
Vol.:(0123456789)1 3

Int. J. Mach. Learn. & Cyber. (2018) 9:199–215
DOI 10.1007/s13042-017-0739-8

ORIGINAL ARTICLE

Bat algorithm with triangle-flipping strategy for numerical
optimization

Xingjuan Cai1 · Hui Wang2 · Zhihua Cui1 · Jianghui Cai1 · Yu Xue3 · Lei Wang4

Received: 15 June 2017 / Accepted: 27 October 2017 / Published online: 13 November 2017
© Springer-Verlag GmbH Germany 2017

designs are introduced. The optimization performance is
verified by CEC2013 benchmarks in those designs against
the standard BA. Simulation results show that the hybrid
triangle-flipping strategy is superior to other algorithms.

Keywords Bat algorithm · Random triangle-flipping
strategy · Directing triangle-flipping strategy · Hybrid
triangle-flipping strategy

1 Introduction

Bio-inspired computation [1] is a collection for stochastic
optimization algorithms inspired by biological phenomenon,
such as particle swarm optimization [2, 3], brain storm opti-
misation [4], ant colony optimization [5, 6], fruit fly opti-
mization algorithm (FOA) [7], elephant herding optimiza-
tion [8], artificial physics optimization [9], social emotional
optimisation algorithm [10], cuckoo search [11–14], firefly
algorithm (FA) [15–18], and artificial bee colony (ABC)
[19–21].

Bat algorithm (BA) [22] is a novel population-based
stochastic bio-inspired computation inspired by bat behav-
iors. In the standard BA, bats fly in the search domain to
seek food and avoid the emergent dangers from other bats,
especially for the largest bat. Since the development of BA,
different BA variants have been proposed to improve the
performance. Li and Zhou [23] proposed a complex-valued
bat algorithm where each bat is coded in complex number.
The real and imaginary parts are updated as the same as
the standard version. Due to this two-dimensional charac-
teristic, the diversity and performance are both improved
significantly. Saha et al. [24] introduced opposition-based
learning (OBL) strategy into bat algorithm. The opposite
position of each bat is investigated, then, the next population

Abstract Bat algorithm (BA) is a novel population-based
evolutionary algorithm inspired by echolocation behavior.
Due to its simple concept, BA has been widely applied
to various engineering applications. As an optimization
approach, the global search characteristics determine the
optimization performance and convergence speed. In BA,
the global search capability is dominated by the velocity
updating. How to update the velocity of bats may seriously
affect the performance of BA. In this paper, we propose
a triangle-flipping strategy to update the velocity of bats.
Three different triangle-flipping strategies with five different

 * Zhihua Cui
 zhihua.cui@hotmail.com

 Xingjuan Cai
 xingjuancai@163.com

 Hui Wang
 huiwang@whu.edu.cn

 Jianghui Cai
 jianghui@tyust.edu.cn

 Yu Xue
 xueyu_123@nuaa.edu.cn

 Lei Wang
 wanglei_tj@126.com

1 School of Computer Science and Technology, Taiyuan
University of Science and Technology, Taiyuan 030024,
Shanxi, China

2 Jiangxi Province Key Laboratory of Water Information
Cooperative Sensing and Intelligent Processing, Nanchang
Institute of Technology, Nanchang 330099, China

3 School of Computer and Software, Nanjing University
of Information Science and Technology, Nanjing 210044,
China

4 Department of Control Science and Engineering, Tongji
University, Shanghai 201804, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-017-0739-8&domain=pdf

200 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

is selected from the current population and their opposite
positions under the evaluation process of objective function.
Chaos is a character of nonlinear systems and is generated
randomly by simple deterministic systems. Currently, cha-
otic sequences are always applied to evolutionary algorithms
to increase the global search capability. Gandomi and Yang
[25] implemented several general chaotic sequences in BA,
such as frequency, velocity disturbance, loudness and pulse
emission rate. Similarly, Jordehi [26] also used chaos to
improve the performance of BA.

To improve the local search capability, four differen-
tial evolutionary strategies [27, 28]: DE/rand/1/bin, DE/
randToBest/1/bin, DE/best/2/bin and DE/best/1/bin were
employed to replace the original local search pattern in the
standard BA [29]. To enhance the local search region, the
historical best position is replaced by one position obtained
with optimal forage strategy [30].

Different from the local search strategy, the global search
capability is dominated by the velocity update equation,
which is divided into two different parts: inertia and avoid-
ance. The inertia is employed to describe the influence of
the previous velocity, and the avoidance is used to collide
with the largest bat. Generally, the velocity update equation
plays an important role in directing the search for each bat.
Many improvements aimed to change the current version.
Xie et al. [31] used a random part associated with Lévy
distribution to replace the avoidance. Khan et al. [32] added
a new item associated with personal historical best position
in the velocity update equation to improve the convergence
speed. Furthermore, Bahmani-Firouzi and Azizipanah-Abar-
ghooee designed four different velocity updating strategies
to provide a balance between exploitation and exploration
[33]. The swarm historical best position also plays an impor-
tant role for many algorithms, for example, Xue et al. [34]
incorporated this position to improve the performance of
articial bee colony algorithm for global optimization. Simi-
larly, Jaddi et al. [35] recognized the personal historical best
position and the swarm historical best position as exploita-
tion and exploration, respectively. Then, a different balance
strategy was proposed to weight the two positions. Inspired
by PSO [36, 37], the inertial weight was introduced into the
velocity update equation [38, 39].The inertia influence can
be controlled when the bats fall into local minima. With
the control theory, the velocity update equation with inertia
weight can be viewed as a special case of oscillation ele-
ment, and one selection strategy is designed [40]. Further-
more, Yilmaz and Kucuksille [41] added a random item with
two randomly selected bats to explore more search space.

Different from the inertia weight, some researchers sug-
gest removing the inertia part so that the bats can fly with
more selections. To increase the search space, the frequency
is replaced by a random number generated with Lévy distribu-
tion [42]. Xie et al. [43] also incorporated the Lévy flight in

the velocity update equation, but four randomly selected bats
were used to guide the search pattern. Zhu et al. [44] replace
the swarm historical best position with the mean best position
to enhance the convergence speed.

