on kernel function methods have 
a difficulty of choosing suitable kernel functions. An appro-
priate kernel function can make data be linearly separable 
or approximately linearly separable in a lower dimensional 
space, but it is not applicable to every dataset. Nonlinear 
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dimensionality reduction techniques based on manifold 
learning have been extensively investigated in recent years. 
ISOMAP [37], local tangent space analysis (LTSA) [52], 
local linear embedding (LLE) [31], Laplacian Eigenmaps 
(LE) [4], and their generalizations [2, 6, 19] have been suc-
cessfully achieved.

Among the manifold learning based techniques, Lapla-
cian Eigenmaps is a frequently used nonlinear dimension-
ality reduction method due to its superior property of pre-
serving local neighborhood structure of data. However, it 
has lots of deficiencies, including sensitivity to noise, dif-
ficulty in choosing size of neighborhood, and no capability 
of preserving class structures of data. Many scholars focus 
on developing its improved scenarios. Raducanu [29] and 
Keyhanian et al. [17] extended, separatively, LE by con-
structing adaptive neighborhood graphs to avoid the puzzle 
of choosing the parameter of size of neighborhood. Wang 
et al. [40] proposed a distinguishing variance embedding 
(DVE) method by introducing the idea of minimum variance 
unbiased (MVU) to the classical LE. Liu et al. [25] proposed 
a local linear Laplacian Eigenmaps by combining LE with 
LLE. Malik et al. [26] explored a generalized incremental 
LE that can be applied to dynamic data.

Meanwhile, several researchers introduced supervised 
information of datasets into Laplacian Eigenmaps to 
improve the performances of dimensionality reduction  [5]. 
Jiang et al. [16] and Li [20] introduced class information of 
datasets into LE and developed a supervised LE algorithm 
applied to fault diagnosis and face recognition. Xu et al. [48] 
combined the idea of LDA with LE in the framework of 
marginal patch alignment. Such supervised LE techniques 
can not only preserve local neighborhood structures of sam-
ples, also strengthen class structures of datasets. In the mean 
while, Costa et al. [8] proposed a classification constrained 
dimensionality reduction (CCDR) that ensures samples 
tending to collapse into the prototypes. In that method, two 
neighborhood graphs, a k-nearest neighborhood graph and 
a sample-class neighborhood graph, were constructed. The 
weights between vertices (samples) in the first graph were 
assessed according to distances between samples, while 
the weights in the second were set to be 1 or 0, depending 
on whether a sample had a class label or not. In virtue of 
whether samples are labelled or not, Kim et al. [18] pro-
posed a semi-supervised Laplacian Eigenmaps (SSLE) by 
constructing two neighborhood graphs. The weights were 
assigned to 1, 0.5, or 0, depending on whether the corre-
sponding vertices are labelled and whether one sample is in 
the neighborhood of the other. SSLE can make homogene-
ous samples pull each other and heterogeneous samples push 
each other. The performance of dimensionality reduction can 
be strengthened.

In both CCDR and SSLE algorithms, fixed weights in the 
sample-class neighborhood graph are assigned to unlabelled 

samples, ignoring the membership degrees of them belong-
ing to each class and cannot exactly express the topological 
structures of data. Wang et al. [41] developed a T-S norm 
neural network to train weights for fuzzy if-then rules, where 
the T-S norms are fundamental ingredients in the theory of 
fuzzy sets. Fuzzy set is a generalization of classical set for 
modelling imprecise and vague information [50]. A fuzzy 
similarity relation is a typical notion describing association 
of objects. The derived fuzzy similarity classes are fuzzy 
information granules characterizing topological structures 
of data [47]. Another notion, rough sets, was initiated by 
Pawlak [27] for modelling and processing incomplete infor-
mation. It has been found extensive and successful applica-
tions in the field of artificial intelligence. Various extensions 
of the Pawlak rough set model have been exposed, such as a 
general relation based rough set [36], a dominance relation 
based rough set [34], a similarity or tolerance relation based 
rough set [15, 33], covering rough set [53], a neighborhood 
rough set [44, 49], and a decision-theoretic rough set [22, 
45]. The integration of both granular computing frameworks 
brings out the models of fuzzy rough sets, rough fuzzy sets, 
and various variations [1, 9, 10, 30, 39, 51] to solve the prob-
lems with imprecise and incomplete information.

In this paper, the notion of granular computing is intro-
duced into LE and a semi-supervised LE for dimensional-
ity reduction is developed. In this method, a set of semi-
supervised fuzzy similarity granules are constructed to 
characterize the similarity between samples according to 
the principle that homogeneous samples have higher simi-
larity degrees than heterogeneous samples. A neighborhood 
rough fuzzy set model of such fuzzy similarity granules is 
built to assess the degrees two samples belong to the same 
class. A class-related neighborhood graph of dataset is cre-
ated based on the semi-supervised fuzzy similarity granules 
for classes to describe the relationship between samples and 
their prototypes, whereas a Laplacian k-nearest neighbor-
hood graph is established according to both the semi-super-
vised information for classes and the association degrees of 
samples derived from the neighborhood rough fuzzy lower 
approximations. Simultaneously, the feature significance is 
assessed by building an information entropy measure and the 
weighted distance is incorporated into the establishment of 
Laplacian neighborhood graph. The proposed semi-super-
vised rough fuzzy based Laplacian Eignmaps (SSRFLE) 
model for dimensionality reduction of hybrid data not only 
inherits the advantages of classical LE, also preserves class 
characterization of the original dataset.

The rest of this paper is organized as follows. In Sect. 2, 
the classical Laplacian Eigenmaps model and its semi-super-
vised extensions for dimensionality reduction are recalled. 
Some basic notions related to fuzzy sets, rough sets and 
their integrations are briefly reviewed. Section 3 presents an 
approach to determining the weights of features of a dataset. 
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A semi-supervised Laplacian Eigenmaps model based on 
a neighborhood rough fuzzy sets is exposed. In Sect. 4, 
various comparative experiments on real world datasets are 
implemented. Parameters and performance analysis on the 
proposed method are presented sequentially. Conclusions 
and further work follow in Sect. 5.

