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Abstract
The global exponential stability of the equilibrium point for uncertain memristor-based recurrent neural networks is studied 
in this paper. The memristor-based recurrent neural networks considered in this paper are based on a realistic memristor 
model, and can be considered as the extension of some existing memristor-based recurrent neural networks. By virtue of 
homomorphic theory, it is proved that the uncertain memristor-based recurrent neural networks have a unique equilibrium 
point under some mild assumptions. Moreover, the unique equilibrium point is proved to be globally exponentially stable by 
constructing a suitable Lyapunov functional. Finally, the obtained results are applied to determine the dynamical behaviors 
and circuit design of the memristor-based recurrent neural networks by some numerical examples.

Keywords  Memristor-based recurrent neural network · Global robust exponential stability · Homomorphic theory · 
Lyapunov functional

1  Introduction

In 1971, Professor Chua [1] theoretically predicted the exist-
ence of a new two-terminal circuit element called the mem-
ristor (a contraction for memory and resistor). Chua believed 
that memristor has every right to be the fourth fundamen-
tal passive circuit element. However, until 2008, the Wil-
liams group built the first solid-state memristor, which was 
modeled as a thin semiconductor film ( TiO2 ) sandwiched 
between two metal contacts [2]. Because of the important 
memory feature, the memristor has generated unprecedented 

worldwide interest since its potential applications in next 
generation computers and powerful brain-like neural com-
puters (see [3, 4]).

In recent years, various recurrent neural networks have 
been proposed and their dynamic behaviors are studied 
extensively since their wide applications in pattern recogni-
tion, image processing, associative memory, neurodynamic 
optimization problems and so on (see [5–15]). Meanwhile, 
more and more researchers observe that time delays are una-
voidable and can influence greatly the dynamical behaviors 
of neural networks (see [16–20]). In general, these delays 
include discrete delays, time-varying delays, distributed 
delays and so on. However, the conventional recurrent neu-
ral network’s connection weights are implemented by resis-
tors, and do not have any memory property. The memristor 
works like a biological synapse, with its conductance vary-
ing with experience, or with the current flowing through it 
over time [21, 22]. Compared with the resistor, the mem-
ristor is more suitably used as synapse in neural networks 
since its nanoscale size, automatic information storage, 
and nonvolatile characteristic with respect to long periods 
of power-down [23]. This special behavior can be applied 
in artificial neural networks, i.e., memristor-based neural 
network (see [21]). Memristor-based neural networks have 
proven as a promising architecture in neuromorphic systems 
for the non-volatility, high-density, and unique memristive 
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characteristic. There exist several different mathematical 
models for the memristor-based neural networks. For exam-
ple, in 2010, Hu and Wang [24] proposed a mathematical 
model for the memristor-based neural networks and stud-
ied its global uniform asymptotic stability by a construct-
ing proper Lyapunov functional. In [25], combining with 
the typical current–voltage characteristics of memristor, 
Wu et.al introduced a simple model of the memristor-based 
recurrent neural networks.

It is well known that the applications of neural networks 
rely heavily on the dynamical behaviors of the networks, 
such as stability, periodic oscillatory, chaos, and so on. 
Meanwhile, the analysis of dynamical behaviors of the 
memristor-based neural networks has been found useful to 
address a number of interesting engineering applications and 
therefore have been studied extensively (see [22, 26–32]). 
Based on a realistic memristor model and differential inclu-
sion theory, authors in [22] studied the convergence and 
attractivity of memristor-based cellular neural networks with 
time delays. Wu et al. in [28] introduced some Lagrange 
stability criteria dependent on the network parameters for the 
Lagrange stability of the memristor-based recurrent neural 
networks with discrete and distributed delays. The paper [33] 
presented some new theoretical results on the invariance and 
attractivity of memristor-based cellular neural networks with 
time-varying delays. In [34], Wu et.al designed a simple 
memristor-based neural network model. Based on the fuzzy 
theory and Lyapunov method, they studied the problem of 
global exponential synchronization of a class of memristor-
based recurrent neural networks with time-varying delays. 
In [35], the global asymptotic stability and synchronization 
of a class of fractional-order memristor-based delayed neural 
networks were investigated.

Meanwhile, the estimation errors are unavoidable for the 
numerical values of the neural network parameters includ-
ing the neuron fire rate and the weight coefficients depending 
on certain resistance and capacitance. Moreover, some other 
external disturbances such as noise are also unavoidable. It 
should be noted that the uncertainty may change the stability 
of the neural network. On the other hand, transmission delay 
is also unavoidable when signals are communicated among 
neurons, and the transmission delay may lead to some unde-
sired complex dynamical behaviors. In general, the transmis-
sion delay includes discrete delays, time-varying delays and 
distributed delays and so on. For example, by exploiting all 
possible information in mixed time delays, two discrete-time 
mixed delay neural networks were studied separately in [36, 
37]. So, it is reasonable to study the dynamical behaviors of 
the uncertain memristor-based neural networks with time 
delays. Recently, more and more literatures focus on the sta-
bility of uncertain neural networks with mixed time delays 
(see [36–39]). For example, in [38], author studied the global 
asymptotic robust stability of delayed neural networks with 

norm-bounded uncertainties. The problems of robust stabil-
ity analysis and robust controller designing of an uncertain 
memristive neural networks were studied in [40]. Reference 
[41] was concerned with the global robust synchronization of 
multiple memristive neural networks with nonidentical uncer-
tain parameters.