Due to its simple concept, BA has been widely applied to
many problems. Networks in real world more or less have
overlapping community structure [45], however, Ma et al.
[46] found that traditional community detection algorithms
assumed that one vertex can only belong to one community.
To solve this problem, Hassan et al. [47] designed a discrete
bat algorithm to solve it, and experiments on real life networks
show the ability of the proposed algorithm. Satellite images
are a reliable source for investigating the temporal changes in
crop cultivated areas, Senthilnath et al. [48] proposed a novel
bat algorithm (BA)-based clustering approach for solving
crop type classification problems using a multispectral satel-
lite image. There are still many applications, such as visual
tracking [49], distribution feeder reconfiguration [50], and
redundancy allocation problem [51], due to the page limita-
tion, please refer to the corresponding references.

Although there are many modifications for velocity update
equations, however, there is still some room for it. In this
paper, we provide several different velocity update equations
to improve the performance.

The rest of this paper is organized as follows: Sect. 2 pro-
vides a brief description of the standard BA. Some analyses
for the standard BA are illustrated in Sect. 3. Our proposed
approach is presented in Sect. 4. Numerical experiments on
the CEC2013 benchmark set are conducted in Sect. 5. Finally,
some conclusions are given in Sect. 6.

2 Standard bat algorithm

In this paper, we only consider the following problem:

where E = [xmin, xmax]
D ⊆ RD is the domain space, and

xmin ⩽ xk ⩽ xmax(k = 1, 2,… ,D).

Assume that there are N virtual bats, and the ith bat
(i = 1,2,…,N) can be represented as

w h e r e �⃗xi(t) = (xi1(t), xi2(t), ..., xik(t), ..., xiD(t)) a n d
�⃗vi(t) = (vi1(t), vi2(t), ..., vik(t), ..., viD(t)) are the position and
velocity of the ith bat in generation t, respectively, frequency
f ri(t), loudness Ai(t) and emission rate ri(t) are three required
parameters.

In the next generation, the velocity is updated as follows:

where �⃗p(t) = (p1(t), p2(t),… , pk(t),… , pD(t)) is the best
position found so far by the entire swarm. Equation (3) can
be viewed as a combination of the inertia part vik(t) and

(1)min f (x⃗), [x⃗ = (x1, x2,… , xk,… , xD) ∈ E],

(2)< �⃗xi(t), �⃗vi(t), f ri(t),Ai(t), ri(t) >,

(3)vik(t + 1) = vik(t) + (xik(t) − pk(t)) ⋅ f ri(t),

201Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

the influence of �⃗p(t). The frequency f ri(t) is calculated as
follows:

where f rmax and f rmin are the maximum and minimum val-
ues of frequency, respectively, and rand1 is a random number
uniformly distributed within [0, 1].

To reflect the bat decision, the position is changed with
some randomness. Let rand2 be a random number uni-
formly distributed within [0, 1], if rand2 < ri(t) is satisfied,
the ith bat will execute the following global search pattern:

Otherwise, the local search pattern is adopted as
follows:

where �ik is a random number generated by uniform distribu-
tion within [–1], A(t) is the average loudness of all bats, and

A f t e r t h e �⃗x
�

i
(t + 1) = (x

�

i1
(t + 1), x

�

i2
(t + 1),… ,

x
�

ik
(t + 1),… , x

�

iD
(t + 1)) is obtained by Eqs. (5) and (6),

the new �⃗xi(t + 1) is updated as follows:

where rand3 is a random number generated by uniform dis-
tribution within [–1]. Similar with cuckoo search [52, 53],
Eq. (8) implies that the position is updated only when the
following two conditions are required: (1) a better position
is obtained; and (2) the probability Ai(t) is satisfied. If the
position of the ith bat is updated, the corresponding loudness
and emission rate ri(t + 1) are replaced as follows:

where 𝛼 > 0 and 𝛾 > 0 are two predefined parameters, and
A(0) and r(0) are two initial values for loudness and emission
rate, respectively.

(4)f ri(t) = f rmin + (f rmax − f rmin) ⋅ rand1,

(5)x
�

ik
(t + 1) = xik(t) + vik(t + 1).

(6)x
�

ik
(t + 1) = pk(t) + �ik ⋅ A(t),

(7)A(t) =

∑n

i=1
Ai(t)

n
.

(8)

�⃗xi(t + 1) =

{

�⃗x
�

i
(t + 1), if rand3 < Ai(t) ∧ f (�⃗x

�

i
(t + 1)) < f (�⃗xi(t))

�⃗xi(t), otherwise
,

(9)Ai(t + 1) = �Ai(t),

(10)ri(t + 1) = r(0) ⋅ (1 − e−�t),

The pseudo code of the standard bat algorithm is listed
as follows:

Begin
For each bat, initialise the position, velocity and parameters;
While (stop criterion is met)

Randomly generate the frequency for each bat with Eq. (4);
Update the velocity for each bat with Eq.(3);

If 2 ()irand r t

Update the

<

temp position for corresponding bat with Eq.(5);

Else
Update the temp position for corresponding bat with Eq.(6);

End
Evaluate its quality/fitness;
Re-update the position for corresponding bat with Eq.(8);
If the position is updated

Update the loudness and emission rate with Eqs.(9) and (10), respectively;

End
Rank the bats and save the best position;

End
Output the best position;

End

Algorithm1: Standard Bat Algorithm

3 Analysis for the standard bat algorithm

We only consider the global search pattern (Eqs. 3, (5), and
will ignore the local search pattern (Eq. 6). From Eq. (8),
the new position is updated when two conditions are satis-
fied (rand3 < Ai(t) and f (�⃗x�

i
(t + 1)) < f (�⃗xi(t))). It means that

some bats in the swarm are not updated in some genera-
tions. However, if the position is not updated, the velocity
should be zero because of �⃗vi(t) = �⃗xi(t) − �⃗xi(t − 1) = 0. Under
this circumstance, the corresponding velocity and position
update equations should be changed as follows:

Based on Eqs. (11) and(12), we can get

To clearly illustrate the characteristics of Eq. (13), Fig. 1
presents the possible search manners. As seen, the search
range of Eq. (13) is small. This is not beneficial for global

(11)vik(t + 1) = (xik(t) − pk(t)) ⋅ fi(t),

(12)xik(t + 1) = xik(t) + vik(t + 1).

