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Abstract
This paper deals with the problem of global exponential stability for neutral type singular networks with time-varying 
delays. Delay-dependent criterion is proposed to guarantee the exponential stability of neutral type singular networks via 
linear matrix inequality (LMI) approach. Improved global exponential stability condition is derived by employing a new 
Lyapunov–Krasovskii functional and a rarely integral inequality. The developed result is less conservative than previous 
published ones in the literature, which is illustrated by representative numerical examples.
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1 Introduction

Over the recent decades there have been extensive studies of 
neural networks (NNs) including time-varying delays. The 
existence of time delays may result in instability or oscil-
lation of a neural network system. Therefore, the stability 
of neural networks with time delay has been attracting the 
interest of a great number of researchers and has obtained 
some achievements [1–10], and the references cited therein. 
In general, neural networks model is similar to the general 
dynamical system with time-delay, and the condition of the 
stability of time-delay neural network can be divided into 
two parts: delay-independent conditions and delay-depend-
ent conditions [11–13]. At present, there are a lot of stud-
ies, which focus on the delay-dependent conditions, because 
the delay-dependent case is less conservative than delay-
independent case. Chen [14] obtained the delay-dependent 
exponential stability for a class of linear neural network 
condition with the technique of model transformation. A 
less conservative delay-dependent condition is proposed, 

through establishing a new Lyapunov-functional and apply-
ing S-procedure in [15]. What’s more, in order to reduce the 
conservatism of the stability criterion, the authors utilized 
the method of free weighting matrices in [16]. In some of 
earlier articles, a lot of important parts are ignored, such as 
the process in the derivative of Lyapunov function and the 
calculation of the upper limit for the derivative. However, 
in [17–19], the authors considered these items and obtained 
a less conservative for network systems.

Obviously, the neutral type descriptor system is more 
general than neutral system and descriptor system. Many 
practical processes can be modeled as general neutral type 
descriptor system, such as circuit analysis, computer aided 
design, real-time simulation of mechanical systems and opti-
mal control [20, 21]. The neutral type descriptor systems 
contain delays in both its states and the derivatives of states. 
At the same time, it has the nature of the regular, impulse 
free, which lead to the search of the neutral-type singular 
neural network system is more hard to find the criterion of 
the stability. Recently, the neutral type descriptor system 
with time-delay has been studied in [22–25], and some valu-
able results are obtained. In [23, 24], the authors studied 
the stability of neutral type descriptor system with mixed 
delays and multiple time-varying delays, respectively. Han 
et al. [25] investigated the delay-dependent robust stabil-
ity for uncertain singular neutral differential system with 
time-varying and distributed delays. In [26–28], Synchroni-
zation of singular complex dynamical networks with time-
varying delays has been studied. However, the research for 
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exponential stability of neutral type singular networks sys-
tem is still very rare.

Motivated by the above discussion, in this paper, we con-
sider the problem of the exponential stability of neutral type 
singular networks system. The main contributions of this 
paper are summarized as follows: (1) this paper is based on 
predecessors’ research about the neural network system, a 
typical network model is considered. (2) A new construc-
tion method of Lyapunov functional is adopted. (3) A new 
stability theorem about singular neutral system is obtained. 
(4) The simulation results demonstrate the feasibility of the 
method.

In addition, the liberty of matrix and integral inequal-
ity methods are applied, which ensure that the neutral type 
singular neural network system is globally exponential sta-
bility with a unique equilibrium point. These conditions are 
expressed in terms of linear matrix inequality, which can be 
solved by using developed techniques in Matlab toolbox. 
Finally, numerical examples are provided to show the less 
conservatism and valid of the proposed LMI conditions.

