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designs are introduced. The optimization performance is 
verified by CEC2013 benchmarks in those designs against 
the standard BA. Simulation results show that the hybrid 
triangle-flipping strategy is superior to other algorithms.

Keywords Bat algorithm · Random triangle-flipping 
strategy · Directing triangle-flipping strategy · Hybrid 
triangle-flipping strategy

1 Introduction

Bio-inspired computation [1] is a collection for stochastic 
optimization algorithms inspired by biological phenomenon, 
such as particle swarm optimization [2, 3], brain storm opti-
misation [4], ant colony optimization [5, 6], fruit fly opti-
mization algorithm (FOA) [7], elephant herding optimiza-
tion [8], artificial physics optimization [9], social emotional 
optimisation algorithm [10], cuckoo search [11–14], firefly 
algorithm (FA) [15–18], and artificial bee colony (ABC) 
[19–21].

Bat algorithm (BA) [22] is a novel population-based 
stochastic bio-inspired computation inspired by bat behav-
iors. In the standard BA, bats fly in the search domain to 
seek food and avoid the emergent dangers from other bats, 
especially for the largest bat. Since the development of BA, 
different BA variants have been proposed to improve the 
performance. Li and Zhou [23] proposed a complex-valued 
bat algorithm where each bat is coded in complex number. 
The real and imaginary parts are updated as the same as 
the standard version. Due to this two-dimensional charac-
teristic, the diversity and performance are both improved 
significantly. Saha et al. [24] introduced opposition-based 
learning (OBL) strategy into bat algorithm. The opposite 
position of each bat is investigated, then, the next population 
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is selected from the current population and their opposite 
positions under the evaluation process of objective function. 
Chaos is a character of nonlinear systems and is generated 
randomly by simple deterministic systems. Currently, cha-
otic sequences are always applied to evolutionary algorithms 
to increase the global search capability. Gandomi and Yang 
[25] implemented several general chaotic sequences in BA, 
such as frequency, velocity disturbance, loudness and pulse 
emission rate. Similarly, Jordehi [26] also used chaos to 
improve the performance of BA.

To improve the local search capability, four differen-
tial evolutionary strategies [27, 28]: DE/rand/1/bin, DE/
randToBest/1/bin, DE/best/2/bin and DE/best/1/bin were 
employed to replace the original local search pattern in the 
standard BA [29]. To enhance the local search region, the 
historical best position is replaced by one position obtained 
with optimal forage strategy [30].

Different from the local search strategy, the global search 
capability is dominated by the velocity update equation, 
which is divided into two different parts: inertia and avoid-
ance. The inertia is employed to describe the influence of 
the previous velocity, and the avoidance is used to collide 
with the largest bat. Generally, the velocity update equation 
plays an important role in directing the search for each bat. 
Many improvements aimed to change the current version. 
Xie et al. [31] used a random part associated with Lévy 
distribution to replace the avoidance. Khan et al. [32] added 
a new item associated with personal historical best position 
in the velocity update equation to improve the convergence 
speed. Furthermore, Bahmani-Firouzi and Azizipanah-Abar-
ghooee designed four different velocity updating strategies 
to provide a balance between exploitation and exploration 
[33]. The swarm historical best position also plays an impor-
tant role for many algorithms, for example, Xue et al. [34] 
incorporated this position to improve the performance of 
articial bee colony algorithm for global optimization. Simi-
larly, Jaddi et al. [35] recognized the personal historical best 
position and the swarm historical best position as exploita-
tion and exploration, respectively. Then, a different balance 
strategy was proposed to weight the two positions. Inspired 
by PSO [36, 37], the inertial weight was introduced into the 
velocity update equation [38, 39].The inertia influence can 
be controlled when the bats fall into local minima. With 
the control theory, the velocity update equation with inertia 
weight can be viewed as a special case of oscillation ele-
ment, and one selection strategy is designed [40]. Further-
more, Yilmaz and Kucuksille [41] added a random item with 
two randomly selected bats to explore more search space.