However, as far as we know, there are very few literatures 
concerning on the stability of the uncertain memristor-based 
recurrent neural networks with time-varying delays and dis-
tributed delays. Motivated by the above works, we will study 
the existence and global exponential stability of the equilib-
rium point for a class of the uncertain memristor-based recur-
rent neural networks with time-varying delays and distributed 
delays. The neural network considered in this paper can be 
considered as an extension of the neural network in [34]. The 
structure of this paper is outlined as follows. In Sect. 2, we 
introduce the memristor-based recurrent neural network model 
and some related preliminaries. In Sect. 3, we prove the exist-
ence and global exponential stability of the equilibrium point 
for a class of the uncertain memristor-based recurrent neural 
networks. In Sect. 4, we present several numerical simulations 
to show the effectiveness of our results. Finally, the main con-
clusions drawn in the paper are summarized.

�������� Given the vector x = (x1, x2,… , xn)
T  , 

where the superscript T is the transpose operator, we 
let ‖x‖ ∶= (

∑n

i=1
x2
i
)
1

2 . ℝ is the set of real numbers. Let 
A = (aij) ∈ ℝ

n×n and define ‖A‖ =
√
�M(A

TA) , where �M(A) 
stands for the operation of taking the maximum eigenvalue of 
A. I ∈ ℝ

n×n is the n × n identity matrix. For a real symmet-
ric matrix A, A < 0(> 0) means that A is negative (positive) 
definite.

2 � Neural network model and preliminaries

As shown in [34], the memristor-based recurrent neural net-
work can be implemented by very large scale of integration 
circuits with memristors (see Fig. 1). By Kirchoff’s current 
law, the following memristor-based recurrent neural network 
was introduced in [34],

where fj is the activation function, �j(t) is the time-varying 
delay, and xi(t) is the voltage of the capacitor Ci . Rfij

 is the 

(1)

Ciẋi(t) = −

[
n∑
j=1

(
1

Rfij

+
1

Rgij

)
+Wi(xi(t))

]
xi(t)

+

n∑
j=1

signij

Rfij

fj(xj(t))

+

n∑
j=1

signij

Rgij

fj(xj(t − 𝜏j(t))) + Ii,
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resistor between the feedback function fj(xj(t)) and xi(t) , and 
Rgij

 is the resistor between the feedback function 

fj(xj(t − �j(t))) and xi(t) . signij is defined as

Wi is the memductance of the i-th memristor satisfying

Ii is an external input or bias. Let

and

(2)signij =

{
1, if i ≠ j;

0, if i = j.

(3)Wi(xi(t)) =

{
W �

i
, if xi(t) ≤ 0;

W ��
i
, if xi(t) > 0.

(4)s(xi(t)) ∶=

{
− 1, if xi(t) ≤ 0;

1, if xi(t) > 0,

(5)mi ∶=
W ��

i
−W �

i

2Ci

.

Then, by (3), we obtain that

For simplicity, we let

I t  fo l lows that  [
∑n

j=1
(

1

CiRfij

+
1

CiRgij

) +
Wi(xi)

Ci

]xi = [di+

m
i
s(x

i
)]x

i
= d

i
x
i
+ m

i
|x

i
| . Hence, the memristor-based neural 

network (1) can be simplified as follows,

Wi(xi(t))

Ci

= mis(xi(t)) +
W �

i
+W ��

i

2Ci

.

(6)

di =

n∑
j=1

[
1

CiRfij

+
1

CiRgij

]
+

W �
i
+W ��

i

2Ci

,

aij =
signij

CiRfij

, bij =
signij

CiRgij

, Ui =
Ii

Ci

.

(7)

ẋi(t) = − dixi(t) − mi|xi(t)| +
n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − 𝜏j(t))) + Ui,

Fig. 1   Circuit of memristor-based recurrent neural network in [34]
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or,

where D = diag{d1, d2,… , dn} , M = diag{m1,m2,… ,mn} , 
A = (aij)n×n  ,  B = (bij)n×n  ,  |x(t)| = (|x1(t)|,… , |xn(t)|)T  , 
�(t) = (�1(t), �2(t),… , �n(t))

T  ,  x(t − �(t)) = (x
1
(t − �

1
(t)),

… , x
n
(t − �

n
(t)))T , and U = (U1,U2,… ,Un)

T .

Throughout the paper, we also need the following 
assumptions introduced in [34].

(��) For i ∈ {1, 2,… , n} , the activation function fi is Lip-
schitz continuous. That is, there exists li > 0 such that for all 
r1, r2 ∈ ℝ with r1 ≠ r2,

Here, we let L = diag{l1, l2,… , ln}.
(��) For i ∈ {1, 2,… , n} , �i(t) satisfies

Here, we let � = max{�1,… , �n}.
Different from [34], we will study the following mem-

ristor-based neural network with time-varying delays and 
distributed delays,

i = 1, 2,… , n . Neural network (11) can be considered as an 
extension of neural network (7). eij and the time delay 𝜇j > 0 
are two constants, and ∫ t

t−�j
fj(xj(s))ds is the distributed delay. 

The memristor-based neural network (11) can be rewritten 
as follows,

where E = (eij)n×n . It is clear that the neural network (12) can 
be considered as an extension of the neural network in [34] 
(i.e., (7) in this paper).

Next, we introduce the assumptions about the connection 
weight matrices as follows.

(8)
ẋ(t) = − Dx(t) −M|x(t)| + Af (x(t))

+ Bf (x(t − 𝜏(t))) + U,

(9)0 ≤ fi(r1) − fi(r2)

r1 − r2
≤ li.

(10)0 ≤ 𝜏i(t) ≤ 𝜏 i, 𝜏̇i(t) ≤ 0.