2  System description and assumptions

Consider the neutral type descriptor neural networks with 
varying delays described by:

where x(t) =
[
x1(t) x2(t)⋯ xn(t)

]T
∈ Rn is the neuron state 

vector; the integer n ≥ 2 denotes the number of units in neural 
network; J =

[
J1 J2 ⋅ ⋅ ⋅ Jn

]T
∈ Rn is a constant input vector; 

A = diag
{
a1, a2,⋯ an

}
∈ Rn denotes the diagonal matrix of 

passive decay rates, and satisfying ai > 0 for i = 1, 2, ⋅ ⋅ ⋅, n ; 
ẋ(t − 𝜏(t)) =

[
ẋ1(t − 𝜏(t)) ẋ2(t − 𝜏(t))⋯ ẋn(t − 𝜏(t))

]T
∈ Rn 

is the neutral item; E is a singular matrix and satisfy 
rank(E) = r ≤ n ; A , B , C and D ∈ Rn×nare the intercon-
nection matrices representing the weight coefficient of the 
neurons. �(t) is time-varying continuously function satis-
fies 0 ≤ �(t) ≤ � , 0 < �̇�(t) ≤ 𝜏 , � and 𝜏are constants. The 
initial vector �(⋅) is bounded and continuously differential 
on[−�, 0].

Now letting x̃ =
[
x̃1 x̃2 ⋯ x̃n

]T
∈ Rn is an equilibrium 

point of system (1), which is

Implying from (1) that

Introducing the state deviation from equilibrium

(1)

{
Eẋ(t) = −Ax(t) + Bẋ(t − 𝜏(t)) + Cf (x(t)) + Df (x(t − 𝜏(t))) + J,

x(t) = 𝜙(t), t ∈ [−𝜏, 0].

x̃∗(t) ≡ 0, x̃∗(t − 𝜏(t)) ≡ 0.

0 = −Ax∗(t) + Cf (x∗(t)) + Df (x∗(t − �(t))) + J.

z(t) = x(t) − x̃ =
[
z1(t) z2(t)⋯ zn(t)

]T
.

So the system (1) is equivalent to the following:

where

Assumption 2.1 The nonlinear function f ∶ Rn
→ Rn 

satisfies

where U and V are constant matrices with appropriate 
dimensions.

Definition 2.1 Consider the linear system (2), if there exist 
two scalars 𝜀 > 0 and � ≥ 1 such that

Let ‖z‖s = sup
−d≤s≤0

�
‖z(s)‖2 + ‖ż(s)‖2, then the system (2) 

is exponentially stable, where � is called the exponential 
convergence rate, in which ‖⋅‖ denotes the Euclidean norm.

Definition 2.2 ([29]) The systems (2) is said to be regular 
and impulse-free, if and only if the pair (E, A) is said to be 
regular, impulse free.

Before proceeding with the main results, several lemmas 
are necessary.

Lemma 2.3 ([30]) For any scalars 𝜏2 > 𝜏1 > 0 and any 
constant matrix Z > 0 , if there are a vector function 
�(t) ∶

[
�1, �2

]
→ Rm such that the integrations in the follow-

ing are well-defined, then

(2)

{
Eż(t) = −Az(t) + Bż(t − 𝜏(t)) + Cg(z(t)) + Dg(z(t − 𝜏(t)))

z(t) = 𝜙(t) − x̃, t ∈ [−𝜏, 0],

z(t) = [z1(t) z2(t)⋯ zn(t)]
T ,

z(t) = [g1(z1(t)) g2(z2(t))⋯ gn(zn(t))]
T ,

ż(t − 𝜏(t)) = [ż1(t − 𝜏(t)) ż2(t − 𝜏(t))⋯ żn(t − 𝜏(t))]T

= ẋ(t − 𝜏(t)) − x̃,

g(z(t − 𝜏(t))) = [g1(z1(t − 𝜏(t)))⋯ gn(zn(t − 𝜏(t)))]T ,

gi(zi(t)) = fi(xi(t)) − fi(x̃i) = fi(zi(t) − x̃i)

− fi(x̃i), gi(0) = 0,

gi(zi(t − 𝜏(t))) = fi(x(t − 𝜏(t))) − fi(x̃i)

= fi(zi(t − 𝜏(t)) − x̃i) − fi(x̃i).