2  Related work

In this section, we first recall the classical Laplacian Eigen-
maps method and its two typical semi-supervised versions 
for dimensionality reduction. And then, some basic notions 
related to fuzzy sets, rough sets and their integrations are 
briefly reviewed. These notions will be used in the sequent 
sections of this work.

2.1  Laplacian Eigenmaps (LE)

Laplacian Eigenmaps [4] is a typical nonlinear dimension-
ality reduction technique based on spectral graph theory. It 
has remarkable properties of preserving local neighborhood 
structure of data. A k-nearest neighborhood graph or an �-
ball neighborhood graph is constructed and weights of edges 
(between vertices) are assigned using the Gaussian kernel 
function or 0-1 weighting method.

Given a dataset X = {x1, x2,… , xn} with n samples. Each 
sample xi ∈ X has m features, namely, A = {a1, a2,… , am} . 
Let {y1, y2,… , yn} be the d (d ≪ m) dimensional represen-
tations of X. That is, each yi is a d dimensional row vector. 
With LE, the lower dimensional representation of X can be 
achieved by solving the following optimization problem

where Y = (yT
1
yT
2
… yT

n
)T  is the n × d embedded matrix 

of X, W = (Wij)n×n is the weight matrix of the k-nearest 
neighborhood graph, D = (Dij)n×n is a diagonal matrix with 
Dii =

∑n

j=1
Wij , and L = D −W  is the Laplacian matrix, 

a symmetric and positive semi-definite matrix. In order 
to ensure the problem (2.1) having a unique solution, the 
constraints YTDY = I and YTD� = 0 are imposed to remove 
arbitrary scaling factor and translational degree of freedom 
in the lower dimensional embedding, where I is the n × n 
identity matrix and � is a column vector with all components 
being 1. By the Lagrange multiplier method, the optimiza-
tion problem (2.1) can be translated to solve the following 
generalized eigenvalue problem

If 0 ≠ �1 ≤ �2 ≤ ⋯ ≤ �d are the d smallest positive 
eigenvalues of Eq. (2.2) and the column vectors y1, y2,… , yd 

(2.1)min

n∑
i=1

n∑
j=1

‖‖‖yi − yj
‖‖‖
2

Wij = 2tr(YTLY)

(2.2)LY = �DY

are the corresponding d eigenvectors, then the lower dimen-
sional embedding of xi is as follows

meaning that the ith row vector of Y is right the d dimen-
sional embedding of xi.

2.2  Classification constrained dimensionality 
reduction (CCDR)

CCDR [8], proposed by Costra et al. in 2005, is an exten-
sion of classical LE by fusing class information. It can make 
samples with the same class label collapse into correspond-
ing prototypes.

Suppose each sample of a dataset X (or a subset of X) is 
labelled, namely xi has a class label li ∈ {1, 2,… , f } , where 
f is the number of classes of X. Two neighborhood graphs GN 
and GC were constructed, where GN is a k-nearest neighbor-
hood graph and the weights of edges are computed by using 
the Gaussian kernel function. GC is a graph regarding the 
class information of X, called the class-related neighborhood 
graph. Inserting edges between prototypes and samples with 
the same class label and the weights of such edges were set 
to be 1. Herein, the prototypes of X were computed by the 
way of maximum alignment between samples and classes.

In order to achieve the goal that samples with the same 
label were clustered together around the prototypes and 
simultaneously the neighborhood structures of X were pre-
served, a cost function was constructed as follows.

where W = (Wij)n×n is the weight matrix of GN , C = (Cki)f×n 
is the weight matrix of GC , {y1, y2,… , yn} is the lower 
dimensional representation of X, z1, z2,… , zf  are the proto-
types of X in the lower dimensional space, and � is a param-
eter trading off the influences between preserving local 
neighborhood structures and keeping class structures.

Let Z = (zT
1
… zT

f
yT
1
… yT

n
)T , then minimizing Eq. (2.3) 

is equivalent to solving the following optimization 
problem

where � = � −� is a (f + n) × (f + n) Laplacian matrix 
a s s o c i a t e d  w i t h  t h e  w e i g h t  m a t r i x 

� = (�ij)(f+n)×(f+n) =

(
I C

CT 2�W

)
 and � = (�ij)(f+n)×(f+n) 

with �ii =
∑f+n

j=1
�ij , �ij = 0 when i ≠ j . By the Lagrange 

multiplier method, the problem (2.4) can be transformed to 
solve the following generalized eigenvalue problem

yi = (y1(i), y2(i),… , yd(i)), i = 1, 2,… , n

(2.3)E = �

n∑
i=1

n∑
j=1

Wij
‖‖‖yi − yj

‖‖‖
2

+

n∑
i=1

f∑
k=1

Cki
‖‖yi − zk

‖‖2

(2.4)min
ZT�Z=I,ZT�1=0

tr(ZT
�Z)
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If z1, z2,… , zd are the eigenvectors corresponding to the 
d smallest positive eigenvalues of Eq. (2.5), then the first f 
rows of Z = [z1 z2 … zd] correspond to the coordinates of 
prototypes and the following n rows determine the embed-
ding of the original samples.

2.3  Semi‑supervised Laplacian Eigenmaps (SSLE)

Kim et al. proposed a semi-supervised Laplacian Eigen-
maps algorithm, called SSLE, which is suitable for senti-
ments analysis [18]. Execution of SSLE algorithm needs 
two premises. One is that the labelled information about 
similarity among samples and the other is that the similarity 
between homogeneous samples should be larger than that 
between heterogenous samples.