(13)xik(t + 1) = xik(t) + (xik(t) − pk(t)) ⋅ fi(t).

202 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

search. To tackle this issue, we propose a triangle-flipping
strategy to extend the search range of BA.

4 Bat algorithm with triangle-flipping strategy

To avoid such problem, we can consider the following
manner:

where �⃗xm(t) and �⃗xu(t) are two randomly selected positions.
Due to �⃗xi(t), �⃗xm(t) and �⃗xu(t) have different fitness values,
there are six different manners presented in Fig. 2.

To avoid the confusion, three positions are re-typed
as: �⃗xbest, �⃗xmid and �⃗xworst, and it means

Figure 2a can be regarded as a heuristic search pattern,
the vector ���������������⃗xbestxworst is turned to �������������⃗xbestxmid, while the final

(14)�⃗xi(t + 1) = �⃗xi(t) + (�⃗xm(t) − �⃗xu(t)) ⋅ fi(t),

(15)f (�⃗xbest(t)) < f (�⃗xmid(t)) < f (�⃗xworst(t)).

..
.

..
.()p t
r ()j

x t
r

()
ix
tr

(
()

()
)*

i

i

x
t

p t
fr

−
r

r

(() ())*
k

k

x t p t fr
−

r
r

(() ())*
j

j

x t p t fr
−

r
r

()kx t
r

Fig. 1 Possible search manners of Eq. (13)

Fig. 2 Six different manners for
Eq. (14) (()) (()) (())best mid worstf t f x t f x t< < (15)

worstxr

bestxr

midxr
xr r r

'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

worstxr

bestxr

midxr

'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

(a) (b)

worstxr bestxr

midxr 'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

worstxrbestxr

midxr 'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

(c) (d)

worstxr

bestxrmidxr

'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

worstxr

bestxr midxr

'xr
.

. .

.

λ
1

λ−
λ

1

λ− S
.

(e) (f)

203Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

point from �⃗xworst move to �⃗xmid, this process improves the
performance significantly because f (�⃗xmid(t)) < f (�⃗xworst(t)).
With the same method, we can turn the circle further to next
point �⃗x′, but how to compute this point? For convenience,
we assume rational, in other words, the following equation
is satisfied:

It means

Suppose fi(t) =
1−�

�
, we have

With the same methods, Fig. 2c, e are also illustrated as:

As a heuristic search pattern, Eqs. (18)–(20) can be
viewed as a local search pattern, while the last three figures
can be viewed as the global search patterns listed as follow:

1. Directing triangle-flipping strategy

It is obvious that the Eqs. (18)–(20) are meta-heuristic
strategies aiming to improve the local search capability.
Therefore, we call all of them (please refer to Fig. 2a, c, e)
are directing triangle-flipping strategy. With this manner,
�⃗xm(t) is better than �⃗xu(t). However, this strategy may mislead
a wrong search direction, because we always want to provide
a local search.

2. Random triangle-flipping strategy

For Eqs. (21)–(23), they provide an exploration capabil-
ity. Therefore, to avoid the premature convergence, �⃗xm(t)
and �⃗xu(t) are two randomly selected positions, and we call it
random triangle-flipping strategy.

3. Hybrid triangle-flipping strategy

Generally, for an evolutionary algorithm, the global
search capability and local search capability should be
balanced dynamically. In the first period, the algorithm
mainly focuses on exploring the potential area with more

(16)(1 − 𝜆)�⃗xmid + 𝜆�⃗xbest = (1 − 𝜆)�⃗xworst + 𝜆�⃗x�.

(17)�⃗x� = �⃗xbest +
1 − 𝜆

𝜆
(�⃗xmid − �⃗xworst).

(18)�⃗x� = �⃗xbest + (�⃗xmid − �⃗xworst) ⋅ fi(t).

(19)�⃗x� = �⃗xmid + (�⃗xbest − �⃗xworst) ⋅ fi(t),

(20)�⃗x� = �⃗xworst + (�⃗xbest − �⃗xmid) ⋅ fi(t).

(21)�⃗x� = �⃗xbest + (�⃗xworst − �⃗xmid) ⋅ fi(t),

(22)�⃗x� = �⃗xmid + (�⃗xworst − �⃗xbest) ⋅ fi(t),

(23)�⃗x� = �⃗xworst + (�⃗xmid − �⃗xbest) ⋅ fi(t).

probability to contain the optimal solutions, while in the
late period, the algorithm prefers to improve the solution
quality. With this manner, we divide the total search period
into two sections:

If t < 𝜆 ⋅ L arg est_Generation

The random triangle-flipping strategy is performed;
Else
One special directing triangle-flipping strategy is per-

formed as follows:

End
where � is a threshold parameter used to divide the total

generation. With this manner, only one random position
�⃗xm(t) should be required.

Note 1 In above mentioned three triangle-flipping strat-
egies, all of them will occur in those bats with their posi-
tions which are not updated in previous generation. For
other bats, their velocities and positions are still updated
by Eqs. (3) and (5). Is it possible for all bats to update their
velocities and positions with triangle-flipping strategies?
In the following experiment, we will consider such cases.

Note 2 Due to the performance of the global historical
best position �⃗p(t), the triangle-flipping manners will pro-
vide a global search manner because only Eqs. (18)–(20)
are satisfied. Therefore, to provide a large exploration
capability, the following manner is considered:

where rand is a random number generated by uniform
distribution.

Algorithm2: Bat Algorithm with Triangle-Flipping Strategy

Begin
For each bat, initialise the position, velocity and parameters;
While (stop criterion is met)

Randomly generate the frequency for each bat with Eq.(4);
Update the velocity for each bat with different triangle-flipping strategy (directing, random and
hybrid);

If 2 ()irand r t<

Update the temp position for corresponding bat with Eq.(5);

Else
Update the temp position for corresponding bat with Eq.(6);

End
Evaluate its quality/fitness;

Re-update the position for corresponding bat with Eq.(8);
If the position is updated

Update the loudness and emission rate with Eqs.(9) and(10), respectively;

End
Rank the bats and save the best position;

End
Output the best position;

End

(24)�⃗vi(t + 1) = (�⃗p(t) − �⃗xm(t)) ⋅ f ri(t),

(25)�⃗xi(t + 1) = �⃗xi(t) + �⃗vi(t + 1).

