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active research topic in different application areas, such as 
associtative memory, pattern recognition and signal process-
ing (see [1–7] and the references cited therein). Recently, as 
pointed out in [8], it is significantly important in theory and 
application to study cellular neural networks (CNNs) with 
complex deviating arguments, which has a wider meaning 
than CNNs with time-varying delays or distributed delays 
since the models describing the complexity of real problems 
should reflect the effects of fluctuation factors (see [9–12]). 
Furthermore, a typical time delay called Leakage (or “for-
getting”) delay may exist in the negative feedback terms of 
the neural network system, and these terms are variously 
known as forgetting or leakage terms (see [1, 13, 14]). Usu-
ally, HCNNs with complex deviating arguments and involv-
ing time-varying delays, and continuously distributed delays 
in the leakage terms can be described as follows:

and

(1.1)

x�
i
(t) = −ci(t)xi(t − 𝜂i(t)) +

n
∑

j=1

aij(t)fj(xj(t)) +

n
∑

j=1

bij(t)gj(xj(xj(t)))

+

n
∑

j=1

n
∑

l=1

eijl(t)ḡj(xj(xj(t)))ḡl(xl(xl(t))) + Ii(t), i = 1, 2,… , n,

(1.2)

x�
i
(t) = −ci(t)

+∞

∫
0

𝛿i(s)xi(t − s)ds

+

n
∑

j=1

aij(t)fj(xj(t)) +

n
∑

j=1

bij(t)gj(xj(xj(t)))

+

n
∑

j=1

n
∑

l=1

eijl(t)ḡj(xj(xj(t)))ḡl(xl(xl(t)))

+ Ii(t), i = 1, 2,… , n,

Abstract  In this paper, we propose and study the pseudo 
almost periodic high-order cellular neural networks with 
oscillating leakage coefficients and complex deviating argu-
ments, which has not been studied in the existing literature. 
Applying the contraction mapping fixed point theorem and 
inequality analysis techniques, we establish a set of criteria 
for the existence and uniqueness of pseudo almost periodic 
solutions for this model, which can be easily tested in prac-
tice by simple algebra computations. The obtained results 
play an important role in designing high-order cellular neu-
ral networks with state-dependent delays. Moreover, some 
illustrative examples are given to demonstrate our theoretical 
results.
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1  Introduction

Over the past 30 years, compared with the ordinary neu-
ral networks, the high-order neural networks (HNNs) have 
stronger approximation property, faster convergence rate, 
great stronger capacity and higher fault tolerance, and high-
order cellular neural networks (HCNNs) has become an 

 *	 Aiping Zhang 
	 aipingzhang2012@aliyun.com

1	 School of Science, Hunan University of Technology, 
Zhuzhou 412000, Hunan, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-017-0715-3&domain=pdf


302	 Int. J. Mach. Learn. & Cyber. (2019) 10:301–309

1 3

respectively. Here n corresponds to the number of units in 
a neural network, xi(t) corresponds to the state vector of 
the ith unit at the time t, ci(t) represents the rate with which 
the ith unit will reset its potential to the resting state in iso-
lation when disconnected from the network and external 
inputs at the time t, aij(t), bij(t) and eijl(t) are the connection 
weights at the time t, �i(t) ≥ 0 denotes the leakage delay, 
�i(s) ≥ 0 denotes the leakage delay kernel, and Ii(t) denotes 
the external inputs at time t, fj, gj and ḡj are activation func-
tions of signal transmission, i, j ∈ J = {1, 2,… , n}. From the 
basic theory on state-dependent delay-differential equations 
in [15], HCNNs (1.1) and (1.2) are special types of state-
dependent delay-differential equations.

It should be mentioned that, compared with almost peri-
odic phenomenon, pseudo almost periodic phenomenon 
which can be represented as an almost periodic process plus 
a ergodic component is more common [10, 16]. Therefore, 
it is more realistic to study the pseudo almost periodic phe-
nomenon in neural networks models [17–22]. However, to 
the best of our knowledge, there is no result on the existence 
of pseudo almost periodic solutions for HCNNs with oscil-
lating leakage coefficients and complex deviating arguments. 
This motivates us to derive some sufficient criteria on the 
existence of pseudo almost periodic solutions for Eqs. (1.1) 
and (1.2).