(3)

[
f (x) − f (y) − U(x − y)

]T[
f (x) − f (y) − V(x − y)

] ≤ 0,∀x, y ∈ Rn,

‖z(t)‖ ≤ �e−�t‖z‖s, t ≥ 0,

− �
−�1

−�2
�

t

t+�

�T (t)Z�(t)dsd� ≤ −
1

�
s
�

−�2

−�1
�

t

t+�

�T (t)dsd�

× Z × �
−�2

−�1
�

t

t+�

�(t)dsd�,
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where �s =
(
�2
2
− �2

1

)/
2.

Lemma 2.4 ([31]) For a given symmetric positive definite 
matrix R > 0, any functions any differential signal ω in 
[a, b] → Rn and any twice differential function [a, b] → Rn , 
then the following inequality holds:

w h e r e  �(a, b) = �(b) − �(a), v0(a, b) =
�(b)+�(a)

2
−

1

b−a∫ b

a
�(u)du.

3  The main results

Theorem 3.1 The neutral type descriptor neural networks 
system (2) is global exponential stability with convergence 
rate 𝛼 > 0 , if there exist some positive definite matrices P , 
Q1,Q2,Q3,Q4,R and H , a matrix two nonnegative constants 
� and v , such that the following LMI condition is satisfied:

where  Π11 = 2�ETP − PTA − ATP + Q1 + Q2 − �2H − �

U
T
V+VT

U

2
−

5

4
e
−2��

R, Π12 = ATME, Π13 =
5

4
e
−2��

R, Π16 = 
Π16 = PTC − �

UT+VT

2
, Π18 = �H +

1

2�
e
2��

R, Π22 = Q3 + �2R−
�4

4
H − ET

(
MT +M

)
E,  Π25 = ETMTB,  Π26 = ETMTC, 

Π33 = −e−2��Q2 −
5

4
e−2��R,  Π38 = −

1

2�
e−2��R,  Π44 =

−(1 − 𝜏)e−2𝛼𝜏Q1, Π55 = −(1 − 𝜏)e−2𝛼𝜏Q3, Π66 = Q4 − �I, 
Π44 = −(1 − 𝜏)e−2𝛼𝜏Q4, Π88 = −H −

4

�2
e−2��R.

Proof Firstly, we prove the system (2) is regular and impulse 
free. From Eq. (5), we can obtain the inequality Π11 < 0 , that 
is to say −PTA − ATP < 0 . Then, combining with Eq. (4), 
the pair (E,A) is regular and impulse free. Thus, the system 
(2) is regular and impulse free.

Next, we shall show the exponential stability of system 
(2) is global exponential stability.

�
b

a

�̇�(u)R(�̇�)(u)du ≥ 𝜇T (a, b)R𝜂(a, b)

b − a
+

vT
0
(a, b)Rv(a, b)

b − a
,

(4)ETP = PTE ≥ 0.

(5)

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 0 PTB Π16 PTD Π18

∗ Π22 0 0 Π25 Π26 ETMTD 0

∗ ∗ Π33 0 0 0 0 Π38

∗ ∗ ∗ Π44 0 0 0 0

∗ ∗ ∗ ∗ Π55 0 0 0

∗ ∗ ∗ ∗ ∗ Π66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0.

For positive definite matrices P , Q1 , Q2 , Q3 , Q4 , R and 
H . Let us consider the Lyapunov functional candidate to be

where

Taking the time derivative of V(t) along the trajectories 
of system (2) yields

where

According to Lemma 2.3, we can obtain

(6)
V
(
z
t

)
= V1

(
z
t

)
+ V2

(
z
t

)
+ V3

(
z
t

)
+ V4

(
z
t

)
+ V5

(
z
t

)
+ V6

(
z
t

)
+ V7

(
z
t

)
,

V1

(
zt
)
= e2𝛼tzT (t)ETPz(t);

V2

(
zt
)
= ∫

t

t−𝜏(t)

e2𝛼szT (s)Q1z(s)ds;

