
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:2119–2129 
https://doi.org/10.1007/s13042-017-0755-8

ORIGINAL ARTICLE

Top K representative: a method to select representative samples based 
on K nearest neighbors

Kai Yang2 · Yi Cai1 · Zhiwei Cai3 · Haoran Xie4 · Tak‑Lam Wong5 · Wai Hong Chan4

Received: 1 April 2017 / Accepted: 1 December 2017 / Published online: 12 December 2017 
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
Short text categorization involves the use of a supervised learning process that requires a large amount of labeled data for 
training and therefore consumes considerable human labor. Active learning is a way to reduce the number of manually labeled 
samples in traditional supervised learning problems. In active learning, the number of samples is reduced by selecting the 
most representative samples to represent an entire training set. Uncertainty sampling is a means of active learning but is 
easily affected by outliers. In this paper, a new sampling method called Top K representative (TKR) is proposed to solve 
the problem caused by outliers. However, TKR optimization is a nondeterministic polynomial-time hardness (NP-hard) 
problem, making it challenging to obtain exact solutions. To tackle this problem, we propose a new approach based on the 
greedy algorithm, which can obtain approximate solutions, and thereby achieve high performance. Experiments show that 
our proposed sampling method outperforms the existing methods in terms of efficiency.

Keywords  Active learning · Text categorization

1  Introduction

With the growing popularity of the Internet, shorter texts 
are being generated by users and services on such plat-
forms as Twitter and Facebook [10]. Moreover, techniques 
of short text classification have a number of applications, 
such as sentiment classification [18] and semantic analysis 
[16]. Therefore, there is considerable demand for short text 
classification or categorization [1]. Short text classification 
requires a large number of labeled samples for training [2], 
because it involves a supervised learning process [26]. How-
ever, the volume of short texts generated by Web services 

is enormous, and manually labeling all these data items is 
time consuming and expensive. Labeling work takes a long 
time, creating a bottleneck in most short text classification 
problems.

Active learning is a widely used technique to solve the 
above problem [36]. The main idea underlying active learn-
ing is to choose representative samples by using machine 
learning algorithms to generate a small set. We only need 
to label this small set with fewer samples as the training set. 
We can thus save a large amount of time and money. The 
main task of this paper is to apply active learning to reduce 
manual labeling work in supervised classification tasks.

A number of active learning algorithms have been devel-
oped, e.g., Uncertainty sampling [21] or some density-based 
selection methods [18, 39, 40]. Uncertainty sampling is a 
sampling method that is widely used in natural language 
processing tasks such as text categorization and grammar 
matching. However, its limitation is that some outliers (i.e., 
abnormal samples) may be selected as representative sam-
ples, which affects the quality of its results. In another word, 
outliers have great negative impact on the performance of 
uncertainty sampling. To solve this problem, sampling meth-
ods based on the density distribution of the training set have 
been proposed [18, 39, 40]. As outliers are generally located 
in low-density space, these methods involve the selection 
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of samples from high-density space to avoid choosing out-
liers. However, such methods also have some drawbacks. 
Samples located along the borders of categories are not 
necessarily located in high-density space. These methods 
therefore cannot accurately select samples along the borders 
of categories, while samples in the borders are important for 
classification.

In this paper, we propose a sampling algorithm called 
Top K Representative (TKR). This algorithm is inspired by 
the K-Nearest Neighbor (KNN) algorithm [3, 8], an impor-
tant classification algorithm. In KNN, each sample can be 
represented by k samples most similar to it. The categories 
of these top k samples are used to determine the categories 
of each sample. In the classification process, if a sample 
is more similar to its top k samples, it is more likely to be 
correctly allocated. As shown in Fig. 1a, t1 is the sample 
to be classified, and t2–t7 are the top k samples closest to t1 
in the training set. In KNN, t1 is represented by t2–t7 in the 
training set (as shown in Fig. 1b), where it determines the 
categories of t1 according to the categories of t2–t7 . In light of 
this, we think that if we can find a subset that can represent 
all samples in a training set, it can be used to represent the 
entire training set. As shown in Fig. 1c, the set S is a subset 
of the training set T; if any sample tm in T can be represented 
by one or more samples in S, we assume that the set S can 
represent the entire set T. To obtain set S, we need to find 
a set from all possible subsets of T that maximizes the sum 
of similarities among all samples in training set T and their 
top k samples in S. In this way, almost all training samples 
can determine nearby samples from the generated subset. 
In other words, the data distribution of set S is substantially 
consistent with that of set T. Therefore, samples along the 
borders of the categories are not neglected. Moreover, as 
outliers are distant from other samples, they are unlikely to 
be selected.