(11)

ẋi(t) = − dixi(t) −Mi|xi(t)| +
n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − 𝜏j(t)))

+

n∑
j=1

eij ∫
t

t−𝜇j

fj(xj(s))ds + Ui,

(12)

ẋ(t) = − Dx(t) −M|x(t)| + Af (x(t)) + Bf (x(t − 𝜏(t)))

+ E ∫
t

t−𝜇

f (x(s))ds + U,

(��)  T h e  p a r a m e t e r s  D = diag{d1, d2,… , dn} , 
M = diag{m1,m2,… ,mn} , A = (aij)n×n , B = (bij)n×n , and 
E = (eij)n×n are assumed to be intervalised as follows,

Here, we let A = (a
ij
)n×n ,  B = (b

ij
)n×n ,  E = (e

ij
)n×n , 

A = (aij)n×n , B = (Bij)n×n , and E = (Eij)n×n . From the above 
assumption (��) , the diagonal matrix D is invertible.

Lemma 1  If H(x) ∈ 0 satisfies the following conditions

then, H(x) is a homeomorphism of ℝn.

The following lemmas are necessary for proving the 
existence and global exponential stability of the equilibrium 
point for the uncertain memristor-based recurrent neural net-
work (11).

Lemma 2  [42] For x ∈ ℝ
n , A ∈ A and any positive diago-

nal matrix P, we have

where A∗ =
1

2
(A + A) and A∗ =

1

2
(A − A).

Lemma 3  [42] For any B ∈ B and E ∈ E , we have

where

B∗ =
1

2
(B + B)  ,  B∗ =

1

2
(B − B)  ,  E∗ =

1

2
(E + E)  , 

E∗ =
1

2
(E − E) . B̂ = (b̂ij)n×n with b̂ij = max{∣ b

ij
∣, ∣ Bij ∣} , and 

Ê = (êij)n×n with êij = max{∣ e
ij
∣, ∣ Eij ∣}.

(13)

D ∶= {D = diag{di} ∶ 0 < di ≤ di ≤ di,∀i = 1,… , n},

M ∶= {M = diag{mi} ∶ m
i
≤ mi ≤ mi,∀i = 1,… , n},

A ∶= {A = (aij)n×n ∶ a
ij
≤ aij ≤ aij,∀i, j = 1,… , n},

B ∶= {B = (bij)n×n ∶ b
ij
≤ bij ≤ Bij,∀i, j = 1,… , n},

E ∶= {E = (eij)n×n ∶ e
ij
≤ eij ≤ Eij,∀i, j = 1,… , n}.

(i)H(x) ≠ H(y) for all x ≠ y,

(ii) ‖H(x)‖ → ∞ as ‖x‖ → ∞,

xT (PA + ATP)x ≤ xT (PA∗ + A∗TP+ ∥ PA∗ + AT
∗
P ∥ I)x,

∥ B ∥≤ b, ∥ E ∥≤ �,

b =min{∥ B∗ ∥ + ∥ B∗ ∥, ∥ B̂ ∥,√
∥ B∗ ∥2 + ∥ B∗ ∥

2 +2 ∥ BT
∗
∣ B∗ ∣∥},

𝜚 =min{∥ E∗ ∥ + ∥ E∗ ∥, ∥ Ê ∥,√
∥ E∗ ∥2 + ∥ E∗ ∥

2 +2 ∥ ET
∗
∣ E∗ ∣∥}.
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Lemma 4  [43] For any constant matrix � ∈ ℝ
n×n,� = �T , 

scalar v > 0 , vector function F ∶ [0, v] → ℝ
n such that the 

integrations concerned are well-defined, we have,

3 � Main results

In this section, we will study the existence and global expo-
nential stability of the equilibrium point for the uncertain 
memristor-based neural network (11). For simplicity, we let

where m
i
,mi are from (13), and �i is from (11).

Theorem 1  Under the assumptions ( ��),(�� ), and ( �� ), if 
the diagonal matrix D − �M > 0 and there exists a positive 
diagonal matrix P = diag{p1, p2,… , pn} such that

then, the memristor-based neural network (11) has a unique 
equilibrium point.

Proof  Let H(x) = −Dx −M|x| + (A + B + E�)f (x) + U . It 
is obvious that H(x∗) = 0 if and only if x∗ is an equilibrium 
point of the memristor-based neural network (11). Next, 
based on Lemma 1, we will prove that H(⋅) a homeomor-
phism of ℝn , and then the memristor-based neural network 
(11) has a unique equilibrium point.

���� � ∶ We first prove H(⋅) is injective, i.e., the hypoth-
esis (i) in Lemma 1 holds. In fact, for any x, y ∈ ℝ

n with 
x ≠ y , we have

The proof of this step is divided into two following cases:
���� � ∶ f (x) − f (y) = 0 .  I f  f (x) − f (y) = 0 ,  then 

H(x) − H(y) = −D(x − y) −M(|x| − |y|) , and

v�
v

0

FT (s)�F(s)ds ≥
(
�

v

0

F(s)ds

)T

�

(
�

v

0

F(s)ds

)
.

(14)
M̂ = diag{m̂i}, m̂i ∶= max{|m

i
|, |mi|},

� = diag{�1,… ,�n}, �0 ∶= max{�1,… ,�n},

(15)
𝛹 ∶= − 2P(D − �M)L−1 + (PA∗ + A∗TP

+ ∥ PA∗ + AT
∗
P ∥ I) + 2‖P‖(b + 𝜚𝜇0)I < 0,

(16)
H(x) − H(y) = − D(x − y) −M(|x| − |y|)

+ (A + B + E�)(f (x) − f (y)).

