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gradually over time. A change is said to be recurrent if an old 
concept reappears after some time. The drift is incremental 
if any two consecutive concepts are almost similar and the 
drift is felt only after a longer time period. Further, a drift 
can also measured by its severity and speed. Severity repre-
sents the amount of changes caused by a new concept and 
speed is the inverse of the total time taken for a new concept 
to completely replace the old concept. Various applications 
where drifts have been observed are Market-Basket analysis 
[12], computer security, medical diagnosis etc.

Online approaches [1, 4, 6, 12, 16, 18, 26, 37] process 
each instance only “once” on arrival without storing it for 
further processing. These can be categorized as: approaches 
that explicitly use a mechanism to handle drifts [1, 6, 18]; 
and that does not explicitly use a mechanism for drift detec-
tion [4, 12]. Online approaches may either be a single clas-
sifier; or a single ensemble; or an active classifier and a set 
of weighted classifier systems. None of the existing systems 
maintain more than one ensemble in its model. It has been 
studied that an ensemble of classifiers [5, 7, 11, 35, 38] pro-
vides higher generalization accuracy [3, 30, 36] as com-
pared to a single classifier system. Hence, we have proposed 
Recurring Dynamic Weighted Majority system (RDWM) 
that maintains two ensembles: a primary online ensemble 
and a secondary ensemble, for more accurate handling of 
drifting concepts mainly recurrent drifts. The ensembles 
vary in the type of concept they represent and may per-
form differently depending on the speed or severity of drift. 
The primary ensemble represents the present concepts and 
is trained and updated as in Dynamic Weighted Majority 
(DWM) [12]; and the secondary ensemble consists of the 
most accurate experts being copied from the primary ensem-
ble at times of drift. Experimental evaluation using various 
datasets proves that for drifts with high speed or low speed 
(independent of severity), the primary ensemble provides 
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1  Introduction

Mining large streams of data is an upcoming area of research 
in the machine learning community. Data stream mining is 
the process of understanding the underlying concepts in data 
and analyzing drifts [3, 6, 32], so as to accurately classify the 
new instances. A drift could be sudden, gradual, recurring, 
or incremental. Sudden change is observed when the con-
cept changes from one class to another within a single time 
step. Gradual change occurs when the new concept emerges 
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better accuracy than the secondary ensemble. For recurrent 
drifts, the secondary ensemble provides better accuracy as 
compared to the primary ensemble. Hence, RDWM per-
forms better or at least similar as the existing systems for 
drift detection.

2 � Research questions and paper organization

The paper aims at answering the following questions:

1.	 Why do we need to maintain two ensembles in RDWM? 
How does it ensure improved system performance while 
handling drifts?

2.	 Does our system always provide better accuracy as com-
pared to the existing systems for drift detection?

3.	 How does severity impact the performance of RDWM 
in terms of prequential accuracy, kappa statistic, model 
cost, time and memory?

4.	 What is the impact of change in the base classifier on 
the performance of RDWM?

5.	 How does the presence of noise impact our systems’ 
performance?

The answer to the first question is that RDWM needs 
to maintain a primary online ensemble and a secondary 
ensemble so as to achieve the best generalization accuracy 
while handling drifts. If the drift has high speed and low 
severity, the new concept is not the same but quite similar 
to the recent old concept. Thus, the updated primary ensem-
ble has a very high possibility of providing good accuracy. 
If the drift has high speed and high severity, it results in 
big changes very suddenly. Hence, the re-initialized pri-
mary ensemble may provide good accuracy. For low speed 
drift (independent of severity), the new concept gradually 
replaces the old concept. Hence, immediately after the 
beginning of drift the new concept would be quite simi-
lar to the old concept. Thus, the primary ensemble has a 
very high possibility of achieving better accuracy. However, 
longer after the drift when the new concept would be quite 
different from the old concept, the re-initialized primary 
ensemble may provide better accuracy levels. For recurrent 
drifts, the secondary ensemble maintaining the old, most 
accurate experts provides better classification accuracy than 
the primary ensemble.

For answering the second question, we evaluated 
RDWM using various datasets with variation in the speed 
of drift such as Stagger concepts [26] (sudden drift), mov-
ing hyperplane dataset [9] (gradual drift), real-time data-
sets such as electricity pricing dataset [8], power supply 
stream [25], KDD CUP 1999 dataset [34] and static data-
sets e.g. breast cancer dataset [31]. The analysis identifies 
that while handling sudden drift, RDWM achieved the best 

accuracy among the single ensemble DWM [12], single 
classifier EDDM [1], naïve bayes (NB) [20] and Hoef-
fding Tree (HT) [30]. Further, RDWM performs slightly 
better than DWM [12] and EDDM while handling gradual 
drifts. Experimental evaluation of RDWM using hyper-
plane dataset shows that RDWM performs the best when 
severity is high and performs worse or similar as the other 
approaches when severity is low. High severity of drift 
results in big changes in concept. The re-initialized pri-
mary ensemble helps RDWM achieve better accuracy as 
compared to the updated DWM ensemble; re-build single 
classifier in EDDM and the standard implementation of 
NB with no drift handling capabilities. When severity is 
low, the new concept is quite similar to the old concept. 
Our systems’ prediction is the global prediction by its 
updated primary ensemble, which performs almost simi-
larly as the updated ensemble in DWM. Evaluation using 
various real time drifting datasets shows that RDWM 
performs better than DWM, EDDM, ADWIN [23], DDM 
[6], PL [22], NB and HT. For static datasets, our system 
performs almost similarly as NB, but slightly better than 
DWM and EDDM.

For answering the third question, we evaluated our sys-
tem using hyperplane dataset with varying severity lev-
els. It has been observed that as the severity increases, 
RDWM’s accuracy drops and the system has reduced 
homogeneity among its experts. However, variation in 
severity does not affect the performance of RDWM in 
terms of the other metrics.

For answering the fourth question, we evaluated RDWM 
using NB and HT as its base classifiers. NB treated all 
the attributes as independent whereas HT assumed fea-
ture dependence. RDWM with NB as the base classifier 
(RDWM-NB) performed better as compared to RDWM with 
HT as its base classifier (RDWM-HT). HT itself as a classi-
fier achieves better or similar accuracy as NB. Hence, we can 
state that the better accuracy of RDWM-NB as compared to 
RDWM-HT is only because of the methodology inherent in 
RDWM and nothing due to the choice of the base classifier 
used.