However, finding the most suitable set S is an NP-hard 
problem, for the reason that it involves traversing all sub-
sets of the training set. Thus, an exact solution cannot be 
obtained within an acceptable time when the training set is 
large. We propose an optimization algorithm based on the 
greedy algorithm [9] to obtain an approximate solution that 
is close to the exact solution.

Several experiments are conducted to compare the 
performance of our proposed method with baseline sam-
ple selection methods. The results show that the AVG-F1 
value of Top K representative is higher than those of the 
density-based method by 3.7% and those of the Uncer-
tainty Sampling by 10.1%, respectively. We also conducted 
experiments to verify the efficiency of the proposed Top K 
Representative. The results shows that the run time of our 
algorithm is acceptable, shorter than 100 s for approximately 
10,000 samples.

The contributions of our work here can be summarized 
as follows:

1.	 We propose a sample selection algorithm, TKR, to deter-
mine a subset that can select samples along the borders 
of categories and avoid selecting outliers.

2.	 As finding the most suitable subset in TRK is an NP-
hard problem, we propose an optimization algorithm 
based on the greedy algorithm to obtain an approximate 
solution close to the exact solution.

3.	 We conducted several experiments to verify the effec-
tiveness of TKR and its efficiency for samples of differ-
ent sizes.

(a) K-nearest neighbor

(b) A sample represented by the Top K samples

(c) The Training Set represented by a subset

Fig. 1   Idea inspired by KNN. a K-nearest neighbor. b A sample rep-
resented by the Top K samples. c The training set represented by a 
subset
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In the remainder of this paper, we introduce related work in 
Sect. 2. The proposed model and its corresponding optimiza-
tion algorithm are detailed in Sect. 3. Our experiments and 
their results are reported in Sect. 4.

2 � Related work

2.1 � Active learning

2.1.1 � Uncertain sampling

Uncertain sampling [22] is a popular technique of sampling, 
which is widely-used in nature language processing. For 
example, Word Sense Disambiguation [5, 6], Text Classifi-
cation [22, 36], Statistic Parsing [35], Named Entity Recog-
nition [22], image retrieval [17]. Besides, in [18], sentiment 
classification also apply uncertain sampling approach to find 
the most informative samples from the corpus in order to 
reduce human effort.

Uncertain sampling is to choose K samples as initial sam-
ples to train the classifier. Then select N-1 samples, and use 
these samples to train classifier CN − 1 . Use classifier CN − 1 
to classify the samples which have not been selected in data 
set X, and yield the probability pij of sample i belong to 
category j. And then, we compute the entropy:

where b is the parameter of the entropy, which usually is 2 
or e. In information theory, entropy can measure the uncer-
tainty of information. In our case, if the value of entropy is 
large, it means the probabilities of the sample belong each 
class is very close, i.e. it is very hard to decide which class 
this sample belongs to. Therefore, if the value of entropy is 
large, we can say the classifier have a poor ability of distin-
guishing this sample. Putting this sample into the training set 
is likely to bring more information. So we choose sample:

The key idea of active-learning based on uncertain sampling 
is: the sample with the largest uncertainty, which contains 
the most information, will be selected for manual labeling 
in every cycle. The uncertainty is large means the current 
classifier have little confidence of classifying this sample. In 
this framework, the classifier will choose the samples, which 
it is uncertain about, to learn. Methods using this framework 
usually apply probability learning scheme. For example, in 
the model of binary classification problem, the uncertain 
sampling just need to select the samples with a probability 
near 0.5 [22]. In the case of multi-classification, we can use 
entropy to compute the certainty of classifier. An intuitive 

(1)Hi = −

n∑

j=1

pijlogbpij,

(2)XN = argmaxiHi.

explanation is: uncertain sampling chooses the samples near 
the decision boundary, and use them to update the decision 
boundary to get a more precise result. However, if the uncer-
tain sampling chooses outliers, we will fail to get a more 
precise decision boundary [35]. Although, these outliers 
have high uncertainties, they can not improve the classifier.