Different from the inertia weight, some researchers sug-
gest removing the inertia part so that the bats can fly with 
more selections. To increase the search space, the frequency 
is replaced by a random number generated with Lévy distribu-
tion [42]. Xie et al. [43] also incorporated the Lévy flight in 

the velocity update equation, but four randomly selected bats 
were used to guide the search pattern. Zhu et al. [44] replace 
the swarm historical best position with the mean best position 
to enhance the convergence speed.

Due to its simple concept, BA has been widely applied to 
many problems. Networks in real world more or less have 
overlapping community structure [45], however, Ma et al. 
[46] found that traditional community detection algorithms 
assumed that one vertex can only belong to one community. 
To solve this problem, Hassan et al. [47] designed a discrete 
bat algorithm to solve it, and experiments on real life networks 
show the ability of the proposed algorithm. Satellite images 
are a reliable source for investigating the temporal changes in 
crop cultivated areas, Senthilnath et al. [48] proposed a novel 
bat algorithm (BA)-based clustering approach for solving 
crop type classification problems using a multispectral satel-
lite image. There are still many applications, such as visual 
tracking [49], distribution feeder reconfiguration [50], and 
redundancy allocation problem [51], due to the page limita-
tion, please refer to the corresponding references.

Although there are many modifications for velocity update 
equations, however, there is still some room for it. In this 
paper, we provide several different velocity update equations 
to improve the performance.

The rest of this paper is organized as follows: Sect. 2 pro-
vides a brief description of the standard BA. Some analyses 
for the standard BA are illustrated in Sect. 3. Our proposed 
approach is presented in Sect. 4. Numerical experiments on 
the CEC2013 benchmark set are conducted in Sect. 5. Finally, 
some conclusions are given in Sect. 6.

2  Standard bat algorithm

In this paper, we only consider the following problem: 

where E = [xmin, xmax]
D ⊆ RD is the domain space, and 

xmin ⩽ xk ⩽ xmax(k = 1, 2,… ,D).

Assume that there are N virtual bats, and the ith bat 
(i = 1,2,…,N) can be represented as 

w h e r e  �⃗xi(t) = (xi1(t), xi2(t), ..., xik(t), ..., xiD(t))  a n d 
�⃗vi(t) = (vi1(t), vi2(t), ..., vik(t), ..., viD(t)) are the position and 
velocity of the ith bat in generation t, respectively, frequency 
f ri(t), loudness Ai(t) and emission rate ri(t) are three required 
parameters.

In the next generation, the velocity is updated as follows: 

where �⃗p(t) = (p1(t), p2(t),… , pk(t),… , pD(t)) is the best 
position found so far by the entire swarm. Equation (3) can 
be viewed as a combination of the inertia part vik(t) and 

(1)min f (x⃗), [x⃗ = (x1, x2,… , xk,… , xD) ∈ E],

(2)< �⃗xi(t), �⃗vi(t), f ri(t),Ai(t), ri(t) >,

(3)vik(t + 1) = vik(t) + (xik(t) − pk(t)) ⋅ f ri(t),
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the influence of �⃗p(t). The frequency f ri(t) is calculated as 
follows: 

where f rmax and f rmin are the maximum and minimum val-
ues of frequency, respectively, and rand1 is a random number 
uniformly distributed within [0, 1].

To reflect the bat decision, the position is changed with 
some randomness. Let rand2 be a random number uni-
formly distributed within [0, 1], if rand2 < ri(t) is satisfied, 
the ith bat will execute the following global search pattern: 

Otherwise, the local search pattern is adopted as 
follows: 

where �ik is a random number generated by uniform distribu-
tion within [–1], A(t) is the average loudness of all bats, and 

A f t e r  t h e  �⃗x
�

i
(t + 1) = (x

�

i1
(t + 1), x

�

i2
(t + 1),… ,

x
�

ik
(t + 1),… , x

�

iD
(t + 1)) is obtained by Eqs. (5) and (6), 

the new �⃗xi(t + 1) is updated as follows: 

where rand3 is a random number generated by uniform dis-
tribution within [–1]. Similar with cuckoo search [52, 53], 
Eq. (8) implies that the position is updated only when the 
following two conditions are required: (1) a better position 
is obtained; and (2) the probability Ai(t) is satisfied. If the 
position of the ith bat is updated, the corresponding loudness 
and emission rate ri(t + 1) are replaced as follows: 

where 𝛼 > 0 and 𝛾 > 0 are two predefined parameters, and 
A(0) and r(0) are two initial values for loudness and emission 
rate, respectively.