The remaining of this paper is organized as follows. In 
Sect. 2, we recall some basic definitions and lemmas, which 
play an important role in Sect. 3 to establish the existence 
and uniqueness of pseudo almost periodic solutions of Eqs. 
(1.1) and (1.2). The paper concludes with two examples to 
illustrate the effectiveness of the obtained results.

2 � Preliminaries

In this section, we shall first recall some basic defini-
tions, lemmas which are used in what follows. We des-
ignate by AP(ℝ,ℝn) the set of the almost periodic func-
tions from ℝ to ℝn. Hereafter, we denote by ℝn(ℝ = ℝ

1) 
the set of all n−dimensional real vectors (real numbers). 
For any {xi} = (x1, x2,… , xn) ∈ ℝ

n, we let |x| denote the 
absolute-value vector given by |x| = {|xi|}, and define 
‖x‖ = maxi∈J �xi�. A matrix or vector A ≥ 0 means that all 
entries of A are greater than or equal to zero. A > 0 can be 
defined similarly. For matrices or vectors A1 and A2, A1 ≥ A2 
(resp. A1 > A2) means that A1 − A2 ≥ 0 (resp. A1 − A2 > 0).  
BC(ℝ,ℝn) denotes the set of bounded and continuous 
functions from ℝ to ℝn, and BUC(ℝ,ℝn) denotes the set 
of bounded and uniformly continuous functions from ℝ to 
ℝ

n. Note that (BC(ℝ,ℝn), ‖ ⋅ ‖∞) is a Banach space, where 
‖ ⋅ ‖∞ denotes the supremum norm ‖f‖∞: = supt∈ℝ ‖f (t)‖. 
For h ∈ BC(ℝ,ℝ), let h+ and h− be defined as

Besides, we define the class of functions PAP0(ℝ,ℝ
n) as 

follows:

A function f ∈ BC(ℝ,ℝn) is called pseudo almost periodic 
if it can be expressed as

where h ∈ AP(ℝ,ℝn) and � ∈ PAP0(ℝ,ℝ
n). The collection 

of such functions will be denoted by PAP(ℝ,ℝn). Then, 
(PAP(ℝ,ℝn), ‖.‖∞) is a Banach space and AP(ℝ,ℝn) is a 
proper subspace of PAP(ℝ,ℝn) [23].

For i, j ∈ J, it will be assumed that ci:ℝ → ℝ is an almost 
periodic function, �i:ℝ → [0, +∞), Ii, aij, bij, eijl :ℝ → ℝ are 
pseudo almost periodic on ℝ.

Let L > 0, l > 0 and 0 < 𝜃 < 1 be three constants such that

and

where

We also make the following assumptions which will be used 
later.

(S0) For each i ∈ J,

and there exist a bounded and continuous function 
c̃i:ℝ → (0, +∞) and a positive constant Ki such that

(S1) For each j ∈ J, there exist nonnegative constants Lf
j
, Lg

j
, 

L
ḡ

j
 and Mḡ

j
 such that

h+ = sup
t∈ℝ

|h(t)|, h− = inf
t∈ℝ

|h(t)|.

⎧

⎪

⎨

⎪

⎩

f ∈ BC(ℝ,ℝn)� lim
T→+∞

1

2T

T

∫
−T

�f (t)�dt = �

⎫

⎪

⎬

⎪

⎭

.

f = h + �,

BL = {�|� ∈ PAP(ℝ,ℝn), {|�i(t1) − �i(t2)|} ≤ {L|t1 − t2|},

for all t1, t2 ∈ ℝ},

B∗ =

{

�
|

|

|

|

||� − �0||� ≤ �l

1 − �
, � ∈ �

}

,

𝜑0 =

{

�
t

−∞

e− ∫ t

s
ci(w)dwIi(s)ds

}

,

{

max

{

Ki

I+
i

c̃−
i

,

(

1 + Ki

c+
i

c̃−
i

)

I+
i

}}

≤ {l}.