For a dataset X, let Xc = {x1, x2,… , xs} be a subset of X, 
in which each sample is labelled as a cluster among f clus-
ters, namely xi ∈ Xc is assigned a label li ∈ {1, 2,… , f } . Two 
k-nearest neighborhood graphs, Gu and Gl , were built, where 
Gu was a k-nearest neighborhood graph without label infor-
mation and the weights Wu

ij
 of edges were computed by using 

the Gaussian kernel function, while Gl was a k-nearest neigh-
borhood graph with label information and the weights of 
edges were assessed as

where Nl+(xj) and Nl−(xj) were the homogeneous neighbor-
hood set and heterogeneous neighborhood set of a labelled 
sample xj , respectively. Nl0(xj) was the neighborhood set of 
an unlabelled sample xj . In SSLE, the objective function was 
defined as follows

where {y1, y2,… , yn} is the lower dimensional embedding of 
X and Y = (yT

1
yT
2
… yT

n
)T , Lu = Du −Wu and Ll = Dl −Wl 

are the Laplacian matrices of Gu and Gl , respectively, and Du 
and Dl are two diagonal matrices with Du

ii
=
∑n

j=1
Wu

ij
 and 

Dl
ii
=
∑n

j=1
Wl

ij
.

Let W = (1 − �)Wu + �Wl , D = (1 − �)Du + �Dl , and 
L = (1 − �)Lu + �Ll , then L = D −W  and Dii =

∑n

j=1
Wij . 

Meanwhile, the same constraint conditions YTDY = I and 
YTD� = 0 were imposed. The lower dimensional embedding 
of X can be obtained by solving the generalized eigenvalue 
problem LY = �DY .

If 0 ≠ �1 ≤ �2 ≤ ⋯ ≤ �d are the d smallest eigenvalues 
of Equation LY = �DY  and y1, y2,… , yd are corresponding 

(2.5)�Z = ��Z

Wl
ij
=

⎧
⎪⎨⎪⎩

1, if xi ∈ Nl+(xj) or xj ∈ Nl+(xi)

0, if xi ∈ Nl−(xj) or xj ∈ Nl−(xi)

0.5, if xi ∈ Nl0(xj) or xj ∈ Nl0(xi)

0, otherwise

(2.6)
Φ(Y) = (1 − �)tr(YTLuY) + �tr(YTLlY) = tr(YT ((1 − �)Lu + �Ll)Y)

column eigenvectors, then the lower dimensional embedding 
of sample xi is yi = (y1(i), y2(i),… , yd(i)), i = 1, 2,… , n.

2.4  Fundamentals of fuzzy sets and rough sets

Both fuzzy sets and rough sets are fundamental components 
of granular computing theory for uncertain information anal-
ysis and processing in the fields of decision analysis and 
artificial intelligence. In this subsection, we review some 
basic notions related to the granular computing framework 
that are indispensable in our proposal.

Let X be a universe of discourse (the dataset aforemen-
tioned), a map �F from X to [0, 1] models a fuzzy concept F 
on X [50]. For any x ∈ X , �F(x) , or F(x) briefly, denotes the 
membership degree of x belonging to the fuzzy concept F.

A fuzzy relation R on X is a fuzzy set on X × X . It is 
referred to be reflexive if �R(x, x) = 1 for all x ∈ X and sym-
metric when �R(x, y) = �R(y, x) for any x, y ∈ X . A fuzzy 
relation is called a fuzzy similarity relation if it is reflexive 
and symmetric. A fuzzy similarity relation characterizes the 
similarity degrees between objects. A fuzzy similarity rela-
tion R on X is associated with a group of fuzzy sets (fuzzy 
similarity classes) {[x]R ∣ x ∈ U} , reflecting the topological 
and granular structures of X, where �[x]R

(y) = �R(x, y) for 
any y ∈ X.

There exist lots of ways to determine a fuzzy similar-
ity relation describing the associations between objects in 
a dataset, such as, the correlation coefficient method, the 
similarity coefficient method, and a kind of distance-based 
method [50].

The concept of rough sets, introduced by Pawlak [27], is 
different from fuzzy sets to interpret and handle objects by 
using an indiscernibility relation.

For a dataset X with its attribute (feature) set A, the pair 
(X, A) is called an information system. For any B ⊆ A , 
RB = {(x, y) ∈ X2 ∣ ∀b ∈ B(x(b) = y(b))} is an indiscern-
ibility relation on X, which is a crisp equivalence relation 
partitioning X into a family of disjoint subsets X∕RB , called 
the quotient set of X with respect to RB or B, where x(b) 
denotes the value of x on b. Let Y ⊆ X , the two sets

are referred to as the lower approximation and upper approx-
imation of Y with respect to RB or B, respectively.

The lower approximation of a set consists of granules of 
indiscernible objects totally contained in the set, whereas 
its upper approximation is composed of granules of indis-
cernible objects partly contained in the set. The pair of the 
approximation sets can be used to discern and analyze such 
a set. It is the cores of rough sets theory for knowledge rep-
resentation and discovery.

RB(Y) = {Z ∈ X∕RB ∣ Z ⊆ Y}, RB(Y) = {Z ∈ X∕RB ∣ Z ∩ Y ≠ �}
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When the class information of X is known and D is the 
class label feature, called the decision feature of X, the 
information system (X,A ∪ D) is referred to be a decision 
information system. For any B ⊆ A,

is said to be the positive domain of D with respect to B, 
where RB and RD are indiscernibility relations derived from 
B and D, respectively. The dependency of D to B can be 
described by

where |Y| denotes the cardinality of Y. For any a ∈ B , the 
measure

can be used to describe the significance of feature a in X 
with respect to B [11].

In the case of an information system having continuous-
values attributes, on one hand, some discretization meth-
ods [42] have been developed to process such information 
systems. On the other hand, the classical indiscernibil-
ity relation has been extended to general mathematical 
notions and various generalized rough set models are con-
stituted, such as a general relation based rough set [36], a 
similarity or tolerance relation based rough set [15, 33], 
a dominance relation based rough set [12, 34], a covering 
rough set [53], and a neighborhood rough set [44, 49]. 
Herein the neighborhood rough set model is outlined and 
others can be referred to the literature.