For answering the next question, we evaluated RDWM in 
a noisy domain. For datasets with gradual drifts and noise, 
RDWM shows high sensitivity to noise, resulting in reduced 
prequential accuracy and kappa statistics. However, noise 
does not impact our systems’ performance in terms of mem-
ory, evaluation time and model cost.

The paper is further organized as follows. In Sect. 3, we 
give an overview of the various existing approaches for drift 
detection. Section 4, gives an understanding of our proposed 
system in detail. In Sect. 5, we describe the various datasets 
and also perform a detailed evaluation of RDWM. Section 5 
also discusses the statistical analysis of the experimental 
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results. In the end, we summarize our paper and discuss the 
scope for future research.

3 � Related work

3.1 � Online approaches for handling drifting concepts

Weighted majority (WM) [13] believes that all features 
are not necessary for making a prediction. drift detection 
method (DDM) [6] detects drift by monitoring the online 
error-rate whereas early drift detection method (EDDM) 
[1] monitors the distance between prediction errors. Adap-
tive windowing (ADWIN) [23] uses sliding windows with 
variable sizes. Paired learner (PL) [22] maintains a stable 
learner that predicts based on its learning since the last 
replacement and a reactive learner that predicts based on 
its most recent experience.

Adaptive classifier ensemble (ACE) [20] uses an online 
classifier, a set of batch classifiers and a drift detection 
mechanism for handling recurrent drifts. An enhanced ver-
sion of ACE [18] uses a pruning strategy to remove the 
old redundant classifiers. DWM [12] dynamically creates 
new experts and removes an expert if its weight reaches a 
threshold value. In Diversified dynamic weighted majority 
(DDWM) [30], the classification result is the class with 
the maximum support considering both the low diversity 
and the high diversity ensembles. L-GEM [7] is a dynamic 
fusion method that estimates the local competence of base 
classifiers in multiple classifier systems. pool and accuracy 
based stream classification (PASC) [28] maintains a pool 
of classifiers to track recurring concepts. A novel Just-
In-Time (JIT) classifier [27] deals with recurrent drifts 
by means of a practical formalization of the concept rep-
resentation and the definition of a set of operators work-
ing on such representations. A context-aware data stream 
learning system [15] uses available context information to 
improve existing ensemble approaches for handling recur-
rent concepts.

3.2 � Performance metrics

•	 Prequential accuracy (%) It is the average accuracy 
calculated online by classifying every instance to be 
learned prior to its learning. For evaluating RDWM, we 
have used sliding window (w) as the forgetting mecha-
nism [29].

•	 Kappa statistic (%) It gives a score of homogeneity 
among the experts [30].

•	 Model cost (RAM-Hours) One RAM-Hour is equivalent 
to one GB of RAM being deployed for one hour.

•	 Time (CPU-seconds) It is the total runtime that involves 
training and testing of the experts.

•	 Memory (bytes) It measures the total memory used to 
store the running statistics and the online model.

4 � Recurring dynamic weighted majority (RDWM) 
approach

RDWM maintains two ensembles: a primary online 
ensemble (EO) and a secondary ensemble (EB). An expert 
maintains an accuracy weight, a pruning weight and an 
accuracy value. The accuracy weight is used for class 
prediction and the pruning weight helps in determining 
the pruning order. The accuracy value measures the accu-
racy of the expert for the most recent W (window size) 
instances. The primary ensemble in RDWM is updated 
or pruned as in DWM [12]. The secondary ensemble is 
neither updated nor trained but only copies the best expert 
from the primary ensemble.

For every new instance arriving in the data stream, 
Algorithm 1 (Global Prediction) gives the global predic-
tion by each ensemble. Algorithm 2 (Final Prediction) 
is used to predict the final class prediction. Algorithm 3 
(Drift Handling) updates the system upon drift detection. 
Algorithm 4 (Recurring Dynamic Weighted Majority) out-
lines the main procedure followed by our approach.

4.1 � Algorithm 1: global prediction

The ensemble EO maintains online experts, each having 
an initial accuracy weight of one, both pruning weight and 
accuracy value of zero. When the local prediction (LO) is 
incorrect (lines 4–5), the accuracy weight of an expert in 
EO is reduced by a multiplicative constant (β, 0 ≤ β < 1) 
[12]. However, when the local prediction is correct, the 
accuracy value is increased by one (lines 7–8, 21–22), at 
each time step. After every W instance, the accuracy value 
of each expert is set to zero so as to have a comparative 
analysis of the experts in terms of their accuracy on the 
most recent W instances (lines 9, 23–24).

The pruning weights of all the experts in both EO and 
EB are reduced by one at each time step (lines 16 and 28), 
except for the expert having the highest accuracy value for 
the most recent W instances.
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Algorithm 1. Global Prediction ( {X, Y} 1
n , β, W, θ)

{Xi, Yi}: training instance at time step i, with a feature 
vector (Xi) and class label (Yi), 1≤ i ≤n
C ∈ ℕ: number of classes
{eo, awo, pwo, ao }1

m : primary ensemble EO containing m
experts and their accuracy weights, pruning weights and 
accuracy value, respectively
{eb, awb, pwb, ab }1

m: secondary ensemble EB containing
m experts and their accuracy weights, pruning weights and 
accuracy value, respectively 
GO, LO, GB, LB ∈ {1,…, C}: global and local predictions 
by primary and secondary ensemble, respectively

G ∈ {1,…, C}: final class prediction 
WO, WB ∈ ℝC: sum of weighted predictions for each class 
by primary and secondary ensemble, respectively

1: WO ← 0; WB ← 0;
// for experts in primary ensemble
2: for  kl = 1,… m
3: LO= classify (EO k l, X i); //local prediction
4: if (LO ≠ Yi and i mod W = 0)
5: update accuracy weight by β
6: WOLO ← WOLO + awokl;
7: if (local prediction correct)
8: increase accuracy value by 1
9: if (i mod W = 0) {set accuracy value to 0}
10: end for
// update pruning weight
11: for  kl = 1,… m
12: if (pruning weight of most accurate expert ≥ 0)
13: increase pruning weight by 1
14: else if (pruning weight of most accurate expert < 0)
15: set pruning weight to 0
16: else {decrease pruning weight of expert by 1}
17: end if
18: end for
// for experts in secondary ensemble 
19: for kh = 1,… m
20: LB= classify (EBkh, Xi); //local prediction
21: if (local prediction correct)
22: increase accuracy value by 1
23: if (i mod W = 0)
24: set accuracy value to 0
25: WBLB ← WBLB + awbkh;
26: end for
27: for  kh = 1,… m
28: update pruning weight as in EO
29: end for
// global prediction by each ensemble
30: GO ← argmax kl WO k l;    GB ← argmax kh WB k h; 
31: if (i mod W = 0)
32: Normalize accuracy weights of EO experts
33: Remove EO expert if pruning weight ≤ θ
34: end if
35: Output EO, EB, GO, GB;

Further, for this expert if the pruning weight is less than 
zero, we set its weight to zero (lines 15) else increase it by 
one (lines 13) at each time step. An expert in EO is removed, 
if its pruning weight reaches the threshold value θ (line 33).