M[ci] = lim
T→+∞

1

T

t+T

∫
t

ci(s)ds > 0,

e− ∫ t

s
ci(u)du ≤ Kie

− ∫ t

s
c̃i(u)du for all t, s ∈ ℝ and t − s ≥ 0.
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Lemma 2.1  (see [19, Lemma 4 and Remark 5]). Let 
� = {f |f , f � ∈ PAP(ℝ,ℝn)} be equipped with the induced 
norm defined by

Then, � is a Banach space.

Lemma 2.2  (see [5, Lemma 2.2]) BL is a closed subset of 
PAP(ℝ,ℝn).

3 � Main results

In this section, we establish some sufficient conditions on the 
existence and uniqueness of pseudo almost periodic solutions 
of Eqs. (1.1) and (1.2).

Theorem 3.1  Let (S0) and (S1) hold. Suppose that there 
exist constants 𝜃 > 0, 𝛼i > 0 and L > 0, such that

and

|fj(u) − fj(v)| ≤ L
f

j
|u − v|, |gj(u) − gj(v)| ≤ L

g

j
|u − v|,

|ḡj(u) − ḡj(v)| ≤ L
ḡ

j
|u − v|, for all u, v ∈ ℝ,

gj(0) = fj(0) = ḡj(0) = 0, sup
u∈ℝ

|ḡj(u)|: = M
ḡ

j
< +∞.

‖f‖
�
= max{‖f‖∞, ‖f

�
‖∞} = max

�

sup
t∈ℝ

‖f (t)‖, sup
t∈ℝ

‖f �(t)‖

�

.

(3.1)

𝜃 = max
i∈J

{

(

1 + c+
i

Ki

c̃−
i

)

[

c+
i
n+
i
+

n
∑

j=1

(

a+
ij
L
f

j
+ b+

ij
L
g

j

)

+

n
∑

j=1

n
∑

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

]

,

Ki

c̃−
i

[

c+
i
𝜂
+

i
+

n
∑

j=1

(a+
ij
L
f

j
+ b+

ij
L
g

j
) +

n
∑

j=1

n
∑

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

]}

(3.2)

{[

c+
i
+ c+

i
𝜂
+

i
+

n
∑

j=1

(

a+
ij
L
f

j
+ b+

ij
L
g

j

)

+

n
∑

j=1

n
∑

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

]

l

1 − 𝜃
+ I+

i
} ≤ {L

}

,

− c̃−
i
+ Ki

[

c+
i
𝜂
+

i
+

n
∑

j=1

a+
ij
L
f

j
+

n
∑

j=1

b+
ij
L
g

j
(1 + L)

+

n
∑

j=1

n
∑

l=1

e+
ijl
(1 + L)

(

M
ḡ

l
L
ḡ

j
+M

ḡ

j
L
ḡ

l

)

]

≤ −𝛼i,

Then (1.1) has a unique pseudo almost periodic solution in 
the region � = BL

⋂

B∗.

Proof  By Lemmas 2.1 and 2.2, one can show that 
� is a closed subset of �. For any � ∈ �, notice that 
M[ci] > 0, i = 1, 2,… , n, using a similar argument as that 
in the proof of Theorem 3.1 in [11], we obtain that the non-
linear pseudo almost periodic differential equations,

has exactly one pseudo almost periodic solution:

and

Now, we define a mapping T:� → PAP(ℝ,ℝn) by setting

(3.3)

c̃−
i
− 𝛼i

Ki

+ c+
i

(

1 −
𝛼i

c̃+
i

)

< 1, i ∈ J.