(26)xgk(t + 1) = xmin + (xmax − xmin) ⋅ rand,

204 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

For a given problem f, we assume that O(f) is the com-
putational complexity of its fitness evaluation function.
Therefore, the computational complexity of the standard
BA is O(Gmax × N × f), where Gmax is the maximum num-
ber of generations, and N is the population size. Com-
pared to the standard BA, our approach does not increase
extra loop operations. So, both of them have the same
computational time complexity.

5 Numerical comparison

The simulation is performed on the CEC2013 benchmark
set [54], which contains 28 functions for real-parameter
optimization (please refer to Table 1). These functions
can be divided into three groups:uni-modal functions
(F1–F5), multi-modal functions (F6–F20), and composi-
tion functions (F21–F28).

The simulation experiments is performed in Matlab
2011 environment. The population size, the maximum
number of fitness evaluations, and the dimensional size
are set to 100, 3.0E+05, 30, respectively. For each test
function, each algorithm will run 51 times.

5.1 Determine of threshold parameter

To test the performance of our proposed hybrid triangle-
flipping strategy, firstly, we focus on the threshold parameter
value of �. The parameters used in bat algorithm with hybrid
triangle-flipping strategy are listed in Table 2.

To provide a deep insight, the Golden section method
is employed. The initial interval is [0.0,1.0], and 13 round
experiments are conducted. The rankings achieved by the
Friedman test show the corresponding index (the small-
est ranking value means the best performance of the cor-
responding algorithm) [41]. Table 3 presents the ranking
values under different values of �. It can be seen that the final
threshold parameter � is obtained by the 13th round test and
the best � is equal to 0.258.

5.2 Comparison of different triangle-flipping strategies

In this section, we will compare the performance of different
triangle-flipping strategies:

• Bat algorithm with directing triangle-flipping strategy
(BA-DTFS);

• Bat algorithm with directing triangle-flipping strategy for
all bats without conditions (see Note 1) (BA-DTFS1);

• Bat algorithm with random triangle-flipping strategy
(BA-RTFS);

• Bat algorithm with random triangle-flipping strategy for
all bats without conditions(BA-RTFS1);

• Bat algorithm with hybrid triangle-flipping strategy (BA-
HTFS);

Table 4 provides the mean error function values
achieved by BA-DTFS, BA-DTFS1, BA-RTFS, BA-RTFS1
and BA-HTFS, where w/t/l means that BA-HTFS wins in
w functions, ties in t functions, and loses in l functions,
compared with its competitors. From the results, BA-HTFS
performs better than BA-DTFS and BA-DTFS1 on 26 func-
tions and 27 functions, respectively, while BA-RTFS and
BA-RTFS1 outperforms BA-HFTS on 0 function and 8
functions.

For uni-modal functions (F1–F5), the hybrid triangle-
flipping strategy performs better than the directing triangle-
flipping strategy and the random triangle-flipping strategy.
Especially for F1 and F4, BA-HTFS achieves much better
solutions than other four algorithms. For multi-modal func-
tions (F6–F20), though the hybrid triangle-flipping strategy
can help BA find more accurate solutions than the directing
triangle-flipping strategy and the random triangle-flipping
strategy, these improvements are not obvious on most test
cases. For F10 and F16, BA-HTFS can obtain reasonable
solutions, while other four algorithms fall into local minima
(except for BA-RTFS1 on F16). For composition functions
(F21–F28), all BAs hardly search reasonable solutions, but
BA-HTFS can find more accurate solutions than other four
algorithms.

Table 5 presents the results of Wilcoxon test between
BA-HTFS and other four algorithms [55, 56]. The p val-
ues for BA-DTFS, BA-DTFS1 and BA-RTFS are less than
the significant level 0.05. It means the performance of BA-
HTFS is significantly better than BA-DTFS, BA-DTFS1 and
BA-RTFS.

Table 6 shows the mean rankings achieved by Friedman
test for five algorithms [57]. A smaller ranking value means
that the corresponding algorithm is better. From the results,
the performances of five BAs are ranked as follows: BA-
DTFS, BA-DTFS1, BA-RTFS, BA-RTFS1, and BA-HYFS.

205Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

The highest ranking demonstrates that BA-HTFS is the best
algorithm among five algorithms.

5.3 Comparison of BA-HTFS with other bat algorithms

To further verify the performance of BA-HTFS, we compare
BA-HTFS with four other algorithms. The involved algo-
rithms are listed as follows.

• Standard bat algorithm (SBA);
• Chaotic bat algorithm (CBA) [25];
• Bat algorithm with lévy distribution (LBA1) [31];
• Bat algorithm with lévy distribution (LBA2) [42];
• Bat algorithm with hybrid triangle-flipping strategy (BA-

HTFS).

For SBA, CBA, LBA1 and LBA2, we use the same
parameter settings as in their corresponding references.
Table 7 provides the mean error function values achieved
by SBA, CBA, LBA1, LBA2 and BA-HTFS (the dynamic
comparison can be viewed in Fig. 3). From the results,
BA-HTFS performs better than SBA and CBA on 26
functions and 22 functions, while LBA1 and LBA2
outperforms BA-HTFS on 4 functions and 5 functions,
respectively.

Table 1 Summary of the
CEC2013 benchmark set

No. Function Optimal fitness

Uni-modal functions 1 Sphere function − 1400
2 Rotated high conditioned elliptic function − 1300
3 Rotated Bent Cigar function − 1200
4 Rotated discus function − 1100
5 Different powers function − 1000

Basic multi-modal functions 6 Rotated Rosenbrock’s function − 900
7 Rotated Schaffers F7 function − 800
8 Rotated Ackley’s function − 700
9 Rotated Weierstrass function − 600

10 Rotated Griewank’s function − 500
11 Rastrigin’s function − 400
12 Rotated Rastrigin’s function − 300
13 Non-continuous rotated Rastrigin’s function − 200
14 Schwefel’s function − 100
15 Rotated Schwefel’s function 100
16 Rotated Katsuura function 200
17 LunacekBi_Rastrigin function 300
18 Rotated LunacekBi_Rastrigin function 400
19 Expanded Griewank’splusRosenbrock’s function 500
20 Expanded Scaffer’s F6 function 600