The update of accuracy weights and removal of experts 
in EO is controlled by W (lines 4 and 31). The global pre-
diction by each ensemble is the weighted majority vote of 
the experts’ predictions and is the class with the maximum 

support (line 30). After each update, the accuracy weight 
of all the experts is normalized so that after transformation 
the maximum value of weight is one (line 32). Algorithm 1 
outputs the global class prediction by both the ensembles 
(line 35).

4.2 � Algorithm 2: final prediction

The final prediction (G) is the class with the maximum sup-
port, involving the weighted majority vote of the experts’ 
predictions from both EO and EB (lines 2–4). If the support 
for the class as predicted by EO is more than EB, the final 
prediction is the class as predicted by EO (line 2) else as 
predicted by EB (line 3). However, in the initial learning 
phase when EB is empty, the final prediction is the class as 
predicted by EO (line 5). For every new instance, the algo-
rithm outputs the final class prediction G (line 7).

Algorithm 2. Final Prediction ({X, Y} 1
n , GO, GB) 

1:  if (num _experts (EB) ≠ 0)    
2:       if (WO GO > WBGB)  {G ← GO ;} 
3:   else                          {G ← GB ;} 
4:   end if 
5:  else        {G ← GO ;} 
6:  end if 
7: Output G; 

4.3 � Algorithm 3: drift handling

After the first 2W instances have arrived in the data stream 
(line 1), the best expert having the highest accuracy on the 
most recent W instances is copied from EO into EB (lines 
2–4). If the final class prediction G is incorrect (line 5), the 
following three cases arise:

Case I  drift is detected by both ensembles.

Case II  drift is detected by primary ensemble only.

Case III  drift is detected by secondary ensemble only.

For Case I or Case II, the best online expert from EO is 
copied into EB (line10). EO is re-initialized so as to learn 
the next concept from scratch (line 11). However, if EB 
already contains m experts, the expert with the minimum 
pruning weight is removed from EB (lines 7–8).

Similarly for Case III, the best online expert from EO is 
copied into EB (line 17). A new expert trained as per the 
new concept is added in EO (line 21). However, if EO is 
already full, we remove the expert with the minimum prun-
ing weight (lines 18–20). The handling of drift by RDWM 
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occurs only after the first 2W instances have arrived in the 
data stream (line 1).

Algorithm 3. 
Drift Handling ({X, Y} 1

n , W, GO, GB, G)
1: if ( i ≥ 2W )
2: if (EB contains no experts)  
3: Copy best expert from EO into EB;
4: end if
5: if (G is incorrect)
// Case I or Case II
6: if ( (GO ≠ Yi and GB≠ Yi ) || (GO ≠ Yi) )
7: if (EB contains m experts)   
8: remove expert with minimum pruning weight
9: end if
10: Copy best expert from EO into EB;
11: re-initialize EO;      // re-initialize primary 
12: end if  
// Case III
13: if (GB ≠ Yi)                            
14: if (EB contains m experts)
15: remove expert with minimum pruning weight
16: end if
17: Copy best expert from EO into EB;
18: if (EO contains m experts)                                                                         
19: remove expert with minimum pruning weight
20: end if
21: create a new expert in EO
22: end  if
23: end if
24: end if
25: Output EO, EB;

4.4 � Algorithm 4: recurring dynamic weighted majority

RDWM develops a primary ensemble (EO) using modified 
version of online bagging [21], containing m experts each 
with an accuracy weight (awo jl) of one, both pruning weight 
(pwo jl) and accuracy value (ao jl) of zero (lines 1–4). Input 
to the system is n instances, each consisting of a feature vec-
tor and its corresponding class label (line 5).

For every new instance, we call Algorithm 1 to get the 
global prediction by each of the ensembles (line 6). The final 
class prediction for the instance is the class as predicted by 
Algorithm 2 (line 7). Algorithm 3 (line 8) is called when 
a drift is detected by our system. Training of the experts 
in EO is a continuous process happening at each time step 
and one could use any base learner considering the various 
parameters of the base learner (lines 9–11).

Algorithm 4. Recurring Dynamic Weighted 
Majority ({X, Y} 1

n , β, m, W, θ)
1: EO ←new ensemble;              // primary ensemble 
2:   for jl =1,…. , m
3:      awo jl←1; pwo jl ←0; ao jl ←0;
4:   end for
5: for   i =1,… n
6: Global Prediction ({X, Y}1

n , β, W, θ)    
7: Final Prediction ({X, Y}1

n , GO, GB)              
8: Drift Handling ({X, Y}1

n , W, GO, GB, G)                  
9:    for (kl =1, …… , m)
10: eokl ← learn_experts (eo k l, Xi, Yi); 
11:   end for
12:   output G;
13: end for

5 � Experimental evaluation

5.1 � Concept drifting data streams

5.1.1 � Artificial datasets

5.1.1.1  Stagger concepts  A Stagger concept [26] has 3 
features: shape ∈ {triangle, circle, rectangle}, size ∈ {small, 
medium, large} and color ∈ {blue, green, red}. It contains 
240 instances, with a new instance at each time step. A 
learner is evaluated based on a pair of features only. It con-
tains abrupt drifts and recurrent drifts.

5.1.1.2  Moving hyperplane dataset  The instances [9] are 
uniformly distributed in multi-dimensional space [0, 1]10 
and are classified as positive if they satisfy the condition as 
in Eq. (1) 

For the various runs of the dataset, the weights {wi} are 
initialized to [− 1, 1] randomly and updated as wi ← wi+ dsi 
at each time step, where si ∈ {− 1, 1} represents the direc-
tion of change and d represents the magnitude of change. 
At each time step, the threshold w0 is calculated as given 
in Eq. (2). 

{si} is reset randomly after every 1000 instances. The 
dataset has a total of 3000 instances with gradual drifts 
and noise. For evaluating RDWM, the value of d was set 
to 0.001.

5.1.2 � Real‑world datasets

As these represent a real-world phenomenon, we cannot pre-
dict the occurrence of drift.