(3.4)

x�
i
(t) = − ci(t)xi(t) + ci(t)

t

∫
t−𝜂i(t)

𝜑
�
i
(s)ds +

n
∑

j=1

aij(t)fj(𝜑j(t))

+

n
∑

j=1

bij(t)gj(𝜑j(𝜑j(t)))

+

n
∑

j=1

n
∑

l=1

eijl(t)ḡj(𝜑j(𝜑j(t)))ḡl(𝜑l(𝜑l(t))) + Ii(t), i ∈ J,

(3.5)

x𝜑(t) =

{

x
𝜑

i
(t)}

=

{

t

�
−∞

e
−

t∫
s

ci(u)du
[

ci(s)

s

�
s−𝜂i(s)

𝜑
�
i
(u)du +

n
∑

j=1

aij(s)fj(𝜑j(s))

+

n
∑

j=1

bij(s)gj(𝜑j(𝜑j(s)))

+

n
∑

j=1

n
∑

l=1

eijl(s)ḡj(𝜑j(𝜑j(s)))ḡl(𝜑l(𝜑l(s))) + Ii(s)

]

ds

}

,

(3.6)

(x𝜑(t))� =

{[

ci(t)

t

∫
t−𝜂i(t)

𝜑
�
i
(u)du +

n
∑

j=1

aij(t)fj(𝜑j(t))

+

n
∑

j=1

bij(t)gj(𝜑j(𝜑j(t)))

+

n
∑

j=1

n
∑

l=1

eijl(t)ḡj(𝜑j(𝜑j(t)))ḡl(𝜑l(𝜑l(t))) + Ii(t)

]

− ci(t)x
𝜑

i
(t)

}

∈ PAP(ℝ,ℝn).
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First we show that for any � ∈ �, T� = x� ∈ �.
Note that

We get

It follows from Eqs. (3.1), (3.2) and (3.3) that

and

Consequently,

(T�)(t) = x�(t), ∀� ∈ �.

‖

‖

𝜑0
‖

‖

= max
i∈J

{

sup
t∈ℝ

|�
t

−∞

e− ∫ t

s
ci(w)dwIi(s)ds|

}

≤ max
i∈J

{

sup
t∈ℝ

Ki|�
t

−∞

e− ∫ t

s
c̃i(w)dwIi(s)ds|

}

≤ max
i∈J

{

Ki

I+
i

c̃−
i

}

≤ l,𝜑0�

‖

‖

𝜑
�
0
‖

‖

= max
i∈J

{

sup
t∈ℝ

| − ci(t)𝜑0(t) + Ii(t)|

}

≤ max
i∈J

{(

1 + Ki

c+
i

c̃−
i

)

I+
i

}

≤ l.

(3.7)||�||
�
≤ ||� − �0||� + ||�0||� ≤ �l

1 − �
+ l =

l

1 − �
.

�(T𝜑)(t) − 𝜑0(t)� ≤
�

Ki

t

�
−∞

e
−

t∫
s

c̃i(u)du

�ci(s)�
s

s−𝜂i(s)

𝜑
�
i
(u)du +

n
�

j=1

aij(s)fj(𝜑j(s))

+

n
�

j=1

bij(s)gj(𝜑j(𝜑j(s))) +

n
�

j=1

n
�

l=1

eijl(s)ḡj(𝜑j(𝜑j(s)))ḡl(𝜑l(𝜑l(s)))

�

�ds

�

≤
�

Ki

t

�
−∞

e− ∫ t

s
c̃−
i
du[c+

i
𝜂
+

i
+

n
�

j=1

�

a+
ij
L
f

j
+ b+

ij
L
g

j

�

+

n
�

j=1

n
�

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

�

ds‖𝜑‖
�

�

≤
�

Ki

c̃−
i

�

c+
i
𝜂
+

i
+

n
�

j=1

�

a+
ij
L
f

j
+ b+

ij
L
g

j

�

+

n
�

j=1

n
�

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

�

l

1 − 𝜃

�

≤
�

𝜃l

1 − 𝜃

�

, ∀t ∈ ℝ,

|((T𝜑)(t) − 𝜑0(t))
�
|

≤
{(

1 + c+
i

Ki

c̃−
i

)[

c+
i
𝜂
+

i
+

n
∑

j=1

(

a+
ij
L
f

j
+ b+

ij
L
g

j

)

+

n
∑

j=1

n
∑

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

]

l

1 − 𝜃

}

≤
{

𝜃l

1 − 𝜃

}

, ∀t ∈ ℝ.