(4)f ri(t) = f rmin + (f rmax − f rmin) ⋅ rand1,

(5)x
�

ik
(t + 1) = xik(t) + vik(t + 1).

(6)x
�

ik
(t + 1) = pk(t) + �ik ⋅ A(t),

(7)A(t) =

∑n

i=1
Ai(t)

n
.

(8)

�⃗xi(t + 1) =

{

�⃗x
�

i
(t + 1), if rand3 < Ai(t) ∧ f (�⃗x

�

i
(t + 1)) < f (�⃗xi(t))

�⃗xi(t), otherwise
,

(9)Ai(t + 1) = �Ai(t),

(10)ri(t + 1) = r(0) ⋅ (1 − e−�t),

The pseudo code of the standard bat algorithm is listed 
as follows:

Begin
For each bat, initialise the position, velocity and parameters;
While (stop criterion is met)

Randomly generate the frequency for each bat with Eq. (4);
Update the velocity for each bat with Eq.(3);

If 2 ( )irand r t

Update the 

< 

temp position for corresponding bat with Eq.(5);

Else
Update the temp position for corresponding bat with Eq.(6);

End
Evaluate its quality/fitness;
Re-update the position for corresponding bat with Eq.(8);
If the position is updated

Update the loudness and emission rate with Eqs.(9) and (10), respectively;

End
Rank the bats and save the best position;

End
Output the best position;

End

Algorithm1: Standard Bat Algorithm 

3  Analysis for the standard bat algorithm

We only consider the global search pattern (Eqs. 3, (5), and 
will ignore the local search pattern (Eq. 6). From Eq. (8), 
the new position is updated when two conditions are satis-
fied (rand3 < Ai(t) and f (�⃗x�

i
(t + 1)) < f (�⃗xi(t))). It means that 

some bats in the swarm are not updated in some genera-
tions. However, if the position is not updated, the velocity 
should be zero because of �⃗vi(t) = �⃗xi(t) − �⃗xi(t − 1) = 0. Under 
this circumstance, the corresponding velocity and position 
update equations should be changed as follows: 

Based on Eqs. (11) and(12), we can get 

To clearly illustrate the characteristics of Eq. (13), Fig. 1 
presents the possible search manners. As seen, the search 
range of Eq. (13) is small. This is not beneficial for global 

(11)vik(t + 1) = (xik(t) − pk(t)) ⋅ fi(t),

(12)xik(t + 1) = xik(t) + vik(t + 1).

(13)xik(t + 1) = xik(t) + (xik(t) − pk(t)) ⋅ fi(t).
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search. To tackle this issue, we propose a triangle-flipping 
strategy to extend the search range of BA.

4  Bat algorithm with triangle-flipping strategy

To avoid such problem, we can consider the following 
manner: 

where �⃗xm(t) and �⃗xu(t) are two randomly selected positions. 
Due to �⃗xi(t), �⃗xm(t) and �⃗xu(t) have different fitness values, 
there are six different manners presented in Fig. 2.

To avoid the confusion, three positions are re-typed 
as: �⃗xbest, �⃗xmid and �⃗xworst, and it means 

Figure 2a can be regarded as a heuristic search pattern, 
the vector ���������������⃗xbestxworst  is turned to �������������⃗xbestxmid, while the final 

(14)�⃗xi(t + 1) = �⃗xi(t) + (�⃗xm(t) − �⃗xu(t)) ⋅ fi(t),

(15)f (�⃗xbest(t)) < f (�⃗xmid(t)) < f (�⃗xworst(t)).
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point from �⃗xworst move to �⃗xmid, this process improves the 
performance significantly because f (�⃗xmid(t)) < f (�⃗xworst(t)). 
With the same method, we can turn the circle further to next 
point �⃗x′, but how to compute this point? For convenience, 
we assume rational, in other words, the following equation 
is satisfied: 