5.1.2.1  Electricity pricing domain  The dataset [8] was 
obtained from the electricity supplier TransGrid, New South 
Wales Australia. It contains 45,312 instances collected at 
30-min intervals between 7 May, 1996 and 5 December, 
1998. Each instance consists of five features and a class 
label of either up or down. The prediction task is to predict 
the price of electricity and is affected by demand and supply.

5.1.2.2  Power supply stream  The dataset [25] records 
hourly power supply of an Italian electricity company, 
measuring the supply from the main grid and the power 
transformed from the other grids. It maintains 3 year power 
supply records from 1995 to 1998, with a total of 29,928 
instances. Each instance maintains two attributes. The pre-
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diction task is to predict the hour (1 out of 24) to which the 
current power supply belongs to.

5.1.2.3  KDD cup 1999 dataset  KDD Cup 1999 [34] is 
a network intrusion detection dataset. It consists of a large 
variety of intrusions simulated in a military network envi-
ronment. The data set contains 494,020 instances, with each 
instance maintaining 41 attributes. The target class identi-
fies whether the connection is an attack or a normal con-
nection. For evaluating RDWM, only 15% of the dataset i.e. 
74,103 instances were used.

5.1.2.4  Breast cancer dataset  This static dataset was 
obtained from UCI repository [31]. It classifies an instance 
as either a recurrence-event or a no-recurrence-event. The 
dataset was provided by the Oncology Institute, and main-
tains a total of 286 instances. Each instance maintains nine 
attributes with either a linear or a nominal value.

5.2 � Experimental objectives, design and measures 
analyzed

The main objective is to study the behavior of RDWM in dif-
ferent situations, answering the research questions discussed 
in Sect. 2. Experiments were done using Massive Online 
Analysis (MOA) [2] tool. It is based on a Unix/ Linux sys-
tem with Java 6 SDK installed. To run MOA, two jar files 
were needed: moa.jar and sizeofag.jar. RDWM was evalu-
ated using various datasets, to study the change in its behav-
ior with variations in the speed or severity of drift or pres-
ence of noise. Numerically as well as empirically RDWM 
has been compared with the existing approaches, measuring 
its average performance over 50 runs of each dataset. The 
results were completely in favor of RDWM.

Table 1 lists the parametric values used by each learning 
system. To have a fair comparison, the number of experts 
in each system must be same. So, we used EDDM, DDM, 
Adwin and PL along-with OzaBag [14]. The ensemble size 
in DWM was set to double the size (m) in RDWM. The 
examples in the real time datasets were processed in the 
same temporal order as they appear in the dataset, with one 
example at each time step. The base learners used were 
NB (that assumes feature independence) and HT (having a 
dependent feature set). In MOA, the width of sliding window 
(w) was set to 1000.

RDWM was evaluated using Stagger concepts with 
n = 240 instances. The three concepts are (1) size = medium 
or size = large, (2) color = green or shape = circle, (3) 
size = small and color = red. The target concept changes after 
every 80 instances in the order (1)–(2)–(3). For evaluation 
of RDWM while handling recurrent drifts, we used Stagger 
concepts with n = 720 instances. As per the three concepts, 
the target concept changes after every 80 instances in the 

order (1)–(2)–(3)–(1)–(2)–(3)–(1)–(2)–(3). We randomly 
generate 80 examples of the current target concept with one 
example at each time step.

RDWM was evaluated using hyperplane dataset with 
n = 3000 instances. Noise was randomly introduced by 
switching the class label of 5% of the instances, with a new 
example at each time step. Our system was evaluated using 
electricity pricing dataset containing n = 45,312 instances.

RDWM was evaluated using power supply stream dataset 
with n = 29,928 instances. EDDM, DDM and ADWIN were 
used along-with OzaBag [14], containing a maximum of 96 
experts. PL was used along-with OzaBag, maintaining 48 
experts in each of its stable and reactive learners. Another 
real-time drifting dataset used was KDD CUP 1999 dataset, 
with n = 74,103 instances. EDDM was used along-with Oza-
Bag, maintaining 32 experts in its system.

For evaluating RDWM on a real time static dataset, we 
used the Breast cancer dataset with 286 instances. EDDM 
was used along-with OzaBag containing 10 experts and NB 
as its base classifier.

RDWM was evaluated using many varied static datasets 
from UCI repository [31]. 30% instances were randomly 
selected for testing and the remaining 70% were used for 
training. NB was used as the base classifier, with one exam-
ple at each time step. We measured the performance of our 
system with two settings of window size (W): 10 and 50. 
The width of the sliding window (w) varies as per the dataset 
used.

We have compared our system with some of the existing 
approaches for drift detection. Our approach results in better 
performance as compared to these existing models. It has 
been studied that an ensemble of classifiers provides better 
generalization accuracy as compared to a single classifier 
model [5]. Hence, the combined prediction of two ensembles 
in RDWM would surely provide more accurate results as 
compared to the single classifier systems such as EDDM, 
DDM and ADWIN.

Either of the ensembles in RDWM may perform better 
than the other ensemble, depending on the type of drift. 
The final prediction is that by the ensemble with better 
predictive accuracy, resulting in RDWM’s better perfor-
mance as compared to a single ensemble DWM approach. 
Further, the primary ensemble in RDWM is either updated 
or re-initialized, resulting in its better performance as com-
pared to a single ensemble being only updated in DWM.

In RDWM, the pruning of the experts considers both 
the age of the expert and the history of its predictions, 
which is not considered in DWM. PL [22] maintains a 
stable learner and a reactive learner that may differ in their 
predictive accuracy but the systems’ prediction is always 
that of the stable learner, even if the reactive learner may 
give better performance. RDWM maintains a primary and 
a secondary ensemble and the systems’ prediction is that 
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of the ensemble with better generalization accuracy. Our 
system may provide better accuracy as compared to NB 
and HT that have not been designed to handle drifts and 
learn from all the examples in the stream, regardless of 
changes in the target concept.

5.3 � Evaluation and results

5.3.1 � Evaluation on Stagger concepts

RDWM-NB achieves similar prequential accuracy as DWM-
NB (DWM with NB as base learner), EDDM-NB (EDDM 
with NB as base learner) and NB on the first target concept 
as seen in Fig. 1a. However, on the second and third tar-
get concepts, it achieves the highest accuracy among all the 
approaches. The graph of RDWM has a better slope and 
asymptote, showing its quick convergence to the new target 
concepts.