(3.8)||T� − �0||∞ ≤ �l

1 − �
, ||(T� − �0)

�
||∞ ≤ �l

1 − �
,

and

||T�||∞ ≤ ||T� − �0||∞ + ||�0||∞ ≤ �l

1 − �
+ l =

l

1 − �
,

|((T𝜑)(t))�| =

{

| − ci(t)((T𝜑)(t))i + ci(t)�
t

t−𝜂i(t)

𝜑
�
i
(s)ds

+

n
∑

j=1

aij(t)fj(𝜑j(t)) +

n
∑

j=1

bij(t)gj(𝜑j(𝜑j(t)))

+

n
∑

j=1

n
∑

l=1

eijl(t)ḡj(𝜑j(𝜑j(t)))ḡl(𝜑l(𝜑l(t))) + Ii(t)|

}

≤
{[

c+
i
+ c+

i
𝜂
+

i
+

n
∑

j=1

(

a+
ij
L
f

j
+ b+

ij
L
g

j

)

+

n
∑

j=1

n
∑

l=1

e+
ijl
L
ḡ

j
M

ḡ

j

]

l

1 − 𝜃
+ I+

i

}

≤ {L}, ∀t ∈ ℝ,

(3.9)

|(T�)(t1) − (T�)(t2)|

=

{

|(((T�)(t))i)
�
|

|

|

|t=t1+Δ(t2−t1)

(t1 − t2)|

}

≤
{

L|t1 − t2|

}

,

where for all t1, t2 ∈ ℝ, Δ ∈ (0, 1), and t1 + Δ(t2 − t1) is 
the mean point in Lagrange’s mean value theorem. Thus, 
Eqs. (3.8) and (3.9) yield T� ∈ �. So, the mapping T is a 
self-mapping from � to �.
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Furthermore, for �,� ∈ �, according to (S0), (S1), Eqs. 
(3.1), (3.2), (3.5) and (3.6), we get

and

(3.10)

�(T𝜑)(t) − (T𝜓)(t)� ≤
�

�
t

−∞

e− ∫ t

s
ci(u)du

�

�ci(s)��
s

s−𝜂i(s)

�𝜑
�
i
(u) − 𝜓

�
i
(u)�du

+

n
�

j=1

a+
ij
L
f

j
�𝜑j(s) − 𝜓j(s)� +

n
�

j=1

b+
ij
L
g

j
�𝜑j(𝜑j(s)) − 𝜓j(𝜓j(s))�

+

n
�

j=1

n
�

l=1

e+
ijl
(M

ḡ

l
L
ḡ

j
�𝜑j(𝜑j(s)) − 𝜓j(𝜓j(s))� +M

ḡ

j
L
ḡ

l
�𝜑l(𝜑l(s)) − 𝜓l(𝜓l(s))�)

�

ds

�

≤
�

�
t

−∞

e− ∫ t

s
ci(u)du

�

�ci(s)��
s

s−𝜂i(s)

�𝜑
�
i
(u) − 𝜓

�
i
(u)�du +

n
�

j=1

a+
ij
L
f

j
�𝜑j(s) − 𝜓j(s)�

+

n
�

j=1

b+
ij
L
g

j
(�𝜑j(𝜑j(s)) − 𝜓j(𝜑j(s))� + �𝜓j(𝜑j(s)) − 𝜓j(𝜓j(s))�)

+

n
�

j=1

n
�

l=1

e+
ijl
(M

ḡ

l
L
ḡ

j
(�𝜑j(𝜑j(s)) − 𝜓j(𝜑j(s))� + �𝜓j(𝜑j(s)) − 𝜓j(𝜓j(s))�)

+M
ḡ

j
L
ḡ

l
(�𝜑l(𝜑l(s)) − 𝜓l(𝜑l(s))� + �𝜓l(𝜑l(s)) − 𝜓l(𝜓l(s))�))

�

ds

�

≤
�

�
t

−∞

e− ∫ t

s
c̃i(u)duKi

�

c+
i
𝜂
+

i
+

n
�

j=1

a+
ij
L
f

j
+

n
�

j=1

b+
ij
L
g

j
(1 + L)