In uncertain sampling, how to choose the initial training set 
is also very important. In the previous study of active-learning, 
the initial training set is usually chosen randomly. It is based 
on the assumption that random sampling might select a set 
of samples which share the same distribution with the whole 
data set. However, since we always choose a very small initial 
training in practice, this assumption might be invalid. In the 
paper [40], a method which use sampling by cluster (SBC) to 
select the most typical samples as initial training set. In order 
to do this, the corpus should be clustered into a specific num-
ber (depends on the size of the initial training set) of groups. 
The samples which are close to the centroids of clusters are 
the most typical sample.

2.1.2 � The selection method based on density distribution

The key idea of the selection method based on density distri-
bution is focusing on the whole input space. Therefore, this 
method is not likely to choose outliers. It compute the density 
of the space of samples to choose the typical samples. However, 
the area with a high density might not be the area near the deci-
sion boundary. So we try to combine density with uncertainty.

In the paper [40], a framework about describing the density 
of information is proposed. It is a general weighting method 
based on density and uncertainty. Its key idea is that the sam-
ples with the most information not only are uncertain, but also 
locate in an area with a high density in the input space. In [40], 
the unlabeled samples are evaluated by a density method based 
on K nearest neighbors. The K nearest neighbors of sample x 
is represent as the following set:

Hence, the density of the K nearest neighbors DS(x) is 
defined:

where cos(x, si) is the cosine similarity between sample x 
and si.

There is a new method in [39]. It based on uncertain sam-
pling and density measurement, in which the uncertainty is 
measured by entropy and the density is measured by K-means 
method. In this method, we measure the uncertainty using a 
method called Density * Entropy, which compute as Eq. 5. 
This is a general method of computing uncertainty and density:

(3)S(x) = {S1, S2, ..., SK}.

(4)DS(x) =

∑
si
cos(x, si)

K
,

(5)DSH(x) = DS(x) ∗ H(x),
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where H(x) is entropy, which compute through Eq. 1.
Density-based sample selecting approaches have been 

applied in many research fields. In [18], Density-based 
sample selecting approaches are introduced into cross-
lingual sentiment classification field. Since most recent 
research works in natural language processing focused 
on English language, and there are not enough labeled 
sentiment resources in other languages, sample selecting 
methods are needed for reducing the cost of manual con-
struction of annotated sentiment corpora for a new lan-
guage. This work applies density measures of unlabelled 
samples to avoid outlier selection.

2.1.3 � Supervised sampling selecting methods

When active learning combined with some specific appli-
cations, supervised sampling selecting methods are intro-
duced, which needs extra labeled samples for training.

In [23], a supervised approach is proposed to solve the 
domain adaptation problem in sentiment classification. 
The domain adaptation problem is that a sentiment clas-
sifier trained with the labeled samples from one domain 
has bad performance in another domain. The difficulty 
of this problem is that the data distributions in the source 
domains are different from that in the target domains. The 
authors in [23] perform active learning for cross-domain 
sentiment classification by a supervised approach which 
needs a small amount of labeled data for training. First, 
the labeled source and target data are used to train two 
individual classifiers. Then, the unlabeled samples will 
go through the classifiers. The unlabeled samples will 
be selected when the results of these two classifiers are 
disagreed.

In [34], a active learning support vector machine 
(SVM) is proposed for image classification tasks. It pre-
fers to select the uncertain samples from unlabeled data-
set as the classifier’s training samples. The goal of the 
active learning task is to select the support vector, which 
is the most informative samples for classification. In the 
supervised part, the goal of the labeled samples is to find 
the best model parameters to obtain a optimal classifier.

The supervised sample selecting methods we discuss 
above combine active learning and specific applica-
tions together. However, these approaches are hard to 
be applied in other applications. For example, the model 
proposed in [34] can apply active learning in SVM, but 
it is hard to be applied in other classifiers like KNN. The 
model provided in our paper is an unsupervised sample 
selecting method, and it is a general method developed for 
applications from different research fields, like text clas-
sification [19], image retrieval, sentiment search [13–15, 
37], etc.

2.2 � The expression of sentiment texts

Most of sentiment texts created from the Internet are the 
online reviews from E-commerce platforms or articles from 
Twitter or Facebook. These texts are short in length, thus 
they are short text. The sentiment classification problem 
can be transformed to short text classification problem. In 
short text classification problem, expressing a short text as 
a vector is an important step. It including two parts: find 
features to represent the semantic meaning of the text, and 
the composition of these features. In the field of short text 
classification, the most widely-used model is Vector Space 
Model [30].