RDWM requires more evaluation time than DWM as 
shown in Fig. 1b. The rate of updates in RDWM is higher 

as compared to DWM, with RDWM having a higher slope. 
However, our system requires almost similar time as EDDM. 
This is because whenever the drift level is triggered in 
EDDM, the system is reset requiring more time to train the 
new model. It has been observed that all the graphs follow 
a similar stair case pattern, illustrating a sudden increase in 
evaluation time. Analysis of the results in Table 2 led us to 
state that the variation in ensemble size does not impact the 
performance of RDWM in terms of any of the performance 
metrics, on average.

From the analysis of the results in Table 3, we can state 
that RDWM performed very poorly in terms of accuracy and 
kappa statistic, when the performance was based on only 
the recent instance i.e. window size (W) of 1. RDWM with 
window size of 10 achieved higher accuracy as compared 
to system with window size of 100. Hence, RDWM should 
have an optimal window size. If W is too large, our win-
dow consists of instances belonging to different concepts 
and RDWM cannot accurately classify any given concept. 
If W is too small, then there are not enough instances to 
develop and train a highly accurate model. However, there 
is no impact of window size on time and memory require-
ments of the system.

The analysis of the results in Table 4 led us to state that 
RDWM provides the best average accuracy of 91.38%, far 
better than the other approaches while handling Stagger 
concepts. Our system also performed the best in terms of 
homogeneity among the experts as validated by its kappa 
statistics value. RDWM proves to be better than EDDM, 
achieving higher accuracy at lower model-cost.

Fig. 1   Performance of RDWM-NB on Stagger concepts, a prequen-
tial accuracy, b evaluation time

Table 2   Results of evaluation of RDWM-NB on Stagger concepts 
with variation in ensemble size (m)

m = 1 m = 10 m = no limit

Accuracy 91.38 91.38 91.38
Kappa statistic 71.68 71.68 71.68
Model cost (*exp. − 9) 0.28 0.28 0.28
Time 0.10 0.10 0.10
Memory 0.01 0.01 0.01

Table 3   Results of evaluation of RDWM-NB on Stagger concepts 
with variation in window size (W)

W = 10 W = 1 W = 100

Accuracy 91.38 66.26 77.83
Kappa statistic 71.68 14.97 32.78
Model cost (*exp. − 9) 0.28 0.28 0.28
Time 0.10 0.10 0.10
Memory 0.01 0.01 0.01
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While handling Stagger concepts with recurrent drifts 
RDWM-NB performs similarly as DWM-NB, EDDM-
NB and NB classifier on the first target concept as seen in 
Fig. 2. However, as learning progresses RDWM achieves 
the highest accuracy along-with quick convergence to the 
target concepts. The analysis led us to state that the better 
performance of RDWM as compared to DWM is because of 
better learning of its experts.

While handling Stagger concepts with recurrent drifts the 
time and cost required by RDWM is lower as compared to 
EDDM, proving it to be highly resource efficient as shown 
in Table 5. RDWM is better than DWM, achieving higher 
accuracy with a slight increase of time and cost. From the 
analysis of the results in Tables 4 and 5, we can state that 
RDWM performs with higher accuracy averaging nearly 
93.05% when handling recurrent drifts as compared to 
91.38% accuracy while handling Stagger concepts with no 
recurrent drifts. Moreover, a drop in the accuracy of EDDM 
and NB has been observed while handling recurrent con-
cepts, proving RDWM to be the best system.

5.3.2 � Evaluation on moving hyperplane dataset

As illustrated in Fig. 3, on the first 950 instances RDWM-
NB performs with better accuracy than EDDM-NB and 
similarly as DWM-NB, NB and HT. In the period between 
time steps, 950 and 1600, RDWM and EDDM perform with 
almost similar accuracy. However, after 2600 time steps 
RDWM responds quickly to changes, achieving better accu-
racy than EDDM and DWM.

To obtain different levels of severity of drift, we vary the 
magnitude of change as shown in Table 6. When the drift has 
low severity, RDWM performed with almost similar accu-
racy as the other learners during the first 1600 time steps 
as seen in Fig. 4a. However, its performance dropped con-
siderably in the period surrounding time step 1600, owing 
to large number of misclassifications. But after extensive 
updates, around 2800 time steps RDWM outperforms all 
the other learners. RDWM is highly robust to change as is 
evident around time step 2600, where RDWM’s accuracy 
varies slightly by 2% on average.

Table 4   Average results of evaluation of RDWM-NB on Stagger 
concepts

RDWM EDDM DWM HT NB

Accuracy 91.38 80.89 84.37 77.65 76.57
Kappa statistic 71.68 42.64 52.39 24.29 23.46
Cost (*exp. − 9) 0.28 0.32 0.25 0.00 0.00
Time 0.10 0.10 0.09 0.02 0.01
Memory 0.01 0.00 0.01 0.00 0.00

Fig. 2   Performance of RDWM-NB on Stagger concepts containing 
recurrent drifts

Table 5   Results on Stagger concepts with recurrent drifts

RDWM EDDM DWM NB

Accuracy 93.05 76.51 86.87 69.65
model cost 

(*exp. − 9)
0.78 0.84 0.72 0.14

Time 0.32 0.34 0.26 0.12

Fig. 3   Accuracy of RDWM-NB on hyperplane dataset

Table 6   Different severity levels in hyperplane dataset

Level of severity Low Medium High

Magnitude of change (d) 0.0001 0.001 0.01
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While handling medium severity drift our approach 
achieved better accuracy than EDDM in the first 900 time 
steps, as seen in Fig. 4b. However, in the period between 
time steps, 900 and 1250, all the approaches performed simi-
larly. Around time step 1600 RDWM suffered a performance 
drop of nearly 6%, which is very low as compared to its 14% 
drop while handling low severity drifts (Fig. 4a). Hence, 

RDWM proves to be more robust to medium severity drift. 
After 2300 time steps, our system outperforms all the other 
learners achieving nearly 95% accuracy.

As observed from Fig. 4a–c, we can state that in the first 
1600 time steps, RDWM achieved similar accuracy as DWM 
and NB, irrespective of severity levels. However, after 1600 
time steps, the drop in accuracy of RDWM in high sever-
ity drift is similar to its drop in medium severity, as seen in 
Fig. 4c, b, respectively. As shown in Fig. 4c, after 1800 time 
steps RDWM converges very quickly to the target concepts, 
achieving the highest accuracy among EDDM, DWM and 
NB. Analysis of the results in Table 7 states that RDWM 
performs the best in terms of accuracy and kappa statistics, 
when the severity of drift is low. However, a change in sever-
ity does not impact the performance of RDWM in terms of 
time and memory.