Composition functions 21 Composition function 1 (n = 5, rotated) 700
22 Composition function 2 (n = 3, unrotated) 800
23 Composition function 3 (n = 3, rotated) 900
24 Composition function 4 (n = 3, rotated) 1000
25 Composition funaction 5 (n = 3, rotated) 1100
26 Composition function 6 (n = 5, rotated) 1200
27 Composition function 7 (n = 5, rotated) 1300
28 Composition function 8 (n = 5, rotated) 1400

Table 2 Parameter settings for
bat algorithm Search Domain [–100, 100]D

Frequency [0.0, 5.0]
A(0) 0.95
r(0) 0.9
� 0.99
� 0.9

206 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

Table 3 Experimental results
for threshold �with golden
section

207Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

The standard BA can hardly find reasonable solutions
on all test functions. For CBA, it only achieves promising
solutions on F16. LBA1 and LBA2 obtain good solutions
on two functions F1 and F5. BA-HTFS can find reason-
able solutions on five functions F1, F4, F5, F10, and F16.
For composition functions, all algorithms fall into local
minima.

Tables 8 and 9 present the statistical results achieved
by Wilcoxon and Friedman tests. From the results, the
performance of the five algorithms ranks as follows: SBA,
LBA1, CBA, LBA2and BA-HTFS. The highest ranking
demonstrates that BA-HTFS is the best algorithm among
five algorithms. The p values show that BA-HTFS is sig-
nificantly better than SBA, CBA, LBA1 and LBA2.

Table 4 Comparison results
for different triangle-flipping
strategies

Functions BA-DTFS BA-DTFS1 BA-RTFS BA-RTFS1 BA-HTFS

F1 1.80E+00 1.90E+00 2.38E+00 6.38E−03 9.63E−05
F2 1.64E+06 1.68E+06 1.31E+06 7.16E+04 4.22E+04
F3 3.57E+08 2.77E+08 1.70E+08 2.12E+07 7.75E+06
F4 2.16E+04 1.35E+04 8.51E+02 1.97E+00 8.90E−02
F5 3.54E−01 3.68E−01 6.76E−01 1.27E−02 1.11E−03
F6 4.78E+01 6.12E+01 4.90E+01 1.91E+01 6.72E+00
F7 3.34E+02 1.79E+04 2.13E+02 1.06E+02 1.06E+02
F8 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01
F9 3.55E+01 3.65E+01 3.53E+01 2.95E+01 2.98E+01
F10 1.17E+00 1.20E+00 1.32E+00 5.25E−01 7.79E−02
F11 6.83E+02 6.24E+02 4.64E+02 3.74E+02 3.45E+02
F12 6.55E+02 6.33E+02 4.75E+02 3.69E+02 3.52E+02
F13 6.32E+02 7.25E+02 5.18E+02 3.44E+02 3.58E+02
F14 4.74E+03 4.70E+03 4.96E+03 4.50E+03 4.27E+03
F15 4.80E+03 4.77E+03 4.78E+03 4.34E+03 4.44E+03
F16 2.11E+00 2.16E+00 2.04E+00 9.75E−01 3.50E−01
F17 4.60E+02 7.70E+02 4.22E+02 2.12E+02 1.72E+02
F18 4.19E+02 7.61E+02 3.92E+02 2.06E+02 1.41E+02
F19 2.92E+01 5.81E+01 2.35E+01 9.86E+00 7.14E+00
F20 1.46E+01 1.47E+01 1.46E+01 1.31E+01 1.26E+01
F21 3.90E+02 3.58E+02 3.37E+02 3.40E+02 3.33E+02
F22 6.00E+03 5.79E+03 5.93E+03 5.40E+03 5.49E+03
F23 6.09E+03 5.79E+03 6.10E+03 5.60E+03 5.55E+03
F24 3.35E+02 3.52E+02 3.18E+02 2.93E+02 2.95E+02
F25 3.52E+02 3.42E+02 3.48E+02 3.24E+02 3.27E+02
F26 2.04E+02 2.08E+02 2.18E+02 2.03E+02 2.04E+02
F27 1.34E+03 1.41E+03 1.32E+03 1.16E+03 1.13E+03
F28 4.84E+03 4.77E+03 3.91E+03 1.94E+03 2.25E+03
w/t/l 26/2/0 27/1/0 27/1/0 19/1/8

Table 5 Wilcoxon Test for
different triangle-flipping
strategies

BA-HTFS vs. p value

BA-DTFS 0.000
BA-DTFS1 0.000
BA-RTFS 0.000
BA-RTFS1 0.093

Table 6 Friedman test for
different triangle-flipping
strategies

Algorithm Rankings

BA-DTFS 4.05
BA-DTFS1 4.20
BA-RTFS 3.54
BA-RTFS1 1.84
BA-HTFS 1.38

208 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

6 Conclusions and future work

Swarm intelligence is a phenomenon to describe the
emergent behaviors for some species. How to utilize this
emergent intelligence is one crucial problem for swarm

intelligence. Different from particle swarm optimization
and ant colony optimization, BA can be viewed as a new
attempt. In BA, the position is updated only when a better
position is found. Under this rule, the bats will be sus-
pended when a better position is not found. To tackle this
issue, this paper proposes several triangle-flipping strate-
gies to improve the performance of BA. Simulation results
show the hybrid triangle-flipping strategy is superior to
other algorithms.

Future research topic includes self-adaptive search strat-
egy and other practical applications.

In this paper, bat algorithm with hybrid triangle-flipping
strategy achieves the best performance, this phenomenon
implies that how to hybrid the different triangle-flipping
strategies may influence the performance significantly.
According to the No Free Lunch Theorem, the self-adaptive
hybrid strategy should be considered to further improve the
robustness.