It means 

Suppose fi(t) =
1−�

�
, we have 

With the same methods, Fig. 2c, e are also illustrated as: 

As a heuristic search pattern, Eqs.  (18)–(20) can be 
viewed as a local search pattern, while the last three figures 
can be viewed as the global search patterns listed as follow: 

1. Directing triangle-flipping strategy

It is obvious that the Eqs. (18)–(20) are meta-heuristic 
strategies aiming to improve the local search capability. 
Therefore, we call all of them (please refer to Fig. 2a, c, e) 
are directing triangle-flipping strategy. With this manner, 
�⃗xm(t) is better than �⃗xu(t). However, this strategy may mislead 
a wrong search direction, because we always want to provide 
a local search.

2. Random triangle-flipping strategy

For Eqs. (21)–(23), they provide an exploration capabil-
ity. Therefore, to avoid the premature convergence, �⃗xm(t) 
and �⃗xu(t) are two randomly selected positions, and we call it 
random triangle-flipping strategy.

3. Hybrid triangle-flipping strategy

Generally, for an evolutionary algorithm, the global 
search capability and local search capability should be 
balanced dynamically. In the first period, the algorithm 
mainly focuses on exploring the potential area with more 

(16)(1 − 𝜆)�⃗xmid + 𝜆�⃗xbest = (1 − 𝜆)�⃗xworst + 𝜆�⃗x�.

(17)�⃗x� = �⃗xbest +
1 − 𝜆

𝜆
(�⃗xmid − �⃗xworst).

(18)�⃗x� = �⃗xbest + (�⃗xmid − �⃗xworst) ⋅ fi(t).

(19)�⃗x� = �⃗xmid + (�⃗xbest − �⃗xworst) ⋅ fi(t),

(20)�⃗x� = �⃗xworst + (�⃗xbest − �⃗xmid) ⋅ fi(t).

(21)�⃗x� = �⃗xbest + (�⃗xworst − �⃗xmid) ⋅ fi(t),

(22)�⃗x� = �⃗xmid + (�⃗xworst − �⃗xbest) ⋅ fi(t),

(23)�⃗x� = �⃗xworst + (�⃗xmid − �⃗xbest) ⋅ fi(t).

probability to contain the optimal solutions, while in the 
late period, the algorithm prefers to improve the solution 
quality. With this manner, we divide the total search period 
into two sections:

If t < 𝜆 ⋅ L arg est_Generation

The random triangle-flipping strategy is performed;
Else
One special directing triangle-flipping strategy is per-

formed as follows: 

End
where � is a threshold parameter used to divide the total 

generation. With this manner, only one random position 
�⃗xm(t) should be required.

Note 1 In above mentioned three triangle-flipping strat-
egies, all of them will occur in those bats with their posi-
tions which are not updated in previous generation. For 
other bats, their velocities and positions are still updated 
by Eqs. (3) and (5). Is it possible for all bats to update their 
velocities and positions with triangle-flipping strategies? 
In the following experiment, we will consider such cases.

Note 2 Due to the performance of the global historical 
best position �⃗p(t), the triangle-flipping manners will pro-
vide a global search manner because only Eqs. (18)–(20) 
are satisfied. Therefore, to provide a large exploration 
capability, the following manner is considered: 

where rand is a random number generated by uniform 
distribution.

Algorithm2: Bat Algorithm with Triangle-Flipping Strategy

Begin
For each bat, initialise the position, velocity and parameters;
While (stop criterion is met)

Randomly generate the frequency for each bat with Eq.(4);
Update the velocity for each bat with different triangle-flipping strategy (directing, random and 
hybrid);

If 2 ( )irand r t<

Update the temp position for corresponding bat with Eq.(5);

Else
Update the temp position for corresponding bat with Eq.(6);

End
Evaluate its quality/fitness;

Re-update the position for corresponding bat with Eq.(8);
If the position is updated

Update the loudness and emission rate with Eqs.(9) and(10), respectively;

End
Rank the bats and save the best position;

End
Output the best position;

End

(24)�⃗vi(t + 1) = ( �⃗p(t) − �⃗xm(t)) ⋅ f ri(t),

(25)�⃗xi(t + 1) = �⃗xi(t) + �⃗vi(t + 1).