In Vector Space Model, we usually use Bag of Words 
model which ignores the order of words, for the reason that 
samples may be sparse. In this way, a text is expressed as a 
vector, in which every feature stands for a word, and its value 
is the weight of the word.

Specific to Chinese, apart from Bag of Words model, 
N-gram model is also a popular method [4]. It selects 
N successive words as a phrase(e.g., given a Chinese 
text:“  ” (college freshman), we will have “ ” 
(college) and “ ” (freshman), if we use Bag of Words; if 
we use 2-grams model, we will have “ ” (college), “ ”  
(This combination has no meaning in Chinese), “ ” 
(freshman), which are the combinations of each pair of suc-
cessive words.).

2.3 � Term weighting

Term weighting is the process of deciding the value of fea-
tures, when we using Vector Space Model [4, 30] to express 
a text as a vector. In tradition, term weighting is unsuper-
vised, which means ignoring the label of texts.

There are some popular models:

–	 0/1 model: if a word appear in the text, then it will get 
value 1; if not appear, it get value 0.

–	 TF-IDF (Term Frequency- Inverse Document Frequency) 
model [33]: given a text, the Term Frequency is how 
many times a specific word appear in this text. We usu-
ally normalize this value, in case the value become big-
ger just because the text is longer. Inverse Document Fre-
quency can measure the importance of a word. It is based 
on the assumption: the less documents a word appears in, 
the more important this word is.

However, for the reason that the amount of words is too little 
in a short text, the unsupervised term weighting method can-
not perform well. Thus it is better to use supervised methods 
which take the label of words into account.

IG and �2 are two typical statistic measures [29], which 
can act as the confidence of the dependency between a word 
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and a category. In these term weighting method, a multi-
classification problem is converted into multiple binary clas-
sification problems.

3 � Top K representative

The solution to the problem of classification of short texts 
involves a supervised learning process, that needs a dataset 
labeled by a human. However, creating a massive training 
corpus is expensive and highly time consuming in practice. 
Therefore, this process is the bottleneck in the application of 
such classification to a new field. The purpose of our study 
is to use active learning to minimize the amount of manual 
work needed, and to achieve the same final performance as 
obtained with manual labeling of all data. Active learning 
is a widely used framework that allows for the selection of 
samples with the largest amount of information. The key 
idea underlying active learning is to apply machine learning 
algorithms to actively acquire training labels from a given 
dataset [28]. In this manner, we can attain higher accuracy 
with fewer training labels. We thus attempt to reduce manual 
labeling work within supervised learning problems through 
active learning while achieve satisfactory performance.

In this paper, we propose a sample selecting method 
based on the idea of KNN. The KNN performs well in text 
classification because the more similar the relevant texts, 
the more likely they are to belong to the same category [11]. 
This is exactly how KNN works: given a text, it finds the k 
most similar samples to it in the training set; it then votes 
according to the categories of these samples, and chooses 
the one that receives the most votes [31]. Therefore, if the k 
samples are strongly similar to the given text, the categoriza-
tion is probably correct. Conversely, if the samples found are 
only weakly similar to the text, the categorization is likely 
incorrect. Given this, we propose a method to select sam-
ples, where the idea is to select a subset of the samples for 
manual labeling. When given a text to test, we can find the 
top k samples in the subset that are strongly similar to the 
given text. To this end, we first define the concept of repre-
sentativeness between samples and subset.

3.1 � Representing sample B using sample A

The representativeness of sample A with respect to sample 
B:

where Sim(a, b) represents the similarity between samples 
A and B. The representativeness of sample A with respect 
to sample B is the similarity between A and B. Similarity 
can be computed using different methods according to the 
problem at hand. As we focus on short texts in this paper, 

(6)R1(a, b) = Sim(a, b),

we use cosine similarity. Furthermore, according to the tf-idf 
of the terms appearing in a given text, its feature vector can 
be represented as:

where tij are the terms appearing in the data set and wij is the 
weight of tij , where wij can be computed by tf-idf:

The definition proposed in this paper is in the context of 
short text classification, but does not exhaust the meaning of 
the term. The proposed Top K representative active learning 
is a general method that can also be used with other types 
of data than text, e.g., pictures. Depending on the data type, 
we can use different definitions of representativeness, e.g., 
the reciprocal of Euclid distance.