How to apply BA to solve some hot research topics is
very important. For example, the Internet of Things is a
network in cyber-physical-social space connected with
massive number of physical devices, sensors and build-
ings. There are many optimization problems required to
be handled. Wang et al. [58] designed a back propagation
neural network model to establish the relationship between
solar radiation signal and air temperature error. Zhang
et al. [59] proposed optimal cluster-based mechanisms for
energy conservation with multiple mobile sinks. For Bar-
rier coverage, relocation of sensors with minimum num-
ber of mobile sensors and formation of k-barrier coverage
with minimum energy cost were optimized [60]. How to
ensure the security of data sharing within a group and how
to efficiently share the outsourced data in a group man-
ner are formidable challenges? By taking advantage of the
symmetric balanced incomplete block design, Shen et al.
[61] presented a novel block design-based key agreement
protocol that supports multiple participants. In our future
work, how to modify BA to optimize these problems will
be considered.

Table 7 Comparison results for BA-HTFS and other four bat algo-
rithms

Function SBA CBA LBA1 LBA2 BA-HTFS

F1 1.96E+00 2.30E+00 8.42E−01 3.59E−01 9.63E−05
F2 3.69E+06 4.48E+06 3.54E+06 2.23E+06 4.22E+04
F3 3.44E+08 6.71E+08 4.78E+08 3.57E+08 7.75E+06
F4 3.20E+04 3.00E+04 1.45E+04 6.85E+03 8.90E−02
F5 5.86E−01 1.73E+00 4.74E−01 2.76E−01 1.11E−03
F6 5.63E+01 6.29E+01 5.07E+01 4.85E+01 6.72E+00
F7 2.16E+02 2.42E+02 1.77E+02 2.00E+02 1.06E+02
F8 2.09E+01 2.10E+01 2.09E+01 2.10E+01 2.09E+01
F9 3.57E+01 3.52E+01 3.40E+01 3.62E+01 2.98E+01
F10 1.32E+00 1.48E+00 1.23E+00 1.07E+00 7.79E-02
F11 4.07E+02 4.27E+02 1.49E+02 3.16E+01 3.45E+02
F12 4.06E+02 4.30E+02 7.42E+02 7.18E+02 3.52E+02
F13 4.37E+02 4.36E+02 5.59E+02 5.11E+02 3.58E+02
F14 4.78E+03 2.62E+03 3.17E+03 1.15E+03 4.27E+03
F15 4.89E+03 3.87E+03 4.76E+03 4.83E+03 4.44E+03
F16 2.16E+00 6.06E−01 1.33E+00 1.54E+00 3.50E−01
F17 8.92E+02 2.74E+02 3.36E+02 1.61E+02 1.72E+02
F18 9.44E+02 2.61E+02 3.28E+02 3.35E+02 1.41E+02
F19 6.07E+01 4.35E+01 1.89E+01 1.28E+01 7.14E+00
F20 1.44E+01 1.44E+01 1.47E+01 1.49E+01 1.26E+01
F21 3.38E+02 3.27E+02 3.22E+02 3.05E+02 3.33E+02
F22 5.94E+03 3.15E+03 3.32E+03 1.20E+03 5.49E+03
F23 5.77E+03 5.03E+03 6.03E+03 5.82E+03 5.55E+03
F24 3.15E+02 2.92E+02 3.22E+02 3.23E+02 2.95E+02
F25 3.49E+02 3.32E+02 3.53E+02 3.54E+02 3.27E+02
F26 2.00E+02 2.83E+02 3.54E+02 3.36E+02 2.04E+02
F27 1.28E+03 1.19E+03 1.33E+03 1.35E+03 1.13E+03
F28 3.42E+03 2.89E+03 4.68E+03 4.34E+03 2.25E+03
w/t/l 26/1/1 22/0/6 23/1/4 23/0/5

209Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

Fig. 3 The convergence curves
of different algorithms on the
benchmark set

F1 F2

F3 F4

F5 F6

0 500 1000 1500 2000 2500 3000
-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
x 10

7

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
x 10

11

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-2

0

2

4

6

8

10

12
x 10

4

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-1000

-500

0

500

1000

1500

2000

2500

3000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-1000

-500

0

500

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

210 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

F7 F8

F9 F10

F11 F12

0 500 1000 1500 2000 2500 3000
-1000

-500

0

500

1000

1500

2000

2500

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-679.06

-679.04

-679.02

-679

-678.98

-678.96

-678.94

-678.92

-678.9

-678.88

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-571

-570

-569

-568

-567

-566

-565

-564

-563

-562

-561

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-500

0

500

1000

1500

2000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
50

100

150

200

250

300

350

400

450

500

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

Fig. 3 (continued)

211Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

F13 F14

F15 F16

F17 F18

0 500 1000 1500 2000 2500 3000
150

200

250

300

350

400

450

500

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
200

200.5

201

201.5

202

202.5

203

203.5

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
400

600

800

1000

1200

1400

1600

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
400

600

800

1000

1200

1400

1600

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

Fig. 3 (continued)

212 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

F19 F20

F21 F22

F23 F24

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

12000

14000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
612.5

613

613.5

614

614.5

615

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
2000

3000

4000

5000

6000

7000

8000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
5800

6000

6200

6400

6600

6800

7000

7200

7400

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

Fig. 3 (continued)

213Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

Acknowledgements This work is supported by the National Natural
Science Foundation of China under no. 61663028, Natural Science
Foundation of Shanxi Province under Grant no. 201601D011045, and

International Science & Technology Cooperation Program of China
under Grant no. 2014DFR70280.

References

 1. Yang XS, Cui ZH, Xiao RB, Gandomi AH, Karamanoglu M
(2013) Swarm intelligence and bio-inspired computation: theory
and applications. Elsevier, London

 2. Eberhart RC, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Proceedings of the sixth international sym-
posium on micromachine and human science, Nagoya, Japan,
pp 39–43

 3. Wang H, Sun H, Li CH, Rahnamayan S, Pan JS (2013) Diversity
enhanced particle swarm optimization with neighborhood search.
Inf Sci 223:119–135

 4. Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation
and simulated annealing algorithm for continuous optimisation
problems. Int J Bio Inspir Comput 8(2):109–121

 5. Dorigo M (1992) Optimization, learning and natural algorithms,
PhD thesis, Politecnico di Milano, Italy

F25 F26

F27 F28

0 500 1000 1500 2000 2500 3000
1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
1400