V3

(
zt
)
= ∫

t

t−𝜏

e2𝛼szT (s)Q2z(s)ds;

V4

(
zt
)
= ∫

t

t−𝜏(t)

e2𝛼sżT (s)Q3ż(s)ds;

V5

(
zt
)
= ∫

t

t−𝜏(t)

e2𝛼sgT (s)Q4g(z(s))ds;

V6

(
zt
)
= 𝜏 ∫

0

−𝜏
∫

t

t+𝛽

e2𝛼sżT (s)Rż(s)dsd𝛽;

V7

(
zt
)
=

𝜏2

2 ∫
0

−𝜏
∫

0

𝜃
∫

t

t+𝛽

e2𝛼sżT (s)Hż(s)dsd𝛽d𝜃.

(7)
V̇
(
z
t

)
= V̇1

(
z
t

)
+ V̇2

(
z
t

)
+ V̇3

(
z
t

)
+ V̇4

(
z
t

)
+ V̇5

(
z
t

)
+ V̇6

(
z
t

)
+ V̇7

(
z
t

)
,

V̇1(zt) =2𝛼e
2𝛼tzT (t)ETPz(t) + 2𝛼e2𝛼tzT (t)PTEż(t)

=e2𝛼t(zT (t)(2𝛼ETP − PTA − ATP)z(t)) + 2zT (t)PTCg(z(t))

+ 2zT (t)PTBż(t − 𝜏(t)) + 2zT (t)PTDg(z(t − 𝜏(t)));

V̇2

(
zt
) ≤e2𝛼t[zT (t)Q1z(t) − e−2𝛼tzT (t − 𝜏(t))Q1z(t − 𝜏(t))(1 − 𝜏)

]
;

V̇3

(
zt
) ≤e2𝛼t[zT (t)Q2z(t) − e−2𝛼tzT (t − 𝜏)Q2z(t − 𝜏)

]
;

V̇4

(
zt
) ≤e2𝛼t[żT (t)Q3ż(t) − e−2𝛼t żT (t − 𝜏(t))Q3ż(t − 𝜏(t))(1 − 𝜏)

]
;

V̇5(zt) ≤e2𝛼t[gT (z(t))Q4g(z(t))
]

− e2𝛼t
[
e−2𝛼𝜏gT (z(t − 𝜏(t)))Q4g(z(t − 𝜏(t)))(1 − 𝜏)

]
;

V̇6

(
zt
) ≤e2𝛼t

[
𝜏2żT (t)Rż(t) − e−2𝛼t𝜏 �

t

t−𝜏

żT (s)Rż(s)ds

]
;

V̇7

(
zt
) ≤e2𝛼t

[
−
𝜏4

4
żT (t)Hż(t) −

𝜏2

2 �
t

−𝜏
�

t

t+𝜃

żT (s)Hż(s)dsd𝜃

]
.

−
𝜏2

2 �
0

t+𝜃 �
t

t+𝜃

żT (s)Hż(s)dsd𝜃 ≤ −zT (t)𝜏2Hz(t) + zT (t)𝜏H �
t

t−𝜏

z(s)ds

+�
t

t−𝜏

zT (s)ds(𝜏H)z(t) − �
t

t−𝜏

zT (s)dsH �
t

t−𝜏

z(s)ds.
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Then, according to Lemma 2.4, it can get,

On the other hand, based on Assumption 2.1, we have 
that any 𝜆 > 0,

where Ū =
UTV+VTU

2
 , Ū =

UT+VT

2
.

Then, according to the system (2) can get the following 
equation:

Substituting (8) and (9) into (7) yield that

Define the extended vector

If Π < 0 , that is to say V̇
(
zt
)
< 0.

Based on the Lyapunov method, then system (2) is 
asymptotically stable, that is to say, the system (1) is asymp-
totically stable.