(17)

(x − y)T (H(x) − H(y))

= −(x − y)TD(x − y) − (x − y)TM(|x| − |y|)
≤ −(x − y)TD(x − y) + (x − y)T |M|(x − y)

= −(x − y)T (D − |M|)(x − y)

≤ (x − y)T (�M − D)(x − y)

< 0.

Hence, H(x) − H(y) ≠ 0.
���� � ∶ f (x) − f (y) ≠ 0 . In this case, multiplying both 

sides of (16) by 2(f (x) − f (y))TP , we have

By the assumption ( �� ) and the fact that P and M are two 
diagonal matrices, it is clear that

Meanwhile,

Substituting (20) into (18), we have

Hence, by (21), considering the assumptions that �  is nega-
tive definite and f (x) − f (y) ≠ 0 , we obtain

which means H(x) − H(y) ≠ 0.
Thus, from ����� � and � , it follows that H is injective.
���� � ∶ We next prove that the hypothesis (ii) in 

Lemma 1 holds, i.e., ‖H(x)‖ → ∞ as ‖x‖ → ∞ . In fact, by 
the definition of H, we have

(18)

2(f (x) − f (y))TP(H(x) − H(y))

= − 2(f (x) − f (y))TPD(x − y)

− 2(f (x) − f (y))TPM(|x| − |y|)
+ 2(f (x) − f (y))TP(A + B + E�)(f (x) − f (y)).

(19)

− 2(f (x) − f (y))TPM(|x| − |y|)
≤ 2|f (x) − f (y)|TP|M||x − y|
= 2(f (x) − f (y))TP|M|(x − y)

≤ 2(f (x) − f (y))TPM̂(x − y).

(20)
2(f (x) − f (y))TP(A + B + E�)(f (x) − f (y))

≤ (f (x) − f (y))T (PA + ATP)(f (x) − f (y))

+ 2(f (x) − f (y))T‖P‖(‖B‖ + ‖E�‖)(f (x) − f (y)).

(21)

2(f (x) − f (y))TP(H(x) − H(y))

≤ −2(f (x) − f (y))TP(D − M̂)L−1(f (x) − f (y))

+ (f (x) − f (y))T
�
PA + ATP + 2‖P‖(‖B‖

+ ‖E�‖)I�(f (x) − f (y))

= (f (x) − f (y))T
�
− 2P(D − M̂)L−1

+ PA + ATP + 2‖P‖(‖B‖ + ‖E�‖)I�(f (x) − f (y))

≤ (f (x) − f (y))T� (f (x) − f (y)).

(22)2(f (x) − f (y))TP(H(x) − H(y)) < 0,
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It is noted that ‖D‖ − ‖�M‖ > 0 since the diagonal matrix 
D − M̂ is positive definite. On the other hand, letting y = 0 
in (21), we have

That is,

Then, by (24), it follows that ‖2P‖‖H(x) − H(0)‖ ≥
−�

M
(� )‖f (x) − f (0)‖ , and consequently,

It is also noted that −𝜆M(𝛹 ) > 0 . Hence,

Thus, we obtain that ‖H(x)‖ → ∞ as ‖x‖ → ∞.
Then, by Lemma 1, H(⋅) is a homeomorphism of ℝn , and 

consequently the memristor-based neural network (11) has 
a unique equilibrium point. 	�  □

(23)

‖H(x)‖
= ‖ − Dx −M�x� + (A + B + E�)f (x) + U‖
≥ ‖ − Dx‖ − ‖M�x�‖ − ‖(A + B + E�)f (x)‖ − ‖U‖
≥ (‖D‖ − ‖M̂‖)‖x‖ − ‖A + B + E�‖‖f (x)‖ − ‖U‖.

2(f (x) − f (0))TP(H(x) − H(0))

≤ (f (x) − f (0))T� (f (x) − f (0))

≤ �M(� )‖f (x) − f (0)‖2.

(24)
− 2(f (x) − f (0))TP(H(x) − H(0))

≥ −�M(� )‖f (x) − f (0)‖2.

(25)
‖H(x)‖ ≥ −‖H(0)‖ − �M(� )‖f (x) − f (0)‖

‖2P‖
≥ −‖H(0)‖ − �M(� )‖f (x)‖ + �M(� )‖f (0)‖

‖2P‖ .

(26)

‖H(x)‖ ≥max

�
(‖D‖ − ‖M̂‖)‖x‖

− ‖A + B + E�‖‖f (x)‖ − ‖U‖,
×

�
−‖H(0)‖ − �M(� )‖f (x)‖

+ �M(� )‖f (0)‖�∕‖2P‖
�
.

We next study the global exponential stability of the equi-
librium point for the memristor-based neural network (11).

Theorem  2  Under the assumptions in Theorem  1, the 
unique equilibrium point of the memristor-based neural 
network (11) is globally exponentially stable.

Proof  From Theorem 1, the memristor-based neural network 
(11) has a unique equilibrium point. Let x∗ = (x∗

1
, x∗

2
,… , x∗

n
)T 

be the unique equilibrium point of the memristor-based neu-
ral network (11). Then, by the definition of the equilibrium 
point, we have

To simplify the proof, we make the following transformation

Then, the memristor-based neural network (11) can be 
expressed equivalently as follows,

where g(z(t)) = f (z(t) + x∗) − f (x∗) and g(z(t − �(t))) =

f (z(t − �(t)) + x
∗) − f (x∗).

We consider the following Lyapunov function,

where

Here, �, �j, �j , and � are some positive constants to be deter-
mined, j = 1, 2.

0 = −Dx∗ −M|x∗| + Af (x∗) + Bf (x∗) + E�f (x∗) + U.

(27)z = x − x∗.