+

n
�

j=1

n
�

l=1

e+
ijl
(1 + L)(M

ḡ

l
L
ḡ

j
+M

ḡ

j
L
ḡ

l
)

�

ds‖𝜑(t) − 𝜓(t)‖
�

�

≤
�

�
t

−∞

e− ∫ t

s
c̃i(u)dud

�

− �
t

s

c̃i(u)du

�

− 𝛼i �
t

−∞

e− ∫ t

s
c̃i(u)duds
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ḡ

l
)

�

‖𝜑(t) − 𝜓(t)‖
�

+ c+
i �

t

−∞

e− ∫ t

s
c̃i(u)duKi

�

c+
i
𝜂
+

i
+

n
�

j=1

a+
ij
L
f

j
+

n
�

j=1

b+
ij
L
g

j
(1 + L) +

n
�

j=1

n
�

l=1

e+
ijl
(1 + L)(M

ḡ
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In view of Eq. (3.3), we have

which, together with Eqs. (3.10) and (3.11), give us that 
‖T� − T�‖

�
≤ �‖� − �‖

�
, and the mapping T:� ⟶ � is 

a contraction mapping. Therefore, the mapping T possesses 
a unique fixed point

By Eq. (3.6), x∗ satisfies Eq. (1.1). So Eq. (1.1) has a unique 
continuously differentiable pseudo almost periodic solution 
x∗ . The proof of Theorem 3.1 is now completed.

Remark 3.1  Obviously, Theorem  3.1 of [11] is only 
a special case of Theorem 3.1 without high-order term 
∑n

j=1

∑n

l=1
eijl(t)ḡj(xj(xj(t)))ḡl(xl(xl(t))).

Remark 3.2  From (3.1), (3.2) and (3.3), one can check that 
the conditions in Theorem 3.1 can be easily satisfied under 
the sufficiently small leakage delays �i(t), and (3.3) is not 
satisfied when the leakage delays in (1.1) are sufficiently 
large. This implies that the delays (oscillating leakage coef-
ficients) effect the stability of (1.1).

Next, we will show the existence of pseudo almost peri-
odic solutions of (1.2). We assume that the following condi-
tions are satisfied.

(Ŝ0) For each i ∈ J,

and there exist a bounded continuous function 
c̄i:ℝ → (0, +∞) and a positive constant Ki such that

(Ŝ2) for i ∈ J , the delay kernel �i:ℝ → [0, +∞) is a 
continuous function with 0 < ∫ ∞

0
𝛿i(v)dv < +∞ and 

∫ ∞

0
v𝛿i(v)e

𝜅vdv < +∞ for a certain positive constant �.

Let L > 0, l > 0 and 0 < 𝜃 < 1 be three constants such 
that
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K
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i

(
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𝛼
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)}}
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1
(t), x∗

2
(t),… , x∗

n
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≤
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for all t1, t2 ∈ ℝ

}

,

and

where

Then, we get

Theorem  3.2  Let (Ŝ0), (S1) and (Ŝ2) hold. Moreover, 
assume that there exist constants 𝜃 > 0, 𝛼i > 0 and L > 0, 
such that
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Then Eq. (1.2) has a unique pseudo almost periodic solution 
in the region 𝐁̄ = BL

⋂

B̄∗.

Proof  For any � ∈ 𝐁̄, in view of (Ŝ2), an argument similar 
to the one used in Lemma 3.1 of [17] shows that

for all i ∈ J. Thus, the nonlinear pseudo almost periodic dif-
ferential equations,
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0
𝛿
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i

)

< 1, i ∈ J.

∫
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0
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(s)ds�
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(t)
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∞

0

�
i
(s)�

i
(t − s)ds ∈ PAP(ℝ,ℝ),

x�
i
(t) = − ci(t)∫
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𝛿i(v)dvxi(t) + ci(t)∫
+∞

0

𝛿i(v)∫
t

t−v

𝜑
�
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n
∑
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bij(t)gj(𝜑j(𝜑j(t)))

+

n
∑
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n
∑
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eijl(t)ḡj(𝜑j(𝜑j(t)))ḡl(𝜑l(𝜑l(t))) + Ii(t), i ∈ J,

has exactly one pseudo almost periodic solution:

and

Then we complete the proof similarly to that of Theorem 3.1.