3.2 � Representing a sample using a set

The representativeness of set S1 with respect to sample b:

where topKSim(b, S1, k) represents the k most similar sam-
ples to b in S1 , where k is chosen by a human. R2(S1, a) can 
measure the probability of finding the k most similar sam-
ples using test data in set S1 and the strength of the similarity. 
We use the sum of the similarity between b and the k sam-
ples as the representativeness of set S1 with respect to the test 
samples. This is based on the assumption mentioned above: 
if a set can represent a sample better, the k samples found 
in the set most similar to this sample must share a stronger 
similarity with the sample. To measure the k samples at the 
same time, we consider them equal and take the sum of their 
similarities to b. This is not the only method to measure 
these samples. We can alter the method according to the 
problem. For instance, in some problems, it is important that 
we find the most similar sample. In this case, we can define 
R2(S1, a) through a weighting method.

3.3 � Representing set S
2
 using set S

1

The representativeness of set S1 with respect to set S2

Given an unlabeled dataset X, we need to find a subset of 
X. We call this subset XS and it should satisfy the following 
conditions:

(7)qi =< ti1 ∶ wi1, ti2 ∶ wi2, ..., tin ∶ win >,

(8)wij = tfij ∗ idfj = tfij ∗ log

(
N

nj

)
.

(9)R2(S1, a) =
∑

a∈TopKSim(b,S1,k)

R1(S1, a),

(10)R3(S1, S2) =
∑

a∈S1

R2(S1, a).
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where m is the number of samples that we need to label 
manually. This depends on the number of laborers at hand. 
Subset XS , which satisfies the two conditions above, best 
represents set X. This means that given any sample in set X, 
we can always find k samples in its subset XS that share a 
strong similarity with the sample.

R3(XS,X) means the representativeness of a subset with 
respect to its superset. If this representativeness has a high 
value, given any sample in the superset, we can find the k 
samples most similar to the sample in the subset that are 
strongly similar to it. This means that we have obtained a 
subset in which we can always find k samples that can satis-
factorily represent any sample in the superset, i.e., this sub-
set has a similar distribution to that of its superset.

Algorithm 1 The optimization algorithm
Input: Training set X Output: Selected set XS

1 Initialization process
2 Score(a) = b∈X Sim(a, b)
3 XS = φ
4 topKSim(a,XS , k) = φ
5 while |XS |! = m:
6 do aselected = argmax(Score(a))
7 for a ∈ X:
8 do
9 if Sim(aselected , a) > KthSim(a,Xs, k):

10 do topKSim(a,XS , k).add(aselected)
11 End If
12 if |topKSim(a,Xs, k)| > k:
13 do //find out the less similar sample in topKSim(a,XS , k)
14 aremoved = LessSimilar(topKSim(a,XS , k))
15 topKSim(a,XS , k).remove(aremoved)
16 End If
17 if |topKSim(a,Xs, k)| = k:
18 do KthSim(a,Xs, k)old = KthSim(a,Xs, k)

etaluclacer//91 KthSim(a,Xs, k)
20 Recalculate(KthSim(a, Xs, k))
21 for b ∈ X:
22 do
23 if Sim(a, b) < KthSim(a,XS , k)old
24 do continue
25 End If
26 if Sim(a, b) > KthSim(a,XS , k)
27 do Score(b) = Score(b)− (KthSim(a,XS , k)

−KthSim(a,XS , k)old)
28 else Score(b) = Score(b)− (Sim(a, b)−

KthSim(a,XS , k)old)
29 End If
30 End For
31 End If
32 End For
33 End While

3.4 � Optimization algorithm

We want to find the subset that can best satisfy the afore-
mentioned conditions. Because traversing every subset of 
a set is NP-hard [20], we cannot obtain a precise result in 
an acceptable amount of time. However, we do not need a 
precise solution to this problem, and an approximate result 
can yield acceptable performance. Therefore, we propose the 

(a) |XS| = m,

(b) XS = argmaxXS⊂X
R3(XS,X),

greedy algorithm shown in Algorithm 1, which minimizes 
the size of the subset in each iteration.

Lines 1–4: As XS is empty at the outset, the TopKSim 
set of every sample is empty. Therefore, the addition of 
each sample a to XS causes the TopKSim(b,XS, k) of every 
sample b in dataset X to get a new member a. R2(XS, a) 
then increases Sim(a, b). As R3(S1, S2) =

∑
a∈S1

R2(S1, a) , 
the overall R3(XS,X) increases 

∑
b∈X Sim(a, b) . Therefore, 

Score(a) =
∑

b∈X Sim(a, b).
Lines 6–11: Based on the strategy of the greedy algo-

rithm, we choose the sample with the largest value of Score 
that can increase R3(XS,X) by the largest magnitude.