(28)

ż(t) = − Dz(t) −M(|z(t) + x∗| − |x∗|)
+ Ag(z(t)) + Bg(z(t − 𝜏(t))) + E ∫

t

t−𝜇

g(z(s))ds,

(29)V(t, z) = V1(t, z) + V2(t, z) + V3(t, z),

(30)

V1(t, z) =e
�tzTD−1z,

V2(t, z) =2�e
�t

n∑
i=1

pi ∫
zi

0

gi(s)ds,

V3(t, z) =(��1 + �1)

n∑
i=1

∫
t

t−�i(t)

g2
i
(zi(s))e

�(s+� i)ds

+ (��2 + �2)

n∑
i=1

∫
0

−�i
∫

t

t+�

e�(s−�)g2
i
(zi(s))dsd�.
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First, calculating the time derivative of V1(t, z) along the 
trajectories of the memristor-based neural network (28), we 
have

Since D and M are all diagonal matrices, we have

Substituting (32) into (31), we obtain that

(31)

d

dt
V1(t, z(t))

= 𝛿e𝛿tzT (t)D−1z(t) + 2e𝛿tzT (t)D−1ż(t)

= 𝛿e𝛿tzT (t)D−1z(t) − 2e𝛿tzT (t)z(t)

− 2e𝛿tzT (t)D−1M(|z(t) + x∗| − |x∗|)
+ 2e𝛿tzT (t)D−1Ag(z(t))

+ 2e𝛿tzT (t)D−1Bg(z(t − 𝜏(t)))

+ 2e𝛿tzT (t)D−1E ∫
t

t−𝜇

g(z(s))ds.

(32)

− 2e�tzT (t)D−1M(|z(t) + x∗| − |x∗|)
≤ 2e�t|z(t)|TD−1|M| ⋅ ||(|z(t) + x∗| − |x∗|)||
≤ 2e�tzT (t)D−1|M|z(t).

(33)

d

dt
V1(t, z(t))

≤ e�tzT (t)(�D−1 − 2I + 2D−1�M�)z(t)
+ 2e�tzT (t)D−1Ag(z(t))

+ 2e�tzT (t)D−1Bg(z(t − �(t)))

+ 2e�tzT (t)D−1E �
t

t−�

g(z(s))ds

≤ e�tzT (t)
�
�D−1 − 2I + 2D−1�M� + 3

k

�
z(t)

+ ke�tgT (z(t))‖D−1A‖2g(z(t))
+ ke�tgT (z(t − �(t)))‖D−1B‖2g(z(t − �(t)))

+ ke�t
�
�

t

t−�

g(z(s))ds
�T‖D−1E‖2 �

t

t−�

g(z(s))ds,

where k is a positive constant to be determined later.
Second, we calculate the time derivative of V2(t, z) along 

the trajectories of the memristor-based neural network (28) 
as follows,

Similarly to (32), and by the fact that gi is nondecreasing 
with gi(0) = 0 , we have

Based on the assumption that D − M̂ is positive definite, it 
can be obtained that the diagonal matrix D − |M| is positive 
definite. Hence, we can choose a sufficient small constant 
𝛿 > 0 such that

Meanwhile, by the assumption ( �� ) and the transformation 
(27), we have

(34)

d

dt
V2(t, z(t))

= 2𝛿𝛼e𝛿t
n∑
i=1

pi �
zi

0

gi(s)ds

+ 2𝛼e𝛿tgT (z(t))Pż(t)

≤ 2𝛿𝛼e𝛿tgT (z(t))Pz(t) − 2𝛼e𝛿tgT (z(t))PDz(t)

− 2𝛼e𝛿tgT (z(t))PM(|z(t) + x∗| − |x∗|)
+ 2𝛼e𝛿tgT (z(t))PAg(z(t))

+ 2𝛼e𝛿tgT (z(t))PBg(z(t − 𝜏(t)))

+ 2𝛼e𝛿tgT (z(t))PE �
t

t−𝜇

g(z(s))ds.

(35)
− 2�e�tgT (z(t))PM(|z(t) + x∗| − |x∗|)

≤ 2�e�tgT (z(t))P|M|z(t).

(36)𝛿I − D + |M| < 0.

(37)gT (z(t))z(t) ≥ gT (z(t))L−1g(z(t)).
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Thus, substituting (35) and (37) into (34), we obtain

s i n c e  2gT (z(t))PAg(z(t)) = gT (z(t))(PA + ATP)g(z(t)) 
a n d  2gT (z(t))PBg(z(t − �(t)))  ≤ gT (z(t))‖PB‖g(z(t)) 
+gT (z(t − �(t)))‖PB‖g(z(t − �(t))).

Third, calculating the time derivative of V3(t, z) along the 
trajectories of the memristor-based neural network (28), we 
have

Meanwhile, according to Lemma 4, we have

(38)

d

dt
V2(t, z(t))

≤ 2�e�tgT (z(t))P(�I − D + �M�)z(t)
+ 2�e�tgT (z(t))PAg(z(t))

+ 2�e�tgT (z(t))PBg(z(t − �(t)))

+ 2�e�tgT (z(t))PE �
t

t−�

g(z(s))ds

≤ �e�tgT (z(t))
�
2P(�I − D + �M�)L−1 + PA + ATP

+ ‖PB‖I + �0‖PE‖I
�
g(z(t))

+ �e�tgT (z(t − �(t)))‖PB‖g(z(t − �(t)))

+ �e�t
�
�

t

t−�

g(z(s))ds
�T
�−1
0
‖PE‖�

t

t−�

g(z(s))ds,

(39)

d

dt
V3(t, z(t))

= (𝛼𝛾1 + 𝛽1)

n∑
i=1

e𝛿(t+𝜏 i)g2
i
(zi(t))