Let X be a finite universe, for each x ∈ X , we associate 
it with a subset n(x) ⊆ X , called the neighborhood of x. A 
neighborhood system N(X) = {n(x) ∣ x ∈ X} of X is a fam-
ily of neighborhoods associated with all x ∈ X . The pair 
(X, N(X)) is referred to as a neighborhood approximation 
space. In the neighborhood approximation space (X, N(X)), 
several models of neighborhood rough sets have been 
exposed [44, 49], where the following two sets of formulae

and

are two kinds of typical depictions of neighborhood rough 
lower approximations and neighborhood rough upper 
approximations. Each pair of them brings ones different 
characterizations about objects and has specific properties.

In the mean time, the connection between fuzzy sets and 
rough sets has been extensively investigated and several 

PosB(D) = ∪Y∈X∕RD
RB(Y)

�B(D) = |PosB(D)|∕|X|

sig(a) = �B(D) − �B⧵{a}(D))

N1(Y) = {x ∈ X ∣ n(x) ⊆ Y}, N1(Y) = {x ∈ X ∣ n(x) ∩ Y ≠ �}

N2(Y) = ∪{n(x) ∈ N(X) ∣ n(x) ⊆ Y , x ∈ X}, N2(Y) = ∪{n(x) ∈ N(X) ∣ n(x) ∩ Y ≠ �, x ∈ X}

versions of fuzzy rough set models [9, 10, 30] have been 
worked out, in which

are the typical definitions of generalized fuzzy rough lower 
approximation and upper approximation of a fuzzy set F 
with respect to a fuzzy relation R on X, x ∈ X , where I is a 
kind of fuzzy implication and T is a t-norm.

When the fuzzy relation R reduces to a crisp relation on 
X, or even a neighborhood system N(X) = {n(x) ∣ x ∈ X} , 
the model of rough fuzzy set

is achieved.
In the following section, the neighborhood rough fuzzy 

set model is introduced to assess the membership degree 
of an object belonging to a fuzzy association class in a 
neighborhood system. Such membership measures are 
incorporated with the similarity measures between objects 
into the renovation of weight matrix of Laplacian neigh-
borhood graph.

3  A rough fuzzy sets based semi‑supervised 
Laplacian Eigenmaps

Both CCDR and SSLE are semi-supervised nonlinear 
dimensionality reduction methods. In CCDR, the weights 
of labelled samples belonging to their classes were all 1 
and those of unlabelled samples were all 0, regardless of 
the membership degrees of samples belonging to their 
classes. In SSLE, two neighborhood graphs are comple-
mentary to each other. The weights were directly assigned 
to 0.5 between unlabelled neighbors, which cannot exactly 
express the relationship between labelled and unlabelled 
samples. The fixed weights disregard the influences of 
distances and similarity between samples and their proto-
types. Thereafter, both methods cannot preserve the class 
structures of datasets well. In this section we introduce the 

ideas of fuzzy sets and rough fuzzy sets into the design 
of weight matrices of the Laplacian neighborhood graph 
and class-related neighborhood graph, and propose a novel 
semi-supervised LE method for dimensionality reduction.

�R(F)(x) = inf
y∈X

I(�R(x, y),�F(y)),�R(F)
(x) = sup

y∈X

T(�R(x, y),�F(y))

�N(F)(x) = inf
y∈n(x)

�F(y),�N(F)
(x) = sup

y∈n(x)

�F(y)
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3.1  Assessment of significance of features

In a high dimensional data space, data distributions are 
sparse. Each feature contributes to different ingredients for 
data clustering and parts of features usually cause serious 
impacts on clustering effect. In this subsection, motivated by 
the rough set theory [11], the significance of each feature is 
adaptively assessed by introducing an information entropy 
measure.

Given a continuous, discrete, or hybrid data-
set X = {x1, x2,… , xn} with the feature (attribute) set 
A = {a1, a2,… , am} , we assume that there are s labelled 
samples in X, and l1, l2,… , ls ∈ {1, 2,… , f } are their class 
labels. Due to the fact that the ranges of different features 
vary in magnitude, the dataset needs to be normalized for all 
continuous values features before carrying out lower dimen-
sional embedding. The commonly used approaches to data 
normalization are as follows [28].

(1) The range normalization (min–max method) 

(2) The Z-score normalization (mean-deviation method) 

 where 

After data normalization, we establish a semi-supervised 
fuzzy similarity matrix regarding the given dataset. For 
convenience, the normalized dataset is also denoted by X. 
The similarity degrees between samples with the same class 
labels are set as 1, while the similarity between samples with 
different class labels is set as 0, and the similarity degrees 
between the rests are computed by a certain kind of distance 
method. That is, for two samples, if one is labelled and the 
other is not, or neither of them is labelled, then the similarity 
degree between them is evaluated by their distance. Math-
ematically, the semi-supervised fuzzy similarity matrix RA 
of X is obtained by

x∗
ij
=

xij −mink xkj

maxk xkj −mink xkj
, i = 1, 2,… , n, j = 1, 2,… ,m

x∗
ij
=

xij − �j

�j

�j =
1

n

n∑
i=1

xij, �j =

√√√√1

n

n∑
i=1

(xij − �j)

(3.1)�RA
(xi, xj) =

⎧
⎪⎨⎪⎩

1, if xi and xj have the same label

1 − �

�∑m

k=1
d2
k
(xik, xjk), if at least one of xi and xj is not labelled

0, if xi and xj have different labels

where � is an appropriate positive number such that 
�RA

(xi, xj) ∈ [0, 1] for all xi, xj ∈ X  , and dk(xik, xjk) is 
the distance between the values of kth feature of sam-
ples xi and xj . If ak is a continuous attribute, we define 
dk(xik, xjk) = |xik − xjk| , and when ak is a discrete or catego-
rial attribute, we set

It is clear that RA is a reflexive and symmetrical relation, or 
a fuzzy similarity relation. The family of fuzzy similarity 
classes {[x]RA

} characterize the granular structures of X, 
where [x]RA

 is a fuzzy set on X and its membership degree at 
y ∈ X is �RA

(y, x) , thus, �[x]RA
(y) or �RA

(y, x) can be inter-

preted as the membership degree of sample y belonging to 
the fuzzy similarity class of sample x. Let

then H(A) is referred to as the information entropy of the 
family of fuzzy information granules (similarity classes) 
{[x]RA

|x ∈ X} , reflexing the distributions or fluctuation of 
membership degrees of the fuzzy information granules. 
Obviously, H(A) ∈ [0, log n).