Lines 12–31: Having selected sample aselected , if the 
similarity between aselected and any other sample a is higher 
than that between it and the kth most similar sample of a, 
aselected is added to set topKSim(a,XS, k) . At the same time, 
if the size of set topKSim(a,XS, k) is greater than k, the 
member with the lowest similarity in set topKSim(a,XS, k) 
should be removed. Following the removal, if the size of set 
topKSim(a,XS, k) is k, the Score of other samples may have 
changed because we may have to remove another sample 
with the lowest similarity after adding this new sample, b, 
even if b can eventually stay in the set topKSim. Therefore, 
we must update the Score of every sample in X. We first 
recompute KthSim(a,XS, k) and set the old KthSim(a,XS, k) 
to KthSim(a,XS, k)old . KthSim(a,XS, k) > KthSim(a,XS, k)old . 
If Sim(a, b) > KthSim(a,XS, k) , adding b to XS first increases 
Sim(a, b) and then reduces KthSim(a,XS, k) . In this case, 
Score(b) reduces KthSim(a,XS, k) − KthSim(a,XS, k)old  . 
Then, if KthSim(a,XS, k)old < Sim(a, b) < KthSim(a,XS, k) , 
we remove the part relating to Sim(a, b) from Score(b), 
which means subtracting Sim(a, b) − KthSim(a,XS, k)old from 
it. Otherwise, if Sim(a, b) < KthSim(a,XS, k)old , we do not 
need to make any change as it is already impossible for b to 
enter set TopKSim.

3.5 � Complexity analysis

In our algorithm, when given a new sample, there are two 
main loops. The first loop checks to determine whether the 
top k samples need to be updated. When the first loop deter-
mines that an update is needed, the second updates the score 
values of all other samples. Both loops are linearly depend-
ent on |X|, and the process of updating the top k samples is 
linearly dependent on k. The complexity of our algorithm 
is O(k ∗ m ∗ |X|2) , where m is the number of samples we 
want to provide for manual labeling and |X| is the size of the 
entire dataset. For each sample, we need to retain the top k 
samples. Thus, the spatial complexity is O(k ∗ |X|) . To mini-
mize the computation, we use a matrix to record the simi-
larity between each pair of samples. This matrix is sparse 
(in practice, fewer than 10% of its values are non-zero). We 
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can thus skip the zero values while traversing the matrix to 
improve the speed of computation.

4 � Experiments

4.1 � Datasets

In this experiment, we compare the performance of different 
sampling methods. The proposed sampling selecting method 
is a general method and can be applied in different field, 
for example, short text classification or sentimental classi-
fication. In the experiments, we apply the sample selecting 
methods in short text classification. Samples are selected 
using different sampling methods, and they are used to train 
classifiers. The performance of classifiers represents the 
performance of the corresponding sampling method. In this 
experiment, we assume that the dataset does not have any 
labels. A sample will obtain its label when it is selected by 
the sampling methods. We apply Google Snippets dataset 
[26] in our experiment. This dataset consists of 10,060 train-
ing snippets and 2280 test snippets from 8 categories. On 
average, each snippet has 18.07 words. 10% of this dataset 
is used as the test set, denoted as T. Meanwhile, 90% of that 
is regarded as a optional set, denoted as X. We do not use all 
the sample in optional set X as our training set. Instead, we 
only use N sample of X as the training set. Ten-Fold cross-
validation [24] is applied to make the result convincible.

4.2 � Evaluation metric

The evaluation matric used in this paper is AVG-F1 [27]. It 
is calculated as follows:

where N is the number of classifiers, and F1i is the F1 value 
for classifier i. AVG − F1 is the average F1 value of all clas-
sifiers. F1i is calculated as follows [27]:

The precision and recall value is calculated as follows [12, 
25]:

(11)AVG − F1 =
1

N

N∑

i=1

F1i,

(12)F1i = 2 ∗
Precisioni ∗ Recalli

Precisioni + Recalli
.

(13)Precisioni =
TPi

TPi + FPi

,

(14)Recalli =
TPi

TPi + FNi

,

where TPi is the number of samples correctly classified as 
belonging to the positive class by classifier i, and FPi is the 
number of samples that is incorrectly classified to positive 
class, while FNi is the number of samples incorrectly clas-
sified as belonging to the negative class.