Furthermore, we prove the exponential stability of the 
neural networks:

According to V̇
(
zt
)
< 0 , we can get the inequal-

ityV
(
zt
)
< V

(
z0
)
,where

V̇6

(
z
t

) ≤ e
−2𝛼t𝜏2żT (t)Rż(t) − e

2𝛼(t−𝜏)(z(t)

−z(t − 𝜏))
T
R(z(t) − z(t − 𝜏))

−
1

4
e
2𝛼(t−𝜏)

(
z(t) − z(t − 𝜏) −

2

𝜏 �
t

t−𝜏

z(s)ds

)T

R

(
z(t) − z(t − 𝜏) −

2

𝜏 �
t

t−𝜏

z(s)ds

)
.

(8)y(t) = 𝜆

[
z(t)

g(z(t))

]T[
Ū V̄

∗ I

][
z(t)

g(z(t))

]
≤ 0,

(9)

0 = żT (t)ETMT (−Az(t) + Bż(t − 𝜏(t)) + Cg(z(t))

+ Dg(z(t − 𝜏(t)))) − Az(t) + Bż(t − 𝜏(t)

+Cg(z(t)) + Dg(z(t − 𝜏(t))))TMEż(t)

− żT (t)ET (MT +M)Eż(t).

V̇
(
zt
) ≤ e2𝛼tZT

1
ΠZ1.

ZT
1
=
[
zT (t)żT (t)zT (t − 𝜏)zT (t − 𝜏(t))żT (t − 𝜏(t))

gT (z(t))gT (z(t − 𝜏(t)))∫
t

t−𝜏

zT (s)ds

]
,

V(z0) =z
T (0)Pz(0) + �

0

t−𝜏(0)

e2𝛼szT (s)Q1z(s)ds

+ �
0

t−𝜏

e2𝛼szT (s)Q2z(s)ds + �
0

t−𝜏(0)

e2𝛼sżT (s)Q3 ż(s)ds

+ �
0

t−𝜏(0)

e2𝛼sgT (zT (s))Q4g(z(s))ds + 𝜏 �
0

𝛽

e2𝛼sżT (s)Rż(s)dsd𝛽

+
𝜏2

2 �
0

t−𝜏 �
0

𝛽

e2𝛼sżT (s)Hż(s)dsd𝛽d𝜃

≤ �
𝜆M(P) + 4𝜏𝜆M(Qi) + 𝜏3𝜆M(R) + 𝜏5𝜆M(H)

�
⋅ ‖z‖2

s
.

Letting �0 = �M(P) + ��M
(
Q1

)
+ �M

(
Q2

)
+ ��M

(
Q3

)
+�3�M(R) , then �M(P) , �M

(
Q1

)
 , �M

(
Q2

)
 , �M

(
Q3

)
 and 

�M(R) stand for the largest characteristic value of matrix 
P,Q1,Q2,Q3,Q4 and R , respectively. For any variable t  , 
form the chosen Lyapunov functional, we can get the fol-
lowing inequality:

which leads us to

By Definition 2.1, the system (2) is global exponential 
stability with a convergence rate � . This implies that the 
equilibrium point x̃ of system (2) is globally exponentially 
stable with convergence rate α. The proof is completed.

Remark 1 When E = I , the system (1) reduces to the tradi-
tional neutral type neural networks system:

We can transform the neutral type neural networks system 
to the system in [28, 29]. However, the system in this paper 
is more widely used than the traditional neutral type system.

4  Numerical examples

Example 4.1 Considering the system (2):

with the following parameter:

Using MATLAB LMI Toolbox and Theorem 3.1, we 
obtain maximum allowable upper bounds 𝜏(t) < 4.5 . we 
choice f (z) = tanh(z) , by condition (3) in Assumption 2.1, 
which we can obtain

and have the following results:

V
�
zt
� ≥ e2�tzT (t)Pz(t) ≥ �m(P)e

2�t‖z(t)‖2,

‖z(t)‖ ≤
�

�0

�m(P)
‖z‖se−�t, t ≥ 0.