When RDWM is evaluated using hyperplane dataset 
without noise, it achieves better accuracy as compared to 
its accuracy in a noisy domain as seen in Fig. 5. Around 
900 time steps, our approach made more misclassifications 
and resulted in sudden drop of roughly 13% accuracy in the 
noisy domain as compared to a steady drop of only 4% in a 
non-noisy domain. As learning progresses the differential in 
the performance of RDWM is reduced, with a differential 
of only 3% around 2500 time steps as compared to a huge 
differential of 10% around 1000 time steps.

While handling gradual drifting dataset, RDWM achieves 
the highest accuracy averaging 88.44% (independent of the 
base classifier), as shown in Table 8. However, the use of HT 
as base-classifier resulted in a considerable increase in its 
time and memory requirements. Hence, for handling gradual 
drifts the best base classifier for RDWM is NB. Our system 
also performed the best in terms of homogeneity among 
its experts. RDWM provides a better system than EDDM, 
achieving higher accuracy in lesser time. Our approach also 
outperforms DWM, achieving higher accuracy levels.

5.3.3 � Evaluation on electricity pricing domain

As seen in Fig. 6a, RDWM-NB performs the best, achieving 
the highest accuracy levels. Overall, NB averaged 73.40% 
accuracy, EDDM has accuracy of 84.82%, DWM has 
84.18% accuracy whereas RDWM-NB achieved the highest 

Fig. 4   Performance of RDWM-NB on hyperplane dataset with vary-
ing severity levels a low, b medium, c high

Table 7   Performance of RDWM on moving hyperplane dataset with 
different levels of severity of drift

Low Med High

Accuracy (%) 88.74 88.44 82.44
Kappa statistic (%) 77.38 76.42 64.72
Time (CPU-s) 0.20 0.20 0.20
Memory (bytes) 0.01 0.01 0.01
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accuracy of 85.80%. Our system has high adaptability to the 
new concepts as RDWM shows an increase in its accuracy 
levels whereas DWM, EDDM and NB observe a gradual 
drop around time step 23,000. Further, between time steps, 
22,000 and 24,500, RDWM provides a highly stable system 
as it shows a slight variation of 2% in its accuracy levels as 
compared to a huge variation of 7.5% for EDDM.

The graphs in Fig. 6b led us to conclude that RDWM-NB 
performs better than RDWM-HT, achieving higher accuracy 
along-with quick convergence to the target concepts around 
time step 40,000. RDWM-HT is more robust to change as 
compared to RDWM-NB. This is illustrative in the period 
surrounding time step 34,000, where RDWM-NB shows a 
sudden drop of 11% in its accuracy whereas RDWM-HT 
shows a gradual slight decrease in its accuracy levels.

Table 9 shows that a variation in the threshold value or 
the multiplicative factor does not impact the performance 
of RDWM in terms of any of the performance metrics apart 
from evaluation time. Further, the most appropriate value 
of θ is 0.001 and β is 0.9, resulting in a highly resource 
efficient system.

The results in Table 10 led us to state that RDWM-NB 
performs with almost similar average accuracy and kappa 
statistics as RDWM-HT, with reduced memory and evalu-
ation time. Hence, our system performs the best when NB 
is used as the base classifier. RDWM-NB achieves better 

accuracy than DWM-NB and EDDM-NB, with slightly 
higher evaluation time.

5.3.4 � Evaluation on power supply stream

As illustrated in Fig. 7, RDWM-NB achieves the highest 
average accuracy among all the approaches. As seen around 
18,000 time steps, our system converges very quickly to 
the target concepts. RDWM-NB observes an increase in its 
accuracy levels whereas ADWIN, PL, EDDM and DDM 
show a gradual drop. Most illustrative is a sudden rise of 
18% in accuracy of RDWM as compared to only 11% in case 
of DWM, between time steps, 24,000 and 24,500. RDWM 
provides a highly stable system as seen between time steps, 
21,000 and 23,000, with a slight variation of nearly 1.4% 
accuracy as compared to a huge variation of 6% in accuracy 
of DDM, 8% for ADWIN, 3.8% for PL and 4% for DWM.

Results in Table 11 shows that RDWM requires the least 
evaluation time as it updates only the primary ensemble. 
On the contrary, PL requires maximum time followed by 
EDDM, DDM and ADWIN. This is because PL involves 
the maximum number of updates. The number of updates in 
EDDM, DDM and ADWIN are almost equal but higher as 
compared to RDWM. Hence, RDWM proves to be the best 
system for handling power supply stream, achieving highest 
accuracy of 16.32% in least time.

5.3.5 � Evaluation on KDD CUP 1999 dataset

As seen in Fig. 8a, at each time step RDWM-NB performs 
with almost similar accuracy as DWM-NB. For the first 
40,000 time steps, RDWM performs with similar accuracy 
as NB but as learning progresses, it adapts very quickly to 
the new target concepts achieving very high accuracy levels 
whereas NB observes a gradual drop, around 42,500 time 
steps.

In the initial learning phase, the evaluation time of 
RDWM is same as DWM as seen in Fig. 8b. However, 
around 59,000 time steps the differential between the two 
time graphs increases, with RDWM taking less time. Also 
the rate of updates in RDWM is less as compared to DWM, 
with its graph having a lower slope. The analysis of the 
results in Table 12 led us to state that RDWM-NB achieves 
better accuracy as compared to EDDM, with lower time and 

Fig. 5   Accuracy of RDWM on hyperplane dataset with 5% noise

Table 8   Experimental results 
for RDWM-NB on hyperplane 
dataset, average over 50 runs of 
the dataset

RDWM-NB EDDM-NB DWM-NB NB HT RDWM-HT

Accuracy 88.44 87.06 87.95 87.95 87.95 88.40
Kappa statistic 76.42 73.96 75.77 75.77 75.77 76.29
Model cost (*exp. − 9) 0.74 0.71 0.72 0.12 0.12 1.04
Time 0.20 0.25 0.17 0.10 0.10 0.31
Memory 0.01 0.00 0.01 0.01 0.01 0.02
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memory requirements. Our system achieves similar accuracy 
as DWM in less evaluation time, making it the best system 
for handling drifts.

5.3.6 � Evaluation on breast cancer dataset

With the progress in learning, RDWM-NB achieves bet-
ter accuracy than EDDM-NB and DWM-NB, as seen in 
Fig. 9a. This is evident after 200 time steps, where RDWM 
converges very quickly to the target concepts achieving an 
accuracy of nearly 74%. However, DWM shows a gradual 
drop with nearly 68% accuracy and EDDM with further 
lower accuracy of 67%. RDWM provides a more stable sys-
tem than DWM. This can be seen in the period between 
time steps 160 and 230, where accuracy of RDWM remains 
nearly constant (2% variation) while DWM illustrates a vari-
ation of almost 6%.