− (𝛼𝛾1 + 𝛽1)

n∑
i=1

(1 − 𝜏̇i(t))e
𝛿(t−𝜏i(t)+𝜏 i)g2

i
(zi(t − 𝜏i(t)))

+ (𝛼𝛾2 + 𝛽2)

n∑
i=1

g2
i
(zi(t))𝛿

−1e𝛿t(e𝛿𝜇i − 1)

− (𝛼𝛾2 + 𝛽2)e
𝛿t

n∑
i=1

�
t

t−𝜇i

g2
i
(zi(s))ds

≤ e𝛿t
[
(𝛼𝛾1 + 𝛽1)e

𝛿𝜏

+ (𝛼𝛾2 + 𝛽2)𝛿
−1(e𝛿𝜇0 − 1)

]
gT (z(t))g(z(t))

− (𝛼𝛾1 + 𝛽1)e
𝛿tgT (z(t − 𝜏(t)))g(z(t − 𝜏(t)))

− (𝛼𝛾2 + 𝛽2)e
𝛿t

n∑
i=1

�
t

t−𝜇i

g2
i
(zi(s))ds.

Hence, by (33), (38), and (39), the time derivative of V(t, z) 
can be calculated as follows,

Next, we let

Then, under the assumption (��) , by Lemmas 2 and 3, we 
have

− �0

n∑
i=1

�
t

t−�i

g2
i
(zi(s))ds

≤ −

[
�

t

t−�

g(z(s))ds

]T
�

t

t−�

g(z(s))ds.

(40)

d

dt
V(t, z(t))

=
d

dt
V1(t, z(t)) +

d

dt
V2(t, z(t)) +

d

dt
V3(t, z(t))

≤ e�tzT (t)

�
�D−1 − 2I + 2D−1�M� + 3

k
I

�
z(t)

+ �e�tgT (z(t))

�
k�−1‖D−1A‖2

+ 2P(�I − D + �M�)L−1 + PA + ATP

+ ‖PB‖I + �0‖PE‖I + �−1
�
(��1 + �1)e

��

+ (��2 + �2)�
−1(e��0 − 1)

�
I

�
g(z(t))

+ e�tgT (z(t − �(t)))

�
k‖D−1B‖2 + �‖PB‖

− (��1 + �1)

�
g(z(t − �(t)))

+ e�t
�
k‖D−1E‖2 + ��−1

0
‖PE‖ − (��2

+ �2)�
−1
0

��
�

t

t−�

g(z(s))ds
�T

�
t

t−�

g(z(s))ds.

(41)
�1 = ‖PB‖, �1 = k‖D−1B‖2,
�2 = ‖PE‖, �2 = k�0‖D−1E‖2.

(42)

d

dt
V(t, z(t))

≤ e�tzT (t)

�
�D−1 − 2I + 2D−1�M̂� + 3

k
I

�
z(t)

+ �e�tgT (z(t))

�
k�−1‖D−1A‖2I + 2�P + �

− ‖P‖(b + ��0)I + �−1
�
(��1 + �1)e

��

+ (��2 + �2)�
−1(e��0 − 1)

�
I

�
g(z(t)).



751International Journal of Machine Learning and Cybernetics (2019) 10:743–755	

1 3

Here, �  is from (15). By Lemma 3 and the choices of �1 and 
�1 in (41), we have

Similarly, we also have

Then, letting � = k2 and � =
1

k
 , and substituting (43) and (44) 

into (42), we obtain that

The facts that

imply that we can choose a sufficiently large k such that both 
(36) and the following inequalities hold,

(43)

− ‖P‖b + �−1
�
��1 + �1)e

��

= −‖P‖b + ‖PB‖ + �−1k‖D−1B‖2e��

≤ k

�
‖D−1B‖2e�� .

(44)

− ‖P‖��0 + �−1
�
��2 + �2)�

−1(e��0 − 1)

= −‖P‖��0 + ‖PE‖�−1(e��0 − 1)

+ �−1k�0‖D−1E‖2�−1(e��0 − 1)

≤ ‖P‖�[−�0 + �−1(e��0 − 1)]

+ �−1k�0‖D−1E‖2�−1(e��0 − 1).

(45)

d

dt
V(t, z(t))

≤ e�tzT (t)D−1

�
− 2(D − �M̂�) + �1

k
I +

3

k
D
��
z(t)

+ k2e�tgT (z(t))

�
� + 2k−1P

+
�
k−1‖D−1A‖2 + k−1‖D−1B‖2ek−1�

+ ‖P‖�[−�0 + k(ek
−1�0 − 1)]

+ �0‖D−1E‖2(ek−1�0 − 1)
�
I

�
g(z(t)).

(i) �1 ∶=
1

k
I +

3

k
D → 0, as k → +∞;

(ii) �2 ∶=
‖D−1A‖2 + ‖D−1B‖2ek−1�

k

+ ‖P‖�[k(ek−1�0 − 1) − �0]

+ �0‖D−1E‖2(ek−1�0 − 1) → 0, as k → +∞

Hence, by (45), we have

which means that

More precisely,

where M = [dmV(0, z(0))]
1

2 and dm = max{di ∶ i = 1,… , n} . 
That is, the unique equilibrium point x∗ of the memristor-
based neural network (11) is globally exponentially stable. 	
� □

Remark 1  Recently, researchers propose several different 
mathematical models of the memristor-based neural net-
works, and study their dynamical behaviors extensively [24, 
25, 33, 34]. These dynamical behaviors include the stabil-
ity of equilibrium point, periodic solution, almost-periodic 
solution and synchronization and so on. For example, the 
global exponential synchronization and periodic solution of 
memristor-based neural network (11) were separately stud-
ied in [34, 44]. However, as far as we know, there are very 
few related conclusions about uncertain memristor-based 
recurrent neural network (11) with distributed delays.