4.3 � Comparing methods

The comparing sampling methods in this experiment is 
introduced as follows:

–	 Random sampling: N samples are selected randomly as 
the training set [7].

–	 Uncertainty Sampling: K samples are selected randomly 
at first. And then another N samples are selected one by 
one. When selecting Nth sample, the selected N-1 sam-
ples are used to train a classifier CN−1 . This classifier can 
obtain the probability pij that sample i belong to class j. 
Then the entropy of sample i can be calculated in Eq. 1. 
In information theory [32], entropy is used to measure 
the uncertainty. Higher entropy value represents that the 
probability of a sample belonging to each class is simi-
lar, thus it is harder to determine a class for that sample. 
Therefore, the high entropy of a sample indicates that the 
classifier has a poor performance on this sample, thus 
this sample should be put into the training set to bring 
more classifying information to the classifier. The Nth 
sample should be selected in Eq. 2.

–	 Density*Entropy: Zhu et al. propose a method to describe 
the density of information [40], called Density*Entropy. 
This is a weighted method based on density and uncer-
tainty. Its main idea is that the most informative sam-
ple is not only those with uncertainty, but also those in 
the dense area in the input space. In [40], the unlabeled 
samples are evaluated by a density method based on K 

Table 1   AGV-F1 value of different sampling methods

Sample size Random Uncer-
tainty 
sampling

Density * Entropy Top K 
representa-
tive

50 0.2796 0.1165 0.2998 0.3240
100 0.4235 0.2352 0.4576 0.4740
150 0.3885 0.2710 0.4792 0.4830
200 0.4714 0.3038 0.4979 0.5223
250 0.4786 0.3872 0.5576 0.5898
300 0.5218 0.4144 0.5877 0.5823
350 0.5387 0.4486 0.5862 0.5985
400 0.5608 0.4744 0.5636 0.5815
450 0.5703 0.5087 0.5781 0.6054
500 0.5867 0.5061 0.5998 0.6135
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nearest neighbors. The K nearest neighbors of sample x 
is represent as the following set: S(x) = {S1, S2, ..., Sk} . 
Hence, the density of the K nearest neighbors DS(x) is 
defined in Eq. 4. The formula of Density*Entropy is in 
Eq. 5. This method is widely used to combine uncertainty 
sampling methods and density-based sampling methods 
together.

–	 Top K representative: the sampling method we proposed 
in this paper.

4.4 � Comparison of sample selection methods

We also compared the performance of the proposed TKR 
with other samples selection methods. We chose random 
sampling, uncertainty sampling and Density * Entropy as 
the baseline methods, as they are popular sample selection 
techniques. These methods were applied to select samples 
from the Snippets dataset, and the selected samples were 
used to train a KNN classifier. We used AVG-F1 value 
[27] to evaluate the performance of each sampling method 
according to the performance of the corresponding classifier. 
The experimental results are shown in Fig. 2 and Table 1. 
As shown in the graph in the figure, classification accuracy 
increased with the number of selected samples because with 
more samples, the classifiers became better informed and 
could identify more features in the dataset. The figure also 
shows that our proposed Top K Representative yielded a 
higher AVG-F1 value than the other methods when selecting 
the same number of samples. The gap between Top K Rep-
resentative and the other methods narrowed with increase in 
the number of selected samples because the corresponding 
classifiers then had sufficient information to more accurately 
choose samples. We also found that the AVG-F1 values of 
Density * Entropy and TKR were similar and higher than 

Fig. 2   The performance of dif-
ferent sampling methods

Table 2   Relation between the number of samples in optional set |X| 
and the run time

The number of samples in optional set (X) The run-
ning time 
(s)

200 0.147
400 0.342
600 0.544
800 0.867
1000 1.286
2000 3.817
4000 13.267

Fig. 3   Relation between the 
number of samples in optional 
set |X| and the run time
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those of random sampling and uncertainty sampling. This is 
because the latter methods struggle to solve problems featur-
ing outliers, whereas TKR and Density * Entropy can handle 
them. The AVG-F1 value of TKR was higher than that of 
Density * Entropy, the second-best method, by 3.7% because 
the former could select important samples along the bound-
ary of the categories whereas the latter could not. Note that 
the AVG-F1 value of Top K representative for 100 selected 
samples was 0.47, whereas random sampling attained this 
value for 200 samples, and uncertainty sampling needed 
400 samples obtain the same value. That is to say that our 
proposed method can reduce labeling work by half while 
delivering the same performance as the other methods. This 
shows that our proposed method can save both the time and 
human resources needed to label samples.