Acco rd ing  to  (3 .1 ) ,  i t  i s  ev iden t  t ha t ∑n

i=1
�RA

(xi, xj) ≤
∑n

i=1
�RA⧵{a}

(xi, xj) ≤ �X� for any a ∈ A and 

xj ∈ X . Thus,

Therefore, when n > 2 , H(A) ≤ H(A⧵{a}) . If n ≤ 2 , this 
result is trivial. Hence, for any a ∈ A , let

then sig(a) ∈ [0, 1] . sig(a) can characterize the significance 
of a in A while considering the problem of preserving 
the same indiscernibility. According to (3.2), if sig(a) is 
smaller, then the fluctuation of all of the kth attribute values 
is smaller, and for any xi and xj , the value of dk(xi, xj) is 
relatively smaller. Thus it has a higher possibility that both 
xi and xj are in the same class. On the other hand, if sig(a) 

dk(xik, xjk) =

{
0, if xik = xjk
1, if xik ≠ xjk

H(A) = −

n�
j=1

∑n

i=1
�RA

(xi, xj)

�X�2 log

∑n

i=1
�RA

(xi, xj)

�X�2

∑n

i=1
�RA

(xi, xj)

�X�2 ≤

∑n

i=1
�RA⧵{a}

(xi, xj)

�X�2 ≤
1

n

(3.2)sig(a) =
H(A⧵{a}) − H(A)

maxai∈A(H(A⧵{ai}) − H(A))
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is bigger, the fluctuation of all of the kth attribute values is 
larger and the value of dk(xi, xj) is relatively bigger, thus the 
possibility of samples xi and xj belonging to different classes 
is higher and therefore the attribute a has a stronger discern-
ibility ability. Based on such a fact, we modify the fuzzy 
similarity matrix (3.1) by introducing the significance of 
features into the computation of distances between samples 
and obtain the following weighted fuzzy similarity relation

where Sk = esig(ak).
From (3.3) we know that if sig(ak) is smaller, then 

�RW
(xi, xj) is almost equal to �RA

(xi, xj) . If sig(ak) is bigger, 
then �RW

(xi, xj) will be smaller than �RA
(xi, xj) , assuming 

that there are no other variable factors. That is, if two 
samples belong to different classes with a high possibil-
ity, then we impose a bigger weight to the computation of 
distance and derive a smaller similarity degree between 
both samples. Therefore, if the similarity degree of two 
samples is small, then RW  can push the two samples far-
ther when samples are embedded in a lower dimensional 
space.

If two samples xi and xj have the same label, we assume 
that the membership degree of any sample x ∈ X belong-
ing to the fuzzy similarity class of xi is equal to that of x 
belonging to the fuzzy similarity class of xj . Under such 
an assumption, we let

where t is the class label of sample xj and l(t) is the subset 
of X, whose elements have the class label t.

From (3.4) we know that the similarity between homo-
geneous samples is larger than that between heterogene-
ous samples. We call RS a fuzzy association relation. It is 
obvious that RS is no longer a fuzzy similarity relation. 
We refer the fuzzy set Xj , defined by �Xj

(x) = �RS
(x, xj) , 

x ∈ X  , to as the fuzzy association class of xj . Thus, 
�RS

(xi, xj) , denoting the membership degree of xi belong-
ing to Xj , is not necessarily equal to the membership 
degree of xj belonging to Xi . That is, a sample has a pos-
sibility of belonging to some class, but there may exist 
samples in this cluster which have different degrees of 
possibility belonging to the class that the given sample is 
in. These interpretations are rational in clustering 
analysis.

(3.3)�RW
(xi, xj) =

⎧
⎪⎨⎪⎩

1, if xi and xj have the same label

1 − �

�∑m

k=1
Skd

2
k
(xik, xjk), if at least one of xi and xj is unlabelled

0, if xi and xj have different labels

(3.4)

�RS
(xi, xj) =

{
�RW

(xi, xj), if xj is not labelled

maxy∈l(t)�RW
(xi, y), if xj is labelled

3.2  A semi‑supervised rough fuzzy Laplacian 
Eigenmaps (SSRFLE)

For a hybrid dataset X = {x1, x2,… , xn} with its feature set 
A = {a1, a2,… , am} , we assume that there are s samples 
being labelled as l1, l2,… , ls , where li ∈ {1, 2,… , f } and f is 
the number of classes, f ≤ s . For a given positive integer k, 
we construct a k-nearest neighborhood graph GN of X, where 

the distance between samples xi and xj is computed by using 
the following weighted distance

In order to determine the membership degree of a sam-
ple belonging to a certain class, we construct a neighbor-
hood rough fuzzy set model for the fuzzy association classes 
{[x]RS

∣ x ∈ X}.
Let Nk(x) be the k-nearest neighborhood set of x ∈ X and 

Nk = {Nk(x)|x ∈ X} be the k-nearest neighborhood system 
on X, the pair K = (X,Nk) is referred to as a neighborhood 
approximation space. Let Xj denote the fuzzy association 
class of xj and is indeed the jth column of RS . The rough 
fuzzy lower and upper approximation sets of Xj with respect 
to the neighborhood system Nk are two fuzzy sets on X, and 
their membership functions are defined by, xi ∈ X,