As seen in Fig. 9b, RDWM require least evaluation time 
as compared to EDDM and DWM. As learning progresses, 
the differential between the various time graphs increases. 
Overall, the rate of updates is the lowest in RDWM, as evi-
dent by the number of transitions in its time graph. Hence 
our approach provides the best system for drift detection.

5.3.7 � Evaluation on static concepts

In RDWM no new functionality has been explicitly intro-
duced for making it beneficial for handling static con-
cepts. However, the empirical evaluation of RDWM on 
static datasets from UCI repository [31], led us to state 
that RDWM performs no worse as compared to a single 
classifier NB system. From the analysis of the results in 
Table 13, we can state that RDWM-NB outperformed NB 
or behaved similarly as NB on most of the tasks (9 out of 
16), with an accuracy difference of nearly 1%. On the other 
tasks where NB performed better, the average difference 
was also within this range. Overall, the average accuracy 
difference is + 0.41% in RDWM’s favor.

To summarize, while handling Stagger concepts (abrupt 
drift with recurrence or non-recurrence) RDWM provides 
the best accuracy among all the approaches. Our sys-
tem proves to be more resource efficient as compared to 
EDDM. Variation in ensemble size does not impact the 
performance of RDWM in terms of any of the performance 

Fig. 6   Accuracy of RDWM on electricity pricing domain a using 
NB as base classifier, b using NB as compared to using HT as base 
classifiers

Table 9   Results for RDWM–NB on electricity pricing domain, vary-
ing threshold value (θ) and multiplicative factor (β)

Θ = 0.01
β = 0.1

Θ = 0.01
β = 0.9

Θ = 0.1,
β = 0.5

Θ = 0.01
β = 0.5

Θ = 0.001
β = 0.5

Accuracy 85.80 85.80 85.80 85.80 85.80
Kappa sta-

tistic
70.80 70.80 70.80 70.80 70.80

Time 4.39 4.26 4.43 4.72 4.40
Memory 0.01 0.01 0.01 0.01 0.01

Table 10   Average results for 
RDWM on electricity pricing 
domain, with NB and HT as the 
base learners

RDWM-HT DWM-HT HT NB RDWM-NB DWM-NB EDDM-NB

Accuracy (%) 85.51 87.54 79.23 73.40 85.80 84.18 84.82
Kappa statistic (%) 70.04 74.16 56.24 39.95 70.80 66.99 68.38
Time (CPU-s) 6.51 8.83 12.46 1.66 4.72 4.44 3.30
Memory (bytes) 0.02 0.03 0.07 0.01 0.01 0.01 0.00
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metrics. Further, RDWM provides better prequential accu-
racy while handling recurrent concepts as compared to 
non-recurrent drifts.

While handling hyperplane dataset containing slow 
gradual drifts, RDWM-NB achieves the best accuracy 
and proves to be highly resource efficient as compared to 
the other learning models. It performs the best when the 
dataset contains low levels of severity of drift in a non-
noisy domain.

Evaluation on Electricity pricing domain shows that 
RDWM-NB performs the best, achieving the highest 
accuracy along-with high adaptability to the new concepts. 
RDWM-NB provides a more resource efficient system than 
RDWM-HT. Variation in threshold value and multiplica-
tive factor does not impact the performance of RDWM 
in terms of any of the performance metrics apart from 
evaluation time.

While handling power supply stream dataset, our system 
provides a highly stable, most time efficient and highly accu-
rate system. Further, RDWM proves to be the best system for 
handling KDD CUP 1999 dataset. RDWM achieves almost 
similar accuracy as DWM and EDDM in lesser time and 
memory.

Evaluation on Breast Cancer dataset proves RDWM to 
be the best system, achieving highest accuracy in least time 
as compared to EDDM and DWM. RDWM performs no 

worse than single classifier NB system while handling static 
datasets.

5.4 � Statistical analysis of the experimental results

Results in Table 14 prove RDWM to be the best system, 
achieving the highest accuracy among all the approaches 
while handling Stagger concepts and Stagger concepts with 
recurrent drifts, power supply stream and KDD Cup 1999 
dataset. RDWM with NB as its base classifier has a smaller 
value of standard deviation as compared to other systems. 
A smaller deviation meant RDWM to be highly stable, with 
slight variation in accuracy from the mean and high adapt-
ability to the new concepts.

Results on hyperplane dataset show that RDWM-HT pro-
vides a more stable system than RDWM-NB. Results on 
electricity pricing dataset prove that RDWM-NB performs 
with slightly better accuracy than RDWM-HT, with smaller 
standard deviation resulting in a more stable system.

To validate the performance of RDWM, some statistical 
tests were applied on the experimental results. These tests 
have been widely applied in the machine learning domain 
[10, 17, 19, 24, 33]. In this study, we applied Friedman 
and Kruskal Wallis tests [33] to show significant differ-
ence between the performance of RDWM and other sys-
tems being compared. After rejection of null hypothesis, 
a Post-hoc test called Holm’s method was also applied for 
the same. The value of level of confidence (α) was set to 1. 
The results of statistical tests are shown in Tables 15, 16 and 
17. Table 15 shows the average ranking of the various sys-
tems that have been used for comparison. From the results, 
it can be seen that RDWM obtains the first rank whereas 
NB obtained the fourth rank. Statistical and p-values of both 
tests are mentioned in Table 16 and the null hypothesis is 
rejected. Further, a Post-hoc test called Holm’s method was 
carried out to show that RDWM performs better than all 
the other approaches being compared. Table 17 shows the 
results of post-hoc test on the confidence level 1. It was also 
observed that the hypothesis was rejected; and based on the 
above observations we can state that RDWM provides better 
results experimentally as well as statistically.