In general, such traditional methods as uncertainty sam-
pling perform worse than random selecting on short texts. 
We found that uncertainty sampling tended to select more 
outliers in a database of short texts. This had a negative 
effect on classification performance because the short text 
dataset is usually a sparse dataset; that is, some words in 
the samples have never appeared before. These samples are 

at large distances from others, and classifiers cannot obtain 
the information needed from the other samples to classify 
them. According to uncertainty sampling, these samples are 
selected as training samples and make a small contribution 
to the classification process. Thus, uncertainty sampling 
yields poor performance on short texts. However, our pro-
posed method and Density * Entropy do not encounter this 
problem because they choose samples that can represent the 
entire dataset. As outliers have low similarity with other 
samples in a given dataset, the samples obtained by our pro-
posed method are less likely to be outliers.

4.5 � Time efficiency of top K representative

This part of our experiment was intended to verify the effi-
ciency of the optimization algorithm proposed in this paper 
and gauge its complexity. We also used the Snippets dataset 
in this experiment. There are two parameters in the optimi-
zation algorithm that can influence efficiency. The first is 
the total number of samples, i.e., the number of samples in 
the optional set, denoted by |X|, and the second parameter is 
the number of samples we want to select from all samples, 
denoted by m.

The relation between the number of samples in optional 
set |X| and the run time is shown in Table 2 and Fig. 3. 
We fixed m to 100, i.e., m = 100 . As show in the above 
results, the run time was close to the quadratic of |X|, which 
increased 2.96 times from 1000 to 2000, and 3.47 times from 
2000 to 4000. The quadratic relation was not obvious when 
the value of |X| was low because program initialization and 
other factors occupied part of the necessary time. However, 
with increase in the number of samples, the common part 
[Common to/between what? Please specify.] of the run time 
decreased, because of which the curve of |X| with respect to 
s was close to the quadratic function.

We conducted another experiment to explore the relation-
ship between the number of target samples m and run time. 
The results are shown in Table 3 and Fig. 4. We fixed the 

Table 3   Relation between the 
number of samples we selected 
m and the run time

The number of 
target samples (m)

The run-
ning time 
(s)

100 19.221
200 20.823
300 22.416
400 23.211
500 24.209
800 26.176
1000 26.863
1500 30.166
2000 31.664
3000 34.626

Fig. 4   The relation between the 
number of samples we selected 
m and the running time
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number of samples in the optional set to |X| = 12387 . The 
figure shows that run time s and the number of target sam-
ples m had a linear relationship over time. This is because 
the similarities among all samples were calculated in the 
initialization process, which can consume a large amount 
of time even if the number of target samples is small. For 
example, it took approximately 19.221 s to select only 100 
samples because most of the time was consumed by initiali-
zation. The run time increased to 34.626 s when the number 
of target samples was increased to 30,000. The linear rela-
tionship was apparent when the number of target samples 
was greater than 100. In this case, the run time increased by 
1–2 s every 100 samples.

In general, it is clear from the experiment that the com-
plexity of the optimization algorithm is O(k ∗ m ∗ |X|2) . The 
run time of our algorithm for a sample size of approximately 
10,000 was less than 100 s, an acceptable result. Thus the 
proposed algorithm can be applied to practical problems.

5 � Conclusion and future work

In this paper, we propose a method of selecting samples for 
manual labeling. The proposed method can be applied in 
different fields, for example, text classification, sentiment 
classification and so on to reduce the labeling workload of 
datasets. Firstly, we propose a series of definitions of rep-
resentativeness. And then we convert the selection problem 
to find the subset which have the highest representativeness. 
As this is an NP-hard problem, and we do not need a precise 
result, we propose a greedy algorithm to solve it.

We did not consider updating the model following man-
ual labeling. Therefore, sample selection was unsupervised. 
Further work can be done here by using manually labeled 
samples to improve the model, or to combine them with 
uncertainty sampling to implement a method for distribution 
estimation and uncertainty estimation. Although the greedy 
algorithm we used is efficient, the final result is not a precise 
answer. Further research in the area can use the hill-climbing 
algorithm, the genetic algorithm, or other algorithms to yield 
better results and improve sampling performance.
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