ẋ(t) = −A(x) + Bẋ(t − 𝜏(t)) + Cf (x(t)) + Df (x(t − 𝜏(t))) + J.

Eż(t) = −Az(t) + Bż(t − 𝜏(t)) + Cg(z(t)) + Dg(z(t − 𝜏(t))),

E =

[
1 0

0 0

]
,A =

[
1 2

3 1

]
,B =

[
−1 0.5

0.5 −1

]
,C =

[
−0.5 0.5

0.5 0.5

]
,

D =

[
−2 0.1

0.1 −0.4

]
, �̇�(t) = 0.1, 𝛼 = 𝜇 = v = 0.1.

U =

[
−0.5 0.2

0 0.95

]
,V =

[
−0.3 0.2

0 0.2

]
.
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It is straightforward to check that the conditions in Theo-
rem 3.1 hold. It follows from Theorem 3.1 that system (2) 
can be exponential stability.

We can simulate the results shown in Fig. 1. The Fig. 1 
shows that the singular neutral type neural networks systems 
are stabilized to zero after a while, and we can say the sys-
tems are global exponential stability.

Example 4.2 Considering the system (2):

with

P =

[
1.498 0.4403

0.4403 6.3053

]
,Q1 =

[
19.6132 −0.2745

−0.2745 23.0388

]
,

Q2 =

[
12.7215 −0.1907

−0.1907 15.8559

]
,Q3 =

[
48.2162 −1.7476

−1.7476 49.6480

]
,

Q4 =

[
3.2815 0.0013

0.0013 3.4988

]
,R =

[
40.4538 0.4348

0.4348 32.0820

]
,

H =

[
8.8263 0.0088

0.0088 7.1792

]
.

Eż(t) = −Az(t) + Bż(t − 𝜏(t)) + Cg(z(t)) + Dg(z(t − 𝜏(t))),

(10)

E =

[
1 0

0 1

]
,A =

[
2 0

0 3.5

]
,C =

[
−1 0.5

0.5 −1

]
,

D =

[
−0.5 0.5

0.5 0.5

]
, B = 0, � = 0.25.

(11)

E =

[
1 0

0 1

]
,A =

[
1 0

0 1

]
,C =

[
−0.1 0.1

0.1 −0.1

]
,

D =

[
−0.1 0.2

0.2 0.1

]
, B = 0, � = 0.05.

By applying our criteria and using MATLAB LMI tool-
box, we have the following comparative result listed in 
Tables 1 and 2. From Tables 1 and 2, we can see our results 
are much less conservative than those in [32, 33].

Remark 2 In this paper, through the comparison with the 
article [32, 33] in constant and time varying delays, the con-
clusion was obtained. The conclusion of this paper has better 
conservation.

Remark 3 A rare integral inequality and model transforma-
tion technique make the results have less conservative than 
some existing literatures.

5  Conclusions

This paper solve the global exponentially stable of neutral 
type singular networks with time-varying delays. In terms of 
LMI approach, model transformation technique and a new 
integral inequality, by using a new Lyapunov–Krasovskii 
functional, a less conservative criterion of global exponen-
tial stability for the networks system is given. The criterion 
is presented in terms of linear matrix inequalities, which 
can be easily solved by MATLAB Toolbox. Finally, two 
examples are presented to illustrate the effectiveness of the 
method.

Fig. 1  State response of system with vary-time delays

Table 1  Some upper bounds for the time delays of system (2) with 
(10)

Results Constant delay Varied delay

[32] �(t) ≤ 1 �(t) ≤ 0.07

[33] �(t) ≤ 5.9 �(t) ≤ 2.8

Ours �(t) ≤ 8.7 �(t) ≤ 7.4

Table 2  Some upper bounds for the time delays of system (2) with 
(11)

Result Constant delay Varied delay

[32] �(t) ≤ 0.74 �(t) ≤ 0.5

[33] �(t) ≤ 29.132 �(t) ≤ 22.2

Ours �(t) ≤ 40.43 �(t) ≤ 38.56
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