(46)
(I) − 2(D − |�M|) + 𝛹1 < 0;

(II) 𝛹 + 2k−1P + 𝛹2I < 0.

d

dt
V(t, z(t)) ≤ 0,

e�tzT (t)D−1z(t) = V1(t, z(t)) ≤ V(t, z(t)) ≤ V(0, z(0)).

‖x(t) − x∗‖ = ‖z(t)‖ ≤ Me
−

�

2
t,

Table 1   Parameter values in (1)

i 1 2 3 4

Capacitor Ci 2 3 2 7
External input Ii 9 3 9.5 6
Memductance W ′

i
 for xi(t) ≤ 0 1 3 4 1

Memductance W ′′
i

 for xi(t) > 0 4 1.5 2 3.5

Table 2   Resistors between fj(xj(t)) and xi(t) in (1)

Rfij
i = 1 i = 2 i = 3 i = 4

j = 1 1 3 1.5 2
j = 2 2 4 6 12
j = 3 1.8 2.6 3.5 4
j = 4 7 3 4 3
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Meanwhile, Theorems 1 and 2 can also be used to verify 
the global exponential stability of the equilibrium point not 
only for the memristor-based recurrent neural network in 
[34] but also for the general uncertain recurrent neural net-
works in [16, 18]. Hence, the conclusions in this paper can 
be considered as the generalization and improvement of the 
previous related works.

Corollary 1  Under the assumptions ( �� ) and ( �� ), if the 
diagonal matrix D − �M > 0 and there exists a positive diag-
onal matrix P = diag{p1, p2,… , pn} such that

then, memristor-based neural network (1) has a unique equi-
librium point, which is globally exponentially stable.

4 � Numerical examples

In this section, we present some illustrative examples to show 
the effectiveness and application of the obtained results.

4.1 � Analysis of dynamical behaviors of network (11)

First, we choose randomly the values of capacitor Ci , exter-
nal input Ii , memductance W ′

i
 , W ′′

i
 , resistors Rfij

 , and Rgij
 in 

(1) in Tables 1 and 2, and let Rfij
= Rgij

 for i, j = 1, 2, 3, 4.

Then, substituting the parameter values in Tables 1 and 
2 into (11), we have

(47)
𝛹 ∶= − 2P(D − �M)L−1 + (PA + ATP

+ ∥ PA + ATP ∥ I) + 2‖P‖bI < 0,
Additionally, the parameter eij in (11) are uniformly distrib-
uted pseudorandom numbers generated by rand in Matlab. 
In this numerical experiment,

The activation functions are given:

Then,  by (9) ,  we have L = diag{1, 1, 1, 1}. Let 
� = diag{0.6, 0.6, 0.6, 0.6} and �i(t) = 1 for i = 1, 2, 3, 4 in 
(11).

Second, the assumption (��) about the matrices 
D, M, A, B and E in (12) is shown as follows,

D =diag{7.5, 4.0, 7.4759, 1.5884},

M =diag{0.75,−0.25,−0.5, 0.1786},

U =(4.5, 1.0, 2.75, 0.8571)T ,

A =

⎡⎢⎢⎢⎣

0 0.1667 0.3333 0.25

0.1667 0 0.0556 0.0278

0.2278 0.1923 0 0.1250

0.0204 0.0476 0.0357 0

⎤⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎣

0 0.1250 0.1111 0.2000

0.3333 0 0.0417 0.1667

0.1786 0.1087 0 0.2500

0.0286 0.1429 0.0476 0

⎤
⎥⎥⎥⎦
.

E =

⎡⎢⎢⎢⎣

0.7094 0.6551 0.9597 0.7513

0.7547 0.1626 0.3404 0.2551

0.2760 0.1190 0.5853 0.5060

0.6797 0.4984 0.2238 0.6991

⎤⎥⎥⎥⎦
.

(48)f1(x) = f2(x) =
1

2
(|x + 1| − |x − 1|).

D ∶= {D = diag{di} ∶ 0.9di ≤ di ≤ 1.1di,∀i},

M ∶= {M = diag{mi} ∶ 0.9mi ≤ mi ≤ 1.1mi,∀i},

A ∶= {A = (aij)n×n ∶ 0.9aij ≤ aij ≤ 1.1aij,∀i, j},

B ∶= {B = (bij)n×n ∶ 0.9bij ≤ bij ≤ 1.1bij,∀i, j},

E ∶= {E = (eij)n×n ∶ 0.9eij ≤ eij ≤ 1.1eij,∀i, j}.

Fig. 2   Solution trajectories of the memristor-based neural network 
(11) Fig. 3   Solution trajectories of the memristor-based neural network (1)
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Furthermore, by Lemmas 2, 3, and (14), we can calculate 
A∗ , A∗ , M̂ , � = 2.1649 , b = 0.5515 , and �0 = 0.6 . It is clear 
that D − M̂ is positive and there exists a positive definite 
diagonal matrix

such that (15) holds. Thus, by Theorems 1 and 2, the unique 
equilibrium point of the memristor-based neural network 
(11) is globally exponentially stable. The initial values of 
the neural network (11) are set to be (0.1, 0.1, 0.1, 0.1)T  , 
(0.5, 0.5, 0.5, 0.5)T , and (1, 1, 1, 1)T , respectively. The solu-
tion trajectories of (11) are illustrated in Fig. 2.

4.2 � Applications

In this section, we apply the proposed results to analysis the 
dynamic behaviors and design the circuit of memristor-based 
neural network in [34].