1420

1440

1460

1480

1500

1520

1540

1560

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
2400

2450

2500

2550

2600

2650

2700

2750

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s

SBA
CBA
LBA1
LBA2
BA-HTFS

0 500 1000 1500 2000 2500 3000
3500

4000

4500

5000

5500

6000

6500

7000

Generation

A
ve

ra
ge

 B
es

t F
itn

es
s SBA

CBA
LBA1
LBA2
BA-HTFS

Fig. 3 (continued)

Table 8 Wilcoxon test for five
bat algorithms

BA-HTFS vs. p value

SBA 0.000
CBA 0.032
LBA1 0.004
LBA2 0.010

Table 9 Friedman test for five
bat algorithms

Algorithm Rankings

SBA 3.73
CBA 3.18
LBA1 3.39
LBA2 3.09
BA-HTFS 1.61

214 Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

 6. Stodola P, Mazal J (2016) Applying the ant colony optimisation
algorithm to the capacitated multi-depot vehicle routing problem.
Int J Bio Inspir Comput 8(4):228–233

 7. Zhang YW, Wu JT, Guo X, Li GN (2016) Optimising web service
composition based on differential fruit fly optimisation algorithm.
Int J Comput Sci Math 7(1):87–101

 8. Wang GG, Deb S, Gao XZ, Coelho LdS (2016) A new metaheuris-
tic optimization algorithm motivated by elephant herding behav-
ior. Int J Bio Inspir Comput 8(6):394–409

 9. Yang GJ, Zhang XL (2016) Application of extended artificial
physics optimisation in product colour harmony design. Int J
Comput Sci Math 7(4):350–360

 10. Guo ZL, Wang SW, Yue XZ (2016) Enhanced social emotional
optimisation algorithm with elite multi-parent crossover. Int J
Comput Sci Math 7(6):568–574

 11. Yang XS, Deb S (2010) Cuckoo search via Levy flights. In: Pro-
ceedings of world congress on nature and biologically inspired
computing, India, pp 210–214

 12. Cui ZH, Sun B, Wang GG, Xue Y, Chen JJ (2017) A novel ori-
ented cuckoo search algorithm to improve DV-Hop performance
for cyber-physical systems. J Parallel Distrib Comput 103:42–52

 13. Wang GG, Gandomi AH, Yang XS, Alavi AH (2016) A new
hybrid method based on krill herd and cuckoo search for global
optimization tasks. Int J Bio Inspir Comput 8(5):286–299

 14. Zhang MQ, Wang H, Cui ZH, Chen JJ (2017) Hybrid multi-objec-
tive cuckoo search with dynamical local search. Memet Comput.
https://doi.org/10.1007/s12293-017-0237-2

 15. Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm
with random attraction. Int J Bio Inspir Comput 8(1):33–41

 16. Wang H, Wang WJ, Zhou XY, Sun H, Zhao J, Yu X, Cui ZH
(2017) Firefly algorithm with neighborhood attraction. Inf Sci
282/283:374–387

 17. Gálvez A, Iglesias A (2016) New memetic self-adaptive firefly
algorithm for continuous optimisation. Int J Bio Inspir Comput
8(5):300–317

 18. Yu G (2016) An improved firefly algorithm based on probabilistic
attraction. Int J Comput Sci Math 7(6):530–536

 19. Wang H, Wu ZJ, Rahnamayan S, Sun H, Liu Y, Pan JS (2014)
Multi-strategy ensemble artificial bee colony algorithm. Inf
Sci 279:587–603

 20. Lu Y, Li RX, Li SM (2016) Artificial bee colony with bidirec-
tional search. Int J Comput Sci Math 7(6):586–593

 21. Yu G (2016) A new multi-population-based artificial bee colony
for numerical optimization. Int J Comput Sci Math 7(6):509–515

 22. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In:
International workshop on nature inspired cooperative strategies
for optimization. Granada, Spain, pp 65–74

 23. Li LL, Zhou YQ (2014) A novel complex-valued bat algorithm.
Neural Comput Appl 25(6):1369–1381

 24. Saha SK, Kar R, Mandal D, Ghoshal SP, Mukherjee V (2013)
A new design method using opposition-based BAT algorithm
for IIR system identification problem. Int J Bio Inspir Comput
5(2):99–132

 25. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput
Sci 5:224–232

 26. Jordehi AR (2015) Chaotic bat swarm optimization (CBSO).
Appl Soft Comput 26:523–530

 27. Xu ZX, Unveren A, Acan A (2016) Probability collectives
hybridised with differential evolution for global optimisation.
Int J Bio Inspir Comput 8(3):133–153

 28. Li C, Zhou C, Li X, Dai G (2017) An improved differential
evolution algorithm based on suboptimal solution mutation. Int
J Comput Sci Math 8(1):28–34

 29. Fister I, Fong S, Brest J, Fister I (2014) A novel hybrid
self-adaptive bat algorithm. Sci World J. https://doi.
org/10.1155/2014/709738 (Article ID 709738)

 30. Cai XJ, Gao X, Xue Y (2016) Improved bat algorithm with
optimal forage strategy and random disturbance strategy. Int J
Bio Inspir Comput 8(4):205–214

 31. Xie J, Zhou YQ, Chen H (2013) A bat algorithm based on Levy
flights trajectory. Pattern Recognit Artif Intell 26(9):829–837 (in
Chinese)

 32. Khan K, Nikov A, Sahai A (2011) Fuzzy bat clustering method for
ergonomic screening of office workplaces. In: Third international
conference on software, services and semantic technologies S3T,
Bourgas, Bulgaria, pp 59–66

 33. Bahmani-Firouzi B, Azizipanah-Abarghooee R (2014) Optimal
sizing of battery energy storage for micro-grid operation manage-
ment using a new improved bat algorithm. Electr Power Energy
Syst 5(56):42–54

 34. Xue Y, Jiang JM, Zhao BP, Ma TH (2017) A self-adaptive artifi-
cial bee colony algorithm based on global best for global optimi-
zation. Soft Comput. https://doi.org/10.1007/s00500-017-2547-1

 35. Jaddi NS, Abdullah S, andHamdan AR (2015) Multi-population
cooperative bat algorithm-based optimization of artificial neural
network model. Inf Sci 294:628–644

 36. Pongchairerks P, Kachitvichyanukul V (2016) A two-level particle
swarm optimisation algorithm for open-shop scheduling problem.
Int J Comput Sci Math 7(6):575–585