(26)xgk(t + 1) = xmin + (xmax − xmin) ⋅ rand,
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For a given problem f, we assume that O(f) is the com-
putational complexity of its fitness evaluation function. 
Therefore, the computational complexity of the standard 
BA is O(Gmax × N × f), where Gmax is the maximum num-
ber of generations, and N is the population size. Com-
pared to the standard BA, our approach does not increase 
extra loop operations. So, both of them have the same 
computational time complexity.

5  Numerical comparison

The simulation is performed on the CEC2013 benchmark 
set [54], which contains 28 functions for real-parameter 
optimization (please refer to Table 1). These functions 
can be divided into three groups:uni-modal functions 
(F1–F5), multi-modal functions (F6–F20), and composi-
tion functions (F21–F28).

The simulation experiments is performed in Matlab 
2011 environment. The population size, the maximum 
number of fitness evaluations, and the dimensional size 
are set to 100, 3.0E+05, 30, respectively. For each test 
function, each algorithm will run 51 times.

5.1  Determine of threshold parameter

To test the performance of our proposed hybrid triangle-
flipping strategy, firstly, we focus on the threshold parameter 
value of �. The parameters used in bat algorithm with hybrid 
triangle-flipping strategy are listed in Table 2.

To provide a deep insight, the Golden section method 
is employed. The initial interval is [0.0,1.0], and 13 round 
experiments are conducted. The rankings achieved by the 
Friedman test show the corresponding index (the small-
est ranking value means the best performance of the cor-
responding algorithm) [41]. Table 3 presents the ranking 
values under different values of �. It can be seen that the final 
threshold parameter � is obtained by the 13th round test and 
the best � is equal to 0.258.

5.2  Comparison of different triangle-flipping strategies

In this section, we will compare the performance of different 
triangle-flipping strategies:

• Bat algorithm with directing triangle-flipping strategy 
(BA-DTFS);

• Bat algorithm with directing triangle-flipping strategy for 
all bats without conditions (see Note 1) (BA-DTFS1);

• Bat algorithm with random triangle-flipping strategy 
(BA-RTFS);

• Bat algorithm with random triangle-flipping strategy for 
all bats without conditions(BA-RTFS1);

• Bat algorithm with hybrid triangle-flipping strategy (BA-
HTFS);

Table  4 provides the mean error function values 
achieved by BA-DTFS, BA-DTFS1, BA-RTFS, BA-RTFS1 
and BA-HTFS, where w/t/l means that BA-HTFS wins in 
w functions, ties in t functions, and loses in l functions, 
compared with its competitors. From the results, BA-HTFS 
performs better than BA-DTFS and BA-DTFS1 on 26 func-
tions and 27 functions, respectively, while BA-RTFS and 
BA-RTFS1 outperforms BA-HFTS on 0 function and 8 
functions.

For uni-modal functions (F1–F5), the hybrid triangle-
flipping strategy performs better than the directing triangle-
flipping strategy and the random triangle-flipping strategy. 
Especially for F1 and F4, BA-HTFS achieves much better 
solutions than other four algorithms. For multi-modal func-
tions (F6–F20), though the hybrid triangle-flipping strategy 
can help BA find more accurate solutions than the directing 
triangle-flipping strategy and the random triangle-flipping 
strategy, these improvements are not obvious on most test 
cases. For F10 and F16, BA-HTFS can obtain reasonable 
solutions, while other four algorithms fall into local minima 
(except for BA-RTFS1 on F16). For composition functions 
(F21–F28), all BAs hardly search reasonable solutions, but 
BA-HTFS can find more accurate solutions than other four 
algorithms.

Table 5 presents the results of Wilcoxon test between 
BA-HTFS and other four algorithms [55, 56]. The p val-
ues for BA-DTFS, BA-DTFS1 and BA-RTFS are less than 
the significant level 0.05. It means the performance of BA-
HTFS is significantly better than BA-DTFS, BA-DTFS1 and 
BA-RTFS.