Fig. 7   Performance of RDWM-NB on power supply stream

Table 11   Average results of 
evaluation of RDWM-NB on 
power supply stream

RDWM DWM DDM EDDM ADWIN PL NB

Accuracy 16.32 12.92 13.79 15.02 12.74 15.68 15.85
Kappa statistic 12.69 9.15 10.05 11.33 8.95 12.02 12.20
Time 2.64 19.29 112.77 124.12 108.18 209.74 1.16
Memory 0.01 0.01 0.30 0.30 0.30 0.15 0.01
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6 � Conclusions

In our paper, we provide empirical as well as statistical 
evaluation of RDWM for handling drifting concepts, 
mainly recurrent drifts. Analysis of the results using Stag-
ger concepts states that RDWM provides the best aver-
age prequential accuracy, using an optimal window size 
for handling sudden and recurrent drifts. Our approach 
responds quickly to gradual changes. For low severity 
drifts, RDWM performs the best in terms of accuracy 

and kappa statistics. It has been observed that a change in 
the severity level does not impact the performance of our 
system in terms of time and memory. The evaluation of 
RDWM using real-time drifting datasets proves RDWM 
to be the best system, performing very accurately even 
in a resource constrained environment. Experiments done 
on various static datasets conclude that our approach per-
forms no worse than NB. Hence, RDWM could be used for 
classification of any dataset varying from static to highly 
dynamic datasets. The statistical analysis of the experi-
mental results proves our system to be the best performing 
system among all the approaches.

For future work, we plan to improvise our approach 
for handling drifting datasets with weights assigned to 
instances. We would also like to enhance our approach for 
handling novel class detection in data streams.

Fig. 8   Performance on KDD CUP a accuracy, b time

Table 12   Results for RDWM-NB on KDD CUP 99 dataset

RDWM DWM EDDM NB

Accuracy (%) 99.26 99.28 99.15 98.88
Time (CPU-s) 33.17 35.93 671.98 29.01
Memory (bytes) 0.05 0.05 0.79 0.07

Fig. 9   Performance on breast cancer dataset a prequential accuracy, 
b evaluation time
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Table 13   Static datasets from 
UCI repository with the various 
parameters

Measures are prequential accuracy of RDWM-NB, with window size of 10 and 50, averaged over 50 runs 
of each dataset. Maximum accuracies are typeset in boldface. The last column is the % difference between 
NB and the better performing RDWM system

Dataset Number of 
instances (n)

Ensemble 
size (m)

Sliding 
window 
(w)

NB RDWM-NB ∆%

W = 10 W = 50

Colic 368 3 1000 75.04 ± 0.24 73.99 ± 0.14 75.59 ± 1.26 + 0.55
Glass 214 3 1000 46.73 ± 1.25 40.42 ± 1.17 48.86 ± 0.21 + 2.13
Heart-c 920 3 1000 82.04 ± 0.47 67.37 ± 2.60 80.18 ± 0.36 − 1.86
Hepatitis 155 7 10 82.07 ± 0.55 83.17 ± 0.76 83.17 ± 0.74 + 1.10
Hypo-thyroid 3772 4 1000 95.57 ± 0.06 94.10 ± 0.05 95.66 ± 0.02 + 0.09
Ionosphere 351 6 10 88.58 ± 0.41 85.67 ± 0.71 87.84 ± 0.63 − 0.74
Labor 57 4 10 89.67 ± 0.61 88.37 ± 0.94 89.33 ± 1.00 − 0.34
Lung-cancer 32 4 10 59.37 ± 3.13 57.20 ± 0.95 59.37 ± 3.13 0.00
Lymph 148 3 100 77.45 ± 1.77 76.54 ± 0.75 76.54 ± 0.85 − 0.91
Mushroom 8124 3 1000 98.20 ± 0.03 97.90 ± 0.30 97.49 ± 0.43 − 0.30
Segment 2310 5 1000 79.54 ± 0.16 48.92 ± 3.48 78.55 ± 0.65 − 0.99
Sick 3772 4 1000 92.06 ± 1.24 93.23 ± 0.27 93.34 ± 1.86 + 1.28
Soybean 683 6 1000 91.87 ± 0.16 89.81 ± 0.28 89.99 ± 1.15 − 1.88
Splice 3190 6 1000 94.92 ± 0.22 98.90 ± 0.70 97.73 ± 0.97 + 3.98
Vehicle 946 3 1000 45.97 ± 1.64 44.73 ± 0.44 47.20 ± 1.41 + 1.23
Zoo 101 7 1000 88.06 ± 0.07 84.09 ± 0.08 88.06 ± 0.07 0.00

Table 14   Results for RDWM on various datasets, average over 50 runs of each dataset

Measures are prequential accuracies along-with the corresponding standard deviations. Maximum and more stable accuracies are typeset in 
boldface

Dataset Approaches

Stagger concepts RDWM-NB: 91.38 ± 2.2; HT: 
77.65 ± 9.7

EDDM-NB: 80.89 ± 2.56; NB: 
76.57 ± 10.98

DWM-NB: 84.37 ± 2.30

Stagger concepts 
with recurrent drift

RDWM-NB: 93.05 ± 1.26; NB: 
69.65 ± 3.68

EDDM-NB: 76.51 ± 1.51 DWM-NB: 86.87 ± 2.71

Hyperplane dataset RDWM-NB: 88.44 ± 2.59; RDWM-
HT: 88.40 ± 1.84

EDDM-NB: 87.06 ± 3.4; NB: 
87.95 ± 2.48

DWM-NB: 87.95 ± 4.62; HT: 
87.95 ± 1.87

Power supply stream RDWM-NB: 16.32 ± 2.55; EDDM: 
15.02 ± 4.23; NB: 15.85 ± 7.60

DWM-NB: 12.92 ± 8.13; ADWIN: 
12.74 ± 7.59; PL: 15.68 ± 8.34

DDM: 13.79 ± 4.41

Electricity pricing RDWM-HT: 85.51 ± 1.86; DWM-NB: 
84.18 ± 1.77; NB: 73.40 ± 6.06

RDWM-NB: 85.80 ± 1.07; EDDM-
NB: 84.82 ± 1.26

DWM-HT: 87.54 ± 2.65; HT: 
79.23 ± 6.43

KDD Cup 1999 RDWM-NB: 99.26 ± 0.09; EDDM: 
99.15 ± 0.11

DWM-NB: 99.28 ± 0.12; NB: 
98.88 ± 0.51

Breast cancer RDWM-NB: 68.25 ± 2.73; NB: 
68.42 ± 3.41

DWM-NB: 67.66 ± 0.17; EDDM-NB: 
66.28 ± 0.6

Table 15   Average ranking 
based on Friedman test using 
accuracy parameter

RDWM EDDM DWM NB

1 3 2.7 3.3

Table 16   Statistics of Friedman and Kruskal Wallis tests on accu-
racy parameter

Method Statistical value p value Hypothesis

Friedman test 9.7347 0.0263 Rejected
Kruskal–Wallis test 11.7286 0.0189 Rejected
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