Due to the fact that the similarity degrees between homo-
geneous samples are larger than those between heterogene-
ous samples, according to (3.6), we know that �N(Xj)

(xi) is 

bigger if the samples in the k-nearest neighborhood of xi 
belongs to the class that xj belongs to, whereas �N(Xj)

(xi) is 

smaller if the neighbors of xi and xj belong to heterogeneous 
classes. So �N(Xj)

(xi) can be used to assess the degree what 

two samples xi and xj belonging to the same class.
In order to ensure homogeneous samples being mapped 

closer in the lower dimensional space, in the k-nearest neigh-
borhood graph GN of X, the weight between two vertices 
should be large when both vertices are in the homogeneous 
neighborhoods, while it is small if they are in heterogene-
ous neighborhoods. Motivated by this idea, we designate 

(3.5)dW (xi, xj) =

√√√√ m∑
k=1

Skd
2
k

(
xik, xjk

)

(3.6)
�N(Xj)

(xi) = ∧
y∈Nk(xi)

�Xj
(y)

�
N(Xj)

(xi) = ∨
y∈Nk(xi)

�Xj
(y)
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the weights (similarity degrees) between samples with the 
same class label in a neighborhood as the largest value 1, 
while the similarity between samples with different labels 
as the smallest value 0. The similarity between samples that 
are not included in each other neighborhood is also set as 
the smallest value 0, and the similarity degree between sam-
ples that only one is labelled or neither is labelled is evalu-
ated by combining the weighted Gaussian kernel distance 
between samples and the membership degrees of both sam-
ples belonging to the same class. As a result, we establish 
the weight measure between vertices xi and xj as

where � is a scale factor of adjusting the Gaussian kernel 
function, usually determined by the average similarity 
degrees between samples. The weight matrix of GN is 
denoted by WN = (WN

ij
)n×n.

Since the similarity degrees between each sample and 
samples with the same label are uniformed in Eq. (3.4), the 
samples with the same label can be regarded as one sam-
ple, namely the prototype. If a sample xj has a class label 
t ∈ {1, 2,… , f } , then �RS

(xi, xj) can be interpreted as the 
membership degree of xi belonging to the tth class. For that, 
we build a weighted class-related neighborhood graph GC 
to depict the relationship between samples and their pro-
totypes and the corresponding weight matrix is denoted by 
WC = (WC

it
)n×f  , where the weight WC

it
 , defined by

represents the membership degree of xi belonging to the tth 
class, here y is an arbitrary element in l(t), whose labels are 
all t.

Let the row vectors y1, y2,… , yn ∈ ℝ
d  be the 

d (d < n) dimensionality representations of dataset 
X = {x1, x2,… , xn} . In order to achieve the goal that homo-
geneous samples are mapped closer and more compact 
around the prototypes in the lower dimensional space, the 
following optimization problem

is approached, where c1, c2,… , cf ∈ ℝ
d are the prototypes 

of the dataset X in the lower dimensional space and � is a 
parameter trading off the performance of preserving local 
neighborhood structure and maintaining clustering structure.

(3.7)WN
ij
=

⎧
⎪⎪⎨⎪⎪⎩

1, if xi and xj have the same label

and xi ∈ Nk(xj) or xj ∈ Nk(xi)

�N(Xi)
(xj)e

−dW (xi,xj)
2∕� , if at least one of xi and xj is not labelled

and xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(3.8)WC
it
= �Rs

(xi, y)

(3.9)min(1 − �)

n∑
i,j

WN
ij

‖‖‖yi − yj
‖‖‖
2

+ �

n∑
i=1

f∑
t=1

WC
it
‖‖yi − ct

‖‖2

Let

then the optimization problem (3.9) can be translated to

where � = � −� is the (f + n) × (f + n) Laplacian matrix, 
which is a symmetric and positive semidefinite matrix, � is 
a (f + n) × (f + n) diagonal matrix with �ii =

∑f+n

j=1
�ij , and 

� =

(
I �(WC)T

�WC 2(1 − �)WN

)
.

In order to ensure that the optimization problem (3.10) 
has a unique solution, two restricted conditions ZT

�Z = I 
and ZT

�� = 0 are imposed to remove scaling and transla-
tion factors in the lower dimensional embedding. By the 
Lagrange multiplier method, the optimization problem 
(3.10) can be transformed to solve the following general-
ized eigenvalue problem

The column vectors z1, z2,… , zd , corresponding to the d 
smallest positive eigenvalues 0 ≠ �1 ≤ �2 ≤ ⋯ ≤ �d , are the 
solutions to Eqs. (3.11) or (3.9). The first f rows of the matrix 
[z1 z2 … zd] correspond to the coordinates of prototypes and 
the following n rows determine the d dimensional embed-
ding of the original samples.

4  Comparative experiments and analysis

Due to diversities and complex natures of captured datasets, 
there is no single method being able to deal successfully 
with all situations. In this section, we compare the proposed 
SSRFLE with the classical (non-supervised) LE, DVE, and 
the state of the art semi-supervised CCDR and SSLE, for 
dimensionality reduction in the aspects of classification 
performance and data visualization through several experi-
ments on benchmark datasets. All of the experiments are 
implemented on the platform of Matlab 7.0.

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

c1
⋮

cf
y1
⋮

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 ⋯ c1d
⋮ ⋮ ⋮

cf1 cf2 ⋯ cfd
y11 y12 ⋯ y1d
⋮ ⋮ ⋮

yn1 yn2 ⋯ ynd

⎞
⎟⎟⎟⎟⎟⎟⎠

= [z1 z2 … zd]

(3.10)min tr(ZT
�Z)

(3.11)�Z = ��Z
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We take five benchmark datasets from UCI Machine 
Learning Repository [23] for our experiments. Three of 
which, Wine, Seeds, and Wisconsin Diagnostic Breast Can-
cer (WDBC), are continuous datasets. Statlog Heart (Heart) 
is a hybrid dataset, while Mushroom is a categorical dataset. 
Due to the fact that the Mushroom dataset has missing val-
ues, actually 5643 complete samples, and is classified into 
two classes, we randomly select 30% complete samples in 
each class as the test samples in the follow-up experiments. 
The details of the five datasets are illustrated in Table 1.