Table 6 shows the mean rankings achieved by Friedman 
test for five algorithms [57]. A smaller ranking value means 
that the corresponding algorithm is better. From the results, 
the performances of five BAs are ranked as follows: BA-
DTFS, BA-DTFS1, BA-RTFS, BA-RTFS1, and BA-HYFS. 
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The highest ranking demonstrates that BA-HTFS is the best 
algorithm among five algorithms.

5.3  Comparison of BA-HTFS with other bat algorithms

To further verify the performance of BA-HTFS, we compare 
BA-HTFS with four other algorithms. The involved algo-
rithms are listed as follows.

• Standard bat algorithm (SBA);
• Chaotic bat algorithm (CBA) [25];
• Bat algorithm with lévy distribution (LBA1) [31];
• Bat algorithm with lévy distribution (LBA2) [42];
• Bat algorithm with hybrid triangle-flipping strategy (BA-

HTFS).

For SBA, CBA, LBA1 and LBA2, we use the same 
parameter settings as in their corresponding references. 
Table 7 provides the mean error function values achieved 
by SBA, CBA, LBA1, LBA2 and BA-HTFS (the dynamic 
comparison can be viewed in Fig. 3). From the results, 
BA-HTFS performs better than SBA and CBA on 26 
functions and 22 functions, while LBA1 and LBA2 
outperforms BA-HTFS on 4 functions and 5 functions, 
respectively.

Table 1  Summary of the 
CEC2013 benchmark set

No. Function Optimal fitness

Uni-modal functions 1 Sphere function − 1400
2 Rotated high conditioned elliptic function − 1300
3 Rotated Bent Cigar function − 1200
4 Rotated discus function − 1100
5 Different powers function − 1000

Basic multi-modal functions 6 Rotated Rosenbrock’s function − 900
7 Rotated Schaffers F7 function − 800
8 Rotated Ackley’s function − 700
9 Rotated Weierstrass function − 600

10 Rotated Griewank’s function − 500
11 Rastrigin’s function − 400
12 Rotated Rastrigin’s function − 300
13 Non-continuous rotated Rastrigin’s function − 200
14 Schwefel’s function − 100
15 Rotated Schwefel’s function 100
16 Rotated Katsuura function 200
17 LunacekBi_Rastrigin function 300
18 Rotated LunacekBi_Rastrigin function 400
19 Expanded Griewank’splusRosenbrock’s function 500
20 Expanded Scaffer’s F6 function 600

Composition functions 21 Composition function 1 (n = 5, rotated) 700
22 Composition function 2 (n = 3, unrotated) 800
23 Composition function 3 (n = 3, rotated) 900
24 Composition function 4 (n = 3, rotated) 1000
25 Composition funaction 5 (n = 3, rotated) 1100
26 Composition function 6 (n = 5, rotated) 1200
27 Composition function 7 (n = 5, rotated) 1300
28 Composition function 8 (n = 5, rotated) 1400

Table 2  Parameter settings for 
bat algorithm Search Domain [–100,  100]D

Frequency [0.0, 5.0]
A(0) 0.95
r(0) 0.9
� 0.99
� 0.9
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Table 3  Experimental results 
for threshold �with golden 
section
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The standard BA can hardly find reasonable solutions 
on all test functions. For CBA, it only achieves promising 
solutions on F16. LBA1 and LBA2 obtain good solutions 
on two functions F1 and F5. BA-HTFS can find reason-
able solutions on five functions F1, F4, F5, F10, and F16. 
For composition functions, all algorithms fall into local 
minima.

Tables 8 and 9 present the statistical results achieved 
by Wilcoxon and Friedman tests. From the results, the 
performance of the five algorithms ranks as follows: SBA, 
LBA1, CBA, LBA2and BA-HTFS. The highest ranking 
demonstrates that BA-HTFS is the best algorithm among 
five algorithms. The p values show that BA-HTFS is sig-
nificantly better than SBA, CBA, LBA1 and LBA2.