 37. Adewumi AO, Arasomwan MA (2016) On the performance of
particle swarm optimisation with(out) some control parameters
for global optimisation. Int J Bio Inspir Comput 8(1):14–32

 38. Yılmaz S, Kucuksille EU (2013) Improved bat algorithm (IBA)
on continuous optimization problems. Lect Notes Softw Eng
1(3):279–283

 39. Cui ZH, Li FX, Kang Q (2015) Bat algorithm with inertia weight.
In: Proceedings of Chinese automation congress, Wuhan, China,
pp 92–796

 40. Cai XJ, Li WZ, Kang Q, Wang L, Wu QD (2015) Bat algorithm
with oscillation element. Int J Innov Comput Appl 6(3/4):171–180

 41. Yilmaz S, Kucuksille EU (2015) A new modification approach
on bat algorithm for solving optimization problems. Appl Soft
Comput 28:259–275

 42. Liu CP, Ye CM (2013) Bat algorithm with the characteristics of
Levy flights. CAAI Trans Intell Syst 8(3):240–246 (in Chinese)

 43. Xie J, Zhou YQ, Chen H (2013) A novel bat algorithm based on
differential operator and Lévy flights trajectory. Comput Intell
Neurosci. https://doi.org/10.1155/2013/453812 (Article ID
453812)

 44. Zhu BL, Zhu WY, Liu ZJ, Duan QY, Cao L (2016)A novel
quantum-behaved bat algorithm with mean best position directed
for numerical optimization. Comput Intell Neurosci. https://doi.
org/10.1155/2016/6097484 (Article ID 6097484)

 45. Cai Q, Ma LJ, Gong MG, Tian DY (2016) A survey on network
community detection based on evolutionary computation. Int J
Bio Inspir Comput 8(2):84–98

 46. Ma TH, Wang Y, Tang ML, Cao J, Tian Y, Al-Dhelaan A, Al-
Rodhaan M (2016) LED: a fast overlapping communities detec-
tion algorithm based on structural clustering. Neurocomputing
207:488–500

 47. Hassan EA, Ibrahem HA, Hassaniem AE, Fahmy AA (2015) A
discrete bat algorithm for the community detection problem. In:
Proceedings of the 10th international conference on hybrid artifi-
cial intelligence systems, Bilbao, Spain, pp 188–199

 48. Senthilnath J, Kulkarni S, Benediktsson JA, Yang XS (2016)
A novel approach for multispectral satellite image classifica-
tion based on the bat algorithm. IEEE Geosci Remote Sens Lett
13(4):599–603

 49. Gao ML, Shen J, Yin LJ, Liu W, Zou GF, Li HT, Fu GX (2016) A
novel visual tracking method using bat algorithm. Neurocomput-
ing 177:612–619

https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1155/2014/709738
https://doi.org/10.1155/2014/709738
https://doi.org/10.1007/s00500-017-2547-1
https://doi.org/10.1155/2013/453812
https://doi.org/10.1155/2016/6097484
https://doi.org/10.1155/2016/6097484

215Int. J. Mach. Learn. & Cyber. (2018) 9:199–215

1 3

 50. Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M (2016) A novel
stochastic framework based on cloud theory and theta-modified
bat algorithm to solve the distribution feeder reconfiguration.
IEEE Trans Smart Grid 7(2):740–750

 51. Talafuse TP, Pohl EA (2016) A bat algorithm for the redundancy
allocation problem. Eng Optim 48(5):900–910

 52. Li FX, Cui ZH, Sun B (2016) DV-hop localisation algorithm with
DDICS. Int J Comput Sci Math 7(3):254–262

 53. Lin YH, Wang LJ, Zhong YW, Zhang CP (2016) Control scaling
factor of cuckoo search algorithm using learning automata. Int J
Comput Sci Math 7(5):476–484

 54. Liang JJ, Qu BY, Suganthan PN, Hernndez-Daz AG (2013) Prob-
lem definitions and evaluation criteria for the CEC 2013 special
session and competition on real-parameter optimization. Technical
Report 201212, Computational Intelligence Laboratory, Zheng-
zhou University, Zhengzhou China and Technical Report, Nan-
yang Technological University, Singapore

 55. Sun H, Wang K, Zhao Jand Yu X (2016) Artificial bee colony
algorithm with improved special centre. Int J Comput Sci Math
7(6):548–553

 56. Lv L, Wu LY, Zhao J, Wang H, Wu RX, Fan TH, Hu M, Xie ZF
(2016) Improved multi-strategy artificial bee colony algorithm.
Int J Comput Sci Math 7(5):467–475

 57. Wang H, Cui ZH, Sun H, Rahnamayan S, Yang XS (2017) Ran-
domly attracted firefly algorithm with neighborhood search
and dynamic parameter adjustment mechanism. Soft Comput
21(18):5325–5339

 58. Wang BW, Gu XD, Ma L, Yan SS (2017) Temperature error cor-
rection based on BP neural network in meteorological WSN. Int
J Sens Netw 23(4):265–278

 59. Zhang J, Tang J, Wang TB, Chen F (2017) Energy-efficient data-
gathering rendezvous algorithms with mobile sinks for wireless
sensor networks. Int J Sens Netw 23(4):248–257

 60. Zhang YH, Sun XM, Wang BW (2016) Efficient algorithm for
K-barrier coverage based on integer linear programming. China
Commun 13(7):16–23

 61. Shen J, Zhou TQ, He DB, Zhang YX, Sun XM, Xiang Y (2017)
Block design-based key agreement for group data sharing in cloud
computing. IEEE Trans Dependable Secure Comput. https://doi.
org/10.1109/TDSC.2017.2725953

https://doi.org/10.1109/TDSC.2017.2725953
https://doi.org/10.1109/TDSC.2017.2725953

	Bat algorithm with triangle-flipping strategy for numerical optimization
	Abstract
	1 Introduction
	2 Standard bat algorithm
	3 Analysis for the standard bat algorithm
	4 Bat algorithm with triangle-flipping strategy
	5 Numerical comparison
	5.1 Determine of threshold parameter
	5.2 Comparison of different triangle-flipping strategies
	5.3 Comparison of BA-HTFS with other bat algorithms

	6 Conclusions and future work
	Acknowledgements
	References