4.1  Performance analysis

Since the values of continuous features in the first four 
datasets have different scales, all of these datasets are pre-
processed by the normalized methods listed in Sect. 3.1. We 
compare the proposed SSRFLE with the classical LE and 
DVE, and the state of arts CCDR and SSLE. For consist-
ence, we set the parameters � = 1 for CCDR, � = 0.5 for 
SSLE, and � = 0.5 for SSRFLE.

The first two methods (LE and DVE) are non-supervised 
and the last two and the proposal are semi-supervised. Thus 
we randomly label a percentage of samples in each class 
of every dataset as the semi-supervised information in the 
simulation experiments. Based on the analysis of establish-
ing the proposed method, one of the largest advantage of 
the proposed SSRFLE is to preserve class characterization 
of original data, the classification (clustering) accuracy is 
used as one of the criteria to test the performance of these 
techniques. With the proposed SSRFLE, the lower dimen-
sional representations of original data as well as the proto-
types of the lower dimensional embedding can be derived. 
Therefore, the commonly used fuzzy C-means (FCM) clus-
tering method is introduced to cluster the dataset in the lower 
dimensional embedding. The fuzzification factor m in FCM 
is set to be 2 in all experiments.

Although there were several approaches to dimensionality 
estimation of a data manifold [7], the real intrinsic dimen-
sionality of the dataset may not be correctly determined. In 
the following experiments, we assume the embedded dimen-
sionality d varying from 2 to 4, instead of estimating its 
dimensionality. For every fixed d, the size of neighborhood 

of each sample varies from 4 to 14. In each semi-supervised 
method, 5% samples in each class of every dataset are ran-
domly labelled. For every set of such parameters, the tenfold 
cross-validation is carried out and the average classification 
accuracy is used to evaluate the listed methods for dimen-
sionality reduction. Tables 2, 3 and 4 show the average clas-
sification accuracies when d is set as 2, 3 and 4, respectively. 
The bold number in each column (each dataset) of every 
table shows the highest classification accuracy among the 
tested methods.

From these Tables we know that the semi-supervised 
dimensionality reduction methods, CCDR, SSLE, and the 
proposed SSRFLE, are all superior to the classical LE in 
classification performance for the implemented five datasets 
and for the chosen three dimensionalities. These results are 
consistent with our intuition that semi-supervised methods 
outperform non-supervised ones. The non-supervised DVE 
can bring out better classification accuracies than LE and 
SSLE in most cases. However, its time cost is rather larger 
since it is a global method of unfolding the data manifold by 
maximizing the global variance. Nevertheless, the experi-
mental results show that the proposed SSRFLE brings out 
the highest average classification accuracies among the 

Table 1  The details of five datasets used in the experiments

Datasets Size #Condition 
attributes

#Decision 
attribute

#Classes

Wine 178 13 1 3
Seeds 210 7 1 3
WDBC 569 31 1 2
Heart 270 13 1 2
Mushroom 1650 22 1 2

Table 2  The average classification accuracies when d = 2

Wine Seeds WDBC Heart Mushroom

LE 69.05 84.98 85.91 62.95 65.07
DVE 70.64 85.67 87.38 65.84 72.59
CCDR 71.66 85.98 87.56 62.31 83.26
SSLE 69.25 85.11 85.70 66.40 65.60
SSRFLE 95.96 89.05 91.25 75.40 84.28

Table 3  The average classification accuracies when d = 3

Wine Seeds WDBC Heart Mushroom

LE 68.44 82.86 67.50 60.69 67.04
DVE 70.24 84.63 83.00 62.71 73.94
CCDR 70.13 83.96 74.26 64.74 84.55
SSLE 68.23 83.59 70.01 66.08 68.83
SSRFLE 90.57 86.53 91.20 75.68 90.36

Table 4  The average classification accuracies when d = 4

Wine Seeds WDBC Heart Mushroom

LE 64.66 84.03 52.04 58.23 69.62
DVE 64.23 84.69 82.47 63.75 74.28
CCDR 67.39 83.32 70.84 60.70 81.25
SSLE 65.18 83.37 55.73 58.05 74.78
SSRFLE 89.26 84.11 86.61 78.68 85.14
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tested methods for each of the five datasets when the embed-
ded dimensionality is taken 2 or 3. When d = 4 , although 
SSRFLE does not produce the best classification accuracies 
for all of the five datasets, the best classification accuracies 
can be achieved by SSRFLE for four out of five datasets and 
the rest one (for the dataset Seeds) is close to the best one 
obtained by DVE. These facts indicate that different embed-
ded dimensionalities taken produce slightly distinct impacts 
on the classification accuracy for a given dataset. One may 
choose empirically a suitable embedded dimensionality by 
experiments in practical applications.

As for the facts that each method aforementioned pro-
duces distinct classification accuracies for different datasets, 
the main reasons arise from the diversities of capture ways, 
mechanism and topological structures of the datasets. It is 
the difference between datasets that can be used to verify the 
performance of an algorithm.

To further test the semi-supervised performance of the 
proposed SSRFLE, we compare the proposed SSRFLE with 
the semi-supervised CCDR and SSLE through the five data-
sets aforementioned with the same parameter settings, except 
that the rates of labelled samples are set to be 5, 15 and 30% , 
respectively, in each class of every dataset. The number of 
embedded dimensionality is set as 2. Figure 1 shows the 
experimental results.

In each subfigure of Fig. 1, the bars with blue, green and 
brown in each group represent the classification accuracies 
in the cases of 5, 15 and 30% labelled samples, respectively. 
The results show that for each of the five datasets, the clas-
sification accuracy of each method increases when the rate 
of labelled samples increases. These facts are consistent with 
our intuition that more supervised information brings out 
higher classification accuracy. Furthermore, the proposed 
method achieves the highest classification accuracy among 
the three implemented methods for each dataset and for each 
rate of labelled samples in the same experimental setting.