4.2.1 � Analysis of the dynamical behaviors of (1)

We fix the values of parameters Ci , Ii , Rfij
 , Rgij

 , �j(t) for 

i, j = 1, 2, 3, 4. in Section 4.1. It is clear that D − M̂ is positive 
and there exists a positive definite diagonal matrix

such that (47) holds. Thus, by Corollary  1, the unique 
equilibrium point of the memristor-based neural network 
(1) is globally exponentially stable. The initial values of 
the neural network (1) are set to be (0.1, 0.1, 0.1, 0.1)T  , 
(0.5, 0.5, 0.5, 0.5)T , and (1, 1, 1, 1)T , respectively. The solu-
tion trajectories of (1) are illustrated in Fig. 3.

4.2.2 � Design of network (1)

In this section, we apply the obtained results in Corollary 1 to 
design the circuit of memristor-based neural network with a 
unique globally exponentially stable equilibrium point. First, 
we fix the values of parameters Ci , Ii , Rfij

 , and Rgij
 in (1). Then, 

we apply the obtained results to determine di and mi in (1). 
Furthermore, we calculate the memductances W ′

i
 and W ′′

i
 of 

the i− th memristor, and finish the design of the circuit.
The design process of memristor-based neural network is 

described by three steps as follows.
Step 1 We fix a positive definite matrix P in (47). Based on 

the matrix inequality (47), we add the following two matrix 
inequalities

P = diag{19.1338, 19.1338, 19.1338, 19.1338}

P = diag{0.1372, 0.1372, 0.1372, 0.1372}

(49)D − |�M| >0,
(50)D − |�M| <D

to solve the matrix D − |M̂|. Here, the conditions (49) and 
(50) guarantee that D − |M̂| and |M̂| are positive definite in 
both Theorem 1 and Corollary 1, respectively.

Step 2 By (5) and (6), if mi ≥ 0 , then we have

Furthermore, we calculate W ′
i
 for i ∈ {1, 2,⋯ , n} . Mean-

while, the corresponding W ′′
i

 can be assigned the arbitrary 
value satisfied mi =

W ��
i
−W �

i

2Ci

> 0 theoretically.

If mi < 0 , then we have

Similarly, we obtain the W ′
i
 and W ′′

i
 in (1).

Step 3 Substituting W ′
i
 and W ′′

i
 into (5) and (6), we 

obtain di and mi . That is, we complete the design of mem-
ristor-based neural network.

Now we set activation function fi(x) represented by 
(48), and the values of parameters Ci , Ii , Rfij

 , and Rgij
 in (1) 

as same as in Tables 1 and 2. �i(t) are given as same as in 
Sect. 4.1. Consequently, we obtain the matrices U, A, B, 
and L as same as in Sect. 4.1. Next, we give a positive defi-
nite matrix

By Step 1, we have

By Step 2, letting mi > 0 for i = 1, 2, 3, 4 , we have 
W

�
1
= −1.7109, W �

2
= 0.1170, W

�
3
= −0.6748, W �

4
= 4.8468. 

di − |mi| =
n∑
j=1

[
1

CiRfij

+
1

CiRgij

]
+

W �
i

Ci

.

di − |mi| =
n∑
j=1

[
1

CiRfij

+
1

CiRgij

]
+

W ��
i

Ci

.

P = diag{1, 1, 1, 1}.

D − |M̂| = diag{0.0143, 2.1977, 1.5685, 3.5865}.

Fig. 4   Solution trajectories of the designed memristor-based neural 
network (1)
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Moreover, fix W ��
1
= 1.2891, W ��

2
= 3.1170, W ��

3
= 2.3252, 

and W ��
4
= 7.8468. Then, by Step 3, we obtain

The initial values of the neural network (1) are set to be 
(0.2, 0.2, 0.2, 0.2)T  , (0.8, 0.8, 0.8, 0.8)T  , and (2, 2, 2, 2)T  , 
respectively. We depict the solution trajectories of (1) in 
Fig. 4.

Remark 2  It should be noted that the obtained conclusions in 
this paper can also be applied to verify the global exponen-
tial stability of the equilibrium point for the general uncer-
tain recurrent neural networks as follows,

which has been studied extensively (see [17, 38, 39]). How-
ever, the influence of the distributed delays were not consid-
ered in [17, 38, 39]. Hence, the obtained conclusions in this 
paper improve the previous related works.

5 � Conclusion

The analysis of dynamical behaviors of the memristor-
based neural networks is necessary when the engineer-
ing applications of such networks become more and more 
popular. In this paper, we study the existence and global 
exponential stability of the equilibrium point for a class 
of memristor-based recurrent neural networks. By virtue 
of homeomorphic theory, we prove that the memristor-
based neural network has a unique equilibrium point. Fur-
thermore, we prove that the unique equilibrium point is 
globally exponentially stable by constructing a suitable 
Lyapunov functional. From the circuit of memristor-based 
recurrent network, we present some conditions for the 
amplifiers, connection resistors between the amplifiers, the 
capacitors, and the memductances of memristor to guar-
antee the existence and global exponential stability of the 
equilibrium point of the circuit. Finally, some numerical 
examples are used to show the effectiveness of our main 

D =diag{1.5143, 3.1977, 3.0685, 4.0150},

M̂ =diag{1.5000, 1.0000, 1.5000, 0.4286}.

ẋi(t) = − dixi(t) +

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − 𝜏j(t)))

+

n∑
j=1

eij ∫
t

t−𝜇j

fj(xj(s))ds + Ui,

results. In the future, we will focus on the delay-distri-
bution probability problem for memristor-based recurrent 
neural networks.
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