Table 4  Comparison results 
for different triangle-flipping 
strategies

Functions BA-DTFS BA-DTFS1 BA-RTFS BA-RTFS1 BA-HTFS

F1 1.80E+00 1.90E+00 2.38E+00 6.38E−03 9.63E−05
F2 1.64E+06 1.68E+06 1.31E+06 7.16E+04 4.22E+04
F3 3.57E+08 2.77E+08 1.70E+08 2.12E+07 7.75E+06
F4 2.16E+04 1.35E+04 8.51E+02 1.97E+00 8.90E−02
F5 3.54E−01 3.68E−01 6.76E−01 1.27E−02 1.11E−03
F6 4.78E+01 6.12E+01 4.90E+01 1.91E+01 6.72E+00
F7 3.34E+02 1.79E+04 2.13E+02 1.06E+02 1.06E+02
F8 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01
F9 3.55E+01 3.65E+01 3.53E+01 2.95E+01 2.98E+01
F10 1.17E+00 1.20E+00 1.32E+00 5.25E−01 7.79E−02
F11 6.83E+02 6.24E+02 4.64E+02 3.74E+02 3.45E+02
F12 6.55E+02 6.33E+02 4.75E+02 3.69E+02 3.52E+02
F13 6.32E+02 7.25E+02 5.18E+02 3.44E+02 3.58E+02
F14 4.74E+03 4.70E+03 4.96E+03 4.50E+03 4.27E+03
F15 4.80E+03 4.77E+03 4.78E+03 4.34E+03 4.44E+03
F16 2.11E+00 2.16E+00 2.04E+00 9.75E−01 3.50E−01
F17 4.60E+02 7.70E+02 4.22E+02 2.12E+02 1.72E+02
F18 4.19E+02 7.61E+02 3.92E+02 2.06E+02 1.41E+02
F19 2.92E+01 5.81E+01 2.35E+01 9.86E+00 7.14E+00
F20 1.46E+01 1.47E+01 1.46E+01 1.31E+01 1.26E+01
F21 3.90E+02 3.58E+02 3.37E+02 3.40E+02 3.33E+02
F22 6.00E+03 5.79E+03 5.93E+03 5.40E+03 5.49E+03
F23 6.09E+03 5.79E+03 6.10E+03 5.60E+03 5.55E+03
F24 3.35E+02 3.52E+02 3.18E+02 2.93E+02 2.95E+02
F25 3.52E+02 3.42E+02 3.48E+02 3.24E+02 3.27E+02
F26 2.04E+02 2.08E+02 2.18E+02 2.03E+02 2.04E+02
F27 1.34E+03 1.41E+03 1.32E+03 1.16E+03 1.13E+03
F28 4.84E+03 4.77E+03 3.91E+03 1.94E+03 2.25E+03
w/t/l 26/2/0 27/1/0 27/1/0 19/1/8

Table 5  Wilcoxon Test for 
different triangle-flipping 
strategies

BA-HTFS vs. p value

BA-DTFS 0.000
BA-DTFS1 0.000
BA-RTFS 0.000
BA-RTFS1 0.093

Table 6  Friedman test for 
different triangle-flipping 
strategies

Algorithm Rankings

BA-DTFS 4.05
BA-DTFS1 4.20
BA-RTFS 3.54
BA-RTFS1 1.84
BA-HTFS 1.38
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6  Conclusions and future work

Swarm intelligence is a phenomenon to describe the 
emergent behaviors for some species. How to utilize this 
emergent intelligence is one crucial problem for swarm 

intelligence. Different from particle swarm optimization 
and ant colony optimization, BA can be viewed as a new 
attempt. In BA, the position is updated only when a better 
position is found. Under this rule, the bats will be sus-
pended when a better position is not found. To tackle this 
issue, this paper proposes several triangle-flipping strate-
gies to improve the performance of BA. Simulation results 
show the hybrid triangle-flipping strategy is superior to 
other algorithms.

Future research topic includes self-adaptive search strat-
egy and other practical applications.

In this paper, bat algorithm with hybrid triangle-flipping 
strategy achieves the best performance, this phenomenon 
implies that how to hybrid the different triangle-flipping 
strategies may influence the performance significantly. 
According to the No Free Lunch Theorem, the self-adaptive 
hybrid strategy should be considered to further improve the 
robustness.