4.2  Data visualization

Data visualization is an important research issue in the field 
of machine learning. Especially, it makes ones perceive and 
inspect high dimensional data or complicated phenomena in 
an intuitionistic and visible way. An effective dimensionality 
reduction and visualization method brings ones to a vive and 
convictive demonstration on high dimensional data. In this 
subsection, we test the visualization of the Wine dataset by 
using LE, DVE, SSLE, CCDR, and the proposed SSRFLE 
method. This dataset has 178 samples that fall into 3 classes. 
We randomly label 5% samples in each class. Figure 2 shows 
the visualized results by using these methods.

In Fig. 2, three classes of samples are depicted by differ-
ent colors. From Fig. 2 the first two algorithms lead to that 
the classes have not been completely separated. Although 
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SSLE and CCDR are semi-supervised and the label infor-
mation of dataset has been incorporated into, the similarity 
between homogeneous samples and dissimilarity between 
heterogeneous samples have not been involved. Homogene-
ous samples scatter, but have no compact embedding. The 
last figure in Fig. 2 plots the visualization of this dataset by 
using the proposed method. It is evident that homogeneous 
samples have compact distributions and heterogeneous sam-
ples can be better distinguished.

4.3  Impact of feature weights on classification 
accuracy

It is natural that different features have distinct impacts on 
clustering structures of a dataset. In the proposed SSRFLE, 
an adaptive weight has been designated to each feature based 
on the information entropy theory in the computation of sim-
ilarity, or alternatively distance, between two samples. In 
order to verify the rationality of using the weighted distance 
in SSRFLE, we repeat the comparative experiments above in 
the environments of with and without weights of features (in 
the case of without weighting, we set Sk = 1 or sig(ak) = 0 
for all k = 1, 2,… ,m in (3.1), and sign this method as ‘SSR-
FLE without weighting’). In these experiments, we set d = 2 
and let the size of neighborhood vary from 4 to 14. We also 
randomly label 5% samples of each class in each dataset. 
Figure 3 shows the experimental results of the five datasets.

From Fig. 3 one sees that, on the whole, the classifica-
tion accuracies of SSRFLE are higher than those of SSR-
FLE without weighting for the first four datasets. They are 
fluctuant for the Mushroom dataset. The reason may arise 
from that Mushroom is a discrete dataset and the weights 
of features are computed according to the frequencies of 
feature values appeared. Features with different significance 
may have similar frequent distributions of feature values. 
On the whole, it is convinced that the weighted distance can 
improve the effectiveness of dimensionality reduction and 
greatly increase the classification accuracy, especially for the 
continuous and hybrid datasets.

4.4  Parameters selection

In the proposed method, there are two parameters to be 
assigned before experiments, the size of neighborhood and 
the number of embedded dimensionality. The choice strategy 
of the latter has been accounted for in Sect. 4.1. In this sub-
section, we discuss the influence of the size of neighborhood 
on classification accuracy by comparing the five methods on 
the five datasets for dimensionality reduction and clustering 
performance.

We label 5% samples in each class of every dataset. The 
number of embedded dimensionality d is taken as 2, 3, and 
4, and the size of neighborhood k varies from 4 to 14. The 
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tenfold cross-validation is executed for each set of param-
eters and the average classification accuracy is recorded. 
Figure 4 shows the experimental results.

In Fig. 4, each of the three rows displays the experimen-
tal results for different embedded dimensionality, d = 2 , 3, 
and 4, respectively. The five subfigures in each row show 
the relationship between classification accuracy and size of 
neighborhood of five datasets, namely, Wine, Seeds, WDBC, 
Heart, and Mushroom, separatively. Every subfigure plots 
five groups of classification accuracies derived from the 
aforementioned five methods with the variation of size of 
neighborhood from 4 to 14. It is shown that the proposed 
method produces the highest classification accuracies among 
all the five methods for all datasets, for all sizes of neigh-
borhood sets, and for most of given numbers of embedded 
dimensionality. It also illustrates that the classification accu-
racy by using the proposed SSRFLE is not very sensitive 
to the choice of size of neighborhood. The essential may 
be the intervention of adaptive weighted distance and the 
rough fuzzy approximation characterization on neighbor-
hood of samples.

5  Conclusions and future work

In this work, a semi-supervised rough fuzzy Laplacian 
Eigenmaps (SSRFLE) is proposed for nonlinear dimension-
ality reduction of hybrid data. In this method, a semi-super-
vised fuzzy similarity relation is introduced and the weights 
of features of a dataset are adaptively assessed by designing 
an information entropy measure based on this fuzzy similar-
ity relation. A new fuzzy association relation is derived from 
the weighted distances between samples together with the 
labelled information of the dataset. The rough fuzzy lower 
approximations of the fuzzy association classes related to the 
fuzzy association relation together with the gaussian Kernel 
weighted distances between samples are used to characterize 
the similarities between vertices of the Laplacian neighbor-
hood graph. At the mean time, the fuzzy association classes 
are considered as the descriptions of similarities between 
samples and their prototypes, which produce the weighted 
class-related neighborhood graph. The combination of both 
neighborhood graphs ensures homogeneous samples being 
embedded closer and more compact around the prototypes 
in the lower dimensional space of a dataset.

A series of comparative experiments on real world hybrid 
datasets are implemented. Experimental results show that 
the proposed method outperforms the state of arts methods 
in the aspect of classification accuracy and data visualization 
due to the superior performance of preserving class struc-
tures when a dataset is embedded into a lower dimensional 
space.
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Although the proposed method is not very sensitive to 
the choice of size of neighborhood, we will lucubrate on 
appropriate approaches in theory to the choice of such a 
parameter in the future. Theoretical analysis and applications 
of the related approaches to incremental and dynamic data 
are under consideration.
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