4 � Examples and remarks

Consider the following HCNNs with oscillating leakage 
coefficients and complex deviating arguments:

x𝜑(t) =

{

�
t

−∞

e− ∫ t

s
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0
𝛿i(v)dvdu
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∑
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eijl(t)ḡj(𝜑j(𝜑j(t)))ḡl(𝜑l(𝜑l(t))) + Ii(s)

]

ds

}

,
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�
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(u)dudv
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∑
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n
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n
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n
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]
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𝜑

i
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∈ PAP(ℝ,ℝn).

(4.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x�
1
(t) = −

1

4
(2 sin 400t + 1)x1(t −

� cos t�

100
) +

� cos t�

100
arctan(x1(t)) +

� cos
√

2t�

100
arctan(x2(t))

+
� cos

√

3t�

100
sin(x1(x1(t))) +

� cos
√

5t�

100
sin(x2(x2(t)))

+
� cos

√

2t�

1000
cos(x1(x1(t))) cos(x1(x1(t))) +

� cos
√

3t�

1000
cos(x1(x1(t))) cos(x2(x2(t)))

+
� cos

√

3t�

1000
cos(x2(x2(t))) cos(x1(x1(t))) +

� cos 2t�

1000
cos(x2(x2(t))) cos(x2(x2(t)))

+
1

100
e−t

4 sin2 t,

x�
2
(t) = −

1

4
(2 sin 400t + 1)x2(t −

� sin t�

100
) +

� sin t�

100
arctan(x1(t)) +

� sin
√

2t�

100
arctan(x2(t))

+
� sin

√

3t�

100
sin(x1(x1(t))) +

� sin
√

5t�

100
sin(x2(x2(t)))

+
� sin

√

2t�

1000
cos(x1(x1(t))) cos(x1(x1(t))) +

� sin
√

3t�

1000
cos(x1(x1(t))) cos(x2(x2(t)))

+
� sin

√

3t�

1000
cos(x2(x2(t))) cos(x1(x1(t))) +

� sin 2t�

1000
cos(x2(x2(t))) cos(x2(x2(t)))

+
1

100
e−t

4 cos2 t,



308	 Int. J. Mach. Learn. & Cyber. (2019) 10:301–309

1 3

and

Obviously, it is straightforward to show directly that system 
(4.1) and system (4.2) satisfy the conditions in Theorem 3.1 
and Theorem 3.2, respectively. Therefore, either system (4.1) 
or system (4.2) has exactly one pseudo almost periodic solu-
tion in the region � = B

1

5

⋂

B∗.

Remark 4.1  Systems (4.1) and (4.2) are a very simple 
HCNNs with oscillating leakage coefficients and complex 
deviating arguments in  [1–5, 7], only HCNNs with nonos-
cillating leakage coefficients are studied. One can observe 
that all results there and the references cited therein can not 
be applicable for system (4.1) or (4.2). Moreover, the exist-
ence of pseudo almost periodic solutions on HCNNs with 
complex deviating arguments has not been touched in [1, 
6, 8–33] and hence the results there cannot be applied to  
system (4.1) or (4.2).

5 � Conclusions

In this paper, the existences and uniqueness of pseudo 
almost periodic solutions for high-order cellular neural net-
works models with complex deviating arguments and involv-
ing time-varying delays, and continuously distributed delays 
in the leakage terms have been discussed. By employing 
differential inequality techniques, several sufficient condi-
tions have been obtained to ensure the existence and unique-
ness of pseudo almost periodic for the considered neural 
networks. The proposed results extend and improve some 
known results. In order to demonstrate the usefulness of the 
presented results, some numerical examples are given. The 
established results are compared with those of recent meth-
ods existing in the literature. We expect to extend this work 
to the anti-periodic solution and weighted pseudo almost 
periodic solution problems on high-order cellular neural 
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networks models with oscillating leakage coefficients and 
complex deviating arguments.
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