How to apply BA to solve some hot research topics is 
very important. For example, the Internet of Things is a 
network in cyber-physical-social space connected with 
massive number of physical devices, sensors and build-
ings. There are many optimization problems required to 
be handled. Wang et al. [58] designed a back propagation 
neural network model to establish the relationship between 
solar radiation signal and air temperature error. Zhang 
et al. [59] proposed optimal cluster-based mechanisms for 
energy conservation with multiple mobile sinks. For Bar-
rier coverage, relocation of sensors with minimum num-
ber of mobile sensors and formation of k-barrier coverage 
with minimum energy cost were optimized [60]. How to 
ensure the security of data sharing within a group and how 
to efficiently share the outsourced data in a group man-
ner are formidable challenges? By taking advantage of the 
symmetric balanced incomplete block design, Shen et al. 
[61] presented a novel block design-based key agreement 
protocol that supports multiple participants. In our future 
work, how to modify BA to optimize these problems will 
be considered.

Table 7  Comparison results for BA-HTFS and other four bat algo-
rithms

Function SBA CBA LBA1 LBA2 BA-HTFS

F1 1.96E+00 2.30E+00 8.42E−01 3.59E−01 9.63E−05
F2 3.69E+06 4.48E+06 3.54E+06 2.23E+06 4.22E+04
F3 3.44E+08 6.71E+08 4.78E+08 3.57E+08 7.75E+06
F4 3.20E+04 3.00E+04 1.45E+04 6.85E+03 8.90E−02
F5 5.86E−01 1.73E+00 4.74E−01 2.76E−01 1.11E−03
F6 5.63E+01 6.29E+01 5.07E+01 4.85E+01 6.72E+00
F7 2.16E+02 2.42E+02 1.77E+02 2.00E+02 1.06E+02
F8 2.09E+01 2.10E+01 2.09E+01 2.10E+01 2.09E+01
F9 3.57E+01 3.52E+01 3.40E+01 3.62E+01 2.98E+01
F10 1.32E+00 1.48E+00 1.23E+00 1.07E+00 7.79E-02
F11 4.07E+02 4.27E+02 1.49E+02 3.16E+01 3.45E+02
F12 4.06E+02 4.30E+02 7.42E+02 7.18E+02 3.52E+02
F13 4.37E+02 4.36E+02 5.59E+02 5.11E+02 3.58E+02
F14 4.78E+03 2.62E+03 3.17E+03 1.15E+03 4.27E+03
F15 4.89E+03 3.87E+03 4.76E+03 4.83E+03 4.44E+03
F16 2.16E+00 6.06E−01 1.33E+00 1.54E+00 3.50E−01
F17 8.92E+02 2.74E+02 3.36E+02 1.61E+02 1.72E+02
F18 9.44E+02 2.61E+02 3.28E+02 3.35E+02 1.41E+02
F19 6.07E+01 4.35E+01 1.89E+01 1.28E+01 7.14E+00
F20 1.44E+01 1.44E+01 1.47E+01 1.49E+01 1.26E+01
F21 3.38E+02 3.27E+02 3.22E+02 3.05E+02 3.33E+02
F22 5.94E+03 3.15E+03 3.32E+03 1.20E+03 5.49E+03
F23 5.77E+03 5.03E+03 6.03E+03 5.82E+03 5.55E+03
F24 3.15E+02 2.92E+02 3.22E+02 3.23E+02 2.95E+02
F25 3.49E+02 3.32E+02 3.53E+02 3.54E+02 3.27E+02
F26 2.00E+02 2.83E+02 3.54E+02 3.36E+02 2.04E+02
F27 1.28E+03 1.19E+03 1.33E+03 1.35E+03 1.13E+03
F28 3.42E+03 2.89E+03 4.68E+03 4.34E+03 2.25E+03
w/t/l 26/1/1 22/0/6 23/1/4 23/0/5
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Fig. 3  The convergence curves 
of different algorithms on the 
benchmark set
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Fig. 3  (continued)
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